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DETERMINING THE SOURCE OF ANOMALOUS  

SEGMENTS IN A KARST STREAM 

 

Kathryn E. Schroeder 

39 Pages                                                                   August 2014 

Southeastern Minnesota is characterized by an extensive karst network. In 

Kentucky, Carter Caves State Resort Park is a similar karst area that has exhibited karst 

anomalies, or ‘bumps,’ in a longitudinal stream profile. This study aimed to determine if 

these same karst anomalies can be found in southeast Minnesota, where LiDAR data are 

available, and if these bumps are actually karst features. Profiles of carbonate and 

siliciclastic streams were observed to determine if the presence of anomalies in only 

carbonate streams, both lithologies, or neither. Another objective was to determine if GIS 

could be an effective method at generating these profiles. Field data were collected to 

verify the GIS derived profiles. Stream shapes were also analyzed to determine what 

dominant processes occur in the area. No karst features were identified within profiles of 

streams in southeast Minnesota. However, GIS proved to be a useful tool in creating 

profiles from 1- and 3-meter DEMs. GIS was able to locate where changes in slope 

occurred; this was verified by field data. Some differences in profile can be attributed to 

the continuously changing morphology due to scour and fill processes that occur in these 

streams. Filled DEMs were also created, but ultimately not used because they eliminated 



some important features. Stream gradient index values were calculated that accounts for 

the distance from the source, length of reach, and elevation change of the reach. Values 

were calculated for carbonate and siliciclastic reaches of streams and were found to be 

statistically similar to each other, indicating that stream-bed lithology is not a dominant 

process affecting the stream shape in this area. Four main stream shapes were identified: 

linear, concave, convex, and stepped. Linear streams were the dominant shape, followed 

by concave. There was no statistically significant difference between shapes for the 

carbonate and siliciclastic rocks. This further supports the claim that lithology is not 

playing a role in the streams’ morphology in this study area. It is likely that the erosion of 

legacy sediments from past farming practices is playing the largest role in sculpting the 

streams. Another factor affecting shape is land use, which increases erosion in this area.  
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CHAPTER I 

INTRODUCTION 

 

A  karst landscape is formed by the dissolution of soluble rock, commonly 

limestone or dolomite (Dougherty, 1985). Landforms associated with karst include 

sinkholes, caverns, lack of surface streams, and large springs (Dougherty, 1985). In 

mature and well-developed karst systems, a series of underground streams can develop; 

this development is dependent on various factors, which include base flow elevation of 

streams, stratigraphy, movement of water in the unsaturated zone, and chemical 

variations (White, 2009). The degree of development in karst terrain varies greatly 

depending on climate and terrain (White, 1988). Terrains can range from rough 

depressions with isolated towers and rolling hills, to gently rolling topography with soil 

cover and minimal depressions (White, 1988).  

A study in Carter Caves State Resort Park (CCSRP), Kentucky, found that 

profiles of streams in carbonate reaches showed anomalous segments near the entrances 

to caves and swallets (Woodside, 2008).  These anomalies, or bumps, show an initial 

drop in elevation and are followed by a sharp increase in elevation where less erosion is 

taking place (Figure 1). The anomalies are believed to be caused by water being rerouted 

underground, which results in less erosion downstream of the end of a bump. 

Longitudinal stream profiles are extremely useful in observing a stream’s shape 

and features that are present (Larue, 2011). The overall shape, either concave or convex, 
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will be apparent, as will anomalies such as knickzones, steps, pools, or bumps. This study 

is concerned with identifying potential karst features that appear as a bump in a stream 

profile. Stream profiles were analyzed in order to determine if these features are present 

and if they are associated with karst features. Based on stream profiles from Woodside 

(2008), the changes in slope produce a shape that is distinct in profile (Figure 1). 

However, it is important not to confuse these anomalies with other features, such as 

pools, steps, or knickzones. Pool- riffle sequences are features of a streambed with deeper 

pools characterized by decelerating water, and shallower riffles characterized by 

accelerating water (Halket, et al., 2013). Pool-riffle sequences are features of streams 

with a mobile stream bed comprised of gravel to sand sized clasts (Milne, 1982). Pools 

will have water accumulating in the stream, while changes in slope due to karst 

development would result in water being rerouted underground. Steps have a 

characteristic drop and horizontal feature in profile. Knickzones are points in a stream’s 

profile with a higher stream gradient, which typically coincides with increased erosion 

and a steeper gradient immediately downstream of the knickzone (Larue, 2011).  

 
Figure 1- Example of Anomalous Segments along Profile of a Stream (Woodside, 

2008) 
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In glaciated valleys, profiles tend to show steps that typically occur in a hanging 

valley, after a tributary joins the main trunk of a glacier due to the increased weight and 

erosive potential of the glacier,  (MacGregor et al., 2000). In the longitudinal profiles 

developed at CCSRP, some anomalies appeared to look similar to a glaciated profile, 

rather than looking like a karst feature. However, the scales of the steps were not the 

same magnitude as a typical glacial step. Southeast Minnesota is located in the Driftless 

Area where the most recent glaciations did not reach. Thus, the presence of anomalies in 

a profile are unlikely the result of glacial-like steps, since no glaciers went through this 

area during the Illinoian and Wisconsinan glaciations.  

The main factors affecting a stream’s shape are climate, tectonic activity, 

lithology (Hack, 1957; Pazzaglia et al., 1998) and land use (Knox, 1977; Knox, 2006). 

Because many rivers and streams are so long and can cover large distances, they are able 

to capture these changes in environment along their longitudinal profile (Carlston, 1969). 

A stream in equilibrium has a concave-up shape, however most streams will vary from 

the typical concave-up shape for smaller segments of the stream (Carlston, 1969).  This 

could include streams that are comprised of multiple linear segments or convex-up 

segments while maintaining an overall concave-up shape. Depending on the climate, 

tectonics, and lithology at a particular segment of stream, the shape of a stream’s profile 

will reflect these changes.  

In southeast Minnesota, perhaps the most significant factor that affects a stream 

profile’s shape is land use (Knox, 1977, 2006). American settlement in the driftless area 

began in the 1820s with mining towns and then began to increase more rapidly in the 

1850s (Knox, 1977, 2006). As settlement increased, conversion of land from natural 
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prairie and forestland to agricultural farm fields began to take place (Knox, 2006). 

Agricultural replacement of prairie and forestland affects runoff, soil erosion, and river 

morphology (Knox, 2006). This land conversion has significantly increased the 

magnitudes of floods, which increases erosion (Knox, 1977). Runoff becomes greater due 

to less dense vegetative cover, which increases raindrop contact with the soil, reduces 

hydraulic roughness at the soil surface, and reduces organic matter in soil (Knox, 1977). 

Increased surface runoff allows for more erosion and transportation of sediment into 

streams (Knox, 2006).  

The objective of this study is to determine if karst features can be identified by 

examining a stream’s profile. The goal is to see if anomalies can be identified, if they are 

unique to karst streams, and if they are indicative of karst features.  To do this, the  

longitudinal profiles of the carbonate and siliciclastic portions of streams were examined 

to identify the presence of anomalies. If these anomalies are identified, it can be 

determined whether the anomalies are present within the siliciclastic portion as well as 

the carbonate portion, or if we just see them in the carbonate reaches.  To investigate the 

presence of anomalies, a secondary objective emerged:  to determine the effectiveness of 

GIS in constructing stream profiles. Stream profiles were generated using two different 

resolution DEMs:  1- and 3-meters.  Additionally, a comparison of filled 3-m DEMs to 

unfilled 3 m DEMs was conducted to insure that the generation of stream networks using 

filled DEMs did not alter the true nature of the data. The premise of a filled DEM is that 

any potential data errors, or perceived “sinks”, within the DEM are removed. As a 

depression, the sinks will collect water and stop flow from continuing downstream of the 

depression. However, this can be a problem because in karst areas, the “sinks” may 
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represent actual karst depressions. Finally, stream profiles were examined to understand 

what process (climate, base level, lithology, and tectonic activity) is causing these 

profiles to have the shapes that they have in this area.  The importance of this work lies in 

the ability to use GIS and remotely sensed data to identify the presence of anomalies 

along stream profiles that can aid in identifying hidden karst features. If the anomalies are 

determined to be true karst features, then we can use a longitudinal stream profile to 

identify hidden karst features. We determined the presence of karst features by field 

verifying certain stream reaches. If they are identified, this method can prove to be 

especially helpful where cave entrances are either hidden or absent. GIS is also important 

because it is a very cost effective way to construct profiles and is extremely useful when 

it can replace or be used in addition to fieldwork, which is both costly and time 

consuming.  

History of Southeast Minnesota 

In this area, there are three (3) historic phases of sediment storage, which have 

been decreasing since the 1940s (Trimble, 1999). The first began in 1853 due to the 

dramatic increase in agricultural activity in the area, and lasted until 1938. This first 

period is characterized by huge sediment loads, averaging 405 X 10
3
 mg/year sediment 

going into storage (Trimble, 1999). During the second period, storage rates considerably 

backed off to 209 X 10
3
 mg/year. The period lasted from 1938-1975. The final period 

was characterized by the smallest storage rate of 80 X 10
3 
mg/year during 1975-1993 

(Trimble, 1999). This decrease is due to better land practice strategy rather than climate 

changes. Over the 140 years, sediment flux has varied greatly; however, sediment yield 

has remained fairly constant. Today, old farming practices are still influencing the 
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channel morphology due to the erosion of legacy sediments, which are deposits of these 

old farms.  

The Driftless area in this region is named so because it lacks any glacial drift, or 

deposits (Dogwiler, 2010). This area incorporates southwestern Wisconsin, northwestern 

Illinois, northwestern Iowa, and southeastern Minnesota. However, the area investigated 

in this study is considered a pseudo-driftless area because it was glaciated by pre-

Illinoian glaciers (Hobbs, 1999). At the beginning of the Pleistocene, the Mississippi 

River flowed along the maximum boundary of the ice sheet lobe, and reached its current 

location after the Nebraskan glaciation (Anderson, 1988; Hobbs, 1999). Valleys up until 

the end of the Pliocene were characterized by significantly less relief, so the deeply 

incised valleys that we see today must have been incised later in the Pleistocene. This 

suggests that the topography seen today in the Driftless area is not from pre-glacial times, 

but was formed in the Pleistocene after glaciations had begun (Hobbs, 1999). Early 

Pleistocene stream levels would have been at the level of the bluff tops before the deep 

incision began.  

Geology of the Study Area 

The study focuses on the Driftless Area of southeastern Minnesota (Figure 2); 

where well-developed karst features are present (Runkel et al., 2003).  Streams within 

three counties: Fillmore; Winona; and Houston; were examined. The geology of these 

counties consists of predominantly carbonates, units of limestone and dolostone, with 

some units of siliciclastic rocks, sandstone, and shale (Figure 2). This study area is hilly, 

unglaciated, and dominated with limestone bluffs that are stream dissected into the 
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Mississippi River (Knox, 1985). An emphasis was placed on Fillmore County because of 

the greater variety in lithological units through which the streams have incised.  

Upper Cambrian 

The oldest unit present is the Mt. Simon Sandstone, which consists of coarse and 

fine sand in beds ranging from several feet to 30 feet thick (Runkel et al., 2003). It is 

present along the Mississippi River in Winona and Houston counties in shallow bedrock.  

Overlying the Mt. Simon sandstone is the Eau Claire formation, which consists of 

sandstone that is fine-grained, feldspathic, and glauconitic, and a siltstone and shale. The 

Ironton and Galesville sandstones are a 12-14 meter thick unit (Runkel et al., 2003) of 

fine to coarse grained quartz sandstone, with lithic fragments and feldspar increasing at 

paleotopographic highs (Mossler, 2008).  

Above the Ironton and Galesville sandstones is the Tunnel City Group. The 

Tunnel City Group includes glauconitic, feldspathic sandstones and a feldspathic siltstone 

(Mossler, 2008). Overlying the Tunnel City Group is the St. Lawrence Formation, which 

is comprised of a dolostone and a siltstone component (Mossler, 2008). In southeastern 

Minnesota, the carbonate facies is dominant and overlain by the siltstone facies (Runkel, 

2003). This unit ranges from 33-36 meters.  

The Jordan Sandstone is 20-21 meters thick (Runkel, 2003), and is comprised of a 

fine- to coarse- grained, quartz sandstone at the base, overlain by a very fine-grained 

feldspathic sandstone (Mossler, 2008).  

Lower Ordovician 

 The Prairie du Chien Group consists of 97-104 meters of primarily carbonate 

rocks (Runkel, 2003). Dolostones dominate with minor components of fine- to coarse-
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grained sandstones (Mossler, 2008).  Large phreatic caves are present in the lower 

Ordovician aged rocks (Runkel, 2003). 

Upper Ordovician 

The St. Peter Sandstone is 21-24 meters of very well-sorted sandstone (Runkel et 

al, 2003). Some caves are present in this sandstone unit; however, they are the result of 

the erosion of poorly cemented sand rather than dissolution (Alexander and Lively, 

1995).  The St. Peter Sandstone includes interbedded sandstone, siltstone, and shale 

(Mossler, 2008). This sandstone is one of the most homogenous units, compositionally 

and texturally, that has been described (Runkel, 2003).  

The Glenwood Formation is comprised of about 1.5 meters of siltstones and 

shales (Runkel et al., 2003). The Platteville Formation consists of 6-9 meters of primarily 

limestone and dolomitic limestone with thin shale layers that contain some bentonite 

(Mossler, 2008). In this formation, caves are large enough to enter and sinkholes are 

present. This formation caps many of the bluffs in western Fillmore County (Mossler, 

2008).  

The Decorah Shale is 13-15 meters thick and includes shale with some smaller 

beds of carbonates (Runkel, 2003). At the base is a limestone interbedded with thinly 

bedded shale, and is overlain by a fossiliferous shale with thin, interbedded layers of 

coquina limestone and calcareous shale (Mossler, 2008).  

The Galena Group, Dubuque Formation, and Maquoketa Formations make up part 

of the upper carbonate aquifer in this area, and are comprised of limestone or dolostone. 

Extensive dissolution has produced large cavern systems (Runkel et al., 2003). The 

Galena Group is 56-64 meters thick and contains limestone and dolomite units with some 
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thin shale interbeds (Mossler, 2008). The Dubuque Formation is roughly 10 meters thick 

and contains interbedded limestone and thin beds of calcareous shale (Mossler, 2008). It 

is more dolomitic towards the base and less dolomitic in the upper facies (Mossler, 2008). 

The Maquoketa Formation is 20-24 meters thick and is comprised of a thinly bedded, 

fossiliferous limestone that is interbedded with shaly dolostone (Mossler, 2008).    

Middle Devonian 

The only Middle Devonian unit present in this study area is the Spillville 

Formation, which is 6-26 meters thick and only outcrops in southwestern Fillmore 

County (Mossler, 2008). This unit consists of a massive, vuggy, fossiliferous dolostone 

(Mossler, 2008).  
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Figure 2- Geologic Map of Fillmore, Winona, and Houston Counties with the 

Locations of 6 Streams that were Surveyed in September, 2013.  
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CHAPTER II 

METHODS 

 

Longitudinal Profile Construction and Comparison 

To identify concave anomalies, longitudinal stream profiles were constructed for 

reaches of streams in carbonate and siliciclastics systems using ESRI’s ArcGIS 10.2. 

DEMs of 1- and 3-meter resolutions were obtained from the Minnesota DNR website 

(http://www.mngeo.state.mn.us/chouse/elevation/lidar.html).  The DEMs were created 

from LiDAR data collected in 2008. Errors within the DEM can be present as 

depressions, or sinks (Jacoby, 2011). These errors can be caused by a single cell that is 

represented with a lower elevation than surrounding cells, a pit, or a group of cells that 

are lower in elevation than surrounding cells, a depression (Arnold, 2010).To reduce the 

potential error, filled DEMs were generated from the 3-meter DEM. This filled DEM will 

eliminate cells that are significantly lower than surrounding cells in the original DEM, so 

that in the filled DEM it appears more continuous (Arnold, 2010). This can create a more 

well-connected stream network, however, in a karst system; it can potentially remove 

actual karst features, e.g. sinkholes or swallets. The problem with using unfilled DEMs is 

that the sinks can disrupt the flow calculated in the flow accumulation raster (Arnold, 

2010). Using the filled DEMs, stream networks were created for each county using 

ArcGIS’s Spatial Analyst Hydrology toolset (Figure 3). Using ArcGIS’s 3D-Analyst 
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‘Interpolate Line’ tool, profiles were created by tracing a line along streams; this 

process generated a cross-sectional profile of that stream segment (Figure 4).  Profiles 

were created to compare streams generated from the filled DEM and unfilled DEM. To 

compare the streams, the two stream profiles were plotted on the same graph to determine 

if there are any significant differences between the streams. Differences would include 

sinks only present in the unfilled DEM while the filled DEM filters them out.  

 

Figure 3- Flow Chart for Creating Stream Network. 

 

Figure 4- Flow Chart for Creating a Stream Profile.  

To assess the importance of DEM resolution, the profiles generated from the 1- 

and 3-meter DEM were compared using two different methods. The first method was a 

qualitative analysis; profiles were plotted on top of each other to see how well they 

matched. The second method was a quantitative analysis of the resolutions in which the 

elevation values for the 1-meter DEM were plotted against the 3-meter DEM elevation. A 

slope of 1 for the best-fit-line would indicate that the two resolutions generated exactly 

the same profile.  A t test with α= 0.05 was used to determine if slope was equal to 1. 
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Stream Gradient Index  

Once the profiles were generated, streams were compared using Hack’s stream 

gradient index (Hack, 1973).  This stream gradient index (SL) relates slope of a reach to 

the length of the entire stream (L). The equation is: 

     
    

  
       (1)   

where ∆H is the change in elevation, and ∆L is the length of the specific reach being 

evaluated (Figure 5). Equation (1) can help identify irregularities and anomalies among 

sections. To allow for better comparison among streams of various lengths, SL values 

were plotted against L.  

 

 
Figure 5- Schematic of a Stream Profile Illustrating the Variables Used to Calculate 

the Stream Gradient Index.  

 

Field Survey 

Field data were collected in Fillmore and Winona counties for 6 reaches of 

streams on September 14-15, 2013 using a Spectra Precision GL422 Grade Laser 

equipment (Figure 6). A laser station was set up at a high point on the stream bank. The 

laser provides a horizontal laser reference, which can be used to compare elevations of 
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different features. At specific points along the thalweg, the height from the streambed to 

the laser station was measured.  To determine the height, the Laserometer HL700 was 

attached to a stadia rod that was adjusted until the Laserometer was at the elevation of the 

signal from the laser station (Spectra Precision Laser). The measurement from the stadia 

rod was recorded as the height (Figure 7). The location, latitude and longitude, and 

elevation of the base stations and measurement locations were obtained using a Trimble 

GPS unit. To ensure accurate distance between measurement locations, the distance was 

calculated using a Rangefinder.  

 
Figure 6- Spectra Precision GL422 Grade Laser Equipment Used to Survey the 

Streams.  
 

 



 

15 
 

 
Figure 7- Laserometer HL700 was Attached to the Top of the Stadia Rod that was 

Raised until it Reached the Laser Station.  

 

Stream Shape Comparison 

To compare the shape of streams, 35 streams were generated in carbonate reaches and 38 

from siliciclastic reaches using a 3-meter, unfilled DEM in Fillmore County. Each stream 

was assigned to a category of the four predominant stream types present in the area: 

linear, concave, convex, and steps. For the linear stream segments, a slope was calculated 

for each to determine if they have a similar slope or a variety of slopes. A similar slope 

would indicate similar processes and distance from the Mississippi River, the local base 

level, while a variety of slopes would indicate different processes are contributing to the 

streams’ shape and are located in different regions relative to the Mississippi River. A 

statistical analysis was conducted on the linear segments of carbonates versus 

siliciclastics using a t-test with an α of 0.05.  
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CHAPTER III 

 

RESULTS 

 

 

Filled vs. Unfilled 

Profiles of 33 streams were compared using filled versus unfilled DEMs. 27 were 

solely GIS derived with 16 from Fillmore County and 11 from Houston County. An 

additional six (6) were GIS generated and verified from field-surveying. Stream profiles 

created from the unfilled 3-meter DEMs were plotted alongside profiles created from the 

3-meter filled DEMs (Figure 8). There were no significant features that were present in 

either DEM that did not appear in the other. The only exception is that when profiles 

were created with a distance of thousands of meters rather than hundreds of meters, large 

step-like patterns appeared only in the filled DEM (Figure 9). These steps can range from 

a distance of hundreds of meters up to several thousand meters.  Elevation changes in 

steps ranged from about 2-10 meters.  
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Distance (meters) Legend

a

b

c

d

e

f

Distance (meters)

Filled

Unfilled  
Figure 8- Stream Profiles Generated from Filled DEMs and Unfilled DEMs for Six 

Streams. a- Deer Creek, b- Gribben Creek, c- Coolridge Creek, d-Beaver Creek, e- 

South Fork of the Whitewater River,  f- North Branch of Pine River (See Figure 2 

for Stream Locations).  
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Figure 9- Steps Present in Long Stream Profiles Using a Filled DEM (Red) Plotted 

Against the Unfilled DEM. Location Shown in Figure 2. 

 

DEM Resolution Comparison 

Profiles from a new dataset of 27 streams distributed throughout Fillmore, 

Winona, and Houston counties were used for the resolution comparison. Qualitatively, 

there was little variation between profiles generated from 1-meter DEMs as compared to 

those created from 3-meter DEMs (Figure 10). For the most part, the 1-meter DEM 

showed more detail, but it did not show any anomalous segments that the 3-meter DEM 

did not. Overall, the shapes of the profiles appear similar; only when the vertical scale is 

exaggerated can minor differences in detail between the two DEM resolutions be 

observed. However, in some of the streams (Beaver Creek, Whitewater River, and Pine 

Creek), the 3-meter DEM actually shows more bumps than the 1-meter DEM (Figure 10), 

which is the opposite of what was expected due to the higher resolution of the 1-meter 

DEM. 
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Figure 10- Stream Profiles Generated from 1-meter DEMs and 3-meter DEMs. a- 

Deer Creek, b- Gribben Creek, c- Coolridge Creek, d-Beaver Creek, e- South Fork 

of the Whitewater River,  f- North Branch of Pine River.  

 

 

A quantitative analysis shows that the 1-meter DEMs produced stream profiles 

that had similar points (distance versus elevation) to profiles created from the 3-meter 

DEM (Figure 11). The closer the relationship is to 1:1, the more statistically similar they 

are. If the slope is far from 1, then the different resolutions cannot be considered the 

same. In all cases, the slope is near 1.0, with an average slope of 0.979 for all 6 streams, 

and values ranging from .9189 to 1.0432. In addition to the six (6) streams surveyed in 

the field, profiles for 27 streams throughout Fillmore County were generated using GIS.  

The average slope for the 27 streams was 0.9949, with values ranging from 0.940 to 
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1.020 (Table 1). The statistical analysis of the 1-m DEM against the 3-m DEM indicate 

that the data were not statistically different, t(14500)=-0.060, p=0.951.  When all of the 

1-m DEM data and 3-m DEM data are plotted together, the resulting trend line has a 

slope of 0.999 with a correlation coefficient (r) = 0.9999 (Figure 12). 

 
Figure 11- Elevation Values of the 1-meter Plotted Against the 3-meter DEM. a- 

Deer Creek, b- Gribben Creek, c- Coolridge Creek, d-Beaver Creek, e- South Fork 

of the Whitewater River,  f- North Branch of Pine River. The Straight Line 

Represents the 1:1 Line Where the Profiles Would be Identical. 

 

 

 

 

 

 

 

 

 

 

 

 



 

21 
 

Table 1- 27 Streams and the Slope Value when Comparing Elevation 1-meter vs. 

Elevation 3-meter. 
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Figure 12- Elevations Generated from 1-meter DEMs Versus 3-meter DEMs for the 

Same Point.  The Data Represent the Collective Points along the 27 GIS Generated 

Stream Profiles. 

 

 

Field vs. ArcGIS-generated  

Stream profile data from field surveys were plotted along with profiles created in 

ArcGIS (Figure 13). Five (5) of the six (6) streams that were field surveyed in Minnesota 

were in siliciclastic reaches and have a distinct pool and riffle sequence. The sixth stream 

was located in a carbonate stream, but also featured a pool and riffle sequence. 

Siliciclastic reaches were selected because the presence of any features similar to those 

thought to be karst anomalies would indicate that the features are not actually due to 

karst. No pirated streams were observed along the stream reaches, which was problematic 

because that is where the karst anomalies are likely to be found. Data for two other 

streams were collected for Crystal Creek in 2010 and Garvin Brook in 2012 (Figure 14). 
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When the streams surveyed in the field were compared to the profiles created in 

GIS, the pools appeared shallower in the GIS generated profile, and typically follow 

water level rather than the stream bed. This makes sense since the elevation data come 

from LiDAR data, which cannot penetrate the water’s surface. While an identical stream 

profile is not generated, GIS is able to capture where the abrupt changes in slope occur. 

In the field generated profile, it is clear where the stream enters into a pool. In the GIS-

generated profile, there is also usually a drop at the start of the pool, even though the pool 

is not as deep. However, GIS was only able to capture some of the pools. Many of the 

pools were represented in GIS by an upward bump (Figure 13). However, the overall 

trend of the stream profile is more accurate. Garvin Brook elevations were similar but did 

not match as a result of error associated with the ability of the GPS to provide the 

elevation.  

Differences between the DEM derived elevation and the field elevation ranged 

from 1 meter to 2 ½ meters. Field elevations were collected using a handheld Trimble 

GPS unit. GPS satellite reception was limited by tree canopy and stream valley walls, 

which limited the accuracy of the elevation measurements. Horizontal distance was very 

accurate between field and GIS profiles in all streams.   
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Figure 13- Field Streams vs. Streams Created in GIS. a- Deer Creek, b- Gribben 

Creek, c- Coolridge Creek, d-Beaver Creek, e- South Fork of the Whitewater River,  

f- North Branch of Pine River.  
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Figure 14- Stream Profiles of Water Surface and Water Level Surveyed in the Field 

(Dogwiler 2010, 2012) and Profiles created for Garvin Brook (a) and Crystal Creek 

(b). 
 

Hack’s Stream Gradient Index 

The 46 carbonate reaches of streams had a median SL value of 21.312 and the 

siliciclastic stream reaches had a median SL value of 30.560 (Figure 15). The box and 

whisker plot in Figure 15 shows that the median and mean values for carbonate rocks are 

lower than for siliciclastic rocks. However, it is not statistically significant because the 

25
th

-75
th

 percentiles considerably overlap. A statistical analysis for carbonates vs. 

siliciclastics indicates that the data were not statistically different, t(46)=1952, p=0.079. 

SL generally increases as L increases; however, there is not a strong correlation (Figure 

16). 
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Figure 15- Box and Whisker Pot of SL Values for Carbonates and Siliciclastics. 

Whiskers Represent 5
th

 and 95
th

 Percentiles. Boxes Represent 25
th

 to 75
th

 Percentiles 

with Solid Middle Line Representing the Median and Dashed Line Representing the 

Mean.  

 

 
Figure 16- Chart Showing L Values Plotted Against SL Values. 
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Profile Shape Analysis 

In total, 73 stream profiles were generated and used. The four main stream types 

found in Fillmore County were linear, concave, convex, and steps (Table 2 and Figure 

17). To determine the shape type for each stream, the profile as a whole was evaluated 

regardless of the segment types making up the profile, i.e. if a concave profile contained 

steps it was classified as a concave. Stream profile distances ranged from hundreds of 

meters to 85,000 meters. The dominant stream type was linear, closely followed by 

concave. 78% of the streams were either linear or concave (Table 2). There were only a 

total of 6 streams with steps and 8 with convex shapes of the 73 that were sampled. While 

the distances for profiles did range dramatically, at all distances linear and concave 

profiles were dominant. Of the 8 streams found with a convex-up shape, 6 had distance 

values range from 2,800 meters to 8,500 meters. The last two had distances of 25,000 and 

26,000 meters. All profiles with a larger horizontal distance than the concave profile at 

26,000 meters were either convex or straight.   

The 73 streams were distributed throughout Fillmore County, but the geology in 

the area was dominated by carbonate rocks. Most of the non-carbonate rocks are located 

in the northeast quarter of the county, so that is where a majority of the non-carbonate 

streams were sampled. The majority of the streams in both carbonate and non-carbonate 

rocks had a linear shape, with slope values ranging from -0.0004 to -0.0609 and with an 

average slope of -0.0101. The statistical analysis for linear segments of carbonates versus 

siliciclastic indicates that the data were not statistically different, t(28)=-0.072, p=0.943. 
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Table 2- The Number (n) and Percent (%) of Streams for Each Shape Present 

within Each Lithology. 

 

 

 
Figure 17- Examples of the Four Main Stream Shape Types Found in Fillmore 

County, MN. 

 

Geology Linear 

(n, %) 

Concave 

(n, %) 

Convex 

(n, %) 

Steps 

(n, %) 

Other 

(n, %) 

Total 

(n, %) 

Siliciclastic 15, 42.9% 12, 34.3% 3, 8.6% 3, 8.6% 2, 5.7% 35, 47.9% 

Carbonate 17, 44.7% 13, 34.2% 5, 13.2% 3, 7.9% 0, 0.0% 38,  52.1% 

Total 32, 43.8% 25, 34.2% 8, 11.0% 6, 8.2% 2, 2.7% 73, 100% 
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CHAPTER IV 

DISCUSSION 

 

Identification of Features in Profile 

Along the surveyed streams in southeastern Minnesota, no karst features were 

identified. The primary features observed were pool and riffle sequences, which were 

identified in streambeds of both carbonates and siliciclastic. The presence of pool and 

riffle sequences was expected within all streambed lithologies. However, it was also 

expected that the bumps, or anomalies, would also have been present. Pool and riffle 

sequences are found within streams that have continuously changing morphologies. 

Within these streams, especially with gravel size beds, the pools and riffles migrate 

downstream (Milne, 1982). With well-developed karst features in the area Runkel, 2003; 

Gao et la., 2005; Gao and Alexander, 2003), it was expected that significant karst features 

would be observed within the carbonate sections of stream with water being rerouted 

underground, resulting in karst anomalies in the stream profile. However, streams within 

the carbonate rocks lacked karst features similar to those present in the Carter Caves area.   

While southeastern Minnesota has extensive karst, a significant difference between this 

area and CCSRP is the dominance of pool-riffle sequences within a majority of the 

streams. The streams of interest in CCSRP were dry stream channels where water is 

being pirated to the subsurface. This difference in channel morphology is likely why the 

karst features found in CCSRP are not also present in southeast Minnesota. Streams 
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characterized by clastic transport are unlikely to have significant karst development 

within the streambed.  

Aside from the pool and riffle sequences, the only other identified feature was a 

step pattern (Figure 9).  The steps were identified in the stream profiles using GIS. No 

steps were found in field surveyed streams. The step pattern could be a consequence of 

the DEM vertical resolution not being high enough, making the data appear 

discontinuous. The steps can also be due to the near-channel terraces or knickpoints 

between the glaciated and unglaciated regions (Stout, 2013). Most of the steps were less 

than 1 meter, and the resolution of the data ranged in a vertical accuracy of between 

0.144 meters and 0.248 meters, depending on the land type. So it is possible that some of 

these smaller steps are attributed to vertical error. However, some of the steps that are 

present within this study can also represent where changes in slope of the streambed are 

occurring. For example, some steps appear in the GIS-generated profile at the location 

where a pool was found in the streambed in the field verified profile (Figure 13). 

Filled vs. Unfilled 

The profiles for filled vs. unfilled look very similar (Figure 8). There are a few 

small differences where pools have been removed in the filled DEM; however, some of 

the removed pools are real and are present in the field survey (Figures 8 and 13).  For 

example, in the North Branch of Pine Creek, at a distance between 225 and 300 meters, 

the unfilled DEM shows a series of pools, while the filled DEM does not (Figure 8). In 

Figure 13, looking at the stream bed profile, a series of pools is present within the profile. 

These pools are better represented by the unfilled DEM. Because they are also present in 

the field survey, they cannot be attributed to error; therefore, the filled DEM is filtering 
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out pools and classifying them as error in the data rather than actual features. It is still 

possible that some of the sinks in the unfilled DEM may be due to error within the data; 

however, the filled DEM should be used with some caution because it levels out some of 

the important characteristics of the stream in the process of rectifying error. While there 

may still be error present, it does not appear to be substantial enough to justify using the 

filled DEM over an unfilled DEM. Arnold (2010) also explains that filled DEMs were 

considerably more useful when DEMs were generated using lower resolution data that 

was not generated from LiDAR data. It is possible that the sinks present in coarser DEMs 

are simply error due to pits or depressions (Arnold, 2010). However, the DEMs in this 

study were generated from high resolution LiDAR data with a vertical error of less than 

0.248 meters, so the potential for error is greatly reduced. Because the filled DEM 

removed important features visible within the original LiDAR data as a result of the high 

vertical resolution, the unfilled DEM was used for all subsequent analyses in this study.  

GIS 1- vs. 3-meter 

To compare the capability of generating stream profiles from the two different 

DEM resolutions, a qualitative approach was used. A visual examination of the 1-m and 

3-m DEM profiles (Figure 10) suggests that they are similar. The main difference seen in 

some of the profiles are the many bumps that appear in 3-meter profile where the 1-meter 

profile keeps a consistent elevation value.  This is likely because each 3-meter cell is 

averaging 9 one-meter cells and can be including areas of higher elevation that are 

outside of the stream channel. It is also possible that the boundary between two of the 3-

meter cells is in the stream so that each cell is primarily averaging cells that are outside of 

the stream channel and have higher elevations. Averaging in the higher values can give 
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the 3-meter cell a higher overall value, which could cause more bumps to be present in 

the 3-meter profile that are not present in the 1-meter profile.  

The next step was to do a more quantitative comparison of the resolutions. 

Looking at Figure 11(results), all of the points follow the 1:1 line very closely, indicating 

that the 1-meter and 3-meter DEMs are very similar. Because the average slope for all 33 

was very close to 1, it can be assumed that the two DEMs produce profiles that are the 

same. In addition to the slopes, a statistical analysis proved that the two resolutions are 

not statistically different. Because the 1- and 3-meter DEMs are ultimately the same, 

either can be used to provide the same results. However, the 3-meter DEM is 

significantly preferred over the 1-meter DEM due to computational requirements. A 

simple analysis using the 3-meter DEM can turn into significantly lengthier processing 

when using the 1-meter DEM.   

Stream Shape 

The streams in this area are dominated by linear and concave profiles with few 

convex or step profiles. These shapes are present in both carbonates and siliciclastic 

stream beds and do not appear to be present in either lithology more than the other. This 

suggests that the rock type is not playing a significant role in defining each stream’s 

shape. 78% of the 73 stream profiles generated were either linear or convex, with very 

little variation between the shapes of carbonates and siliciclastics (Table 2). This is 

further supported by the fact that the stream gradient index values do not differ at all 

between carbonates and siliciclastics; there was no statistically significant difference. 

Looking at the slopes of linear segments, they were also shown to be statistically the 

same. 
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The primary factor causing these shapes is the incision into the valley of the 

legacy sediments (Stout, 2013). A study of the spatial relationship of profiles in the Root 

River Watershed found knickzones primarily at the boundary between glaciated and 

unglaciated regions (Stout, 2013). Downstream of these knickzones, the presence of near-

channel terraces increase, which are possible locations of sediment contribution to 

streams due to stream channel widening or movement. A recent shift in the source of 

sediments to streams has been predominantly to the legacy sediments from floodplains 

and alluvial terraces (Stout, 2013). These sediments have sat in the valleys for years, and 

are now being reworked by the streams back into the system. Farther upstream, the 

stream profiles of tributaries have a shallower gradient, and are more convex-upward. 

The tributaries to the Root River that have a source nearer to the Mississippi River are 

much steeper and become more concave nearer to the Root River. The huge increase of 

these legacy sediments being brought back into the system is playing a large role in the 

shape of the streams.  

Land use is also a significant factor affecting shape in the area (Knox, 1977; 

Knox, 2001; Knox, 2006). Land conversion to more agricultural fields in this area causes 

more flooding and runoff in storms or flooding events, which is causing more erosion in 

streams (Knox, 1977; Knox, 2001; Knox, 2006). This erosion also supports the shapes of 

the profiles that are seen in this area. Areas of less erosion will tend to have a more 

convex profile, while higher rates of erosion will produce the concave profiles (Pazzaglia, 

1998). Because the scale of the profiles in this study is so small, they are probably being 

swamped by land-use changes, which have a huge local impact. 
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GIS- Field vs. DEM 

Streams profiles generated in GIS using 3-meter DEMs show an accurate 

representation of water levels surveyed in the field. This is expected because the LiDAR 

data are only able to capture the elevation at the water surface, so profiles generated from 

LiDAR data are not able to represent the depths of the pools seen in the stream bed. The 

stream surface, which is seen in the GIS generated profiles, is able to capture where pools 

begin. For example, in the Deer Creek profile, there are two steps at 160 and 230 meters 

in the GIS generated profile (Figure 4 in results). The steps correlate with the two pools 

seen in the field data (Figure for reference). The step in the GIS profiles roughly starts 

where the riffle ends and the pool begins. There is the potential for stream channel 

migration between the time that the LiDAR data were collected and the stream survey 

conducted; however, no serious flooding events occurred that would have significantly 

reworked the streams enough to see pools in different places. 

Since GIS is able to locate these important points, the user is able to determine 

where there will likely be pools and riffles in profile. The elevation difference of up to 2 

meters between the field profile and GIS generated profiles can be attributed to the error 

in the handheld GPS unit. The trends of both the DEM data and the field data are similar 

except for the elevation differences.  
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CHAPTER V 

CONCLUSION 

 

No karst features were found in southeastern Minnesota in the surveyed profiles 

or the profiles created in GIS. The dominant feature in all streams was pool and riffle 

sequences. Stream gradient indices calculated for carbonate vs. siliciclastic reaches of 

streams showed mean values that were statistically the same between lithologies. This 

suggests that it is not lithology of streams that is affecting the gradient or shape. Erosion 

into near-channel terraces containing legacy sediments is one of the primary reasons 

causing the stream shapes in this area. The scale in this study was too small to capture the 

convexity seen by Stout et al. (2013). Land use activity was another primary factor 

affecting these stream shapes, and it dominated the scale at which this study done.   

GIS proved to be a useful tool in creating profiles and doing analyses on DEMs 

and profiles. While it did not create an identical profile to those surveyed in the field, it 

was able to identify where pools and riffles occurred.  However, due to flooding in recent 

years and a 5 year time difference between when data were collected, not all pools and 

riffles were accurately identified within the DEM due to a mobile stream bed. The 

unfilled DEM was chosen for this study over using an unfilled DEM in order to preserve 

the streambed features that a filled DEM can smooth out. Except for minor differences, 

the 1-meter and 3-meter DEM appeared and were calculated to be statistically similar. 

Due to its smaller file size, the 3-meter DEM is preferred. 
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Future work in the Carter Caves State Resort Park area, or other regions with dry 

stream beds would be beneficial to really determine if the karst anomalies can be 

identified in stream profile. While this study was not able to locate them in southeastern 

Minnesota, they can still potentially be found in other areas with dry stream beds where 

water is being rerouted underground. Unfortunately, no dry stream beds were found in 

this area.  

More work is also needed for Hack’s Stream Gradient Index. In this study, there 

was no statistical difference between SL values for carbonate and siliciclastic streambeds; 

however other regions that are more controlled by lithology might yield a bigger 

difference. It would also be interesting to learn how more tectonically active regions and 

various climates affect SL values. Additional work looking at the spatial relationship of 

the shapes of stream profiles in southeast Minnesota would help to understand where we 

are finding each shape type. Longer stream reaches would also be beneficial. 
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