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Abstract
This study aims to evaluate the effectiveness of concept maps on science achieve-
ment among elementary and secondary education students, including low-achieving 
students. A systematic search located 55 studies about concept mapping in science 
achievement published in peer-reviewed journals and dissertations between 1980 
and 2020. We extracted 58 independent standardized mean difference effect sizes 
from 55 eligible studies involving 5,364 students from Grade 3 to Grade 12 who 
used concept maps for learning in physics/earth science, chemistry, and biology that 
met the specified design criteria. A random-effects model meta-analysis revealed 
that the mean effect size was moderate for overall science (g = 0.776). The mean 
effect sizes varied from moderate to large based on the subject area (g = 0.671 for 
biology; g = 0.590 for chemistry; g = 1.040 for physics and earth science); these 
differences between groups were not statistically significant (p = 0.220). Concept 
maps were generally associated with increased science learning across several learn-
ing and teaching conditions, and methodological features (low-achieving students, 
higher teaching guidance, intermediate grades, low- or middle-income countries, 
journal publications, and late year of publication). However, we found significant 
heterogeneity in most subsets. Implications for future research and practice recom-
mendations are discussed.

Keywords Concept maps · Effectiveness · Science achievement · Elementary and 
secondary education · Meta-analysis

Introduction

Concepts are fundamental to advancing and understanding biology, physics, and 
chemistry (Mayr, 1997). Ernst Mayr (1997), a twentieth century’s leading evolu-
tionary biologist and philosopher of biology, pointed out the central role of con-
cepts in life and physical sciences. He stated that “[t]he two major contributors to a 
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new theory in the life sciences are the discovery of new facts (observations) and the 
development of new concepts” (p. 62).

Concept mapping is an instructional strategy usually used to enhance science 
achievement for elementary and secondary education students, who are the focus 
of the present study. Science achievement refers to vocabulary development, under-
standing, and reading comprehension of scientific texts. Concept mapping, a versa-
tile tool, extends its utility beyond the realm of science to encompass various disci-
plines such as mathematics, social science, humanities, and business management. 
However, our meta-analysis centers specifically on the utilization of concept map-
ping within the realms of natural science, specifically in the fields of physics, chem-
istry, and biology.

A concept map is a graphical tool, an alternative to written text, for represent-
ing verbal information and illustrating and organizing a set of relationships among 
concepts (Nesbit & Adesope, 2013; Novak & Cañas, 2008; Novak, 2010a). A fun-
damental characteristic of a concept map is its structural and relational nature, 
establishing connections between various concepts (Davies, 2011). A concept 
map embodies a “hierarchical tree” in levels featuring superior and subordinate 
components, encompassing primary, secondary, and tertiary ideas (Davies, 2011). 
The more general concepts are often placed at the top or center of a concept map 
(Davies, 2011; Novak, 1991, 2010a; Novak & Cañas, 2008). Concepts are usually 
enclosed in circles or boxes, and relationships between concepts are illustrated by 
connecting lines; these lines contain words such as “is,” “are,” and “includes,” or 
short prepositional phrases such as “leads to,” “results from,” “is part of,” etc. link-
ing two concepts showing their relationships (Davies, 2011; Novak, 1991, 2010a; 
Novak & Cañas, 2008). Examples are sometimes included to clarify the meaning 
of a concept (Davies, 2011). In the 55 studies of our meta-analysis, we observed 
that concept maps were typically hierarchically structured, with the central concept 
typically positioned at the top or center, perhaps because they were addressed to ele-
mentary, intermediate, and secondary education students, and this structure is more 
straightforward. However, we note that non-hierarchical types of concept maps (i.e., 
network concept maps) are also in use (Amadieu et al., 2009; Davies, 2011).

Mind mapping is similar to a concept mapping tool, defined as visual and non-
linear representations of ideas and their interconnectedness (Davies, 2011). Mind 
mapping and concept mapping differ in terms of precision and formality. Whereas 
mind maps are less formal and structured, concept maps are formal and generally 
more tightly structured (Davies, 2011).

Not surprisingly, concept maps have been extensively used in school settings as 
an instructional strategy to organize information into a graphic form, creating a vis-
ual representation of the text structure (Kwon & Cifuentes, 2007; Sturm & Rankin-
Erickson, 2002). Elementary and secondary education students are more likely to 
understand and remember relationships among concepts when involved in the map-
ping process (Karpicke & Blunt, 2011; Novak & Cañas, 2008; Rewey et al., 1989). 
Thus, students can actively identify critical ideas and details in the new content 
(Carnine & Carnine, 2004; Marzetta et  al., 2018). Concept maps have been used 
in several ways: (a) to present information to students, (b) for students to represent 
their knowledge in learning activities, and (c) to assess what students know (Nesbit 
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& Adesope, 2013). Concept mapping may enhance organizational cues for retriev-
ing concepts and information from memory (Kwon & Cifuentes, 2007). Concept 
maps can also be scaffolding tools to relate new learning material to students’ prior 
knowledge (Marzetta et al., 2018; Novak, 2010a).

Theories Explaining Concept Mapping Effects on Learning

Several theories can explain the effectiveness of concept maps. We will concentrate 
on the three learning and instructional theories that may offer a closer explanation of 
the learning outcomes associated with concept maps.

First, concept mapping was initially linked to meaningful learning, a concept for-
mulated by Ausubel (1962) within the framework of his subsumption (assimilation) 
learning theory (Novak & Cañas, 2008; Novak, 1991, 2010a, 2010b). In the sub-
sumption learning theory, meaningful learning is contrasted with rote learning (Aus-
ubel, 1962). Rote learning occurs when new information is acquired by verbatim 
memorization and arbitrarily incorporated into prior knowledge (Novak & Gowin, 
1984; Novak, 2010a). Instead, meaningful verbal learning refers to anchoring new 
knowledge (or concepts) to relevant prior knowledge and existing cognitive structure 
(Ausubel, 1962, 1963; Novak & Gowin, 1984; Novak, 2010a).“Cognitive structure” 
refers to hierarchically organized concepts in any field of knowledge (e.g., biology, 
physics, chemistry) that represent the residue of information and ideas (i.e., sche-
mas in their long-term memory) (Ausubel, 1963; Novak & Gowin, 1984). Ausubel’s 
primary hypothesis was that learning is facilitated, and retention can be maintained 
over time when knowledge is meaningfully acquired and hierarchically organized 
(Ausubel, 1963; Kirschner & Hendrick, 2020; Novak, 2010a). The organized struc-
ture of concept maps aligns with Ausubel’s idea of organizing knowledge in a mean-
ingful way. Requiring students to reflect on relationships, connections, and hierar-
chies between concepts enhances meaningful learning (Novak, 2010a).

Second, since concept maps contain graphical elements and sometimes symbols 
and pictures, Allan Paivio’s (1986) dual coding theory (DCT) is relevant to under-
standing concept mapping effectiveness. According to the DCT, information can 
be stored in two distinct but interconnected coding systems: a verbal system that 
deals with language and a non-verbal system that deals with information concern-
ing nonverbal objects (i.e., images, symbols) (Clark & Paivio, 1991; Paivio, 1986). 
Concept maps involve the use of both verbal and visual elements. The verbal ele-
ments consist of labels, keywords, or short written text, while the visual elements 
include shapes, lines, and spatial organization. Thus, the two-modal representation 
(verbal and visual) of concept mapping aligns with the principles of DCT, which 
propose that information encoded using two modalities can be more efficiently inte-
grated and retained than relying solely on a single, typically verbal system (Kirsch-
ner & Hendrick, 2020). DCT may provide a more precise mechanism of action (the 
potential of dual coding) for explaining how concept maps enhance learning out-
comes compared to Ausubel’s (1962, 1963) subsumption learning theory. In  situ-
ations where experimental methods demonstrate the effectiveness of instructional 
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practices, it becomes essential to understand the underlying mechanisms of action 
(Bunge, 2013).

Third, cognitive load theory (CLT), a theory about instructional design developed 
by John Sweller and his colleagues (Sweller, 1994, 2020; Sweller et al., 2011), has 
been used to explain the functioning and usefulness of concept mapping. The start-
ing point of the CLT is that there is limited working memory to code information. 
The limitations of working memory can be circumvented by organizing schemas 
(mental frameworks) of knowledge that allow students to work on complex material 
without exceeding their cognitive capacity (Kirschner & Hendrick, 2020). In other 
words, because working memory is limited, teachers should design learning experi-
ences to reduce the extraneous cognitive load related to the additional cognitive load 
imposed by instructional design and presentation of information (Chen et al., 2023; 
Sweller et al., 1998, 2011). Intrinsic cognitive load refers to the inherent complexity 
or difficulty of the material being learned, making it intrinsic to the material being 
addressed (Sweller et  al., 2011). Inherent load is defined by the number of novel 
elements, the element interactivity that has to be processed, and the expertise of the 
learners (Chen et  al., 2023; Sweller et  al., 1998, 2011). Thus, by visually simpli-
fying unnecessary verbal information, the concept maps can reduce the extraneous 
cognitive load. Furthermore, the graphical and relational structure of concept maps 
can provide a higher degree of organization when compared to traditional text; this 
increased organization can assist students in structuring their learning materials into 
schemas or activating and reorganizing relevant schemas, thus reducing the extrane-
ous cognitive load (Amadieu et  al., 2009; Davies, 2011; Rivet & Krajcik, 2007). 
By providing a visual representation of otherwise verbal information and logically 
organizing the information, concept maps can be beneficial for low-achieving stu-
dents and students experiencing learning difficulties (Kirschner, 2002; Sweller, 
1994).

In summary, concerning concept maps, both CLT and DCT theories hold signifi-
cance and offer potential mechanisms of action (Bunge, 2013). CLT’s emphasis on 
minimizing extraneous cognitive load is relevant to concept mapping, as concept 
maps often provide a higher level of organization. DCT’s emphasis on integrating 
verbal and visual elements to improve retention and comprehension aligns with con-
cept mapping, as concept maps inherently involve this integration.

Previous Meta‑analyses

Previous meta-analyses, such as those by Horton et  al.  (1993), Nesbit and Ades-
ope (2006), and Schroeder et al. (2018), were more generic and did not specifically 
focus on science education at the elementary, intermediate, and secondary school 
levels. For example, in Horton  et al.’s  (1993) meta-analysis, six of the 19 studies 
included in the analysis were conducted at the college/post-secondary level. In 
Nesbit and Adesope’s meta-analysis (2006, pp. 441–446), 38 out of the 55 studies 
that specified grade levels were conducted at the post-secondary level. The same 
meta-analysis also focused on a broader range of learning subjects, including statis-
tics, humanities, law, and social studies (Nesbit & Adesope, 2006). Schroeder et al. 
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(2018) categorized their studies into STEM (science, technology, engineering, and 
mathematics) or non-STEM fields. In addition, Nicoara et al. (2017) focused on the 
medical field.

Science instruction represents a specialized instructional domain distinguished 
by its unique curriculum (physics, chemistry, biology), content, and perhaps par-
ticular instructional challenges. A meta-analysis tailored to the science instruction 
context is essential to provide insights and guidance relevant to science educators. 
Furthermore, while broader meta-analyses provide valuable insights, they may not 
capture the specificities of science education at the elementary, intermediate, and 
secondary levels. Our search indicated no meta-analysis focusing exclusively on the 
effectiveness of concept maps in teaching science to elementary and secondary stu-
dents (Grade 3 to Grade 12). Therefore, this study evaluates the impact of concept 
mapping on student achievement in science within elementary, intermediate, and 
secondary education settings. We aim to bridge existing research gaps that pertain to 
concept mapping effectiveness, particularly the emphasis on science education and 
the curriculum relevance of concept maps in schools. It is important to note that the 
complexity of the curriculum for elementary and secondary school students may dif-
fer from that of higher education or adult learning contexts.

Effects of Moderator Variables

The effectiveness of concept maps is examined through various moderators, demon-
strating the diverse and dynamic nature of educational contexts, learning subjects, 
and learners. This wide range of moderator variables can shed light on concept 
maps’s impact on learning outcomes and their specific aspects of usage. Among the 
crucial moderators we explore are the following:

Learning Subject Physics, chemistry, and biology are distinct scientific disciplines, 
each with its concepts, principles, processes, and facts. Students may encounter dif-
ferent learning challenges in physics, chemistry, and biology due to differences in 
the nature of experiments, equipment and settings, physical laws, chemical reactions 
and equations, biological processes, or the complexity of the mathematical concepts 
involved. Ernst Mayr (1997, p. 63) suggested that concepts may be more critical 
to biology (e.g., natural selection, adaptation, evolution, and ecology) than physical 
sciences, where discovering new facts may be more critical. Nevertheless, instruc-
tion in physical sciences and biology varies from the process of discovering new 
knowledge in these fields. Furthermore, analyzing the effectiveness of concept map-
ping in each learning subject allows for a tailored examination of how an instruc-
tional tool aligns with the distinct content of these three instructional domains.

Level of Achievement Characteristics of learners may be relevant to the effective-
ness of concept maps (Nesbit & Adesope, 2013). But little is  known about the 
effectiveness of concept mapping for low-achieving or high-achieving students. 
Few studies have suggested that concept maps could be an effective tool for science 
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instruction for low-achieving students (Guastello et al., 2000; Morfidi et al., 2017; 
Roberts & Joiner, 2007).

In our review, most studies included students with mixed abilities or did not 
define their participants’ learning achievement well. Several studies have not stated 
whether low-achieving students or high-achieving were among their participants. 
For example, only three studies that fulfilled the selection criteria had their exclusive 
focus on “low achieving” students (Guastello et al., 2000), “poor readers” (Morfidi 
et al., 2017), and autism (Roberts & Joiner, 2007) and their control groups had simi-
lar low-achieving learning characteristics to the experimental groups. In addition, 
among the set of seven studies with experimental groups designated by ability, we 
identified two other studies (Haugwitz et al., 2010; Schmid & Telaro, 1990), which 
also included control “low achieving” groups as clearly defined subgroups, and had 
all the information to run a second more focused meta-analysis. Two other stud-
ies (Brown, 2000; Udupa, 1992) out of the aforementioned seven studies included 
experimental groups clearly defined as low achieving, but their control groups were 
of mixed ability; therefore, these two studies were excluded from the second meta-
analysis, which specifically concentrated on exceptional learners, including either 
low-achieving or high-achieving students. Our literature search identified four 
studies (Gulati, 2005; Ling & Boo, 2007; Schmid & Telaro, 1990; Snead, 2000), 
including experimental and control “high-achieving” groups as clearly defined sub-
groups in their analysis. That is, their control groups had similar high-achieving 
learning characteristics to the experimental groups. Although one study (Brown, 
2000) included an experimental group clearly defined as high achieving, the control 
group was of mixed ability; for this reason, this study was not included in the second 
meta-analysis.

Teaching Guidance Concept mapping is an adaptable instructional tool that can be 
implemented in various ways, from highly structured and directed by the teacher 
or researcher to minimally guided and constructed by students. We distinguish here 
three levels of teaching guidance: (a) concept maps constructed by learners through 
independent work, that is, lowly directed; (b) concept maps given or closely directed 
by teachers/researchers, that is, highly directed; and (c) concept maps scaffolded by 
teachers/researchers following a mixed or interactive approach (see Chang et  al., 
2002). Exploring the impact of different levels of teaching guidance allows us to 
understand how this teaching aspect of concept mapping can influence learning 
outcomes.

Grade Level and Level of Schooling The complexity of concept maps may vary 
depending on the grade level or level of schooling. Cognitive processing also varies 
with age and level of schooling (Demetriou et  al., 2011). For younger students in 
elementary school, concept maps may emphasize more straightforward concepts and 
entail fewer relationships. For example, the complexity of the cognitive process is 
determined by the number of interacting concepts involved (Demetriou et al., 2011; 
Halford et al., 1998). At higher grade levels, the complexity and interactivity of the 
concept elements may increase, aligning with the advanced subject matter (Sweller 
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et al., 2011) and resulting in the construction of more intricate concept maps. Under-
standing how concept maps impact students at different grades and levels of school-
ing can help tailor teaching strategies to their cognitive needs.

Type of Technology Concept maps can be either hand-drawn or computer-generated. 
Hand-drawn concept maps may prompt students to add or develop ideas and require 
students to put in a significant amount of effort (Erdogan, 2009). On the other hand, 
computer-generated concept maps can be more easily changed and expanded. Com-
puter-generated concept mapping software usually offers pre-made templates of 
various maps that can be easily altered and visually improved by adding colorful 
pictures, symbols, or clip art (Sturm & Rankin-Erickson, 2002). There is  evidence 
from individual studies that both can benefit students by promoting the development 
of science vocabulary, reading comprehension, and writing (Flanagan & Bouck, 
2015; Morfidi et al., 2017; Sturm & Rankin-Erickson, 2002).

Collaboration Level Concept maps can be individually or collaboratively con-
structed (Kwon & Cifuentes, 2007, 2009). The collaboration level among students 
(individual construction of concept maps vs. collaborative work during the inter-
vention phase vs. mixed or not defined approach) may impact the effectiveness of 
concept mapping. For example, when students individually construct concept maps, 
they can engage deeply with the content and independently organize their under-
standing. However, some students may struggle to work with concept mapping 
independently, mainly if they have limited prior experience. Collaborative concept 
mapping encourages peer interaction, perhaps enabling some students to rectify 
misconceptions. However, successful collaborative work necessitates effective com-
munication and coordination among students. In certain instances, dominant group 
members may exert disproportionate influence over the construction or understand-
ing of the concept map.

Economic Level of Countries The economic level of countries, whether classified as 
low and middle-income or high-income, may influence the effectiveness of concept 
mapping in several ways. For example, high-income countries have better access to 
educational resources, including technology, teaching materials, and well-equipped 
classrooms. In contrast, low and middle-income countries may face resource con-
straints that can affect the implementation and effectiveness of concept mapping. 
Conversely, in low-income countries where teacher training resources may be lim-
ited compared to high-income countries, concept mapping may be considered a 
more significant innovation.

Publication Type The publication type (journals vs. dissertations and conference 
papers) may impact the pooled effectiveness of concept mapping. While journal arti-
cles typically undergo a rigorous peer-review process ensuring the quality and reli-
ability of the research findings, the inclusion of dissertations and conference papers, 
that is, the inclusion of “grey literature,” helps mitigate publication bias and the 
“file drawer problem” (Paez, 2017). Thus, we included grey literature to reflect the 
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existing evidential base fully, and we assessed the impact of this variation through a 
moderator analysis.

Considering moderator variables, the research questions for the current meta-
analysis are structured as follows, aiming to delve into the multifaceted aspects of 
concept mapping’s effectiveness:

(1) What effect does concept mapping have on elementary and secondary education 
students’ science achievement (physics, chemistry, and biology)?

(2) What are the characteristics and conditions of concept mapping instruction that 
enhance science achievement?

(3) What effect does concept mapping have on the science achievement of low-
achieving and high-achieving students?

Methods

We performed the meta-analysis following the PRISMA guidelines (Forero et  al., 
2019; Moher et  al., 2009). We initially conducted a systematic review of the lit-
erature for studies published in English. Studies were selected from the Academic 
Search Complete, ERIC, PsycINFO, Web of Science, ProQuest Dissertation Data-
base, and conference papers from the American Educational Research Association 
(AERA) and National Association for Research in Science Teaching (NARST) (see 
Fig. 1).

Inclusion Criteria

We used inclusion criteria similar to those of Nesbit and Adesope (2006) and 
Schroeder et  al.’s (2018) meta-analyses. The criteria for including studies in this 
meta-analysis were the following:

The criteria for including studies in this meta-analysis were the following:

(1) Published studies in English;
(2) Articles published in peer-reviewed journals and other sources such as disserta-

tions, theses, and conference papers (e.g., AERA, NAST);
(3) Using concept maps as a method to measure students’ achievement in science 

(biology, physics/earth science, and chemistry);
(4) Participants in Grades 3–12;
(5) Inclusion of a control group;
(6) Reported sufficient data to allow an estimate of standardized mean difference 

effect size;
(7) Assigned participants to groups before differing treatments;
(8) Randomly assigned participants to groups or used a pretest or other prior variable 

correlated with the outcome to control for preexisting differences between the 
groups. Studies were excluded from this meta-analysis when reported a pretest 
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effect size outside the range − 0.40 < d < 0.40 (Nesbit & Adesope., 2006). Fur-
thermore, when the same authors reported more than one source (e.g., disserta-
tion and journal article), we considered the version published in a journal article.

Literature Search

The literature search focused on studies published between 1980 and May 2020. 
We used the following combination of broad search terms in a Boolean search: 

Fig. 1  A Prisma flow diagram of the search methods



 Educational Psychology Review (2024) 36:39

1 3

39 Page 10 of 32

(“concept map* OR knowledge map* OR node-link map*) AND (“science”) to 
identify potentially relevant studies.

Coding Procedure

After identifying studies that corresponded to the selection criteria according to 
our research questions, it was necessary to determine a perspective for a correct 
coding that concerned the present meta-analysis. Two researchers independently 
read each of the 55 studies retained in the inclusion phase (see Fig. 1) to (a) select 
group comparisons consistent with the research questions of the meta-analysis 
and (b) code each comparison according to a predefined coding form.

The coding form included the (b) year of study, (b) subject area (biology vs. 
physics and earth science vs. chemistry), (c) publication type (journal vs. dis-
sertation and conference papers), (d) country of research, which was recoded 
according to the World Bank (2020) classification criteria for country economic 
level into high-income country level vs. middle- and low-income country level 
(Serajuddin & Hamadeh, 2020), (e) grade level of students and their relevant 
level of schooling, (f) level of achievement (low-achieving students vs. groups 
designated by ability vs. mixed levels of achievement), (g) duration of interven-
tion (low duration: < 2  weeks vs. medium duration: 2–4  weeks vs. high dura-
tion > 4 weeks; for studies reported in minutes, one week calculated as equivalent 
to 120  min), (h) the type of technology used by students (pencil-and-paper vs. 
computer-generated maps or digitalized), (i) degree of teaching guidance (highly 
directed: maps given or closely directed by teacher/researcher vs. lowly directed: 
constructed by students vs. mixed-scaffolded or interactive approach), (j) collabo-
ration level among students (individual construction of concept maps vs. collabo-
rative work during the intervention phase vs. mixed or not defined approach) (see 
Table  1). The first author coded those pertinent features of studies and looked 
for comparison treatments, including random assignment of participants or con-
trol for pre-intervention differences in the experimental and control groups. The 
second author double-coded the aforementioned features of studies, resulting in 
interrater reliability of 0.96. Any disagreements were resolved by consensus.

Statistical Methods

We avoided introducing statistically dependent data, as Lipsey and Wilson (2001) 
have suggested. Thus, we avoided double or multiple data insertion from studies 
with one control group when experimental groups underwent different interven-
tion approaches. In this case, we selected only one of the two or more experimen-
tal groups, the most relevant group to our meta-analysis, to calculate the stand-
ardized mean difference effect size. As effect size, we used the standardized mean 
difference (SMD):
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where X1i and X2i are the means of the two groups under comparison in the ith study, 
and Spi is the pooled standard deviation:

Usually, the sample estimate of the SMD is termed Cohen’s d, but it tends 
to overestimate the absolute value in small samples (Thompson & Sharp, 1999). 
This bias can be corrected using the Hedges’ g suggested by Hedges and Olkin 
(1985), which generates an unbiased estimate using a correction factor called J. 
Therefore, the correction leads to gi = Jdi = di − 3di/(4ni − 9).

The estimated variance of d is given by:

and subsequently var(gi) = J2var(di). The interpretation of the results was based on 
Cohen’s suggestion: a magnitude of effect < 0.20 was considered trivial, between 
0.20–0.50 small, 0.50–0.80 moderate, and an effect size > 0.80 was considered large 
(Cohen, 1988).

We used the random-effects model for the meta-analysis as proposed by Der-
Simonian and Laird (1986). The method introduces an additive component of the 
between-studies variance (τ2), also known as between-study heterogeneity, and 
we hypothesize that the true effect varies between studies,

Then, to obtain a pooled (weighted) estimate of g, we used:

The weights are given by the inverse-variance estimate used in the meta-anal-
ysis with wi =

(

�2 + s2
i

)−1(Normand, 1999; Petiti, 1994). Inferences about the 
overall effect are based on the normal approximation since:

Heterogeneity is not easily evaluated using τ2. Thus, we used the stand-
ard Cochran’s Q and the inconsistency index (I2), which ranges between 0 and 
100% and provides easy quantification of the variability between studies. The 
potential sources of heterogeneity were investigated using subgroup analysis or 
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meta-regression analysis using study-level characteristics (Thompson & Sharp, 
1999).

Influential studies were identified by removing each time a study from the meta-
analysis and observing the change in the pooled estimate. Publication bias was esti-
mated using the rank correlation method (Begg & Mazumdar, 1994), the regression 
method of Egger’s, and its random effects analog (Egger et  al., 1997). The non-
parametric “trim and fill” method of Duval and Tweedie (2000) was also used to 
estimate the number of “missing studies.” The potential time trend of the combined 
effect over the years was evaluated by applying the standard cumulative meta-anal-
ysis approach (Lau et al., 1995) using two different formal tests dealing with time 
trend: the “first vs. subsequent” comparison (Ioannidis & Trikalinos, 2005) and the 
Generalized Least Squares (GLS) Regression-based test (Bagos & Nikolopoulos, 
2009). The statistical package used in the analysis was Stata 13 (Stata Corporation, 
2013), while statistical significance was set at p ≤ 0.05.

Results

On May 12, 2020, we searched for studies published from 1980 until the date the 
search was conducted in the following databases: Academic Search Complete (ASC; 
1245), ERIC (835), PsycINFO (970), and Web of Science (WoS; 2050); the num-
ber of studies returned is indicated in parentheses. In the first search (identifica-
tion phase), we found 5100 studies, many of which addressed topics other than the 
effectiveness of concept mapping in science. Thus, after reviewing the records, 4803 
studies were eliminated as irrelevant. After removing duplicates (n = 113) across 
databases, 191 articles were maintained and further screened by their abstracts. On 
May 14, 2020, we searched for dissertation studies in the ProQuest Dissertations and 
Theses Database published from 1980 until the search date, and 429 dissertations 
were revealed. After reviewing the records, 372 studies were eliminated as irrele-
vant, and 57 dissertations were further screened by their abstract. On May 26, 2020, 
we searched (a) the titles of papers presented at the AERA conferences between 
2010 and 2019 in their online paper repository and (b) the titles and abstracts of 
papers presented at the NARST program conferences between 2007 and 2019. We 
also conducted a Google Scholar search to find additional papers and gray literature 
using the same terms. Titles and abstracts were screened for eligibility and discarded 
if they did not meet the inclusion criteria. This search yielded 123 and 38 papers of 
potential relevance from online paper repositories and Google Scholar, respectively; 
thus, 161 papers were further screened by their abstracts. The search results from all 
data sources are presented in Fig. 1, employing the PRISMA template (Moher et al., 
2009).

Of the 409 studies screened by abstract, 262 were irrelevant to concept mapping 
effectiveness in science (87 from databases, 21 from the ProQuest Dissertations and 
Theses database, and 154 from conferences, etc.). After meticulously reviewing the 
remaining 147 studies for their content and applying our inclusion criteria, 55 eli-
gible articles and papers were included in the present meta-analysis. Among those 
55 studies, 38 were journal articles, 15 were dissertations (including one Master’s 
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thesis), and two were proceeding papers. Figure 1 illustrates the stages of the selec-
tion process of the studies included in the final analysis in a PRISMA Flow Diagram.

The 55 studies yielded 58 comparisons with non-dependent data (Lipsey & Wil-
son, 2001). Three of the 55 original studies (Hagemans et al., 2013; Redford et al., 
2012; Spaulding, 1989) were larger research projects. Each of these three studies 
comprised two distinct studies with their own separate control groups. Based on the 
58 comparisons in the meta-analysis, the total number of participants was 5364. Of 
them, 2,903 participants were part of the experimental groups, and 2,461 were part 
of the control groups. The overall ES based on 58 comparisons was estimated at 
0.776 (95% CI: 0.597, 0.956; p < 0.0001), suggesting a moderate to large effect of 
the intervention (see Fig. 2).

The between-studies heterogeneity is high, with an I2 equal to 89.1% (see Hig-
gins et al., 2003). The methods for detecting publication bias suggest a substantial 
chance for this or other small-study-related bias (p = 0.035 for Begg’s test, p = 0.007 
for Egger’s test, and p < 0.0001 for the random effects regression test; Fig. 3).

The trim and fill method detected an asymmetry to the funnel plot and esti-
mated an additional 16 studies that, if appended to the dataset, would “correct” 
it. This addition would produce an attenuated estimate but still highly significant 
(g = 0.403, 95% CI: 0.198, 0.608). The influential analysis identified the study of 
Guastello et al. (2000) as the most influential one (i.e., the one with the largest 

Fig. 2  Results from meta-analysis by subject and weighted mean effect sizes
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effect sizes), followed by the studies of Morfidi et  al. (2017) and Jena (2019). 
Interestingly, when the studies of Guastello et al. and Morfidi et al. were excluded 
from the analysis, the pooled estimate was reduced to 0.668 (95% CI: 0.519, 
0.817), and the overall heterogeneity was reduced to 84%, and the evidence of 
publication bias was eliminated (p = 0.182 for Begg’s test, p = 0.073 for Egger’s 
test and p = 0.082 for the random effects regression test). The standard cumulative 
meta-analysis provides evidence for increased effect size over time (Fig. 4).

Mean effect sizes varied from moderate to large based on the subject area. 
For biology (k = 31 comparisons (from 30 studies)), the mean effect size was 
moderate (g = 0.671; 95% CI: 0.492, 0.851; p < 0.0001), but the between stud-
ies heterogeneity was high, with an I2 = 80.8%. For chemistry (k = 7 studies, the 
mean effect size was small (g = 0.590; 95% CI: -0.204,1.385; p < 0.145), and a 
high between studies heterogeneity with I2 = 95.0%. For physics (k = 20, compari-
sons from 19 studies), the mean effect size was large (g = 1.040; 95% CI: 0.656, 
1.423; p < 0.0001), but the between studies heterogeneity was also high, with an 
I2 = 92.2%. In subgroup analyses, the effect sizes obtained from biology, phys-
ics/earth science, and chemistry did not yield significant differences among them 
(p = 0. 220).

The level of achievement (low achieving students vs. groups designated by ability 
vs. mixed levels of achievements) also yielded significant differences (see Table 2), 
but this was related to the influential studies of Guastello et al. (2000) and Morfidi 
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Fig. 3  Funnel plot for detecting publication bias
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et  al. (2017), which were performed on low-achieving learners; should these two 
studies be excluded, the effect disappears.

The degree of teaching guidance (high guidance vs. low guidance vs. mixed 
approach) seems to be a significant factor with a higher effect size for high teaching 
guidance (see Table 2). Still, after removing the two influential studies, this result 
was marginal (p = 0.074).

Regarding the grade level, we did not find significant differences among grades, 
but it is possible that the lack of significance in this result could be attributed to the 
limited number of studies within each grade. To explore this further, we made two 
distinct categorizations of the schooling level. First, similar to Horton et al. (1993), 
we assessed the effectiveness of concept maps at three schooling levels: elementary 
(Grades 3–6), middle (Grades 7–9), and high school (Grades 9–12). There were 16 
studies containing 1,015 students from Grades 3–6 (elementary), 22 studies with 
2,501 students from Grades 7–9 (middle level), and 20 studies with 2,059 students 
from Grades 10–12 (high level). In the subgroup analysis, the three categories did 
not yield significant differences (g = 0.836, 0.821, 0.673, respectively, p = 0.76).

Second, like Nesbit and Adesope (2006) and Schroeder et al. (2018), we made an 
alternative categorization of the schooling level, distinguishing between the inter-
mediate level (Grades 3–8; encompassing 31 studies and 2783 students) and the 
secondary level of schooling (Grades 9–12; encompassing 27 studies and 2792 stu-
dents). The results showed a significant difference (g = 0.959 vs. 0.587, p = 0.048), 

Fig. 4  The standard cumulative meta-analysis shows increased effect size over time
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suggesting that the effect is larger in intermediate grades (see Table 2). However, 
this significant difference may be attributable to the larger proportion of studies 
investigating chemistry in the secondary grades (7 compared to 0 studies) and the 
lower proportion of the studies investigating physics (4 compared to 16 studies). We 
note that in the overall analysis, chemistry had a smaller effect size compared to 
physics and biology (0.59 vs. 1.04 and 0.671), even though this learning subject dif-
ference was not significant.

Regarding the economic level of countries, the effect size from studies conducted 
in high-income countries is significantly smaller than those from low- and mid-
dle-income countries (g = 0.626 vs. 1.053); this difference in effect sizes was not 
affected by the two aforementioned influential studies (see Table 2). Furthermore, 
journal publications had larger effect sizes than dissertations and conference papers, 
and this difference was statistically significant (g = 1.039 vs. 0.254, see Table 2). The 
year of publication is also related to increased effect size over time, but the propor-
tion of journal publications also increased over time (i.e., in Web of Science, Eric, 
and PsycINFO databases; see Nesbit & Adesope, 2013). Finally, various features of 
studies such as technology (pencil-and-paper vs. digitalized), learning environment 
(individual vs. collaborative vs. mixed or not clearly defined), and duration of inter-
vention did not have significant differences (data not shown in Table 2).

Building a model with multiple variables, we ended up with publication type 
(journals vs. dissertations and conference papers), country of research by economic 
level (high income vs. middle- and low-income), and type of learners, resulting in 
a 46.63% reduction between studies variability. Regarding research question 3, we 
conducted a separate meta-analysis, including studies focusing on exceptional learn-
ers (low-achieving and high-achieving students). The mean effect size was large for 
low-achieving students (g = 2.019; k = 5) and moderate for high-achieving students 
(g = 0.610; k = 4), even though the between-groups differences did not reach statisti-
cal significance (p = 0.261) due to a small number of studies in this area (Fig. 5).

Discussion

This meta-analysis examined the effectiveness of concept maps in improving stu-
dents’ science achievement in elementary and secondary education. Specifically, 
it focused on science school subjects and included 55 studies with 58 compari-
sons with experimental and quasi-experimental designs. Overall, the results of the 
present meta-analysis suggest that concept maps are an effective teaching tool to 
increase students’ science achievement (g = 0.776), even after two influential stud-
ies were excluded from the analysis (g = 0.668). In a small subset of their meta-
analysis, Nesbit and Adesope (2006) found a similar effect size (g = 0.742, k = 10) 
when learners constructed concept maps rather than attended a lecture or discussion. 
Nonetheless, their findings revealed more modest weighted mean effect sizes for 
concept map construction under two specific learning conditions: (a) in physical sci-
ence (g = 0.283, k = 6), and (b) in the domains of general science, biology, and sta-
tistics (g = 0.522, k = 9). Our findings are also consistent with Schroeder et al. (2018) 
meta-analysis that indicated that concept maps were superior to other instructional 
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comparison conditions and effective across science, technology, engineering, and 
math (STEM) (g = 0.60, k = 118), although their meta-analysis was more generic 
and not specifically focused on science for students in the elementary and secondary 
education.

In short, evidence from the present meta-analysis suggests that concept maps, 
compared to traditional instructional methods such as attending lectures, read-
ing text passages, and participating in class discussions, are more effective for 
facilitating science education. This effectiveness can be explained from three 
theoretical perspectives. First, concept mapping promotes meaningful engage-
ment and meaningful learning (Novak & Cañas, 2008; Novak & Gowin, 1984; 
Novak, 2010a). Second, due to their incorporation of both verbal and visual com-
ponents, concept maps align with the principles of dual coding theory, leveraging 
the memory system’s capacity to store and organize information in a more inter-
connected and resilient manner (Kirschner & Hendrick, 2020). Third, concept 

Fig. 5  Results from the second meta-analysis focusing exclusively on low-achieving and high-achieving 
learners
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maps serve as a learning tool, simplifying complex verbal information, omitting 
unnecessary verbal clutter, and presenting key concepts concisely, thus reducing 
extraneous cognitive load. Furthermore, concept maps’ graphical and organiza-
tional or relational format offers an additional layer of cognitive support. These 
visual representations provide a certain degree of organization, enabling students 
to structure their learning materials into coherent schemas. The organizational 
structure of concept maps can ultimately contribute to reducing the extraneous 
cognitive load (Amadieu et  al., 2009; Kirschner & Hendrick, 2020; Schroeder 
et  al., 2018). For example, biology instruction places a significant emphasis on 
understanding biological concepts and processes, such as photosynthesis, cel-
lular respiration, homeostasis, and metabolism, and understanding relationships 
between different elements, such as species interactions within ecological webs. 
Concept maps can illustrate hierarchical, sequential, and cause-and-effect rela-
tionships. In short, concept maps, through their visual clarity and organizational 
capability, offer a mechanism of action to reduce extraneous cognitive load and 
enhance learning outcomes in science education.

Learning Subject Concept mapping seems to be an effective teaching strategy 
to enhance the science learning of students across science disciplines: biology 
(g = 0.671, k = 31), physics (g = 1.040, k = 20), and chemistry (g = 0.590, k = 7). Fur-
ther research is needed for chemistry because of the small number of existing studies 
(k = 7) and very high heterogeneity.

Evidence-based practices (EBPs) fulfill sound criteria and rigorous indicators 
(Cook & Cook, 2013). While concept mapping has shown strong evidence-based 
potential in biology and physics, the case for its effectiveness in chemistry is still 
promising since the pooled effect size from these studies seemed smaller.

There may be some intrinsic reasons why concept maps typically do a better job 
in physics than chemistry. Instruction in physics typically places a strong empha-
sis on theoretical concepts and their application to real-world phenomena. Con-
cept maps can help students bridge the gap between abstract theories and physi-
cal phenomena. In contrast, chemistry instruction may have a more experimental 
focus, where students engage in laboratory work, potentially reducing the reliance 
on concept maps to bridge theory and practice. Furthermore, in chemistry instruc-
tion, other visual aids, such as chemical diagrams, charts, and models, may assume a 
more prominent role when compared to physics and biology.

Type of Learners Our first meta-analysis focusing on the level of achievement (low-
achieving students vs. groups designated by ability vs. mixed levels of achieve-
ments) yielded a statistically significant difference (g = 3.244 vs. 0.551 vs. 0.691), 
suggesting that the effect is larger in low-achieving students. However, this finding 
was predominantly influenced by the influential studies conducted by Guastello 
et  al. (2000) and Morfidi et  al. (2017), which focused on low-achieving learners; 
should these two studies be excluded, the effect disappears.

Our third research question focused on the effects that concept mapping has on 
the science achievement of low-achieving and high-achieving students. For this 
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purpose, we conducted a secondary meta-analysis, specifically incorporating studies 
that exclusively centered on exceptional learners: low-achieving and high-achieving 
students. The mean effect size was large for low-achieving students (g = 2.019; k = 5) 
and moderate for high-achieving students (g = 0.610; k = 4). However, the difference 
between these two groups did not attain statistical significance, owing to the limited 
number of studies in the comparison. Overall, our findings are encouraging regard-
ing the effectiveness of concept mapping for low-achieving students.

It has also been hypothesized that by using concept mapping rather than plain 
text, low-achieving students can better understand the graphic representations of 
relationships among concepts (Miller, 2016). In addition, the typical hierarchical 
organization of ideas in concept mapping could improve information organization 
by low-achieving students (Boyle, 1996; Morfidi et al., 2017).

Teaching Guidance Our results indicate a statistically significant higher effect size 
for concept mapping interventions with high levels of teaching guidance (g = 1.792) 
when compared to those with low teaching guidance (g = 0.470) or scaffolded/inter-
active approaches (g = 0.905). Nevertheless, it is worth noting that after excluding 
the two influential studies that specifically targeted low-achieving students, this 
finding became marginally significant (p = 0.074). In practical terms, this marginal 
finding suggests that students tend to benefit more when teachers exert high levels 
of teaching guidance in concept mapping. Conversely, when students are expected 
to construct concept maps independently, the impact on their learning outcomes 
tends to be  lower. However, this difference may be influenced by the type of learn-
ers involved in concept mapping instruction. Low-achieving students  may derive 
greater benefits from a kind of explicit instruction in mapping concepts, which 
includes elements such as clear goals, logical sequencing, guided practice, imme-
diate corrective feedback, comprehension checks, and mastery learning (Hughes 
et al., 2017; Kirschner & Hendrick, 2020; Kirschner et al., 2022; Pullen & Hallahan, 
2015). Additionally, concept maps that are less directed by teachers may result in a 
lower degree of structure, which does not significantly facilitate learners’ ability to 
organize the material effectively, thus potentially failing to reduce adequately the 
cognitive load (Amadieu et al., 2009).

Level of Schooling Our results indicated that the impact of concept mapping is more 
pronounced at the intermediate level of schooling (Grades 3–8) than at the second-
ary level. However, this statistically significant difference may be influenced by 
the learning subject, that is, the higher proportion of studies focusing on chemis-
try within the secondary grades group and the relatively lower proportion of studies 
addressing physics.

Consistent with the above finding, Horton et al. (1993) found moderate to high 
mean effect sizes in elementary school and college and small effect sizes in middle 
school and high school. Also, Nesbit and Adesope (2006) found high effect sizes 
at the intermediate school level (Grades 4 to 8) and a negligible effect size at high 
school (Grades 9–12). Further research is needed to analyze how concept maps 
affect information processing and cognitive load at different levels of schooling.
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Economic Level Our results demonstrate a significantly higher effect size for con-
cept mapping interventions when carried out in low- or middle-income countries 
compared to those conducted in high-income countries. Low- and middle-income 
countries often have limited educational resources and may face more significant 
challenges in delivering advanced instructional methods. In such contexts, concept 
mapping may be seen as an innovative approach that stands out as a more effective 
tool for enhancing learning outcomes.

Publication Type We found a significantly higher effect size for concept mapping 
studies published in journals than those published in grey literature (journals vs. dis-
sertations and conference papers). In general, empirical evidence has shown consist-
ent differences between studies published in journals and those in the grey litera-
ture; studies published in journals are more likely to contain statistically significant 
results and larger effect size estimates compared to unpublished studies (McAuley 
et  al., 2000; Paez, 2017). Like in other areas of interventions, our meta-analysis 
shows that excluding grey literature may exhibit an overrepresentation of studies 
with statistically significant findings, primarily because studies with significant out-
comes are more prone to publication than those with null or negative results (Paez, 
2017). This can result in inflated and less precise effect size estimates for concept 
mapping interventions compared to a meta-analysis incorporating grey literature.

In addition, we found statistically significant differences regarding the late year 
of publication. Finally, technology (pencil-and-paper vs. computer-generated maps 
or digitalized), learning environment (individual vs. collaborative vs. mixed or not 
clearly defined), and duration (low vs. medium vs. high duration) did not yield sta-
tistically significant differences.

Implications for Research and Practice

The present meta-analysis indicates that concept mapping holds significant promise 
as an evidence-based instructional approach in biology and physics school instruc-
tion. However, while promising, the evidence supporting its effectiveness in chem-
istry instruction appears to be less robust, as indicated by the combined effect sizes 
from these studies, which tend to be smaller. Additional research is needed to estab-
lish its effectiveness in chemistry instruction due to the limited number of existing 
studies and the significant heterogeneity observed.

Moreover, further research is needed to explore the instructional aspects and 
learning conditions that influence the effectiveness of concept maps as a teaching 
tool in science school classrooms. Only five studies that referred to low-achiev-
ing students were included in the meta-analysis without providing information on 
whether students had learning disabilities (LD). Therefore, well-designed and rigor-
ous empirical studies are required to examine whether concept mapping tools are 
effective for students across different performance levels. Specifically, research on 
the effectiveness of concept maps is needed to advance our knowledge about evi-
dence-based practices for low-achieving students and students with LD. Similarly, 
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the perception that concept maps are a student-friendly instructional method for stu-
dents with LD needs further investigation.

Noteworthy, Oliver (2009) pointed out the shortcomings of concept maps as a 
singular learning strategy without using other techniques. Concept maps may not 
necessarily operate similarly to improve the learning outcome across different 
achievement levels. However, they may be effective if tailored to students’ cognitive 
needs and learning abilities. Teachers should consider aligning concept maps with 
instruction and other evidence-based practices.

Limitations

Although the current meta-analysis followed all available guidelines and best prac-
tices, it cannot avoid limitations. High heterogeneity is a significant concern of the 
present meta-analysis, denoting that the studies in the meta-analysis produced esti-
mates that differ significantly from one another. Publication bias was also detected 
in this meta-analysis. The funnel plot showed evidence of publication bias, as there 
were influential studies with low-achieving students that reported highly positive 
effects of concept mapping instruction. When the studies of Guastello et  al. and 
Morfidi et  al. were excluded from the analysis, although the pooled estimate was 
reduced from 0.776 to 0.668, the evidence of publication bias was eliminated.
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