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Microscopic theory of the low frequency Raman modes in germanium nanocrystals

Wei Cheng!? Shang-Fen Rehand Peter Y. Y&
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Beijing Normal University, Beijing, 100875, People’s Republic of China
2Department of Physics, lllinois State University, Normal, lllinois 61790-4560, U.S.A.
SDepartment of Physics, University of California, Berkeley, and Materials Sciences Division, Lawrence Berkeley National Laboratory,
Berkeley, California 94720, U.S.A.
(Received 13 October 2004; published 25 May 2005

We have studied the Raman intensities of low-frequency phonon modes in germ@@imanocrystals
(NC) with varying sizes by using a microscopic valence force field model. The results are compared with the
predictions of the continuum model of Lamb using a projection method. We found that thepheroidal
Lamb modes are Raman active in the parallel polarization scattering geometry, white2tspheroidal Lamb
modes are active in the crossed polarization geometry. This result agrees with the group theory prediction that
the torsional Lamb modes arot Raman active, but is in disagreement with the identification of torsional
Lamb modes in the crossed polarization Raman spectra of NC suggested by many authors.

DOI: 10.1103/PhysRevB.71.174305 PACS nun®er63.22+m, 81.05.Cy, 78.306:j

I. INTRODUCTION with a microscopic valence force field mod®FFM).6 Our
results on the phonon density of states in Ge NC have al-
Quantum dots and nanocryst&ldC) have attracted great ready appeared in a brief repdrin the present paper, we
interest in recent years both for their fundamental sciencealso compare the computed Raman intensities of the phonon
and potential applications. In particular, as the size of NOmodes with the Raman selection rules of the Lamb modes.
decreases, the ratio of atoms located at or near the surface \bfe found that for the large N@.e., d~ 6.8 nm the micro-
the NC increases dramatically. Surface atoms are subject gxopic results agree well with the Raman selection rules of
forces different from those in the interior of NC, so their the continuum model based on group theory. However, for
vibrational properties are different, and their interaction withsmall NC (such as wherd<4 nm) the continuum model
electrons confined in the NC is also expected to be differentoreaks down. Our results indicate that the identification of
So far there are practically no experimental techniquegorsional modes in the Raman spectra of NC proposed by
which can measure directly the surface phonons in NC usinghany authors is erroneous.
either electrical or optical measurements. In principle, a low- This paper is organized in the following way. In the next
temperature inelastic electron scanning tunneling microscopgection, we describe our theoretical approach; in Sec. Ill we
can be a sensitive technique for investigating surface phonoshow our calculated results and compare with existing ex-
modes in NC and their interaction with electrons. Until theseperimental data; and in Sec. IV we summarize and conclude.
experiments can be performed, low-frequeft§—20 cm?)
Raman scattering experiments are the only experimental re-
sults available for comparisons between theory. Such low-
frequency Raman modes in spherical NC of various semi- A. Valence force field model (VFFM)
conductors embedded in glasses have been reported, for
example, in NC of G€Ref. 2 and CdSRef. 3 embedded in

GeQ, glass, and in CdSSe doped silica-based gleas&i®e 145 in semiconductor NC and quantum d@®s in re-

characteristic of these Raman modes is that their frequenc(yent year$-13In this model, the change of the total energy

scales Iinearly_with the in\(erse of the diameter of the NC'gue to the lattice vibration is described by the followfg:
They have typically been interpreted as the spheroidal an

torsional vibration modes of a continuum elastic sphere 1 Ad
whose properties have been calculated by Lambcording E= EE CO(?
to this model, the frequencies of these spheroidal and tor- ' '
sional modes are quantized in terms of two quantum numwhere C, and C; are two parameters that describe, respec-
bers: a branch numberand the angular momentuimSince tively, the change in the total energy due to changes in the
the model assumes the NC to be an elastic continuum, it ibond length and the bond angle, and the summation is over
expected to be valid only for large NC, but not for nm-sizedall the bond lengths and bond angles. To simplify the diago-
NC containing, say, less than 1000 atoms. nalization of the dynamic matrix, the vibration modes of the
In this paper, we have calculated the Raman spectra dfIC are classified according to the point-group symmetry of
low-frequency phonon modes of Ge NC containing 885 tothe structure(tetrahedral orTy for Ge). This allows us to
7289 atomglargest diameted~ 6.8 nm by applying a Ra- study the NC vibrational modes belonging to different irre-
man polarizability model to the phonon modes computedducible representations. One of the limitations of this model

Il. THEORETICAL APPROACHES

The theoretical model used to investigate phonon modes
in Ge NC is the VFFM developed to calculate phonon

2
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is that it cannot reproduce both the sound velocity and the 4] 24 ]
zone-boundary acoustic phonon frequency accurately at the ]
same time. Since we focus on the phonons in the low-
frequency range in this study, we used the Ge parameter:
(Co=47.7 andC,=2.8 eV) (Ref. 6 obtained by fitting the 18]

:/l/./
20
elastic constants. 161 / 16
14 4 : 14 <
B. Displacement vectors of spheroidal and torsional Lamb e 121 12
modes 10 / 10

22 -
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In order to compare the NC modes calculated by VFFM 8
with the Lamb modes, we need the analytical forms of the -
displacements of the Lamb modes. For ease of reference th 4]
derivations are summarized below.

Lamb’s theory begins with the equation of motion for the

. g . . . M T v T v 1 4 T ' 0 v 1 T 1 1
displacement vectob of a three-dimensional elastic con- a0 1 2 3 4 0 1 2 3 4 5
tinuum spherical body with density Angular Momentum /

pDIPt=(N+ ) V (V - D) + uV2D. 2) FIG. 1. Calculated values of for both spheroidalS) and tor-

sional (T) Lamb modes as a function of the angular momentum
The two Lamb constants and w are related to the longitu- numberl. The solid lines join modes with the same branch number
dinal (v)) and transversév,) sound velocities of the con- n (a special case: joih=1, n branch tol=2, n+1 branch. 7 in-

tinuum by v =\ (A +2u)/p, vi=Vulp. creases witm in the sequence af=0,1,2... . Notahat the values
The spheroidal modes are defined by displacement ve&f 7 for the spheroidal mode are specific for Ge, with the choice of
tors 6(5) transverse and longitudinal sound velocities given in the text. The
lu

modes indicated with circles are found to be Raman active by pro-
> > jection onto oulN=7289 atom Ge NC as discussed in the text.
D= VgstaV X V XA, 3

wherea is a constant determined by the stress-free boundary dlj+a(m)/ii(m)]idn=0. (5

condition, ¢ andA are, respectively, scalar and vector func- _ .
tions, defined by The 7 values for torsional modes do not depend on materials

and are universal. On the other hand, the frequencies of sphe-

) cosme ) roidal modes depend on bokhandk, which have to satisfy
¢s=ji(hr)P"(cos ) sinme exp{—iwt}, the following relation(with ¢=hR):
in spherical coordinates , 6, ¢) and 277+ (1= D+ 271 () = (1 + DYE (D111
- 057+ (I -2+ )P+ {n?- 211 - 1)(1 + 2)}
A= Yy, , , ,
(kY by zd) X nisa(m)/ji(n) =0. (6)

in Cartesian coordinates with . ] .
In this case the solutiong depend on the material through

. m cosmg ) the ratio(v,/v;). For the torsional modes under a stress-free
dv =]i(knPiY(cos6) sinme expl- iwt}. boundary condition the values gfare discrete and therefore
the values ofw are usually labeled in increasing values by a
In the above definitions is the vibration frequencyj(r) are  integer n (branch numbe=0,1,2... and theangular mo-
the spherical Bessel functionB}" are the Legendre polyno- mentum numbet.
mials indexed by the angular momentum numbeasnd m. By solving Eqgs.(5) and(6) for the averaged values of the
The subscripti in Eq. (3) is related tom by u=m+I+1 and  longitudinal and transverse speegs5.25X 10° cm/s and
runs from 1 to 2+1. The torsional modes are defined by v,=3.25x 10° cm/s appropriate for Ge, we have obtaingd

displacement vector‘éﬂ) of Ge NC numerically for different values of andl. The
lowest values ofy for both spheroidal and torsional modes
DIV=V xA. (4)  are shown as a function dfin Fig. 1. The curves are ar-

ranged with increasing values of starting withn=0. Be-

In the above definitions the parametdrsand k have the cause we have assumed a stress-free boundary condition, the
dimensions of wave vectors and are related to the longitudis values for both spheroidal and transverse Lamb modes are
nal and transverse sound velocity by w/v, andk=w/v;.  quantized as shown in Fig. 1. In real samples the NC are
Under a stress-free boundary condition the mode frequenciedten embedded in a matrix and, as a result, their surfaces are
w are determined by the solution of the following equations.not stress-free. Thusy may vary with external stress and
For torsional modesy=kR (whereR is the radius of the may not be the same as those shown in Fig. 1. As a result, the
sphere has to satisfy frequency of the corresponding Lamb modes will also be
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different. More discussions om; and the corresponding C. Projection of lattice modes onto Lamb modes

Lamb modes frequencies will be presented elsewhere. The \ye can compare the displacement vectors obtained from
modes enclosed by circles in Fig. 1 are Raman active. Befor;

discussing the Raman intensity of these modes, we will firs
consider the displacement vectors of some lower-order Lam

modes.
(1) Displacements of spheroidatD mode

Neglecting the constant and time-dependent terms, we ¢
write the scalar functions of the=0 spheroidal modes as

ds=jo(hr), dy=jo(kr). From Eq.(3) we obtain the displace-
ment vectors

2 jo(he)
Df)sl):—h—hr (X& +y§, +28).

)

A simple group theory analysis shows that this mode belongs

to the A; irreducible representations of tAg group.

fhe Lamb model and from the VFFM for discrete lattices by
B:ojecting the atomic displacements of the NC modes along
e Lamb mode displacements. Since the displacements of
Lamb modes are continuous functions of space within a
sphere of radiu®k while the vibration amplitudes of lattice
odes are discrete, all integrals over Lamb modes have to be
replaced by summation over discrete lattice points. In addi-
tion, the vibration amplitudes are normalized to 1 in the same
way as the vibrational amplitudes of NC obtained by the
VFFM are presented. We then sum t®jection of all the
atoms in the NC and then square the sum to arrive at a
quantity that we label as thmode projection quantityor
MPQ. For example, suppose the displacement vector of a NC

lattice mode at an atorais V(a), while the displacement at

Displacements of=1,2 spheroidal modes are summa- the same site of a spheroidetO0 Lamb mode isﬁé‘?(a);

rized in Appendixes A and B.
(2) Displacements of torsionakl1l modes

then, the projection of the lattice mode onto the spheroidal
Lamb mode is given b)s(a):v(a)-Dg‘?(a). After we sum

There are three orthogonal torsional modes that form (a) over all the atoms in the NC and then square, we obtain

complete set of bases. Neglecting constants and timq\-ﬂsz[z s@]2
dependent terms, their displacement vectors can be deriv .
from ¢y=xj,(kr)/r by substituting it into the expression for

A and then using Eg4) to obtain

RYELUFY (8)

2 ja(kr) -
Dy =-z-—¢,

Similarly, from ¢y=yj,(kr)/r and ¢,=zj,(kr)/r we obtain,
respectively

= ja(kr) o ja(kr)
D(lz)——X_ll(r )ez+ Z_Jl(r )ex, (9)
and

S ja(kr) o ja(kr) o
DY =- leTex + leTey. (10)

This definition can be easily extended to

Ef_q;lmb modes with >0, where the Lamb mode is defined by

2l+1 vectors.

MPQ is a measure of the “similarity” between a NC lat-
tice mode and a Lamb mode when the NC is treated as a
spherical continuum. It is equal to 1 exactly if all NC atoms
have exactly the same displacements as the Lamb mode at
the same positions. On the other hand, if we project a NC
mode onto a Lamb mode whose symmetry is not compatible
with it the MPQ is then zero. Thus, for a given NC lattice
mode, if we can find a Lamb mode with a MPQ value that is
both maximum and close to 1, we can conclude that this
lattice mode is almost identical to a Lamb mode. In such
cases we will label the lattice mode as a “NC Lamb mode”
and its frequency as a NC Lamb frequency.

D. Raman selection rule and intensities

As discussed in Ref. 14, the spheroidal Lamb modes

Thesel =1 Lamb modes can be shown to form a set of com+ransform according to the following irreducible repre-
plete orthogonal bases by satisfying the following equationssentations of the rotational group(3): D;O), Df), Df;),

| || o8 omav=] [ [ 63-5zav
=[ [ | 6-53av,

| | |5 85av=| | | 6 By
:ffjﬁﬁ)-ﬁ(l?dV:o.

They belong to the triply degenerate representation of the
T4 group.

while the torsional Lamb modes transform Bgl), DLl),

DP, .... From the group theory and the matrix element
theoremt® one can show that only spheroidal Lamb modes
with 1=0,2 areRaman activé*1° This selection rule is in
agreement with the results of Brillouin scattering experi-
ments in large NC where indeed only these modes are
observed® However, torsional Lamb modes have been
claimed to be observed experimentally with strength compa-
rable to spheroidal modégOne way to explain this result is
that the so-called torsional modes in the experimental spectra
are actually=2 spheroidal modes with frequencies close to
the torsional modes. Another possible explanation is that the
Raman selection rule is not valid for small NC. For example,
if we treat the Ge NC as composed of discrete atoms with
local symmetry belonging to th&; group, then from group

Displacements of torsioné&2, and 3 modes are summa- theory we would derive the Raman selection rule for The

rized in Appendixes C and D.

group: namely, that thé,, E, and T, modes are all Raman

174305-3
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atoms in the NC. In Fig. 2, all the NC modes are projected
onto the spheroidal Raman-actiye=1, |=0) Lamb mode.

0.5] N=885 From this figure, we see that when the number of atoms is
greater than 2869, the NC modes with the maximum compo-
[ : nent of Lamb modes contain a single major peak whose

0.0 strength is greater than 80%. This suggests that, for large
NC, the lower-order spheroidal Lamb modes are also eigen-
modes of the discrete lattice. However, when the number of

0.57 N=1147 atom is less than 1147, the Lamb mode contains two or more
lattice modes, although there is still a dominant contribution

0.0 { ] from one mode whose strength can be as large as 65%. The

transition from only one dominant lattice mode in the pro-
jection to several modes seems to occur rather suddenly. In
0.51 N=2869 the case of Ge NC we found that this occurs at a “critical”
diameter(d) of about 4.0 nni.Below this size it is no longer
possible to derive the frequency of the Lamb modes from the
0.0 —L ; VFFM since several modes of different frequencies contrib-

0 Spheroidal Lamb Mode (in arb. unit)

Square of the Sum of the Atomic Displacements After

+ 109 ute to the Lamb mode. One way to understand this result is
y to note that the frequency of the spheroitlaD Lamb mode
= gs5{ N=s011 depends on both longitudinal and transverse sound speeds. In
% the microscopic lattice model, the longitudinal and trans-
§ 0.0 o , verse sound speeds vary with the direction of propagation.
'S L0 Thus, when the Lamb mode is composed of modes propagat-
= ing along different directions these modes will have slightly
0.5 N=7289 different frequencies. In such cases, the frequency of the
mode with the maximum MPQ will still satisfy approxi-
0.0 . . mately the linear dependence 61i/d) as discussed in Ref.
0 20 40 60 7.
Frequency(cm!) In Fig. 3, we select a small and a large NC and separately

plot the projection of their lattice modes onto the torsional
FIG. 2. Mode projection quantitMPQ) for n=1 andl=0 sphe- | amb modegwith n=0 andl=2 (a), 1=3 (b), andl=4 (c),

roidal Lamb modes. Note that &becomes less than 286&orre- respectively. The results for the=1 mode are not shown
sponding tod~4.9 nm, the Lamb modes start to become com- sjnce it js Raman inactieaccording to their irreducible rep-
posed of more than one lattice mode, although the modgasentations. One should note the drastic change in the ver-
frequencies (_:ontlnue t_o follow the d/dependence as long & .4 scale from a mode with one symmetry to another in
>4 nm, as discussed in the text. these plots. From these figures we conclude that, in general,

only a mode with a specific symmetry among the five pos-
active. By treating the NC as composed of discrete latticessible ones dominates the Lamb mode both for large and
one will obtain a different set of Raman selection rules. Ussmall NC. For example, for thie=2 torsional mode it is the
ing the projection method, one can determine the Ramag symmetry modes, while for the=3 torsional mode it is
selection of Lamb modes based on the compatibility relatiommodes withT, symmetry. The Lamb components in other
between theO(3) and Ty groups. Using this approach, one symmetries are too small to be significant. This suggests that
can show that the spheroidal modes wif0, 1, 2, and so on  the compatibility relation between th@(3) and T4 groups
all contain Raman-active lattice modes, while only thecan be a guide to predict the relative magnitude of the pro-
I=2,3,.. torsional modes contain Raman-active latticejection of the lattice modes onto the Lamb modes even for
modes. These selection rules, however, do not predict theelatively small NC. These figures also show that for NC of

strengths of the Raman modes except when they are zerg.given size, the NC modes generally contain fewer Lamb
For example, the Raman-active torsional modes may bgnodes with larger values of

much weaker than those of the spheroidal modes. To com- |n Fig. 4, we project the lattice modes onto torsional
pute the Raman intensities of the lattice modes, we haveamb modes with different values of(n=0,1,2, and Bbut
employed the bond-polarizability approximation discussed inwith the same value of=3. In this case we find that, in
a previous papef Using this model we have obtained the general, the lower-ordgor small values of) Lamb modes
Raman intensities of lattice modes in Ge NC containing 88%re also eigenmodes of the discrete lattice even for small NC.
to 7289 atoms. However, for larger values af the Lamb mode typically is
composed of a large number of lattice modes and the Lamb
Ill. RESULTS AND DISCUSSION model breaks down. This trend is more obvious with larger
as the size of the NC decreases.
One of the reasons for the above trends is that the wave-
In Figs. 2—4 we show the computed values of MRIR-  length of the Lamb mode becomes smallernaicreases,
fined in Sec. Il @ for five Ge NCs with different number of while the frequency of a Lamb mode can be as large as one

A. Projection of lattice modes onto Lamb modes

174305-4
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FIG. 3. The MPQ for then=0 (a) 1=2; (b) I=3; and(c) =4 torsional Lamb modes.
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N=885 N=7289 12(5.75¢13.4)
1.0 O,1)
=0
05 kR:386 . -_';."
e o
00 i22(2.51r/3.4) :
04 (032) - '_. .

j3%(3.861/3.4)
(0.3)

n=I
02 kR=8.45
0.0 1 -
0.2
0.1
0.0 1
50 100

Radial Distribution Function of NC with 7289 atoms

3 torsional Lamb Mode (in arb. unit)

Square of the Sum of the Atomic Displacements After

;3 0 4

§ Radius(nm)

)

g 008 FIG. 5. The radial amplitude distribution functigGiRADF) of

£ 0.06 three torsional Lamb modes witn,l) indicated in the figures.
0.04 These results have been computed for a Ge NC containing 7289

atoms(d~6.8 nm. The squares are the results for the NC, while

0.02 the continuous curves represent results for the Lamb modes.
0.00 -

150 50 100 150

F ST n=0 andl=1,2, and 3torsional Lamb modes in a Ge NC
requency(cm™)

with 7289 atomgclosed squaresalculated from the VFFM.
FIG. 4. The MPQ for thd=3 andn=0,1, 2, and 3, torsional FOr comparison, the RADF obtained from the Lamb theory
Lamb modes. In this figurk is related to transverse sound velocity, are plotted as continuous curves. We can see similarity be-
andR is the radius of the NC. tween the two sets of results in their overall dependenae on
In particular, for high values dfthe mode amplitudes tend to
wants by choosing and| large enough. However, in reality P€ largest near the NC surface. In other words, i
torsional Lamb modes with large are essentially surface

the phonon frequencies in a lattice are finite. In particular, . i :
the transverse acoustic phonons in bulk Ge have a cutoff'0des. However, we also notice significant difference be-

frequency of about 100 cth determined by the lattice con- tween the lattice and Lamb modes mainly near the NC sur-

stant. When the NC frequency approaches this cutoff freface. The RADF of the lattice modes are qftgn much higher
quency, it is impossible for a single NC lattice mode to re_than the Lamb modes near the surface. This is because atoms
producé the Lamb modes. near the surface are less constrained in a discrete lattice

model than the surface of a continuum sphere.

B. Radial amplitude distribution function of NC C. Raman intensities of NC

To explore further the correspondence between the NC |n Figs. §a)—6(c) we show the Raman intensities for the
lattice modes and the Lamb modes, we further define a funahree Raman-active modébelonging to theA;, E, and T,
tion which we will label as the radial amplitude distribution jrreducible representations, respectivebf five different-
function (or RADF for shor}. The rationale behind this defi- sized Ge NC calculated from the Raman polarizability with
nition is that a spherical discrete lattice can be divided intoour VFFM. When compared to the corresponding phonon
spherical shells. LeNg,(r) be the number of atoms located density of states for the same crystals published in our earlier
on a shell of radiug. Next, we sum the squares of the vi- paperi?it is clear that the number of Raman-active modes is
bration amplitudes of a specific mode over all these atoma small subset of the total number of phonon modes. This
and then divide this sum bis,(r). The resultant quantity is result is not surprising since the number of Raman modes is
the RADF of that particular mode for the NC mode. The expected to decrease as the crystal size becomes larger. If we
RADF for the Lamb modes, on the other hand, are easiljassume that NC is enough for the bulk Raman selection to
computed from the Lamb theory. For example, for the0  apply, then we expect only the zone-center modes to be Ra-
torsional Lamb mode RADF ijﬁz(kﬂ’), with k;=5.75/R, k,  man active. When the NC size is reduced the wave vector
=2.51/R, k3=3.86/R, whereRis the radius of the NC. While conservation in Raman scattering is relaxed, allowing modes
the RADF for the Lamb modes are continuous functions, of of nonzero wave vector to be Raman active provided these
the corresponding RADF tend to show fluctuations and demodes have a wave vector equal to an integral multiple of
viations from the curve for the Lamb modes. Figure 5 showsw/d), whered is the size of the NC. For the low-frequency
the RADFs for the lattices modes which correspond to theacoustic phonon modes their dispersions are linear, so the
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FIG. 6. The Raman intensitig¢the quantitiesAl2 and G|2 are the same as those defined in Re). d2modes belonging to th@)A;; (b)
E; and(c)T, irreducible representations of tfig group.
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TABLE I. Calculated Raman frequencies and intensities of aProjection onto the Lamb modes indicates that both of these
few low-frequency modes in Ge NC with N=7289 atoms. The cor-modes contribute to the=0 and |=2 spheroidal Lamb
responding Lamb modes obtained by projection are also listed. mode. One can consider these low-frequeBepnd T, sym-
metry lattice modes as derived from the splitting of the

Irreducible Frequency Raman intensity =0 and|=2 spheroidal modes when the NC symmetry is

representations Lamb mode (cm™)  (arbitrary unil  |owered toTg. Similarly, the two NC modes o&, symmetry

A n=1,1=0, spheroidal  19.6 0.904 with almost degenerate frequencié3.3 and 48.1 cnt) and

A n=4.1=0 spheroidal  47.3 0.237 comparable intensities also arise from splitting _of the same
1 ' » SP . n=4,1=0 spheroidal Lamb modé5) The frequencies of two

A n=4,1=0, spheroidal ~ 48.1 0.316 E modes(11.7 and 11.2 ci) corresponding to the=2 tor-

E n=0,1=2, torsional  11.7 0.00136 sional and spheroidal Lamb modes are almost degenerate.

E n=0,1=2, spheroidal ~ 11.2 0.430 This reflects the very close values @f”=2.46 and#®

T, n=0, 1=3, torsional 16.3 0.0197 =2.64 forn=0 and|=2 in Fig. 1. (6) For the “Raman-

T, n=0, =2, spheroidal  12.9 0.686 forbidden” torsional Lamb modes, the intensity of the2

mode is less than that of tHe3 mode, in agreement with

. _ . the prediction of group theory7) Then=0, =0 spheroidal
frequencies of these modes will be equally spaced. As disy, e has negligible Raman intensity and therefore is not
cussed in Ref. 12, this appearance of almost equally spacegl o\vn at all in Table |

modes is known as “mode folding.” In Fig(#, we notice i . ,
that the strong Rama#fy, symmetry Raman peaks are indeed From the above d|§cus.'5|ons, we concl_udg that the experi-
mental Raman peak in the parallel polarization geometry is

almost equally spaced. In Fig(8, all the Raman spectra of . A .
E symmetry show two strong, low-frequency Raman peaks.due to scattering from the=1, =0 spheroidal Lamb mode.

In NC with 7289 atoms these peaks have frequencies of 11.2N1€ experimental Raman peak in the perpendicular polariza-
and 19.1 crit, respectively. The low-frequency Raman spec-tion arises from thé@=0 andl=2 spheroidal Lamb mode. In
tra of theT, symmetry modes shown in Fig(®, are rather ~Principle, this lower-frequency mode may by “contaminated”
similar to the E-symmetry Raman spectra, except for their Py @ahE-symmetry mode which is allowed for parallel polar-
slightly higher Raman frequencies. For example, in NC withization, especially since the experimental spectral resolution

7289 atoms the two lowest frequency Raman peaks occur # these low-frequency region is often 1 chror larger, so
12.9 and 21.7 ciit, respectively. that the low-frequenci- andT,-symmetry lattice modes are

By using the projection technique described earlier, wehot resolved. One possible explanation for th_e polarized na-
can determine the contributions of the Raman peaks in Figdure of the experimental low-frequency mode is that we have
6(a)—6(c) to the corresponding Lamb modes. The results ardeglected 'Fhe lattice anharmonlc_:lty, which may cause the
summarized in Table I. From this table, we note the follow-Raman-activer=0 andi =2 spheroidal Lamb mode to decay
ing important findings(1) The strongest Raman peaks of into the almost degeneratg Raman-inactive torsional mode.
different symmetries and polarizations in NC of a given size/M OUr previous paper we interpreted the Raman peak ob-
have comparable strengths. In the 7289 atoms NC these ap€"ved with the crossed polarization as due torth® and
the A, mode with frequency 19.6 ¢ the E mode with =3 torsional Lgmb mode. We now find that theo a_n'dl
frequency 11.2 cit, and the T, mode with frequency =3 mode may lie close to the measured peak in position, but
12.9 cn1t. (2) All the spheroidal modes shown in Table | are its strength is too weak to account for the strong experimen-
much stronger than the torsional modes, in agreement witfl Raman peak.
the selection rules derived from group theory. This suggests
strongly that all the experimentally observed Raman peaks in V. SUMMARY
NC are due to spheroidal Lamb modes and not the torsional '
modes. This is in contrast to the identification of torsional In summary, we have investigated in detail the low-
Lamb modes in the crossed polarization Raman spectra sufrequency Raman spectra of spherical Ge NC with various
gested by many authofs? (3) The strongest Raman peak diameters, up to about 6.8 nm, by computing the Raman po-
has A; symmetry, but this mode does not have the lowestarizabilities based on a microscopic VFFM. The results are
frequency. This mode corresponds to thel andl=0 sphe- compared to the Raman selection rules for the spheroidal and
roidal Lamb mode and is consistent with the identification oftorsional modes of a continuum Lamb model by using the
the higher-frequency Raman peak observed in the parallgirojection method. We found that the strongest Raman peaks
polarization scattering geometry as a spheroidal Lamb modare due to thé=0 andl =2 spheroidal Lamb modes in agree-
by most authord:* (4) Experimentally the crossed polariza- ment with the Raman selection rules. This result agrees well
tion Raman peak was found to have a lower frequéndyis  with the recent results of Brillouin scattering experiments in
has been explained as a result of the lower sound speeds lafge NC® When the calculated Raman intensities were
transverse acoustic phonons as compared to the longitudinebmpared with the Raman experimental results, we found
acoustic phonons. We found that the lowest frequency Rathat the Raman peaks observed in the parallel polarization
man peak is ofE symmetry, which should appear in the scattering geometry were due to theO spheroidal and
parallel polarization geometry. =1,4,6,etc. Lamb modes. The Raman peak with a lower

The lowest frequency Raman peak appearing in thdrequency observed in the perpendicular polarization is also
crossed polarization geometry is the 12.9°énT, mode. due to thel=2 butn=0 spheroidal Lamb mode. The tor-
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sional Lamb modes can become Raman active when the N@GPPENDIX B: DISPLACEMENTS FOR =2 SPHEROIDAL

size is small, but their intensities are usually much smaller
than the spheroidal Lamb modes. The two Raman peaks ob-

served experimentally and reported in Ref. 2 arel th@ and

| =2 spheroidal Lamb modes and do not involve the torsional &9 = go(r)xy, A<Zsl) = (%Y, 2xyh(r),

Lamb modes as suggested by the authors.
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AS) = (x,y, 22 - y2If (1),
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Vb = go(r)yi + go(r)x] + xy—
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APPENDIX A: DISPLACEMENTS FOR =1 SPHEROIDAL
LAMB MODES

(1) D=V S +a,V >< VX AS, wherei=1,2, and 3;

A(S) (X,y,2xfy(r), ¢ gl(r)x A(S) (x,y,2yf(r), ¢
—gl(r)y, and so on with

_ jl(k) ll(hr)
fi(r) =k (kr) dg,(r) = (h )
dfy(r) _ Llakn) dgi(r) _ ,ja(hr)
dr K (kr) and dr (hr) ’
2€j,(8)

= nia(n) + 2ix()]y
With these definitions, one finds
fy(r )
dr

+5|z),
r
f,(r)

dr }J

- y—dfl(r) <)—(f+ )—/f+ ?IZ) ,

dr \r r

VXV xxig?:{zfl()w

dfl(r)<>_<.» y-
X dr r|+rJ

VXV x,&gi):{Zfl(r)H

and so on.

dg()( y= 9)
V¢11—91(f)|+x dr r' r] rk,

- dgl(r)< y- ze>
= =i+ -k
¢12 anj+y—— dr i+ T+ ]

ror
and so on.

D, D3, DY belong to theT, or DY irreducible repre-
sentation.

_ 92
VXV X/Kgsl):y{sfz(r) wdfé(r)} {3fz(r)

L P=2y)dh0) |- Xyzdf() -
r dr rodr
and similarly fori=2,...,5.
2Jz(kr)
2( ) (k )2 ’
oJ2(hr)
2( ) h (h )2 ’
dfl1) _ _ qlalkn)
dr (kr)?2’
dgy(r) _ _, sla(hr)
dr (hr)?’

2[j2() - &5(8)]
[6)2(7) + 29i3(m) = Pia(m)]
DY, DZSZ), and D3 belong to theT, representation, while

DS andD(S belong to theE representauon In the rotational
group all f|ve modes belong to trre representauon

ap=—

APPENDIX C: DISPLACEMENTS FOR THE [=2
TORSIONAL LAMB MODES

'&21 = (X!y! Z)jZ(kr)Xy/rzy
DY = (xz,~ yz,(y2 = x)jo(kn)/r2,
Aoz = (XY, 2)o(kr)yzr?,

DY) = (2= y), XY, ~ X2)j o KN)/F2,

and

Ags= (%,Y,2)j (KN (22 = X2 - y2)II2,
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= (- 6yz 6xz,0)j,(kr)/r?.
) DV and D(T

D 991 belong to theT; representation, while

D24, Dm belong toE modes. In the rotational group these
five modes belong to thB@ representation.

21’

APPENDIX D: DISPLACEMENTS FOR [=3 TORSIONAL
LAMB MODES

Ag1= (x,Y,2)j3(kn) (¢ - y)ZIr®,
DY = [(y? - % - 22)y, (¢ — y2 = 22%)x, AxyZjo(kr)/r3,
Ags= (x,Y,2)j3(kr) (522 - 3r)zIr,
D) =[- 3(52 - r2)y, 3(52 = r?)x, 0lj(k)/r?,
Aga= (x,Y,2)ja(kr)(522 ~ r2)xIr?,
DY =[- 10yz(10¢ - 52 + 1)z, (52 - 12)y]ja(kn)/r,

Ags= (%,Y,2)j3(kr) (52~ r)yir?,

PHYSICAL REVIEW B1, 174305(2005

DY) =[(522 - 10y - 3)z,10xyz — (522 - r2)x]ja(kr)/r3,
Ags = (x,Y,D)ja(kr) (3xy2 =X/,

DY = [6xyz 302 — y?)z, 3(y? - 3x)y]js(kr)/r3,

Ags= (X,Y,2)j3(kn) (3 - y3)Ir?,
DSY =[3(¢ - yA)z, - 6xyz 3(3y? - x)xlja(kn)/r,

Ag7= (%,Y,2)js(kr)xyzr?,

T)_
37 -

[X(Z = y?),y(x* = 2),2(y* = x®)1js(kn)/r3.

(T T T T T T
p{Y, o), b, b, D, DY belong to theT,+T, repre-

sentations, WhlIeE)g7 belongs to thé\, representation. In the
rotation group all seven modes belong to th? represen-
tation.
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