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Abstract: We review Pólya vector fields associated to holomorphic functions as an important peda-
gogical tool for making the complex integral understandable to the students, briefly mentioning its
use in other dimensions. Techniques of differential geometry are then used to refine the study of holo-
morphic functions from a metric (Riemannian), affine differential or differential viewpoint. We prove
that the only nontrivial holomorphic functions, whose Pólya vector field is torse-forming in the can-
nonical geometry of the plane, are the special Möbius transformations of the form f (z) = b(z + d)−1.
We define and characterize several types of affine connections, related to the parallelism of Pólya vec-
tor fields. We suggest a program for the classification of holomorphic functions, via these connections,
based on the various indices of nullity of their curvature and torsion tensor fields.

Keywords: holomorphic functions; Pólya vector fields; Möbius transformations; torse-forming vector
fields; harmonic functions

1. Introduction

Student’s learning of Complex Analysis benefits greatly from physical interpretations,
as advocated from the “begining” by Felix Klein [1] when writing about the correspond-
ing work done by Riemann. Klein’s starting point was to interpret a complex function
F(z), with its Cartesian components harmonic functions, as a complex potential, and then
differentiate to get the 1-form F′(z)dz in order to look at its pair of orthogonal distributions,
determining the flows of the associated vector fields.

On the other hand, with the integration tool in it, Pólya associated to a complex
function f (z) = u + iv a vector field Vf = <u,−v>, which can be interpreted as the velocity
field of a fluid flow, and then consider its integrability, in order to find such complex
potentials. His purpose was definitely pedagogical in nature, to help students make sense
of complex integrals [2,3].

Indeed, the function f (z) has also a (canonically associated) 1-form f (z)dz, and the
two components of its complex integral represent the work and flux of the Pólya vector
field [3]:

f (x + iy) = u(x, y) + iv(x, y),
∫

C
f (z)dz =

∫
C

Vf · ~Tds + i
∫

C
Vf · ~Nds,

where ~T and ~N are the tangent, and respectively the normal associated to the integra-
tion contour.
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This two starting points are dual, in the sense differentiation and integration are
“inverse” operations, related by the Fundamental Theorem of Path Integrals; in physics
terms, it relates vector fields and potentials.

Potentials VectorFields/Di f f erentialForms

“Klein′′

d

11 “Pólya′′

∫
qq

F(z) //

F. Th. Line Integrals

F′(z) = f (z) =< u, v >y∫
C f (z)dz

∫
←−−−−−−−−−

Vf =< u(x, y),−v(x, y) >

In this article, we review the above formalism as a bridge between real or complex
analytic tools and some differential geometric tools on the plane R2. Our main underlying
purpose is to use the later, in order to build the setting for future classifications of specific
complex objects, for example the holomorphic functions. Secondly, we make further
steps in deciphering the dynamical meaning of some properties of holomorphic functions
(beyond the previous diagram), using invariants provided by Differential Geometry.

In Section 2, we consider the Möbius transformations and their associated Pólya vector
fields and we try to unravel some physical interpretations behind this correspondence.
Beyond their intrinsic role in the geometries of the plane, the Möbius transformations are
quite appropriate as test functions in the big family of holomorphic functions [4,5]. For
arbitrary complex functions, we define a specific new correlation, in terms of the Lie bracket
of their associated Pólya vector fields; a new integer invariant provides a classification of
the holomorphic functions (Remark 6).

In Section 3, as a new point, we document Klein’s approach with its connection with
Pólya’s approach, together with the symplectic geometry interpretation: the Pólya vector field
is the Hamiltonian vector field associated to its (local) complex potential, in Section 4. The fact
that Complex Geometry is intertwined with Symplectic Geometry comes as no surprise, as in
our case the complex plane has both structures: it is a Kähler manifold (a complex manifold
with a Hermitean metric <,>= g + iω, which is essentially a pair of a real metric and a
symplectic form).

Some techniques of differential geometry for the classification of the Pólya vector
fields, hence the underlying analytic and meromorphic functions, from a global point
of view, are developped in Section 4. We prove that the only nontrivial holomorphic
functions, whose Pólya vector field is torse-forming in the canonical geometry of the
plane, are the special Möbius transformations of the form f (z) = b

z+d . The torse-forming
property of vector fields was intensively studied since [6], as a relaxation of the properties
of parallelism, concurrency and/or recurrency; it is associated to motions of solenoidal-like
type in Riemannian or affine differential dynamical models.

Then we define and characterize several types of affine connections, related to the par-
allelism of Pólya vector fields. We suggest a program for the classification of holomorphic
functions, via these connections, based on the various indices of nullity of their curvature
and torsion tensor fields. This is part of a more general theory, started in [7–9], which
geometrizates the vector fields through families of associated affine connections or semi-
Riemannian metrics. These families are differential invariants, not only affine differential
or metric ones; moreover, refinements can be made, by using derived geometric objects
such as curvature tensor fields, torsion tensors fields and their contracted tensor fields.

In the concluding Section 5, summarizing the results, we point towards a natural
extension of this work in the context of hyperKähler manifolds.
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2. Pólya Vector Fields Associated to Complex Functions

Consider a complex function f : C → C, f = f (z), with z = x + yi and f (x, y) =
u(x, y) + v(x, y)i. Here u and v are the real and the imaginary parts of f . When f is defined
only on a domain D( f ) in C, formulas must be adapted accordingly.

Definition 1. The Pólya vector field associated to the complex function f is Vf = u∂x − v∂y,
or just simply denoted < u,−v > as a vector attached to the point (x, y) of the plane R2, in its
canonical basis.

As mentioned in the introduction, Pólya’s idea was to make use of vector calculus, to give a
more intuitive interpretation of the associated complex integral.

Remark 1. (i) Reiterating this approach, we note that the Pólya vector field in 1D, i.e., the values
f (x) of a function viewed as a displacement < f (x)> attached to the point x ∈ R, is perhaps a good

“preamble” for the student to be ready for the complex integral case: what is a vector field on the line,
what work is, etc.

More importantly, it shows how functions of one variable can be graphed using just one
dimension, although we usually graph them in the plane, i.e., in fact representing the relation
{(x, y)|x ∈ D( f ), y = f (x)}. This would be justified for general relations which might happen
not to be functions, e.g., circle, while in what regards complex functions, fails due to the “lack” of
enough dimensions!

If f is holomorphic, then it satisfies the Cauchy-Riemann equations ux = vy and uy + vx = 0.
In this case, the Cauchy Integral Theorem ensures, interpreted in the sense of Pólya, that Vf is
solenoidal (i.e., divergence-free) and irrotational (i.e., its curl is identical zero).

(ii) Note that from the point of view of conformal geometry, “all Pólya vector fields are cre-
ated equal”: there is a conformal transformation which “straightens the flow”, i.e., transforms the
flow Vf into the standard flow V1 (horizontal, from left to right, with normalized speed 1); the global
aspects are left aside, being associated with critical points/zeros and poles of the complex function.

(iii) One can loosely reverse the direction of this “magnifying/classifying” instrument, loosely
saying, for Cosmology oriented readers, that the “free fall” (harmonic flow in the original conformal
class of metric) is analyzed in a “gravitational field” (change of frame), to “see how it bends”.

Remark 2. Consider the Möbius transformation (MT) f (z) = (az + b)/(cz + d) where the
complex numbers a = a1 + ia2, b = b1 + ib2, c = c1 + ic2 and d = d1 + id2 satisfy ad− bc 6= 0.
Denote z = x + iy and define the real valued functions

A := a1x− a2y + b1 , B := a1y + a2x + b2,

C := c1x− c2y + d1 , D := c1y + c2x + d2.

Then u(x, y) := Re f (x, y) and v(x, y) := Im f (x, y) can be expressed as

u(x, y) =
AC + BD
C2 + D2 , v(x, y) =

BC− AD
C2 + D2 .

The associated Pólya vector field Vf has the components rational functions of x and y. As u
and v are harmonic functions, we can derive the potential Φ of Vf , such that ∇Φ = Vf . Namely,
from ∂Φ

∂x = u and ∂Φ
∂y = −v, we get Φ = Φ(x, y). Particular cases (omitting an obvious

additive constant):

(i) f (z) = z + b provides Φ(x, y) = x2

2 −
y2

2 + b1x− b2y;

(ii) f (z) = az provides Φ(x, y) = a1(
x2

2 −
y2

2 )− a2xy;
(iii) f (z) = 1

z+d provides Φ(x, y) = 1
2 ln((x + d1)

2 + (y + d2)
2);

(iv) If c = 0, we may suppose d = 1; then Φ(x, y) = a1(
x2

2 −
y2

2 )− a2xy + b1x− b2y;
(v) If a = 0, we may suppose b = 1; then Φ(z) = 1

c log(cz + d).
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But wait! While this is a quiz opportunity for Calculus I students, why not integrate
the simple fraction to get the complex potential, using a CAS for instance. (There is no
question mark here; this is just a rhetorical question !):

Wol f ram Alpha In : Integral o f (a ∗ z + b)/(c ∗ z + d),

Out : (acz + (bc− ad)log(d + cz))/c2,

since we are not needing the Pólya interpretation at this point.
While the complex potential function of a Möbius transformation is easy to compute,

it might be a qualitative understanding, “à la Klein” that we are after. The level curves
(equipotentials) are closed curves, of “magnetic type”, obtained by conjugation via g(z)
(conformal transformation) of the multiplier Mz with the associated characteristic constant
k of f ; this will be explained in what follows.

2.1. The Klein/Physical Interpretation of Mobius Transformations

It is well known that any MT with distinct fixed points z1, z2 is conjugate via the
transformation g(z) = (z− z1)/(z− z2), which “straightens” the fixed points to antipodal
positions, the North and South poles, if viewed via the stereographic projection [10]:

g(z) :=
z− z1

z− z2
, g f g−1 = Mk , Mk(z) = kz , f ′(z1) = k = 1/ f ′(z2) ∈ C∗.

Now conjugation is not only an MT, but also has nice algebraic properties, revealed
by the following diagram:

C∗ � y

Diag.
11
SL(2, C).

Conj((z1,z2)→(N,S))
ssss

The characteristic constant k = reiθ of f is the amplitwist at the fixed points: amount of
rotation θ and scaling r.

The Pólya VF of the multipliers Mk have meridians and parallels as streamlines and
equipotentials. By conjugation, the “electric charges” at the origin and infinity are mapped
conformally to the fixed points of the non-parabolic MT f .

Note that, once the Pólya interpretation is applied, the electric-magnetic/harmonic
and harmonic conjugation rotational symmetry by 90◦ is “broken”: the streamlines join the
fixed points, which now play the roles of electric charges (“ends of line fields”), while the
equipotentials circling them, play the role of magnetic lines of “force” (closed line fields).

The “EM force field” interpretation is slight abuse of language, since the equations we
are dealing with are first order, suited for the velocity field of a fluid flow interpretation;
yet it can be “forced” in this context, if regarding the plane as a symplectic manifold T∗R,
as mentioned elsewhere.

Remark 3. One may define an “electric” and “magnetic” charge at this point, by comparison with
Coulomb’s law and Ampere’s law. Moreover, one can relate the conjugation to rapidity in a 1 + 1
relativistic model, to visualize how a 2D-Lorentz transformation (in the T∗R symplectic framework),

“transforms” the pure Coulomb electric force into a combined electric-and-magnetic force field.

2.2. Correlated Complex Functions

We denote POL the (real) vector space of Pólya vector fields associated to complex
functions and POLH its vector subspace of Pólya vector fields associated to holomor-
phic functions.

While POL is a Lie algebra with respect to Lie bracket, the subspace POLH is not.
Let us transfer the Lie bracket on the functions themselves, and then compare with the
Poisson bracket later on.
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Let f and h be two complex functions and denote

f ∗ h := f hz − h fz + f hz − h fz ,

where the indices mean derivative w.r.t. z and the overline is complex conjugation, as usual.
It is easy to check that we have

[Vf , Vh] = Vf ∗h . (1)

This formula allows to transport the Lie bracket on vector fields to a bracket on
complex functions, and the Pólya vector field map becomes a Lie algebra homomorphism:

V : (COM, ∗)→ (X (R2), [, ]).

Unfortunately, it does not induce a Lie algebra isomorphism between (POL, [, ]) and
(HOL, ∗). Indeed, if moreover f and h are holomorphic functions, then

f ∗ h := f hz − h fz,

may not be holomorphic as well.
In all the previous considerations, f and h are defined on the whole complex plane; in

particular, if they are also holomorphic, then they are entire functions. In case f and h are
defined on smaller subsets, the theory must be refined accordingly.

Remark 4. The above operation ∗ is considered separately with respect to the two independent
variables x, y:

{ f , g}x = f gx − g fx , { f , g}y = f gy − g fy ,

as if C = T∗R is a symplectic space and x = q, y = p are conjugate variables.

Remark 5. Consider the differential equation dy/dx = P(x, y)/Q(x, y). If it is integrable, then
it can be reduced to the form [11]:

dy/dx =
FGx − GFx

FGy − GFy
=
{F, G}x

{F, G}y
,

expressible in terms of the above 1D-Poisson bracket. The associated distribution is the kernel of
the 1-form P(x, y)dx−Q(x, y)dy, familiar to the students of Calculus III when introduced to line
integrals and Green’s Theorem. The relation to the holomorphic distributions studied loc. cit. will
be addressed elsewhere.

Example 1. As simple examples, we mention: f ∗ f = 0 (obviously); f ∗ f = −2iIm( f fz + f fz).

2.3. Correlated Holomorphic Functions

Consider two complex differentiable functions f and f̃ . Their Poisson bracket is
defined by

{ f , f̃ } = fx f̃y − fy f̃x,

or, equivalently,
{ f , f̃ } = −2i( fz f̃z − fz f̃z) .

When f and f̃ are holomorphic, { f , f̃ } = 0.

Definition 2. We say the holomorphic functions f and f̃ are correlated if their Pólya vector fields
commute via the Lie bracket, i.e., [Vf , Vf̃ ] = 0.
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Proposition 1. Consider two holomorphic functions f (x, y) = u(x, y) + v(x, y)i and h(x, y) =
ũ(x, y) + ṽ(x, y)i. Then the following assertions are equivalent: (i) f and h are correlated; (ii)
f ∗ h = 0; (iii) f h′ = f ′h; (iv) the following system of PDEs is satisfied:

uũx − vũy = ũux − ṽuy, uũy + vũx = ũuy + ṽux.

Remark 6. The set V f of Pólya vector fields of the holomorphic functions correlated with a given
function f is a vector subspace of POL.

The dimension of V f classifies the holomorphic functions in a family of classes,
indexed with the set of positive integers.

2.4. The Canonical Frame Associated to a Complex Function

We shall suppose f (respectively Vf ) is a nowhere zero complex function (respectively
vector field). Denote by D f the one-dimensional distribution spanned by Vf and by D⊥f
its complementary (one-dimensional) orthogonal distribution. Then TR2 = D f ⊕ D⊥f
and we got a field of orthogonal frames depending on f . Obviously, D⊥f is spanned by

V⊥f := −Vi f = v∂x + u∂y. Alternatively and dually, D f and D⊥f may be defined as kernels
of the canonical associated one-forms

α f := vdx + udy, α⊥f := udx− vdy.

We may write

f (z)dz = α⊥f + iα f , 2 f (z)∂z = Vf − iV⊥f .

Remark 7. We may write the previous formulas in complex coordinates (z, z) as well:

Vf = f ∂z + f ∂z , iV⊥f = f ∂z − f ∂z,

2iα f = f dz− f dz , 2α⊥f = f dz + f dz.

Remark 8. The function f is holomorphic if and only if α f and α⊥f are closed (i.e., if and only if Vf

and V⊥f are irrotational). Locally, or on simply connected domains, this is equivalent to α f and α⊥f
being exact (i.e., if and only if Vf and V⊥f being gradients).

For a holomorphic function f we have

[Vf , V⊥f ] = V−2i fz f

and the same formula holds (unespectedly) for arbitrary complex functions also. It follows
that [Vf , V⊥f ] = 0 for (and only for) anti-holomorphic functions.

3. Hamiltonian Framework for Holomorphic Functions

Consider R2 with canonical coordinates (x, y) and the symplectic form ω = dx ∧ dy.
If H : R2 → R is a differentiable function, then its associated Hamiltonian vector field is
XH := Hy∂x − Hx∂y. This vector field is dual to the one-form dH (w.r.t. ω), via the relation
dH = ω(XH ,. ).

3.1. Pólya Vector Fields as Hamiltonian Vector Fields

Theorem 1. Suppose f is a holomorphic function. With the notations of the previous paragraph,
denote F an integral of α f , i.e., dF = α f . Then:
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(i) The Pólya vector field is precisely the associated Hamiltonian vector field:

XF := Fy∂x − Fx∂y = Vf .

(ii) If F⊥ is an integral of α⊥f , then the associated Hamiltonian vector field XF⊥ is precisely −V⊥f .

Proof. The details are left for the reader to check.

Recall the relation to Poisson bracket:

{F, G} := FxGy − FyGx, [XF, XG] = X{F,G}.

In terms of Pólya vector fields Vf (holomorphic case) and associated complex poten-
tials F′ = d/dz(F) = f :

[Vf , Vg] = [XF, XG] = X{F,G} = V{F,G}′ = V{ f ,G} + V{F,g}.

Recall that, since {F, G} = dF(XG) = XG(F), we also have, for example:

{ f , G} = XG( f ) = Vg( f ) = Re(g) fx + iIm(g) fy.

In view of the operation ∗, we further have:

f ∗ g = { f , G}+ {F, g},

which may be thought of as “integration by parts”.

3.2. Hamiltonian Mechanics Interpretation

Recall that Pólya’s interpretation of the complex integral was in terms of the flow of a
fluid, and its circulation and flux. Now R2 viewed as a symplectic space allows to interpret
the Complex Analysis in terms of Hamiltonian mechanics, as follows.

Assume canonical coordinates q = x and p = y are chosen, to be more specific. Even
more, being global, one can then interpret them as coordinates on T∗R, the cotangent
bundle of the real line.

Now consider the complex potential F(z) (locally always exists, for f (z) holomorphic),
as defining the Hamiltonian of a dynamical system.

Klein’s interpretation of Cauchy-Riemann equations for F(z) = U(x, y) + iV(x, y),
which is by now a standard when teaching complex analysis, is that the harmonic function
U is the velocity potential of a fluid flow, with gradient ∇U = Vf , with its integral lines
the streamlines and level curves of U the equipotential lines [1,12].

Alternatively, since Vf = XF, the streamlines in R2 = T∗R may be interpreted as the
Hamiltonian flow on the real line, with F the complexification of the energy.

This allows to provide an application of Complex Analysis to Newton’s Mechanics in
1D, which apriori is a 2nd order differential equation framework.

4. Classifications of Pólya Vector Fields on the Complex Plane

Pairing a vector field X with a connection ∇, and yielding another vector field ∇XY,
can be compared with a “scattering process”, or the application of a filter when studying
and/or observing how a system “reacts” under a certain class of interactions. We will
use this two ways: fixing a class of connections, deriving information regarding a class of
vector fields; or the other way around, as follows.

4.1. Recurrent, Concurrent, Parallel and Torse Forming Pólya Vector Fields

We shall suppose f , hence Vf , is holomorphic and nowhere zero. The main result is
the following.
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Theorem 2. Denote ∇0 the Levi-Civita connection of the canonical Euclidean metric on the
complex plane, identified with R2. Then, w.r.t. ∇0, we have :

(i) Vf is recurrent iff Vf is parallel iff Vf is concurrent iff Vf is auto-parallel iff f is constant;
(ii) Vf is torse-forming iff f is a Möbius transformation of the form f (z) = b

z+d , with complex
parameters b, d such that d 6= 0.

Proof. (i) We calculate

∇0
Vf

Vf = (uux − vuy)∂x + (vux + uuy)∂y.

It is easy to see that Vf is auto-parallel if and only if f is a constant function. Similarly,
we get the other equivalent properties.

We recall that: Vf is recurrent if there exists a 1-form α on R2 such that for every
X ∈ X (R2)

∇0
XVf = α(X)Vf ;

Vf is concurrent if there exists a differentiable function h : R2 → R such that for every
X ∈ X (R2)

∇0
XVf = hX.

(ii) Suppose Vf is torse forming, i.e., there exists a differentiable function h : R2 → R
and a 1-form α on R2 such that for every X ∈ X (R2)

∇0
XVf = α(X)Vf + hX .

We calculate

ux = h + α1u , vx = α1v , uy = α2u , vy = −h + α2v.

It follows
α1 = − 2hu

u2 + v2 , α2 =
2hv

u2 + v2

and u and v are solutions of an ODEs system of the form

ux = −h (u2 − v2)(u2 + v2)−1, vx = −h 2uv(u2 + v2)−1 (2)

(The right hand sides are just the cartesian components of the h-multiple of − f 2/ f̄ 2.) We
eliminate h in (2) and obtain

2uv ux = (u2 − v2)vx, (3)

written as

(
u2 + v2

v
)x = 0, (

u2 + v2

u
)y = 0. (4)

(Alternatively Re ∂x ( f 3/ f̄ 2) = 0.) We integrate and obtain

u(x, y) =
a2(y)b(x)

a2(y) + b2(x)
v(x, y) =

a(y)b2(x)
a2(y) + b2(x)

, (5)

satisfying b2ay + a2bx = 0.
As a and b do not depend on x and y, respectively, it follows that there exist real

constants ε ∈ R∗ and x0, y0 ∈ R such that

a(y) = −ε(y + y0)
−1 , b(x) = ε(x + x0)

−1.

We get

u(x, y) = ε
x + x0

(x + x0)2 + (y + y0)2 ,
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v(x, y) = −ε
y + y0

(x + x0)2 + (y + y0)2 .

Replacing (x, y) with z, we get

f (z) =
ε

z + z0
.

We remark that multiplication with a complex constant does not change the properties
of f , so we may consider ε ∈ C∗.

Example 2. (i) For h(x, y) = (x2 + y2)−1 and α = −2h(x, y)(xdx + ydy), we conclude that
the Pólya vector field associated to the function f (z) = 1

z is torse-forming. Here u(x, y) :=
Re f (x, y) = x(x2 + y2)−1 and v(x, y) := Im f (x, y) = −y(x2 + y2)−1.

(ii) Consider the functions: f (z) = sin(z) with u(x, y) = sin(x)cosh(y) and v(x, y) =
cox(x)sinh(y); f (z) = cos(z), with u(x, y) = cos(x)cosh(y) and v(x, y) = −sin(x)sinh(y);
f (z) = ez, with u(x, y) = excosy and v(x, y) = exsiny. In all these cases, Vf is not torse-forming.

4.2. Connections and Metrics Associated to a Given Pólya Vector Field

Consider a nowhere vanishing holomorphic function f . We will use the Pólya vector
field Vf as a filter, to distinguish the following classes of connections and metrics.

Denote by C(R2, Vf ) the set of affine connections ∇ such that the trajectories of Vf are
autoparallel w.r.t. them, i.e., ∇Vf Vf = 0.

Denote by Cpar(R2, Vf ) the set of affine connections such that Vf is parallel w.r.t. them,
i.e., ∇XVf = 0, for every vector field X on R2.

Denote by Riem(R2, Vf ) the set of Riemannian metrics such that the trajectories of Vf
are geodesics w.r.t. them.

Remark 9. If we think of the Pólya vector field’s flow as “free falling” (incompressible and irro-
tational), then, in particular, this addresses the problem of finding the connections or the metrics
admitting a gravitational field consistent with this particular type of “free-fall”.

Theorem 3. With the previous notations, we have:

(i) C(R2, Vf ) is the set of connections whose coefficients satisfy the following (compatible) alge-
braic system

uux − vuy + u2Γ1
11 + v2Γ1

22 − uvΓ1
12 − uvΓ1

21 = 0,

vux + uuy + u2Γ2
11 + v2Γ2

22 − uvΓ2
12 − uvΓ2

21 = 0.

(ii) Cpar(R2, Vf ) is the set of connections whose coefficients satisfy the following (compatible)
algebraic system

uΓ1
11 − vΓ1

12 = −ux , uΓ2
11 − vΓ2

12 = vx , uΓ1
21 − vΓ1

22 = −uy , uΓ2
21 − vΓ2

22 = vy.

Any such connection ∇ satisfies div∇Vf = 0.
(iii) Riem(R2, Vf ) is the set of Riemannian metrics whose coefficients form a positively defined

matrix and satisfy the following (compatible) system

ug11 − vg12 = U, ug12 − vg22 = V,

where U and V are two differentiable functions, solutions of

Uu−Vv = 1 , uUx − vUy = −uxU + vxV , uVx − vVy = −uyU + vyV
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If, moreover, the metric g ∈ Riem(R2, Vf ) is Hermitian, then it is Kählerian, and of the form
gjk = (u2 + v2)−1δjk, with u(x, y) = b(x)(a2(y) + b2(x))−1 and v(x, y) = a(y)(a2(y) +
b2(x))−1. Its Kähler potential F = F(x, y) is a solution of the Poisson equation

∆F = 2a2 + 2b2,

where the Laplacian is calculated w.r.t. the Euclidean metric. The conformal transformation
from the Euclidean metric to g is given by φ : R2 → R2, φ(x, y) = (α(x, y), β(x, y)), where
α + iβ is holomorphic or anti-holomorphic and there exists a function B = B(x, y) such that

dα =
1√

a2 + b2
(cos(B)dx + sin(B)dy).

(iv) For a connection ∇, the property div∇Vf = 0 is equivalent with

u(Γ1
11 + Γ2

21) = v(Γ1
12 + Γ2

22)

and the property div∇V⊥f = 0 is equivalent with

v(Γ1
11 + Γ2

21) = −u(Γ1
12 + Γ2

22).

Theorem 4. Denote h(x, y) = ln(u2(x, y) + v2(x, y)). Then:

(i) C(R2, Vf ) ∩ C(R2, V⊥f ) is the set of connections given by

2(u2 − v2)Γ1
11 = 2uv(Γ1

12 + Γ1
21)− (u2 − v2)hx,

2(u2 − v2)Γ1
22 = −2uv(Γ1

12 + Γ1
21)− (u2 − v2)hx,

2(u2 − v2)Γ2
11 = 2uv(Γ2

12 + Γ2
21)− (u2 − v2)hy,

2(u2 − v2)Γ2
22 = −2uv(Γ2

12 + Γ2
21)− (u2 − v2)hy.

(ii) The symmetric connections in C(R2, Vf ) ∩ C(R2, V⊥f ) are given by

2(u2 − v2)Γ1
11 = 4uvΓ1

12 − (u2 − v2)hx,

2(u2 − v2)Γ1
22 = −4uvΓ1

12 − (u2 − v2)hx,

2(u2 − v2)Γ2
11 = 4uvΓ2

12 − (u2 − v2)hy,

2(u2 − v2)Γ2
22 = −4uvΓ2

12 − (u2 − v2)hy.

(iii) Denote D := 2(u2 + v2)2. Suppose, moreover, uv is nowhere vanishing. Then there exists a
unique symmetric connection in C(R2, Vf )∩C(R2, V⊥f ), which makes Vf and V⊥f divergence-
free; its coefficients are

Γ1
11 = (u2 − v2){−(u2 − v2)hx + 2uvhy}D−1,

Γ2
22 = (u2 − v2){−(u2 − v2)hy − 2uvhx}D−1,

Γ1
12 = (u2 − v2){(u2 − v2)hy + 2uvhx}D−1,

Γ2
12 = (u2 − v2){(u2 − v2)hx − 2uvhy}D−1,

Γ1
22 = {−2uv(u2 − v2)hy − [4u2v2 + (u2 + v2)2]hx}D−1,
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Γ2
11 = {2uv(u2 − v2)hx − [4u2v2 + (u2 + v2)2]hy}D−1.

( This unique connection will be called the rectificant connection associated to f and will be
denoted by f∇.)

If uv = 0, then Γ1
11 = Γ1

22 = − 1
2 hx, Γ2

11 = Γ2
22 = − 1

2 hy and Γ1
12, Γ2

12 are arbitrary.

Theorem 5. There exists a unique connection in Cpar(R2, Vf ) ∩ Cpar(R2, V⊥f ); its coefficients are
given by

−Γ2
21 = Γ1

22 = Γ2
12 = Γ1

11 = −uux + vvx

u2 + v2 , −Γ2
22 = Γ1

12 = −Γ2
11 = −Γ1

21 =
vvy + uuy

u2 + v2 .

(This connection will be called the modular connection associated to the function f and will
be denoted by ∇ f .)

Remark 10. For any holomorphic function f , Theorem 5 associates a unique and canonical linear
connection ∇ f , whose geometry is perfectly adapted to the behaviour of f . Moreover, the modular
connection is simpler than the rectificant connection f∇ and allows easier computations of the
main geometric invariants. If we know ∇ f , then | f | can be determined by integration and
exponentiation, and hence f is determined locally, modulo a multiplicative constant.

Further properties of this connection are addressed next. Denote h(x, y) = 1
2 ln(u2(x, y) +

v2(x, y)). This means Re[ln f (z)], hence h, is a harmonic function.

(i) The coefficients of the connection ∇ f may be written in a simplified form

−Γ1
11 = −Γ1

22 = −Γ2
12 = Γ2

21 = hx , −Γ2
22 = −Γ2

11 = −Γ1
21 = Γ1

12 = hy.

(ii) This connection ∇ f is symmetric if and only if f is constant. In this case, it coincides
with the canonical affine connection ∇ of R2. Moreover, ∇ is precisely the symmetric
connection associated to ∇ f .

(iii) The modular connection makes Vf and V⊥f divergence-free.

(iv) The connection∇ f is flat: this follows from R f (∂x, ∂y)Vf = 0 and R f (∂x, ∂y)V⊥f = 0. Al-

ternatively, by direct computation, we get R f (∂x, ∂y)∂x = (hxx + hyy)∂y, R f (∂x, ∂y)∂y =
−(hxx + hyy)∂x and we use the harmonicity of h.

(v) Its torsion is completely characterized by T f (∂x, ∂y) = 2(hy∂x − hx∂y). The covariant
derivative of T f w.r.t. ∇ f is given by

(∇ f
∂x

T f )(∂x, ∂y) = 2[hxy∂x − (h2
x + h2

y + hxx)∂y],

(∇ f
∂y

T f )(∂x, ∂y) = 2[(h2
x + h2

y + hyy)∂x − hxy∂y].

We can rewrite the precedings formulas in invariant form. We remark that T f (X, Y) =
2dh(Y)X− 2dh(X)Y and traceT f = 2dh. It follows that∇ f is a semi-symmetric connection
and that the Hessian of h w.r.t. ∇ f is symmetric, where Hess∇

f

h (X, Y) = (∇ f
Xdh)(Y).

Moreover
(∇ f

ZT f )(X, Y) = 2Hess∇
f

h (Z, Y)X− 2Hess∇
f

h (Z, X)Y.

Moreover, higher order covariant derivatives of T f reduce to higher order covariant
derivatives of dh, as

(∇ f ,k
Z1,...,Zk

T f )(X, Y) = 2(∇ f ,k
Z1,...,Zk

dh)(Y)X− 2(∇ f ,k
Z1,...,Zk

dh)(X)Y,

for any non-negative integer k and any vector fields X, Y, Z1, . . . , Zk. Further calculations
support the conjecture that some higher order covariant derivative of T f vanishes if and
only if the torsion tensor field vanishes (i.e., f is a constant function).



Mathematics 2021, 9, 1890 12 of 15

Example 3. (i) For the system in Theorem 3, (i), a family of particular solutions is the following:

Γ1
12 + Γ1

21 = 0 , Γ2
12 + Γ2

21 = 0.

Γ1
11 = Γ1

22 =
vuy − uux

u2 + v2 , Γ2
11 = Γ2

22 = −
vux + uuy

u2 + v2 .

Such a connection is symmetric if and only if Γ1
12 = Γ1

21 = Γ2
12 = Γ2

21 = 0, so it is unique.

(ii) For the system in Theorem 3, (ii), a particular solution is the following:

Γ1
11 =

−uux

u2 + v2 , Γ1
12 =

vux

u2 + v2 , Γ2
11 =

uvx

u2 + v2 , Γ2
12 =

−vvx

u2 + v2 ,

Γ1
21 =

−uuy

u2 + v2 , Γ1
22 =

vuy

u2 + v2 , Γ2
21 =

uvy

u2 + v2 , Γ2
22 =

−vvy

u2 + v2 .

We remark that this connection is allways non-symmetric.
(iii) For the system in Theorem 3, (ii), another particular solution is the following:

Γ1
11 =

−ux

u
, Γ1

12 = 0 , Γ2
11 =

−uy

u
, Γ2

12 = 0,

Γ1
21 = 0 , Γ1

22 =
−vx

v
, Γ2

21 = 0 , Γ2
22 =

−vy

v
.

We remark that this connection is symmetric. Moreover, div∇(Vf ) = 0.
We calculate

R(∂x, ∂y)∂x = (
uxyu− uxuy

u2 −
uyvx

uv
)∂x + (

uyyu− (uy)2

u2 −
uyvy

uv
)∂y,

R(∂x, ∂y)∂y = (−vxxv− (vx)2

v2 +
uxvx

uv
)∂x + (−

vyxv− vyvx

v2 +
uyvx

uv
)∂y.

As R(∂x, ∂y)Vf = 0, we get the (curvature) index of nullity at least one. This index is
two if and only if R(∂x, ∂y)V⊥f = 0, i.e., R identically vanish. This case is characterized by the
following PDEs

uxyu− uxuy

u
−

uyvx

v
= 0,

uyyu− (uy)2

u
−

uyvy

v
= 0,

−vxxv− (vx)2

v
+

uxvx

u
= 0, −

vyxv− vyvx

v
+

uyvx

u
= 0.

We skip the study of the solutions of this PDEs, which provides a family of (probably) interest-
ing particular holomorphic functions, and we return to the general case.

The Ricci tensor field has the components

(Ric)11 = −
uyyu− (uy)2

u2 +
uyvy

uv
, (Ric)22 = −vxxv− (vx)2

v2 +
uxvx

uv
,

(Ric)12 =
vyxv− vyvx

v2 −
uyvx

uv
, (Ric)21 =

uxyu− uxuy

u2 −
uyvx

uv
.

In general, Ric is not symmetric: it happens if and only if(vy

v

)
x
=
(ux

u

)
y
.
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(iv) Consider the particular case when u(x, y) = x and v(x, y) = y. Then, for the system in
Theorem 3, (iii), a particular solution is the following:

g12 = 0 , g11 =
1

2x2 , g22 =
1

2y2 .

Here, the intermediary functions are U(x, y) = 1
2x and V(x, y) = − 1

2y .

(v) A particular solution for the case in Theorem 3, (iii): consider a Möbius transformation
f (z) = 1

cz+d , for arbitrary fixed real numbers c and d. Denote a(y) = cy and b(x) = cx + d.
Then the metric gjk = (a2 + b2)δjk is Kähler and belongs to Riem(R2, V f ).

These are the only Möbius transformations with this property. (Compare with Theorem 2, ii.)
(vi) Suppose u 6= 0. For the system in Theorem 3, (ii), the general solution is the following:

Γ1
11 =

v
u

Γ1
12 −

ux

u
, Γ2

11 =
v
u

Γ2
12 +

vx

u
,

Γ1
21 =

v
u

Γ1
22 −

uy

u
, Γ2

21 =
v
u

Γ2
22 +

vy

u
.

This family of connections depends on four arbitrary parameter functions.
Suppose, moreover, that we impose the connections be symmetric. Then, the general solution is

Γ1
11 =

v2

u2 Γ1
22 −

v
u2 uy −

ux

u
, Γ2

11 =
v2

u2 Γ2
22 +

v
u2 vy +

vx

u

Γ1
12 =

v
u

Γ1
22 −

uy

u
, Γ2

12 =
v
u

Γ2
22 +

vy

u
This family of connections depends on two arbitrary parameter functions.

4.3. The Classification Project

In view of Theorems 3–5, we can classify the nowhere vanishing holomorphic func-
tions, w.r.t. the following new invariants:

(Step 1.) Consider the linear connections and metrics associated to Vf , each one or
their set as a whole.

(Step 2.) Consider their curvature tensor fields R f and torsion tensor fields T f , together
with all their covariant derivatives.

(Step 3.) Then their various indices of nullity, like a huge barcode, will classify Vf ,
hence f .

This classification is similar to that of polynomial functions, by imposing some of their
higher derivative to vanish. The difference is that, in our case, the choice of the (covariant)
derivative is more flexible and subtle, and the direction of the classical derivative is replaced
by a quiver of scattered directions. (For a similar but more general classification project,
see [9].)

Example 4. Consider a nowhere vanishing holomorphic function f , its Pólya vector field and ∇ f

the associated modular connection, as in Theorem 5 and the Remark 9. This connection is flat, so all
its indices of nullity associated to R f and its covariant derivatives are maximal. Instead, the torsion
tensor field or at least one the first two of its covariant derivatives are null for, and only for, constant
functions f . We conjecture, as above, that if some higher order covariant derivative of T f is null,
then f is constant. Such a condition seems to be too strong for holomorphic functions which are
rigid, so we suggest to appeal to nullity indices.

For example: there exists a non-null vector field X such that ∇ f
XT f = 0 if and only if

h2
xy = (h2

x + h2
y + hxx)(h2

x + h2
y + hyy).

As h is harmonic, this is equivalent to
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(h2
x + h2

y)
2 = h2

xx + h2
xy. (6)

Equation (6) is Monge-Ampère-like, because the right side is (−det Hessh), where the Hessian
is calculated with the canonical affine connection of R2.

In terms of the magnitude of the gradient g := ||grad h||2 = h2
x + h2

y of the function
h = 1

2 ln(u2 + v2) (Theorem 4), Equation (6) becomes

||grad g||2 = 4g3.

Geometrically, it follows that the vector field grad (g−
1
2 ) lies on the unit circle.

Note that the index of nullity for the covariant derivative of T f is measured by a polynomial
PDE of the gradient of h. It is quite plausible that the indices of nullity of higher order covariant
derivatives of T f are controlled by similar polynomial PDEs, of higher degrees.

A standard argument finds the solution of Equation (3):

h =
∫

C−1 cos(ψ)dx +
∫
{C−1 sin(ψ)− ∂

∂y
[
∫

C−1 cos(ψ)dx]}dy + k2,

where

C(x, y) =
∫

cos(ϕ(x, y))dx +
∫
{sin(ϕ(x, y))− ∂

∂y
[
∫

cos(ϕ(x, y))dx]}dy + k1,

the functions ϕ = ϕ(x, y) and ψ = ψ(x, y) are arbitrary and k1, k1 are arbitrary real numbers.
A particular solution is h(x, y) = 1

2 ln((x + a)2 + (y + b)2), for arbitrary real numbers a and b,
corresponding to | f (z)| = e

1
2 |z+a+ib|2 .

5. Conclusions

The use of Pólya’s associating vector fields to functions, and applying Vector Calculus
interpretations for the complex integral has pedagogical benefits, and is quite economical
in its use of required dimensions.

We may extend the definition of associated Pólya vector fields, and the subsequent
study, from holomorphic functions f to meromorphic functions, and even further, to
arbitrary functions f : C→ C. Very few details will change but the main ideas will subsist.

The same formalism can be used in 3D to study functions of three variables making
use of the representation of rotations via quaternions.

Moreover, one can extend the theory from Kähler manifolds to hyperKähler manifolds,
with applications to physics, e.g., to the presentations of Electromagnetism that make use
of quaternions.

In this article, we contribute to the popularization of Pólya’s pedagogical lesson in
Complex Analysis considering smooth function, beyond the holomorphic functions case.
We used the wealth of metrics, including those from the conformal class of the complex
structure, to derive information regarding the possible “free flow” Pólya vector fields, and,
hence, better understanding conformal mappings from the metric viewpoint.

The notable case is that of Pólya vector fields associated to Möbius transformations.
The main result is the characterization of the recurrent, concurrent and torse-forming cases.

In the other direction, we refined the classification of connections, using Möbius
transformations as a filter, and deriving several algebraic systems of PDEs satisfied by the
corresponding Christoffel coefficients. As an example, for each holomorphic function there
are unique connections with prescribed properties: the rectificant and modular connections
(Theorem 4, iii and Theorem 5). We pointed out how to use these (or any other similar)
connections for classifications of holomorphic functions, through differential geometric
invariants (the nullity indices of the curvature and torsion vector fields).

Further work is suited for undergraduate projects, to be reported elsewhere.
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