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Histone H2A and H2B Are Monoubiquitinated at
AID-Targeted Loci
Glen M. Borchert, Nathaniel W. Holton, Kevin A. Edwards, Laura A. Vogel, Erik D. Larson*

School of Biological Sciences, Illinois State University, Normal, Illinois, United States of America

Abstract

Background: Somatic hypermutation introduces base substitutions into the rearranged and expressed immunoglobulin (Ig)
variable regions to promote immunity. This pathway requires and is initiated by the Activation Induced Deaminase (AID)
protein, which deaminates cytidine to produce uracils and UG mismatches at the Ig genes. Subsequent processing of uracil
by mismatch repair and base excision repair factors contributes to mutagenesis. While selective for certain genomic targets,
the chromatin modifications which distinguish hypermutating from non-hypermutating loci are not defined.

Methodology/Principal Findings: Here, we show that AID-targeted loci in mammalian B cells contain ubiquitinated
chromatin. Chromatin immunoprecipitation (ChIP) analysis of a constitutively hypermutating Burkitt’s B cell line, Ramos,
revealed the presence of monoubiquitinated forms of both histone H2A and H2B at two AID-associated loci, but not at
control loci which are expressed but not hypermutated. Similar analysis using LPS activated primary murine splenocytes
showed enrichment of the expressed VH and Sc3 switch regions upon ChIP with antibody specific to AID and to
monoubiquitinated H2A and H2B. In the mechanism of mammalian hypermutation, AID may interact with ubiquitinated
chromatin because confocal immunofluorescence microscopy visualized AID colocalized with monoubiquitinated H2B
within discrete nuclear foci.

Conclusions/Significance: Our results indicate that monoubiquitinated histones accompany active somatic hypermutation,
revealing part of the histone code marking AID-targeted loci. This expands the current view of the chromatin state during
hypermutation by identifying a specific nucleosome architecture associated with somatic hypermutation.
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Introduction

The immunoglobulin (Ig) genes in activated B cells are

diversified by somatic hypermutation and class switch recombi-

nation to promote immunity. Somatic hypermutation introduces

point mutations into the rearranged and expressed Ig variable

regions while class switch recombination coordinates the exchange

of one Ig constant region for a downstream region, deleting the

intervening DNA. Both pathways require the Activation Induced

cytidine Deaminase (AID) protein [1,2]. AID is active on

transcribed DNA and functions to convert single-stranded

cytidines into uracil and uracil-guanine mismatches (reviewed in

[3,4]). Canonical mismatch repair and base excision repair are

able correct genomic uracil [5–7], but in somatic hypermutation

these normally faithful repair pathways become mutagenic [8].

The diversion to mutagenesis is promoted by the synthesis

activities of low-fidelity DNA polymerases, such as polymerase

eta (reviewed by [9,10]), and their participation in hypermutation

may be regulated by PCNA monoubiquitination (reviewed by

[11]). While hypermutation is largely confined to the rearranged

and expressed Ig genes, other B cell loci are prone to aberrant

hypermutation, leading to lymphoma [12,13]. The molecular

mechanisms responsible for targeting AID to certain sites in the

genome and the regulation of subsequent mutagenesis have not

been established.

Monoubiquitination pathways may be important for regulating

Ig gene diversification. DT40 B cells disrupted for PCNA

monoubiquitination by a K164R substitution showed decreased

AID-initiated Ig gene diversification [14]. Similarly, PCNA

K164R knock-in mice had an altered spectrum of Ig gene

mutagenesis, paralleling mismatch repair defective mice and

suggesting that monoubiquitination of PCNA influences uracil

repair outcomes in mammals [15,16]. PCNA modification may be

facilitated in part by the RAD6 pathway because inactivation of a

RAD6 associating E3 ligase, RAD18, in DT40 B cells resulted in

reduced levels of PCNA monoubiquitination and decreases in

hypermutation [14,17], however residual PCNA monoubiquitina-

tion in rad18 mutant DT40 suggests the involvement of more than

one E3 ligase [18]. Further evidence for protein ubiquitinations in

Ig gene diversification pathways comes from recent studies on the

RNF8 and RNF168 E3 ligases. Silencing of these two proteins

decreased class switch recombination efficiency in a murine model

B cell line [19], and RNF168 was identified as the RIDDLE

syndrome protein, a disease characterized by immunodeficiencies

and DNA repair defects [20]. Recently, RNF8 knock-out mice

were shown to have impaired class switch recombination and
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defects in DNA damage responses [21,22], further connecting

histone monoubiquitination with Ig gene diversification. Together,

it is likely that multiple proteins are monoubiquitinated to promote

Ig gene diversification and hypermutation specific histone E3

ligases could serve as signals for locus-specific mutagenesis.

In light of the DNA repair machinery-driven nature of

hypermutation at the Ig loci, characterized roles for chromatin

monoubiquitination in facilitating normal DNA repair throughout

the genome (reviewed by [23]), and the involvement of RNF8 in

class switching [19,21–22], we speculated that histone mono-

ubiquitination could accompany hypermutation. We therefore

assayed the nucleosomes at AID-targeted and actively hypermu-

tating loci for ubiquitin modification. Here, we show by

Chromatin Immunoprecipitations (ChIPs) that both histone H2A

and H2B are monoubiquitinated at two different AID-targeted

loci in the constitutively hypermutating B cell line Ramos. ChIP

analysis of primary LPS activated murine splenocytes showed

similar levels of enrichments for hypermutating template upon

immunoprecipitation with antibody specific to AID, pol II, and

monoubiquitinated forms of H2A and H2B. Furthermore, we find

by immunofluorescence microscopy that AID colocalizes with

monoubiquitinated H2B in discrete nuclear foci, suggesting that

both are concomitant with hypermutation. Our results identify a

considerable and previously uncharacterized chromatin modifica-

tion associated with AID-induced somatic hypermutation.

Results

AID and hypermutation target two discrete loci in Ramos
Ramos is a human Burkitt’s lymphoma cell line with both

functional and non-functionally rearranged Ig heavy chain (IgH)

loci. One IgH allele contains a productive VDJ rearrangement

(re-VH), which is a gene that is expressed and constitutively

hypermutated [24]. The other IgH allele has participated in a

reciprocal translocation between the ends of chromosomes 8 and

14, replacing the antibody variable region on chromosome 14 with

an intact c-MYC allele from chromosome 8 (MYC14), and this locus

is also hypermutated [25]. The partially rearranged V region on

chromosome 8 and the mu constant region downstream of re-VH

are not diversified by hypermutation. Using EST data from the

NCBI database, and previously reported c-MYC sequences [25],

we constructed a map of the rearranged and expressed heavy

chain loci in Ramos (Fig. 1). The documented constitutive

hypermutation of Ramos re-VH and MYC14 predict that AID

selectively targets these two distinct loci for deamination.

We first established active somatic hypermutation of the re-VH

and MYC14 in our Ramos subclone using standard surface IgM

loss assays and direct sequencing of MYC14. Constitutive sequence

diversification of the expressed IgM locus results in mutations that

inactivate surface display, providing a marker for hypermutation

rate in Ramos. Starting from a single Ramos sIgM positive isolate,

90 days of continuous culture resulted in 6.83% sIgM loss, as

measured by FACS with FITC-conjugated anti-IgM antibody

(Fig. 2A). This compares well with the sIgM loss rate reported for

Ramos, showing 4% sIgM loss for after 4 weeks of in vitro culture

[26], and ,17% loss after 6 months [24]. We conclude that the re-

VH is actively hypermutated. To ensure ongoing hypermutation of

the other IgH locus, individual expressed MYC14 clones of from

our Ramos population were sequenced, and 20% of our sequence

reads contained one or more novel mutations (6/30, mean

length = 748 nt) (Fig. 2B). Only the translocated c-MYC is

expressed in Ramos, and MYC14 contains a single nucleotide

polymorphism A523T [25], distinguishing it from the non-

translocated allele. This base substitution was present in all

sequence reads we obtained. The MYC14 point mutations we

identified are novel, and do not correspond to previously identified

c-MYC hypermutations [25]. We conclude that both the re-VH and

MYC14 in our Ramos subclone are expressed and subject to

hypermutation, as expected.

AID activity is required for initiating somatic hypermutation,

predicting that the protein should be in physical contact with

both the Ramos re-VH and c-MYC genes. To test this, we used

chromatin immunoprecipitations (ChIPs) to test for AID

association with hypermutating loci in Ramos. ChIPs rely on

specific antibodies to precipitate crosslinked protein-DNA

complexes, followed by quantitative PCR (qPCR) analysis of

Figure 1. Diagram of the IgH loci in Ramos Burkitt’s lymphoma. A reciprocal translocation exchanging the ends of chromosomes 8 and 14 in
Ramos resulted in the formation of MYC14 and V8. The chromosome 14 break point occurred within the heavy chain (IgH) switch region (indicated by
jagged edges) just 59 of the m constant exon (IgHM) while the chromosome 8 breakpoint occurred in a c-MYC allele promoter. (R), silent, non-coding
RNA;61,62,63, c-MYC exons. Arrows indicate transcriptional direction. Double bar denotes amplicon location. Primers were designed to amplify the
IgH constant region mu (VH1), the functional heavy chain VH4-34/D/J6 rearrangement (VH2), and an upstream non-rearranged V-region sequence
(VH3). Chromosome 8 primer sets amplify three c-MYC exons (MYC1–3), and a sequence 50 kb 59 of MYC3 (MYC4). One primer set was designed for
the non-expressed unrearranged VH 4–34 on chromosome 8 (V8).
doi:10.1371/journal.pone.0011641.g001

mUb-H2A/H2B and Hypermutation
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the enriched genomic templates. Primer sets were designed to

amplify templates immunoprecipitated from Ramos cells corre-

sponding to the re-VH locus (VH 1–3), the c-MYC gene (exons

1–3), and several non-hypermutating control loci (Fig. 1). In

chromatin prepared from Ramos cells, the normalized enrich-

ment of the re-VH using anti-AID antibody was 13.8-fold

(Fig.3A). Likewise, AID ChIP enriched for exons 1–3 of c-MYC

(11.9 fold, 14.0 fold and 10.8-fold, respectively) (Fig. 3A). AID

ChIP did not enrich for any of the other loci tested, including a

distal downstream (50 kb) region of MYC14 (MYC4), the Cmm
constant region (VH-Cm), the non-productively rearranged heavy

chain V region on chromosome 8 (V8), and the b actin gene

(Fig. 3A). To further test hypermutation specificity ChIPs with

PCNA and pol eta antibodies enriched for the re-VH (Fig. S1),

and AID antibody failed to enrich for the c-MYC locus in AID

negative HEK293 and A549 cells (Fig. S2), and westerns with this

same antibody did not detect AID in HEK293 extracts, but

identified a single 24 kDa band in Ramos, as expected (Fig. S3).

In addition, IPs using this AID antibody and Ramos extract

precipitated native AID, as detected by western with an

independent AID antibody (Fig. S4).

Primers designed to amplify MYC14 could potentially amplify

the other c-MYC allele if precipitated during ChIPs; however, only

the translocated c-MYC contains the single nucleotide polymor-

phism A523T [25]. Further, ChIP results are suggestive of AID

association with MYC14 because AID tracks with pol II to

deaminate transcribed DNA (reviewed by [27]) and the non-

translocated allele of c-MYC is not expressed ([25] yet pol II ChIPs

enriched for exons 1–3 c-MYC. Most importantly, 100% (8/8) of

different sequence reads from PCR product amplified from anti-

AID ChIPed template corresponded to the translocated MYC14

allele (not shown). Together, our results indicate that AID is

physically associated with the Ramos re-VH and with exons 1–3 of

MYC14, supporting the model that both loci are subject to AID-

initiated somatic hypermutation.

The chromatin at the re-VH and c-MYC gene in Ramos B
cells is monoubiquitinated

Having confirmed AID associations at both re-VH and c-MYC in

our Ramos subculture, we next examined the chromatin state at

these loci to identify histone markers of hypermutation. Based on

roles for histone ubiquitination in normal DNA repair [23] and

apparent involvement of RNF8/168 ubiquitin E3 ligases in class

switch recombination [19–22], we focused our analysis on

ubiquitin-modified chromatin. We used ChIPs and antibodies

specific to monoubiquitinated histones to ask if the re-VH and

MYC14 loci are modified by ubiquitination. Analysis of qPCR

following mUb-H2A ChIP of Ramos chromatin showed a 48.3

fold normalized enrichment of the re-VH. Exons 1–3 of c-MYC

were also enriched, showing 18.4 fold, 23.0 fold and 16.6 fold

enrichments respectively (Fig. 3B). Similar to the mUb-H2A ChIP,

qPCR analysis following mUb-H2B ChIP of Ramos chromatin

showed 37.6-fold normalized enrichment of the re-VH and exons

1, 2, and 3 of c-MYC showed 29.3 fold, 32.3-fold and 12.9-fold

enrichments, respectively (Fig. 3C). In contrast, neither the VH-Cm,

V8, b-actin gene, nor MYC4 were enriched by mUb-H2A or mUb-

H2B ChIP (Figs. 3B, C). Also, mUb-H2A and mUb-H2B ChIPs

with AID negative HEK293 and A549 cells did not enrich for the

c-MYC loci (Fig. S2). We conclude that the re-VH and c-MYC loci

in Ramos are occupied by nucleosomes that contain monoubi-

quitinated forms of H2A and H2B.

Previous studies connect histone monoubiquitination with

transcriptional silencing and/or polymerase elongation (reviewed

by [28]) so we next asked if histone ubiquitination is a broad

consequence of high RNA polymerase II (pol II) driven expression

of the heavy chain loci in Ramos, or associated with mutagenesis.

ChIPs using RNA pol II antibody and Ramos chromatin showed

comparable enrichment via normalized qPCR for the re-VH, exons

1–3 of c-MYC, b-actin, and VH-Cm. We did not observe enrichment

of the unrearranged VH locus (V8) or the region downstream of

MYC14, MYC4, which was anticipated because these regions are

not expressed. In contrast, b-actin, and VH-Cm were all enriched by

pol II ChIPs (Fig. 3D), but not after ChIP using monoubiquiti-

nated histone antibody (Figs. 3B, C). These results mirror our AID

analyses, and suggest that pol II-dependent gene expression alone

is insufficient for establishing sustained chromatin monoubiquiti-

nation in Ramos.

If monoubiquitinated chromatin is associated with Ig gene

mutagenesis, we also anticipate other hypermutation factors will

be associated with these same loci. AID-induced uracil is processed

by mismatch repair factors at the Ig loci, and substitutions are

introduced opposite A and T bases through PCNA-dependent

recruitment of pol eta synthesis in place of pol delta (reviewed by

[11]). ChIP analysis suggests that the re-VH, but not the

unrearranged allele (V8), is in physical contact with PCNA and

pol eta (Fig. S1), supporting the model that the monoubiquitinated

loci we identify here also harbor proteins known to support

mutagenesis in response to uracil in DNA. The qPCR enrichments

obtained for Ramos ChIPs were independently verified by

qualitative, traditional PCR amplification and ethidium bromide

visualization (Fig. 3E) and westerns verified specificity for AID and

monoubiquitinated histone antibodies (Fig. 3F).

Figure 2. Ramos Burkitt’s lymphoma cells constitutively
hypermutate at distinct genomic loci. A. Flow cytometry measure
of loss of surface IgM (sIgM) display over time for cultured Ramos cells.
sIgM was detected using FITC conjugated antibody specific for human
IgM (FL1-H). Ramos cells were continuously cultured for 90 days after
which 10,000 cells were analyzed. B. Sequence analysis of the
translocated and expressed MYC14. Each pie wedge represents a unique
sequencing read with the number of mutations identified in individual
reads indicated. The total number of mutations identified in 10 unique
sequence reads corresponding to individual exons is shown in the
central circles.
doi:10.1371/journal.pone.0011641.g002

mUb-H2A/H2B and Hypermutation
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The chromatin of Ig genes in activated primary murine B
cells is ubiquitinated

It is possible that chromatin monoubiquitination is a unique

feature of Ramos hypermutation. To address this, we tested

histone monoubiquitination of an AID-targeted locus in LPS

activated murine B cells. Typically, hypermutation is difficult to

quantify by PCR in primary cells because of the sequence

variability inherent to the rearranged Ig genes. To overcome this

technical limitation, we used a quasi-monoclonal mouse, which

was engineered to contain a functional IgH chain allele generated

by targeted replacement of heavy chain locus variable region with

a defined VDJ rearrangement (17.2.25) [29] (Fig. 4A). The 17.2.25

Figure 3. ChIPs identify mUb-H2A and mUb-H2B at Ramos hypermutating loci. A. Normalized template enrichment upon anti-AID ChIP.
Template obtained from AID-IP was amplified and analyzed by qPCR using primer sets diagramed in Figure 1, above. Results were normalized to non-
specific IgG IP and relative to input. Each bar indicates the mean of the values obtained from six amplifications (two separate experiments analyzed in
triplicate) with standard deviation. B. Normalized template enrichment upon mUb-H2A ChIP. C. Normalized template enrichment upon mUb-H2B
ChIP. D. Normalized template enrichment upon pol II ChIP. Enrichments were analyzed by qPCR as in Figure 3A. E. Ethidium bromide stained gel of
traditional PCR amplifications from ChIP template. F. Antibodies used to ChIP mub-H2A and mub-H2B and AID are specific for monoubiquitinated
H2A, H2B and AID protein. Western blot analysis of endogenous AID (24 kDa), mUb-H2A (27 kDa) and mUb-H2B (27 kDa) in Ramos cell lysates. Visible
on the AID blot, the white negative stained bands of the protein marker correspond to 55, 40, 36, 25, 15 and 10 kilodaltons (top to bottom).
doi:10.1371/journal.pone.0011641.g003

mUb-H2A/H2B and Hypermutation
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VDJ region in these mice is subject to diversification by somatic

hypermutation [30].

Primary splenocytes were isolated from six healthy quasi-

monoclonal mice and cultured with lipopolysaccharide (LPS) to

activate primary B cells. ELISAs for secreted IgG confirmed

activation of Ig gene diversification (data not shown). In

chromatin prepared from these activated splenocytes, normalized

enrichment of 17.2.25 after ChIP with mUb-H2A and mUb-H2B

antibody showed robust enrichment, 16.2-fold and 21.8-fold for

each antibody, respectively (Fig. 4B). Similarly, pulldowns using

these same antibodies were also enriched for the Sc3 switch

region (Fig. 4B). AID appears to target the 17.2.25 and Sc3 loci

after activation because anti-AID ChIPs resulted in 10.4 and 7.1

fold enrichments of these regions respectively (Figs. 4B, C). The

murine triose phosphate isomerase gene (TPI) and unexpressed

neural specific gene (STEP) were used as controls, and only the

TPI locus showed modest enrichment (6.9-fold) after pol II ChIP,

and neither locus was precipitated upon IP with anti-AID, anti-

mUb-H2A, or anti-mUb-H2B. Due to the limited antibody

repertoire encoded by the quasi-monoclonal mice, selective

pressure for Ig gene diversity is high, causing both hypermutation

and frequent V gene replacements [30]. Because it is unlikely that

17.2.25 gene rearrangements would be amplified by our primer

sets, enrichments we obtained for the 17.2.25 locus after AID

ChIP (Fig. 4B) are likely to be an under-representation of the

actual level of AID association. Regardless, we conclude that the

17.2.25 and Sc3 loci from primary LPS activated quasi-

monoclonal murine splenocytes are expressed by RNA pol II,

targeted by AID, and occupied by monoubiquitinated histone

H2A and histone H2B.

AID and mUb-H2B colocalize in discrete nuclear foci
ChIPs examine total cellular populations, and hypermutation

events may occur transiently and at unsynchronized time points.

Therefore, we used immunofluorescence confocal microscopy to

ask if AID and ubiquitinated chromatin co-occupy the DNA. Both

mUb-H2B and AID antibody produced clear robust signals in

Ramos cell preparations. Figure 5 shows a representative image of

AID and mUb-H2B foci in Ramos, and overlay of these images

showed clear colocalization of AID and mUb-H2B signal in

discrete nuclear foci. We also found multiple examples where

more than one AID and monoubiquitinated H2B are colocalized

within a single cell nucleus (Fig. S5), supporting the notion that at

least two and possibly more loci are diversified by somatic

hypermutation in Ramos cells. We observe multiple AID foci in

individual Ramos cells, highly consistent with the behavior of

endogenous AID [31–33]. It is possible that non-Ig genes are

bound and deaminated by AID in Ramos. Antibodies to mUb-

H2A and mUb-H2B antibody are specific for the monoubiquiti-

nated forms of histones, and our westerns probing Ramos whole

cell extract clearly show single bands at ,25–30 kDa (Fig. 3F)

corresponding to the size of a single histone ubiquitination

(,28 kDa). Even though mUb-H2A, and mUb-H2B antibodies

were competent for western analyses (Fig. 3F) and ChIPs (Figs. 3

and 4), we were unable to clearly detect mUb-H2A by

immunofluorescence microscopy. Nevertheless, our imaging

results suggest that AID is spatially and temporally associated

with ubiquitinated nucleosomes.

Discussion

Our results show that genomic loci that are targeted for

somatic hypermutation are also occupied by monoubiquitinated

chromatin. Histone H2A and H2B monoubiquitination was

coincident with transcription, but not due to pol II catalyzed gene

expression alone because anti-mUb-H2A and mUb-H2B ChIPs

failed to enrich for the highly expressed Ramos b actin locus or

the TPI gene in primary mouse splenocytes, even though pol II

ChIP enriched for these regions at levels comparable to the re-

VH, c-MYC Exons 1–3, and 17.2.25 (Figs. 3, 4). Furthermore, the

only genomic regions enriched by mUb-H2A and mUb-H2B

Figure 4. mUb-H2A and mUb-H2B associate with hypermuta-
tion in activated mouse primary B cells. A. Cartoon depicting the
engineered rearranged heavy chain allele sequences in quasi-monoclo-
nal mouse [29]. The rearranged allele (17.2.25) is compared to a normal
heavy chain arrangement (wt). The 17.2.25, allele formed by the
targeted replacement of the joining cluster with a defined V(D)J
rearrangement. JHD, allele formed by the targeted deletion of the
joining cluster. S, Sc3 switch region. IGHM, m constant exon. VH

additional 59 variable sequence segments. DQ52, diversity sequence
segment immediately 59 of the joining sequence cluster. Arrows
indicate transcriptional direction. Double bar denotes amplicon
location. B. ChIPs identify monoubiquitinated histones with hypermuta-
tion. Murine splenocytes were cultured for 72 hours with LPS, cross-
linked, and then subjected to ChIP analysis with anti-mUb-H2A and
anti-mUb-H2B, and anti-AID antibody. Normalized enrichment of the
17.2.25, Sc3, triose phosphate isomerase (TPI) and neural-specific
striatum-enriched protein-tyrosine phosphatase (STEP) loci from qPCR
are shown relative to input DNA. C. Ethidium bromide visualization of
traditional PCRs with primer sets corresponding to the qPCRs.
doi:10.1371/journal.pone.0011641.g004

mUb-H2A/H2B and Hypermutation
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ChIP were those that were also enriched upon anti-AID ChIP

(Fig. 3A); and these same loci also showed significant enrichments

after ChIP with antibodies to the DNA repair factors PCNA and

pol eta (Fig. S1), which are two proteins involved in somatic

hypermutation opposite A and T bases (recently reviewed by

[11]). Histone monoubiquitination may occur in response to AID

activity, but could also be a signal for AID recruitment because

AID colocalized with mUb-H2B as visualized by immunofluo-

rescence microscopy (Fig. 5). Either way, our results identify the

presence of both histone H2A and H2B tail monoubiquitinations

at genes that are targeted selectively for mutagenesis, identifying

this specific set of chromatin modifications with genomic loci

that are deaminated by AID and mutated by responding DNA

repair pathways. As such, co-occupancy of monoubiquitinated

H2A and H2B within nucleosomes at the Ig genes may in part

characterize the chromatin architecture associated with somatic

hypermutation.

Histone termini extend away from the core histone octamer as

tails that serve as acceptors for a wide range of post-transcriptional

modifications. The combination of these modifications or ‘‘histone

code’’ regulates a wide range of functions, although the specific

DNA level activities triggered by various combinatorial signals

have not been completely defined. In hypermutation, some small

molecule histone modifications have been described. Acetylation

of histone H3 and H4 at the IgH variable region, but not the

constant region, results from activation of hypermutation in BL2

cells, suggesting a role in targeting somatic hypermutation

machinery [34]. However, in primary mouse B cells changes in

histone acetylation at hypermutating loci did not follow with B cell

activation [35]. Nevertheless, H4 acetylation may be important for

some types of AID-initiated diversification because disruption of

the E2A transcription factor in DT40 leads to decreases in H4

acetylation and gene conversion [36]. One unique signal for V

region hypermutation may be phosphorylation of histone H2A at

serine 14 [35], and it is possible that this signal may operate in

concert or in response to histone monoubiquitination to promote

hypermutation. More than likely, locus-specific mutagenesis in B

cells depends upon the combinatorial signal generated through

multiple histone tail modifications, and further studies are required

to decipher the specific histone code assigned to somatic

hypermutation.

H2A and H2B monoubiquitination may have active roles in

the hypermutation pathway, and immunofluorescence results

confirm proximity of AID and monoubiquitinated H2B (Figs. 5,

S5). Chromatin modification may occur as a consequence of

AID activity to promote mutagenesis at some loci, or histone

monoubiquitinations could help recruit AID. These models are

not necessarily mutually exclusive. If chromatin ubiquitination is

important for regulating the balance between mutagenic and

faithful DNA repair in Ig gene hypermutation, one might

predict that AID could deaminate multiple genes but the

resulting uracils are faithfully repaired at the non-Ig loci.

Figure 5. AID and monoubiquitinated H2B colocalize in discrete nuclear foci. Representative immunofluorescence confocal microscopy
images of Ramos cells stained for AID and mUb-H2B. Ramos cells were incubated with rabbit antibody specific to AID and murine mUb-H2B antibody
followed by Alexa-488 conjugated rabbit secondary and Alexa-555 conjugated murine secondary antibody. Upper left, Ramos cells imaged with
488 nm filter. Upper right, Ramos cells imaged with 555 nm filter. Lower left, merged image with white scale bar (2 microns). Lower right nuclear
envelope imaged using wheat germ agglutinin (Blue). Arrows point to colocalizations of AID and mUb-H2B.
doi:10.1371/journal.pone.0011641.g005
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Indeed, we and others have observed multiple AID foci by

immunofluorescence microscopy (Figs. 5, S5) [31–33], and

genome sequencing of germinal center B cells reveals that AID

acts widely at transcribed genes, but genomic instability is

largely suppressed by faithful DNA repair [12]. There are likely

to be signals specific to only some genes (like the Ig loci) that

regulate the switch from faithful to mutagenic uracil repair, and

because mUb-H2B appears to occupy only a small subset of the

AID-targeted loci (Figs. 5, S5), chromatin ubiquitination is not

an automatic result of AID binding but rather a locus-specific

event. It is conceivable that the conspicuous presence of

ubiquitinated H2A and H2B at the Ig genes represents a signal

that marks these loci for mutagenesis.

Consistent with a model whereby histone monoubiquitination

facilitates the repair responses to DNA deamination, recent studies

have identified histone-specific E3 ubiquitin ligases in class switch

recombination. Starting with histone H2A modification, ubiqui-

tination cascades appear critical for establishing assembly of

recombination factors at sites of AID activity. The loss of the

RNF168 H2A E3 ligase disrupts histone ubiquitination and causes

DNA repair defects and immunodeficiencies associated with

RIDDLE syndrome [20]; and RNF8 works in concert with

RNF168 to initiate and expand histone ubiquitinations at the Ig

loci that resulting in 53BP1 activity and proper class switching

[20–22]. In normal break repair, chromatin ubiquitinations

promote assembly of DNA damage response factors at sites of

ionizing radiation damage [37]. Furthermore, the replication

cofactor PCNA, which we found physically associated with the re-

VH (Fig. S1) and may be a lynchpin for regulating A/T biased

hypermutation [11], colocalizes with monoubiquitinated H2A

[38]. Upon AID activity, chromatin ubiquitination may signal

assembly of hypermutation factors and/or ubiquitination cascades

that regulate the shift between faithful uracil repair and

mutagenesis. However, further studies are required in order to

identify the ubiquitin E3 ligases functioning in normal and

aberrant somatic hypermutation.

Histone monoubiquitination is a substantial chromatin

modification, and suggests the DNA at AID-targeted loci is

accessible for metabolism. Unlike small molecule modifiers like

phosphates or acetyl groups, ubiquitin is an 11 kDa protein.

The addition of a single ubiquitin on both H2A and H2B would

increase nucleosome mass by nearly 40%, which may greatly

influence the association between DNA and the core histones or

create an assembly site for repair factors. The significant

enrichments we obtained by ChIP of the re-VH and MYC14 with

mUb-H2A and H2B antibodies (Figs. 3B, C) suggest the

presence of a highly ubiquitinated locus, with multiple antibody

binding targets at the site of hypermutation, but apparently not

extending into the IgH constant region (VH1 amplicon, Figs. 3B,

C). Thus, histone monoubiquitination is localized to the DNA

regions that are also bound by AID. It follows that VH1, and

likely the proximal S region, were not enriched by AID ChIP

(Figs. 3A–C), which is expected because Ramos does not class

switch. Because AID is active on single-stranded DNA and

associated with the re-VH (Fig. 3A), it is conceivable that histone

monoubiquitination creates a chromatin architecture that is

permissible to AID attack or downstream uracil repair. Indeed,

nucleosomal DNA is protected from AID in the absence of

transcription [39], suggesting that deamination by AID may

require histone remodeling and chromatin-level signaling.

Importantly, our results identify a new chromatin modification

associated with hypermutation and future studies will be

required to next define functional roles in mechanisms of

somatic hypermutation.

Materials and Methods

Cells and Cell lines
Ramos cells were purchased from the ATCC and were cultured

in suspension at 37uC in RPMI (10% (v/v) FBS, 1% (v/v) PS,

2 mM L-glutamine) (Life Technologies, Grand Island, NY) in

75 cm2 flasks. Following limiting dilution cloning, a sIgM positive

isolate was expanded for 90 days, and then analyzed for sIgM loss

by flow cytometry. Ramos cells were collected by centrifugation at

3006g for 10 minutes, washed once with ice-cold PBS, and then

resuspended in 100 mL PBS and incubated with 10 mL of anti-

human-IgM antibody (Sigma, St Louis, MO) for 10 minutes at

4uC. Cells were again collected, washed twice with PBS,

resuspended in 100 mL PBS and incubated with 3 mL of FITC-

conjugated anti-goat Ig secondary for 10 minutes at 4uC in the

dark. Cells were washed twice with PBS then resuspended in

400 mL PBS. Samples included 10% normal rat serum to prevent

non-specific binding. Cells were analyzed immediately on a

Becton Dickinson FACS Calibur flow cytometer using CellQuest

Pro software (San Jose, CA) with 16104 events collected.

Chromatin immunoprecipitations
Approximately 16107 cells were transferred to a 15-ml Falcon

tubes and incubated for 10 minutes with 1% (v/v) formaldehyde.

Chromatin was sheared by sonication to generate fragments

averaging 500 bps, as judged by agarose gel electrophoresis. ChIPs

were performed on prepared chromatin using EZ-ChIP kit

reagent buffers (Millipore, Temecula, CA, 17–371) and standard

manufacturer protocol. ChIP primary antibodies were as follows:

normal mouse IgG negative control (Santa Cruz Biotechnology,

Santa Cruz, CA, sc-2025), anti–RNA polymerase II (Millipore, 05-

623B), anti-mUb-H2A (Millipore, 05-678) [41], anti-ub-H2B

(Millipore, 05-1312) [42], anti-AID (Santa Cruz, sc-25620), and

polyspecific IgG (Santa Cruz, sc-2025). Crosslinks were reversed

by incubating chromatin at 65uC overnight, and enriched DNA

template analyzed by traditional PCR and quantified by real-time

PCR (described in PCR analyses).

Western Blotting
Ramos cells at ,16106 cells/ml, were collected by centrifuga-

tion, existing media removed, and cells resuspended in SDS lysis

buffer containing protease inhibitors, and transferred to 1.5 ml

Eppendorf tubes. Proteins were electrophoresed through a 4–12%

SDS–polyacrylamide gradient gel (Invitrogen) and transferred to

immobilon-P PVDF membranes (Millipore). Membranes were

blocked for 1 hour in 5% (w/v) nonfat milk in phosphate-buffered

saline containing 0.05% Tween 20, washed, and incubated with

primary antibody overnight at 4uC using the following dilution:

anti-mUb-H2A (Millipore, 05-678) –1:500, anti-ub-H2B (Milli-

pore, 05-1312) – 1:500, and anti-AID (Santa Cruz, sc-25620) -

1:1000. Membranes were washed and incubated with secondary

Abs: HRP conjugated goat anti-mouse and goat anti-rabbit

(Invitrogen) at 1:10000 dilution. Immunoreactive bands were

visualized with ECL Plus (Amersham, Piscataway, NJ) and signals

were detected by using the Storm 840 PhosphorImager and

IMAGEQUANT software (GE Healthcare Life Sciences).

PCR analyses
Oligonucleotide sequences from all analyses are detailed in

Table S1). Sequencing of Ramos c-MYC was performed as

described previously [25]. Briefly, total Ramos RNA was

converted to cDNA via RT-PCRs using random 20-mers and

Protoscript Reverse Transcriptase (New England BioLabs (NEB),

Ipswich, MA). Unless otherwise indicated, PCR amplifications
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were performed in 40 ml reactions at standard concentrations

(1.5 mM MgCl2, 0.2 mM dNTP, 16NEB PCR buffer, 0.5 U Taq

(NEB), 0.5 uM each primer) and then cloned into Topo TA PCR

2.1 (Invitrogen, Carlsbad, CA, K450001) for sequencing. MYC14

was distinguished from c-MYC on chromosome 8 by the presence

of an A at position 523 to T polymorphism found within MYC14

[25]. Traditional ChIP amplifications from recovered DNA was

quantified by standard SybrGreen quantification (Invitrogen), then

diluted to 0.1 ng/ml. PCR reactions were performed for 25, 30 or

35 cycles (as described above). Starting material was standardized

across all reactions (0.1 ng eluted DNA), excluding inputs, which

were titrated from 0.5 ng to 10 ng per reaction. Following

amplification, products were resolved by 1.5% agarose gel

electrophoresis. The identities of all amplicons were verified by

Topo TA PCR 2.1 cloning and sequencing. Quantitative PCR

(qPCR) used a series of primer pairs generated for each genomic

locus using the Integrated DNA Technology design tool,

PrimerQuest (https://www.idtdna.com). Individual amplicons

were each evaluated by standard PCR ethidium bromide

visualization, dissociation curve determination, and direct se-

quencing. A final validated primer pair was then selected for each

locus (Table S1). Recovered DNA was diluted 1:100 with ddH20

and 20 ml reactions prepared using DyNAmo SYBR Green qPCR

26 master mix (NEB, F400L) and ROX Reference Dye for

Quantitative PCR (Sigma, R4526) were assembled in triplicate.

Reactions were performed using an Applied Biosystems 7300

Real-Time PCR thermocycler (ABI, Foster City, CA) and DNA

enrichments calculated by standard delta-delta Ct.

Quasi-monoclonal mouse primary B cells
Spleens from six healthy quasi-monoclonal mice (created by

[29]) were removed aseptically, placed in PBS and gently ground

between frosted slides to produce a single-cell suspension. The

suspension was centrifuged at 3006g for 5 minutes, the pellet was

resuspended in ammonium-tris-chloride buffer to hypotonically

lyse erythrocytes, and the remaining cells were washed with PBS

by centrifugation at 3006g for 5 minutes. Splenocytes were

cultured at 37uC/5% CO2/95% humidity in 75 cm2 flasks in

RPMI 1640 (Life Technologies) supplemented with 100 U/ml of

penicillin, 100 mg/ml of streptomycin and 10% FBS. Cultures

were allowed to recover for 1 hour then supplemented with

25 mg/ml LPS (Sigma, L2143) and incubated for 72 hours to

induce proliferation. Active Ig gene diversification was monitored

by ELISA of the RPMI media for the presence of IgG, a result of

LPS induced class switch recombination, as described [40,43] and

by ChIPs to show AID association with the 17.2.25 locus

(Figure 4B). Cells were collected after 72 hours and immediately

crosslinked with formaldehyde for ChIP analysis as described.

Confocal immunofluorescence microscopy
Hypermutating Ramos cells were cultured in suspension at

37uC in RPMI (10% (v/v) FBS, 1% (v/v) PS, 2 mM L-glutamine)

in 75 cm2flasks. At ,16106 cells/ml, 750 mL of Ramos suspen-

sions were transferred into individual poly-lysine/ConA-coated

chambered slide wells and incubated at 37uC for 1 hour to allow

adhesion. Cells were rinsed twice with PBS then fixed with 2%

paraformaldehyde for 20 minutes. Cells were again rinsed twice

with PBS then blocked with for 30 minutes (PBS, 1% Goat serum,

0.2% TritonX-100). Cells were next incubated with primary

antibodies diluted 1:1000 in PBTG (PBS, 1% Goat serum, 0.2%

TritonX-100) for 2 hours at room temperature. Cells were rinsed

3 times with PBTG then incubated in the dark for 2 hours at room

temperature with secondary antibodies diluted 1:1000 in PBTG.

Cells were again rinsed 3 times with PBTG then mounted with

vectashield (Vector Laboratories, Burlingame, CA, H1000).

Confocal images were obtained using a Leica TCS SP2 Confocal

Microscope and contrast processed with Adobe Photoshop 7.0

software. Primary antibodies included: anti-mUb-H2B (Millipore,

no. 05-1312) and anti-AID (Santa Cruz, sc-25620). Anti-mUb-

H2A (Millipore, 05-678) was also examined but produced no

discernable immunofluorescence microscopy signal. Secondary

Abs were goat anti-mouse conjugated to Alexa 555 and goat anti-

rabbit conjugated to Alexa 488 (1:1000) (Invitrogen). DAPI

(1:1000) Alexa 633-wheat germ agglutinin (1:1000) was used to

stain nuclear envelopes (Invitrogen).

Supporting Information

Figure S1 PCNA and polymerase eta are associated with the

Ramos re-VH region. Ramos cells were crosslinked, and sheared

chromatin subjected to immunoprecipitation using antibody

specific to PCNA, MSH2 and polymerase eta, and non-specific

IgG antibody. Precipitated template DNA was amplified by qPCR

using primers specific to a control glutamine tRNA locus (tRNA),

unrearranged VH (V8), and the rearranged VH (VH2)(see

Figure 1). Enrichment using poly-specific IgG for each locus was

subtracted to normalize for non-specific IP. Fold enrichment

relative to input DNA is shown.

Found at: doi:10.1371/journal.pone.0011641.s001 (3.87 MB TIF)

Figure S2 HEK293 and A549 ChIPs using AID, mUb-H2A

and mUb-H2B antibodies find no enrichment of sequences

undergoing hypermutation in Ramos cells. Normalized template

enrichment upon anti-AID, anti- mUb-H2A and anti-mUb-H2B

ChIPs. Template obtained from IPs was amplified and analyzed

by qPCR using primer sets diagramed in Figure 1. Results were

normalized to non-specific IgG IP and relative to input. Each bar

indicates the mean of the values obtained in triplicate with

standard deviation.

Found at: doi:10.1371/journal.pone.0011641.s002 (2.57 MB TIF)

Figure S3 AID antibody used for ChIPs is specific for AID.

Western blot analysis of endogenous AID (24 kDa) in AID positive

(Ramos) and in AID negative (HEK293) cell lysates. PCNA was

utilized as load control.

Found at: doi:10.1371/journal.pone.0011641.s003 (5.65 MB TIF)

Figure S4 AID IP demonstrating AID antibody used for ChIPs

is detecting AID. Western blot analysis of endogenous AID

(24 kDa) in Ramos cell lysate IP. Primary anti-AID for IP, (Santa

Cruz Biotechnology, Santa Cruz, CA sc-25620). Primary Ab for

western, (Santa Cruz Biotechnology, Santa Cruz, CA sc-14680).

Total supernatant and total IP were loaded to ensure equivalent

starting material.

Found at: doi:10.1371/journal.pone.0011641.s004 (3.64 MB TIF)

Figure S5 mUb-H2b colocalizes with AID in multiple discrete

foci. Representative immunofluorescence microscopy images of

two distinct Ramos cells stained with AID and mUb-H2B

antibodies and exhibiting colocalization of these at 1 (Panel A)

and 2 (Panel B) discrete foci. In each panel: Upper left, Ramos

cells imaged with Alexa 488 filter. Upper right, Ramos cells

imaged with Alexa 555 filter. Lower left, merged images with

white scale bar (2 microns). Lower right nuclear envelope imaged

using wheat germ agglutinin (Blue). Arrows point to colocalizations

of AID and mUb-H2B.

Found at: doi:10.1371/journal.pone.0011641.s005 (9.14 MB TIF)

Table S1 Oligonucleotide table. Oligonucleotide sequences for

amplification of hypermutating genomic and control loci in this

study are shown.
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Found at: doi:10.1371/journal.pone.0011641.s006 (0.06 MB

DOC)
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