
Illinois State University Illinois State University

ISU ReD: Research and eData ISU ReD: Research and eData

Faculty Publications - Information Technology Information Technology

2020

A single-source shortest path algorithm for dynamic graphs A single-source shortest path algorithm for dynamic graphs

Muteb Alshammari

Abdelmounaam Rezgui
Illinois State University, arezgui@ilstu.edu

Follow this and additional works at: https://ir.library.illinoisstate.edu/fpitech

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Alshammari, Muteb and Rezgui, Abdelmounaam, "A single-source shortest path algorithm for dynamic
graphs" (2020). Faculty Publications - Information Technology. 6.
https://ir.library.illinoisstate.edu/fpitech/6

This Article is brought to you for free and open access by the Information Technology at ISU ReD: Research and
eData. It has been accepted for inclusion in Faculty Publications - Information Technology by an authorized
administrator of ISU ReD: Research and eData. For more information, please contact ISUReD@ilstu.edu.

https://ir.library.illinoisstate.edu/
https://ir.library.illinoisstate.edu/fpitech
https://ir.library.illinoisstate.edu/itech
https://ir.library.illinoisstate.edu/fpitech?utm_source=ir.library.illinoisstate.edu%2Ffpitech%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=ir.library.illinoisstate.edu%2Ffpitech%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.library.illinoisstate.edu/fpitech/6?utm_source=ir.library.illinoisstate.edu%2Ffpitech%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ISUReD@ilstu.edu

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=uakc20

AKCE International Journal of Graphs and Combinatorics

ISSN: 0972-8600 (Print) 2543-3474 (Online) Journal homepage: https://www.tandfonline.com/loi/uakc20

A single-source shortest path algorithm for
dynamic graphs

Muteb Alshammari & Abdelmounaam Rezgui

To cite this article: Muteb Alshammari & Abdelmounaam Rezgui (2020) A single-source
shortest path algorithm for dynamic graphs, AKCE International Journal of Graphs and
Combinatorics, 17:3, 1063-1068, DOI: 10.1016/j.akcej.2020.01.002

To link to this article: https://doi.org/10.1016/j.akcej.2020.01.002

© 2020 The Author(s). Published with
license by Taylor & Francis Group, LLC

Published online: 06 May 2020.

Submit your article to this journal

Article views: 2826

View related articles

View Crossmark data

Citing articles: 4 View citing articles

https://www.tandfonline.com/action/journalInformation?journalCode=uakc20
https://www.tandfonline.com/loi/uakc20
https://www.tandfonline.com/action/showCitFormats?doi=10.1016/j.akcej.2020.01.002
https://doi.org/10.1016/j.akcej.2020.01.002
https://www.tandfonline.com/action/authorSubmission?journalCode=uakc20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=uakc20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1016/j.akcej.2020.01.002
https://www.tandfonline.com/doi/mlt/10.1016/j.akcej.2020.01.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.akcej.2020.01.002&domain=pdf&date_stamp=06 May 2020
http://crossmark.crossref.org/dialog/?doi=10.1016/j.akcej.2020.01.002&domain=pdf&date_stamp=06 May 2020
https://www.tandfonline.com/doi/citedby/10.1016/j.akcej.2020.01.002#tabModule
https://www.tandfonline.com/doi/citedby/10.1016/j.akcej.2020.01.002#tabModule

A single-source shortest path algorithm for dynamic graphs

Muteb Alshammaria and Abdelmounaam Rezguib

aDepartment of Computer Science & Engineering, New Mexico Tech, Socorro, NM, USA; bSchool of Information Technology, Illinois State
University, Normal, IL, USA

ABSTRACT
Graphs are mathematical structures used in many applications. In recent years, many applications
emerged that require the processing of large dynamic graphs where the graph’s structure and
properties change constantly over time. Examples include social networks, communication net-
works, transportation networks, etc. One of the most challenging problems in large scale dynamic
graphs is the single-source shortest path (SSSP) problem. Traditional solutions (based on Dijkstra’s
algorithms) to the SSSP problem do not scale to large dynamic graphs with a high change fre-
quency. In this paper, we propose an efficient SSSP algorithm for large dynamic graphs. We first
present our algorithm and give a formal proof of its correctness. Then, we give an analytical evalu-
ation of the proposed solution.

KEYWORDS
Dynamic graphs; shortest
paths; SSSP

1. Introduction

Graphs are mathematical structures used to model relation-
ships between objects. A graph consists of a collection of
vertices (i.e., objects) and edges (i.e., relationships) that con-
nect vertices. Graphs are used in many areas including com-
puter science (such as data mining, clustering, routing, and
networks), biology and chemistry [3, 13, 14]. Most of the lit-
erature on graphs is concerned with static graphs, i.e.,
graphs that do not change over time. However, many of
today’s applications use dynamic graphs (that change over
time) as their underlying data structure [15]. This has led to
a surge in interest in developing new efficient algorithms
that can scale to the large size and high frequency of
changes in the graphs used in many modern applications,
e.g., routing systems in communication networks, social net-
works. A classic problem in graph theory that is crucial to
many applications is the Single-Source Shortest Path (SSSP).
The SSSP problem is particularly challenging in the context
of dynamic graphs. The difficulty is to efficiently update and
maintain the shortest path from a source vertex to every
other vertex while the graph is changing but without recom-
puting the entire path from scratch. In the remainder of this
paper, we will use the acronym DSSSP (for Dynamic SSSP)
to refer to the problem of computing and maintaining a
single-source shortest path in a dynamic graph.

A number of researchers (e.g., [7, 11, 12]) have proposed
solutions to the DSSSP problem. However, as we will show
later in this paper, those solutions have significant perform-
ance limitations. In this paper, we propose a new DSSSP
algorithm that addresses those limitations. Our solution is

fully dynamic (defined later in this paper), efficient, more
scalable, and less complex than previous solutions.

This paper is organized as follows: Section 2 provides an
overview of related work. In Section 3, we describe our
model of dynamic graphs. In Section 4, we present our
approach including algorithms, proofs, and time complexity
analysis. Section 5 concludes the paper.

2. Related work

Dynamic graphs can be classified based on the types of
operations they support. Dynamic graphs are either fully or
partially dynamic graphs. In fully dynamic graphs, all types
of operations are allowed on the graph including the inser-
tion and deletion of vertices and edges as well as the modifi-
cation of weights of edges. In partially dynamic graphs, we
are only allowed to have either insertion and weight
decrease (i.e., incremental dynamic graphs) or deletion and
weight increase (i.e., decremental dynamic graphs).

Depending on the application, one or the other of these
classes of dynamic graphs may be used. Special algorithms
are developed in the literature for each of these classes. In
this paper, we will focus on one particular problem of
dynamic graphs, namely, the Single-Source Shortest Path
(SSSP) problem in dynamic graphs.

Several algorithms were proposed in the literature for the
SSSP problem in dynamic graphs (e.g., [1, 6–12]). In [11],
Ramalingam and Reps proposed the first fully dynamic algo-
rithms for the dynamic SSSP problem as a sequence of
updates [5]. In [12], they proposed another algorithm for

CONTACT Muteb Alshammari mutebalshammari@cs.nmt.edu Department of Computer Science & Engineering, New Mexico Tech, 801 Leroy Pl., Socorro,
NM 87801, USA.
� 2020 The Author(s). Published with license by Taylor & Francis Group, LLC
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS
2020, VOL. 17, NO. 3, 1063–1068
https://doi.org/10.1016/j.akcej.2020.01.002

http://crossmark.crossref.org/dialog/?doi=10.1016/j.akcej.2020.01.002&domain=pdf&date_stamp=2020-11-17
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.akcej.2020.01.002
http://www.tandfonline.com

directed graphs that supports single updates. In the latter
paper (RR for short), they used a DAG (called SP) to hold
the paths that belong to the shortest paths of the graph. The
use of the DAG forces the algorithm to perform more edge
scans (in the case of incremental operations) which lead to a
higher computational cost. The use of the DAG can help the
algorithm in one specific scenario when it makes more dele-
tions (or increases of weights of) edges than insertions (or
decreases of weights of) edges and when those deleted edges
can be overcome by using alternative paths. However, this
can be eliminated by not scanning incoming edges for
affected vertices as we will explain later in our approach.

In [8], Frigioni et al. proposed fully dynamic algorithms
for undirected graphs (FMN for short) with an optimal time
complexity. This is because they used specifically designed
data structures to reduce the number of scanned edges.
However, many experimental studies (e.g., [4, 5]) showed
that FMN is very slow compared to other algorithms.

In [9], Narv�aez et al. established a framework for a set of
algorithms for directed graphs that support single opera-
tions. The same authors proposed another algorithm that
supports a sequence of updates in [10]. In [2], Chan and
Yang found that the latter one was not correct in a particu-
lar scenario and a correction was proposed in the same
paper. They also suggested optimizations for [8] and [11].

3. Model for dynamic graphs

Let G ¼ fV ,E,Wg be a dynamic directed weighted graph
where: V is a finite set of vertices of size n ¼ jVj,E �
V � V is a finite set of weighted edges of size m ¼ jEj, and
W : E! R is a weight function such that W(x, y) returns a
real weight of edge (x, y) (where x, y 2 V, ðx, yÞ 2 E, and
x 6¼ y). We assume that the graph G has no loops and no
negative cycles (including zero-length cycle).

Let s be a predefined source vertex for G, where s 2 V: For
each vertex x 2 V, in(x) is a set of incoming edges to x, out(x)
is a set of outgoing edges from x, and d(x) is the shortest dis-
tance from s to x before the update operation. We denote the
new distance of x after an update operation as d0ðxÞ: T(s) is a
tree of the shortest paths rooted at source vertex s and P(x) is
the parent of vertex x in T(s), where x 2 TðsÞ � fsg:

For each update operation, we assume that G is updated
first then we call the corresponding algorithm of that oper-
ation to maintain the SSSP. The graph G supports the fol-
lowing operations:

� Insert vertexðxÞ where x =2V:
� Delete vertexðxÞ where x 2 V:
� Insert edgeðx, y,wÞ where x, y 2 V, ðx, yÞ =2E, x 6¼ y, and

w> 0.
� Delete edgeðx, yÞ where x, y 2 V and ðx, yÞ 2 E:
� Increase weightðx, y,wÞ where x, y 2 V, ðx, yÞ 2 E, and

w > Wðx, yÞ:
� Decrease weightðx, y,wÞ where x, y 2 V, ðx, yÞ 2 E, 0 <

w < Wðx, yÞ:

Inserting a vertex x in the graph will have no effect since
x is not connected to any vertex yet. For the second

operation, we assume that deleting a vertex x is interpreted
as deleting one edge at a time (from inðxÞ [outðxÞ) until x
has no more edges at which point x is removed from
the graph.

4. Our approach

In this section, we introduce and discuss the single-source
shortest path (SSSP) algorithm for fully dynamic graphs.
The algorithm consists of two partially dynamic algorithms.
The first algorithm (Section 4.1) is the incremental dynamic
algorithm (IDA) for incremental dynamic graphs, where
only inserting edges and decreasing the weight of edges are
allowed. The second algorithm (Section 4.2) is the decremen-
tal dynamic algorithm (DDA) for decremental dynamic
graphs, where only deleting edges and increasing the weight
of edges are allowed. Combining both algorithms will result
in a fully dynamic algorithm for the SSSP problem in
dynamic graphs.

Both algorithms use two data structures to maintain the
SSSP for dynamic graphs. The first data structure is the shortest
path tree ðTðsÞÞ rooted at s. The tree holds the shortest distan-
ces and paths from s to every x, x 2 V and x is reachable
from s.

The second data structure is a minimal heap H that is
keyed by the old distance of the inserted vertex (every x that
gets extracted from H is an affected vertex). The new dis-
tance of a vertex x will be computed after x is extracted
from H. Note that any vertex that gets inserted into H will
be updated either by modifying its parent and/or assigning a
new distance.

4.1. Incremental dynamic algorithm

The algorithm (Algorithm 1) handles two types of opera-
tions: (i) inserting a new edge and (ii) decreasing the weight
of an existing edge. The algorithm can be divided into three
phases. The first phase starts with effect assessment which
tests the impact of the updated edge (either new edge
inserted or edge weight decreased). If the edge (say (x, y))
does not affect y (i.e., does not improve its distance), then it
will not have any effects on any other vertex and we shall
stop. In this case, no further actions are needed. If (x, y)
affects vertex y, then we can proceed to the second phase by
updating the distance and parent of y using x. Then, y is
inserted into the heap H with key ¼ dðyÞ:

In the third phase, we loop over all affected vertices and
extract them one by one according to their minimal distance
from s. Vertices are inserted in the heap H (by line 13) only
if they are affected. Note that, in the first iteration, we
always extract y. In particular, in every iteration, the algo-
rithm extracts a vertex (say u) from H whose value is min-
imum (line 8). Finally, lines 9–13 loop over the neighbors of
u for possible improvement. If the distance of a neighbor of
u (say v) can be improved (using u), then the distance and
parent of v is fixed and v is inserted into the heap H to
examine its neighbors when it is extracted later in the execu-
tion of the algorithm.

1064 M. ALSHAMMARI AND A. REZGUI

Algorithm 1. Inserting or decreasing the weight of edge (x, y)

1: procedure INCREMENTAL-ALGORITHM(x, y)
2: if dðyÞ < dðxÞ þWðx, yÞ then
3: Stop . no improvement can be accomplished
4: PðyÞ x
5: dðyÞ dðxÞ þWðx, yÞ
6: insertðH, y, dðyÞÞ
7: while H 6¼ ; do
8: u extract minðHÞ
9: for every v 2 out(u) in G do
10: if dðvÞ > dðuÞ þWðu, vÞ then
11: PðvÞ u
12: dðvÞ dðuÞ þWðu, vÞ
13: insertðH, v, dðvÞÞ

4.1.1. Proof
We now prove the correctness of the algorithm by using loop
invariant. We will show that the loop invariant holds at initializa-
tion, maintenance, and when the algorithm terminates. We
assume that distances and paths are correct before the update
operation and then we prove that they remain correct afterwards.

Recall that d0ðvÞ is the new distance of v after a graph
update, whereas d(v) is the distance of v before the update oper-
ation. For the sake of simplicity, we will use the following facts:

1. A vertex is affected if it changes its distance or parent.
2. At termination, every vertex either improves its distance

from the source or keeps its old distance from s. In
other words, d0ðvÞ � dðvÞ, for every v, s:t: v 2 V:

3. Distances and paths are the shortest distances and
paths, respectively, if the following is correct for every
vertex v s:t: v 2 V � fsg and v is reachable from s:

dðvÞ ¼ minu2inðvÞðdðuÞ þWðu, vÞÞ
4. For any vertex v s:t: v 2 V, if v is an affected vertex

then it must be affected because of the edge (x, y) and v
must be in the new T(y). Therefore, all affected vertices
will be in the sub-tree T(y).

5. After an incremental operation on the edge (x, y), ver-
tex y is either not affected and the algorithm will stop
in line 3, or affected because the edge (x, y) improves
its distance from the source s.

Invariant 1. Every vertex v (v 2 V) that is extracted from
the heap (i.e., v 2 H) satisfies the following:

dðvÞ ¼ minu2inðvÞðdðuÞ þWðu, vÞÞ

Theorem 1. INCREMENTAL-ALGORITHM(x, y) correctly main-
tains a single-source shortest path tree in the graph G (using
the model given in Section 3) after inserting (or decreasing
the weight of) edge (x, y).

4.1.2. Proof

i. Initialization. Before the first iteration, the heap has
only one vertex which is y. From fact 5, y has
improved its distance, was inserted into H, and has not

yet been extracted. Note that the successors of y have
not yet been scanned and they are not yet in H. As a
result, H has not yet experienced any extraction.
Therefore, the invariant holds at initialization.

ii. Maintenance. Suppose by contradiction that at some
iteration the invariant is violated and there was a ver-
tex u, u 2 V, that is extracted from H and dðuÞ 6¼
minx2inðuÞðdðxÞ þWðx, uÞÞ: This means that x was
extracted earlier and it changed its distance. But if this
is true then lines [1, 10] must have checked u at that
time and u was either:
� an affected vertex. Then, u must be updated (in

lines 11 and 12) and inserted into H (in line 13)
and either:
(a) extracted and fixed. But if u was extracted

then dðuÞ ¼ minx2inðuÞðdðxÞ þWðx, uÞÞ which
is a contradiction.

(b) or still in the heap. But we assume that u is
extracted from H which is a contradiction.

� not an affected vertex. But if u is not affected then
at least this must hold:
dðuÞ ¼ minx2inðuÞðdðxÞ þWðx, uÞÞ which is a
contradiction.

As all three possible scenarios lead to a contradiction,
the invariant holds.

iii. Termination. The loop terminates after it constructs
the sub-tree T(y) (from fact 4) and it has to stop because
there are no negative cycles. When the algorithm termi-
nates, the heap is empty and every vertex v (v 2 V) has
dðvÞ ¼ minu2inðvÞðdðuÞ þWðu, vÞÞ: Therefore, and from
fact 3, the algorithm maintains the single-source shortest
path tree in G. w

4.1.3. Time complexity
In this section, we analyze the time complexity of the
DECREMENTAL-ALGORITHM. In this paper, we will use the
model introduced by Ramalingam and Reps in their paper
[12]. We recall that jdj is the number of affected vertices,
and jjdjj is the sum of jdj plus the number of edges that
have at least one affected endpoint. We assume the use of a
Fibonacci heap where the cost of inserting n elements is
Oð log ðnÞÞ amortized time and, for the rest of the heap’s
operations, the cost is O(1) amortized time.

The cost of lines 2 to 6 is constant. Lines 8 to 13 will
repeat jdj times (once for every affected vertex). Heap opera-
tions cost Oð log jdjÞ (at each iteration) and Oðjdj: log jdjÞ in
totally. Lines 9 to 13 cost OðjjdjjÞ in total (actually less than
that since we scan only the outgoing edges of affected verti-
ces.) Thus, the algorithm runs in time Oðjjdjj þ jdj: log jdjÞ:

4.2. Decremental dynamic algorithm

In this section, we present the decremental dynamic algo-
rithm (DDA) for decremental dynamic graphs. In this algo-
rithm, we use a coloring technique to color vertices as red
or white. Affected vertices will be colored as red at the
beginning and colored as white when they are either fixed

AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS 1065

or at the end of the procedure. This will help avoid assign-
ing an affected vertex (i.e., red vertex) as a parent to another
vertex before the parent is fixed. Moreover, function color(x,
red) (resp. color(x, white)) will color vertex x as red (resp.
white). Furthermore, we will use a function called pred minðÞ
which returns the best predecessor y with the minimal distance
to u or null if there is no such path.

The DDA algorithm can be divided into three phases.
The first phase is the effect assessment phase in which we
check the effect of the edge (x, y) in the tree T(s). If (x, y) is
not an edge in T(s), then it will have no effect and we shall
stop. Otherwise, (x, y) will affect the tree T(s) and we then
need to move to the second phase of the algorithm.

In the second phase, the affected vertices are colored red
and then the end point of the edge (x, y), i.e., y, is inserted
into H.

The third phase is the main part which updates the tree
T(s) properly to maintain the SSSP result. This phase is a
loop over all vertices in H. At each iteration, a vertex (u) is
extracted from H with the minimal key. Then, its old value
is temporarily saved, its distance is raised to 1 and its par-
ent is removed.

Now, pred minðÞ will find the best path to u with the
minimal distance if it exists or null otherwise (y is either
null or the returned parent). If y does not exist, then u is
not reachable from s. If y exists and is not a red vertex, then
we color u as white (since it has its correct distance) and fix
its distance and parent by using y. Otherwise, if y exists but
is red, then we need to reinsert u into H (and raise its dis-
tance to 1) and extract it only after y is fixed.

Further, if u changes its distance, then the algorithm
scans each neighbor of u. The neighbor of u, say v, is
inserted into H if either it is a child of u in T(s) or its dis-
tance can be improved (only if v was inserted by line 16).
Otherwise, if u does not change its distance from s, then we
need to reset the color of every vertex in T(u) to white
because they will not find better distances.

Finally, just before the termination of the procedure and
after updating the result, we need to reset all remaining red
vertices to white as a final step.

4.2.1. Proof
In this section, we prove the correctness of the
DECREMENTAL-ALGORITHM by using the same method of loop
invariant. To do so, we assume that G and T(s) are correct
before the update operation and all distances and paths are
correct. We prove that they remain correct after the update
operation. For simplicity, we use the following facts:

1. After encountering a decremental operation and updat-
ing the solution, this inequality must be satisfied,
d0ðxÞ >¼ dðxÞ, for every x, s:t: x 2 V:

2. If a vertex x (x 2 V) changes only its parent, then its
children in T(x) will not be affected since they cannot
find better paths (from fact 1).

3. If a vertex x (x 2 V) changes its distance from s, then
its children in T(x) will be affected (by changing their
parent, distance or both).

4. Distances and paths are the shortest distances and
paths, respectively, if the following is correct for every
vs:t:v 2 V � fsg:

dðvÞ ¼ minu2inðvÞðdðuÞ þWðu, vÞÞ

Algorithm 2. Deleting or increasing the weight of edge (x, y)

1: procedure DECREMENTAL-ALGORITHM (x, y)
2: if ðx, yÞ 62 TðsÞ then
3: Stop . this edge will have no effect
4: for every w s:t: w 2 TðyÞ do . color affected vertices
as red

5: color(w, red)
6: insertðH, y, dðyÞÞ . H is a min� heap
7: while ðH 6¼ ;Þ do
8: u extract minðHÞ
9: old value dðuÞ
10: dðuÞ 1
11: PðvÞ null
12: y pred minðuÞ
13: if y then
14: if y is red then
15: dðuÞ 1
16: insertðH, u, dðuÞÞ
17: else
18: color(u, white)
19: dðuÞ dðyÞ þWðy, uÞ
20: PðuÞ y
21: if dðuÞ 6¼ old value then . if there is no alter

path with same weight
22: for every v 2 out(u) in G do
23: if ðu, vÞ 2 TðsÞ then . (u, v) is a tree edge
24: insertðH, v, dðvÞÞ
25: else
26: if dðuÞ þWðu, vÞ < dðvÞ then
27: insertðH, v, dðuÞ þWðu, vÞÞ
28: else
29: for every x s:t: x 2 TðuÞ do
30: color(x, white)
31: for every w s:t: w is red do
32: color(w, white)

Invariant 2. Every vertex v that is: (i) neither in the heap
(i.e., v 62 H) nor in sub-trees of vertices in the heap (i.e.,
v 62 TðxÞ, for every x s:t: x 2 H), or (ii) neither has a
neighbor u (u 2 inðvÞ) that is in the heap (i.e., u 62 H) nor
in sub-trees of vertices in the heap (i.e., u 62 TðxÞ,
for every x s:t: x 2 H), has its correct value (i.e., shortest
distance and path from s).

4.2.2. Proof
Suppose we have an update operation DECREMENTAL-
ALGORITHM(x, y). Further, suppose (x, y) is a preferred path
for y (i.e., x is the parent of y in T(s)), so (x, y) is a
tree edge.

i. Initialization. Before the first iteration, the heap has
only one vertex which is y. Vertex y is affected because:

1066 M. ALSHAMMARI AND A. REZGUI

(i) the edge (x, y) is a preferred edge for y in T(s) and
(ii) this edge was modified (otherwise the algorithm
would stop in line 3). So, if the operation is to decrease
the weight of edge (x, y), then y must either choose a dif-
ferent parent or change its value (or both). Otherwise, if
the operation is to delete the edge (x, y), then y may be
disconnected from s. In either case, y is affected.
Moreover, it is clear that (x, y) will only affect vertices
that chose it as a preferred edge in their paths from s (i.e.,
y and vertices in sub-tree T(y)). This is because if (x, y) is
not in their path then they must have better paths, and
since the edge is either deleted or increased, it will never
make any improvement for them (from fact 1). As a
result, any vertex that does not choose (x, y) as a preferred
edge in its path will not be affected and y is inserted into
H earlier. Therefore, the loop invariant holds.

ii. Maintenance. Line 8 extracted a vertex u from H with
the minimum key. Line 12 finds a parent with the best
path that u can get if it exists and either:
i. there is no such parent because either: (i) u is no

longer reachable from s and, in this case, lines 10
and 11 had already raised u’s distance to 1 and
removed u’s parent, or (ii) the proper parent of u is
in H (with distance raised to 1) and is not fixed
yet and, in this case, u will be reinserted into H
after the proper parent gets fixed (using line 27).

ii. there is such a parent (i.e., y) but it is red and not
yet fixed. In this case, the distance of u is raised
to 1 and u is reinserted into H. It will be
extracted and fixed after this parent is fixed.

iii. there is such parent (i.e., y) and it is not red. In
this case, u will get its final distance and parent.
Also, its color will be set to white (so other verti-
ces can use them as proper parent since u has its
correct distance).
It is easy to see that the invariant holds in all
these cases.
In either case, u either has changed its distance
or not:
(a) u has changed its distance. In this case, the

algorithm will scan all neighbors of u. If a
neighbor is a child of u in T(s), then it will
be inserted into H because it is affected
(from fact 3). If the neighbor is not a child
of u in T(s), then it will be scanned for pos-
sible improvement and, if so, inserted into H.
This step will ensure that the vertices that
were scanned earlier than u and the distances
of both u and those neighbors were raised
to 1.

(b) u has not changed its distance. In this case,
we reset the white color of every vertex in
the sub-tree T(u).

Therefore, the loop invariant holds.
iii. Termination. It is clear that the loop will terminate

because the loop is, basically, iterating over the sub-
tree T(y). The loop will terminate when the heap H
becomes empty. This implies that all affected vertices

were inserted into the heap (at some particular iter-
ation). Then, they were extracted and fixed (by getting
their correct distance, parent or both). Now, as the
heap is empty, the vertices have their correct values. w

4.2.3. Time complexity
We now analyze the time complexity of the DECREMENTAL-
ALGORITHM. We use the same model as in the previ-
ous algorithm.

Lines 2, 3, and 6 have a constant time whereas lines 4
and 5 take OðjdjÞ since it is a loop over affected vertices
(i.e., vertices in the sub-tree T(y)). Consequently, phases 1
and 2 take time OðjdjÞ:

Vertices are inserted into H at most 3 times (first time by
line 6 or 24, second time by line 16, and last time by line 27).
As a result, the loop in lines 7 to 30 will repeat at most
3� jdj times. Heap operations (in lines 8, 16, 24, and 27)
cost Oðjdj � log ðjdjÞÞ in total. Line 12 takes OðjjdjjÞ: The
overall cost of the two loops in lines 29 to 32 is OðjdjÞ:
The loop in lines 22 to 27 will repeat jjdjj times and takes
Oðjjdjj þ jdj � log ðjdjÞÞ Therefore, the algorithm runs in
time Oðjjdjj þ jdj � log jdjÞ).

5. Conclusion

In this paper, we presented a novel, efficient approach to
solve the problem of the Single-Source Shortest Path prob-
lem in dynamic graphs. We discussed the limitations of
some of the most popular algorithms. We then presented
our algorithms and established their correctness proofs, and
analyzed their time complexity.

References

[1] Alshammari, M., Rezgui, A. (2020). An all pairs shortest path
algorithm for dynamic graphs. Int. J. Math. Comput. Sci. 15(1):
347–365.

[2] Chan, E. P. F, Yang, Y. (2009). Shortest path tree computation
in dynamic graphs. IEEE Trans. Comput. 58(4):541–557.

[3] Dawood, H. A. (2014). Graph theory and cyber security. In
Advanced Computer Science Applications and Technologies
(ACSAT), Amman, Jordan: IEEE, pp. 90–96.

[4] Demetrescu, C., Frigioni, D., Marchetti-Spaccamela, A, Nanni, U.
(2000). Maintaining shortest paths in digraphs with arbitrary
arc weights: An experimental study. In International Workshop
on Algorithm Engineering, Saarbr€ucken, Germany: Springer,
pp. 218–229.

[5] Frigioni, D., Ioffreda, M., Nanni, U, Pasquale, G. (1998).
Experimental analysis of dynamic algorithms for the single
source shortest paths problem. J. Exp. Algorithmics 3:5–es.

[6] Frigioni, D., Marchetti-Spaccamela, A, Nanni, U. (1996). Fully
dynamic output bounded single source shortest path problem.
In: Proceedings of the Seventh Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA ’96. Philadelphia, PA: Society for
Industrial and Applied Mathematics, pp. 212–221.

[7] Frigioni, D., Marchetti-Spaccamela, A, Nanni, U. (1998). Fully
dynamic shortest paths and negative cycles detection on
digraphs with arbitrary arc weights. In European Symposium
on Algorithms, Venice, Italy: Springer, 320–331.

[8] Frigioni, D., Marchetti-Spaccamela, A, Nanni, U. (2000). Fully
dynamic algorithms for maintaining shortest paths trees. J.
Algorithms 34(2):251–281.

AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS 1067

[9] Narv�aez, P., Siu, K.-Y, Tzeng, H.-Y. (2000). New dynamic algo-
rithms for shortest path tree computation. IEEE/ACM Trans.
Netw. 8(6):734–746.

[10] Narv�aez, P., Siu, K.-Y, Tzeng, H.-Y. (2001). New dynamic spt
algorithm based on a ball-and-string model. IEEE/ACM Trans.
Netw. 9(6):706–718.

[11] Ramalingam, G, Reps, T. (1996). An incremental algorithm for a gen-
eralization of the shortest-path problem. J. Algorithms 21(2):267–305.

[12] Ramalingam, G, Reps, T. (1996). On the computational complexity of
dynamic graph problems. Theoret. Comput. Sci. 158(1-2):233–277.

[13] Riaz, F, Ali, K. M. Applications of graph theory in computer
science. In 2011 Third International Conference on
Computational Intelligence, Communication Systems and
Networks (CICSyN), Bali, Indonesia: IEEE, 2011, pp. 142–145.

[14] Shirinivas, S., Vetrivel, S, Elango, N. (2010). Applications of
graph theory in computer science an overview. Int. J. Eng. Sci.
Technol. 2(9):4610–4621.

[15] Zaki, A., Attia, M., Hegazy, D, Amin, S. (2016). Comprehensive
survey on dynamic graph models. Int. J. Adv. Comput. Sci.
Appl. 7(2):573–582.

1068 M. ALSHAMMARI AND A. REZGUI

	A single-source shortest path algorithm for dynamic graphs
	Recommended Citation

	Abstract
	Introduction
	Related work
	Model for dynamic graphs
	Our approach
	Incremental dynamic algorithm
	Proof
	Proof
	Time complexity

	Decremental dynamic algorithm
	Proof
	Proof
	Time complexity

	Conclusion
	References

