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Abstract
Diabetes is a disease characterized by improper concentrations of blood glucose due to ir-
regular insulin production or sensitivity. Coupled in islets of Langerhans within the pancreas,
� -cells are responsible for the production and regulation of insulin based on changes in glucose
levels. Using the Dual Oscillator Model (DOM), we will examine how calcium handling be-
tween individual pancreatic� -cells a�ects the synchronization of metabolic oscillations within
electrically coupled islets. Calcium permeability was implemented into the DOM, and numer-
ical solutions of the system were obtained via MATLAB using a modi�ed ordinary di�erential
equation solver for sti� systems and the Automatic Di�erentiation for MATLAB software.
We developed a synchronization index to quantitatively describe the synchronization of vari-
ables between nearest neighboring cells and throughout the islet as a whole. We considered
how calcium permeability between heterogeneous cells a�ects the behavior of metabolic os-
cillations and their synchronization. In particular, we examined fructose-1, 6-bisphosphate.
In our study metabolic oscillations were always maintained. We also showed that, for low
to moderate levels of electrical coupling, calcium permeability increased the synchronization
index, but increasing calcium permeability had little e�ect on synchronization when cells were
already strongly synchronized with strong electrical coupling. Heterogeneity due to glucose
in
ux or initial state of the cells had similar synchronization results.
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1 Introduction

Diabetes mellitus, a group of diseases related to glucose
levels in the blood stream, affects over 29 millions Ameri-
cans as of 2012 [2] and over 380 million people worldwide.
Furthermore, the population of people with diabetes is ex-
pected to double by the year 2030, posing a major threat
to the human race. There are two major forms of dia-
betes: type 1 diabetes and type 2 diabetes. Both types
are affected by insulin production in the pancreas and
fail to regulate high glucose levels. Type 1 diabetes is an
autoimmune disorder where insulin cannot be produced
because the immune system attacks and destroys β-cells.
Type 2 diabetes occurs when insulin is insufficiently pro-
duced to regulate the glucose levels or the insulin pro-
duced is not properly sensed at tissues throughout the
body. Both types result in unhealthy glucose levels in
the bloodstream. The growing number of cases of dia-
betes requires a deeper understanding of the pancreas,

where insulin is produced.

In order to further understand diabetes mellitus, it is
necessary to investigate the dynamics of insulin secretion
in the bloodstream. Diabetes is a disease characterized
by improper concentrations of blood glucose due to irreg-
ular insulin production or sensitivity. β-cells are respon-
sible for the production and regulation of insulin based on
changes in glucose levels. Clusters of these cells, known
as islets of Langerhans, are part of the endocrine system
in the pancreas. Ultimately, insulin secretion occurs be-
cause of changes in the calcium concentration levels in
β-cells. This dynamical process is composed of electrical,
metabolic, and mitochondrial components that work to-
gether to release insulin into the blood. A mathematical
model has been developed that captures the full dynamics
of insulin secretion including the fast- and slow-bursting
behavior from electrical and glycolytic oscillations, re-
spectively. Coupling many of these β-cells into a compu-
tational islet is important to understand how interactions
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between cells might effect the entire islet dynamics and
thus, whole body insulin levels.

A brief explanation of the physiology of β-cells is dis-
cussed in Section 2, along with a look at the Dual Os-
cillator Model. Our methodology is described in detail
in Section 3 and our results are examined in Section 4.
Finally, we draw our conclusions in Section 5.

2 Background

2.1 Physiology

As mentioned above, insulin is produced in the pancreas.
The pancreas consists of clusters of cells called islets of
Langerhans. Each islet contains three different types of
cells: α-cells, β-cells, and δ-cells. Our research focused
on β-cells and the metabolic oscillation process that oc-
curs within these β-cells [4] as the predominant cell type
and only insulin secreting cell type. We were interested
in researching how calcium affects the synchronization of
cells within an islet because calcium has a network of
action within and between β-cells. Calcium enters the
β-cell during burst of electrical activity in a β-cell, is
enhanced by internal stores, interacts with mitochondria
and metabolism, and causes secretion of insulin before
using energy to be removed. First, we describe the os-
cillation process in order to model synchrony within an
islet.

An in-depth look at β-cells reveals a sophisticated and
complex system of metabolic and electrical oscillations,
cell coupling, and synchronization. Insulin is produced
to control glucose levels. This multi-step process begins
when glucose enters a β-cell, which starts the glycolysis
process. As glucose is metabolized in the mitochondria,
adenosine triphosphate (ATP) is created, and adenosine
diphosphate (ADP) produces energy. As a result, KATP

channels close. Next, the β-cell depolarizes which then
permits calcium to enter the β-cell. Continuing on, in-
sulin is secreted as ATP levels drop and ADP levels rise.
Finally, KATP channels open again and this signifies the
end of the depolarization process. The length of this
process depends on whether the islet consists of mostly
fast-bursting cells or mostly slow-bursting cells. If it is a
fast-bursting islet, the metabolic oscillation will execute
within tens of seconds. If it is a slow-bursting islet, these
oscillations will progress over four to six minutes [7].

In islets, β-cells are often connected by channels,
called gap junctions, which allow ions and possibly
metabolites to be transferred between the cells. As one
cell experiences the bursting process, the cell communi-
cates to its neighboring cells, affecting the bursting pro-
cess. Here we consider how the diffusion of calcium be-
tween β-cells impacts the synchronization in the islet.

2.2 Mathematical Model

The Dual Oscillator Model consists of seven differential
equations, each with one independent variable: V , n,
[Ca], [Caer], [ADP], [G6P], and [FBP]. The model can
be separated into three components: electrical, mitochon-
drial, and glycolytic. The first four equations (2.1)–(2.4)
comprise the electrical component:

dV

dt
= −

IK + ICa + IK(Ca) + IK(ATP)

Cm
(2.1)

dn

dt
=
n∞ − n
τn

(2.2)

d[Ca]

dt
= fcyt(Jmem + Jer) (2.3)

d[Caer]

dt
= −ferσV Jer. (2.4)

Equation (2.1) represents membrane potential V and
is calculated as a current balance law by summing up the
following ionic currents (2.5)–(2.8) and dividing them by
the membrane capacitance, Cm:

IK = ḡKn(V − VK) (2.5)

ICa = ḡCam∞(V − VCa) (2.6)

IK(Ca) = gK(Ca)(V − VK) (2.7)

IK(ATP ) = gK(ATP )(V − VK) (2.8)

such that

gK(Ca) = ḡK(Ca)

(
Ca2

K2
D + Ca2

)
gK(ATP ) = ḡK(ATP )O∞(ADP,ATP )

where ḡi for i ∈ {K,Ca,K(Ca),K(ATP )} represents
the maximal conductance for each current. The current
IK(ATP ) couples the electrical and metabolic components
in O∞(ADP,ATP ) by closing when the ratio ATP/ADP
drops.

In equation (2.2), n is the activation variable for the
voltage dependent K channels, while equation (2.3) rep-
resents the free cytosolic Ca2+ concentration. In equa-
tion (2.4) the concentration of Ca2+ in the endoplasmic
reticulum is represented by Caer.

The free cytosolic Ca2+ equation, (2.3), relies on the
following equations:

Jmem = −(αICa + kPMCACa)

Jer = Jleak − JSERCA

such that

Jleak = pleak(Caer − Ca)

JSERCA = kSERCACa

where the fraction of free to total cytosolic Ca2+ is repre-
sented by fcyt, the flux of Ca2+ across the plasma mem-
brane is denoted by Jmem, the flux of Ca2+ out of the
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endoplasmic reticulum is referred to as Jer, the leakage
permeability is referred to as pleak, and kSERCA refers to
the SERCA pump rate.

The variables [ADP], [G6P], and [FBP] in equations
(2.9)–(2.11) represents the [ADP], [G6P], and [FBP] con-
centrations, respectively.

The fifth variable equation (2.9) characterizes the
cell’s mitochondria activity with an increase in ADP by
flux through ATP hydrolysis, Jhyd, and decreasing ADP
(i.e., creating ATP) by the flux through the mitochondrial
translocator, JANT :

d[ADP]

dt
= Jhyd − δJANT . (2.9)

The last two variable equations (2.10) and (2.11) describe
the glycolytic activity occurring in the cell:

d[G6P]

dt
= k(JGK − JPFK) (2.10)

d[FBP]

dt
= k(JPFK −

1

2
JGPDH). (2.11)

Glucose enters glycolysis through glucokinase, JGK , flows
through Phosphofructokinase, JPFK , and then the move-
ment of FBP through glyceraldehyde 3-P dehydrogenase,
JGPDH , feeds back onto the ADP equation. Positive feed-
back from FBP onto the enzyme PFK induces glycolytic
oscillations ultimately inducing slow oscillations in volt-
age and calcium. Details of the functional forms may be
found in [1] and references therein as well as [7] .

The model of the individual cells are coupled in either
voltage or calcium or both variables. For example, the
rate of change of calcium in cell i depends on the differ-
ence in calcium between cell i and the neighboring cells in
a set M so that just the coupling dynamics has the form

d[Ca]i
dt

= pCa

∑
j∈M

([Ca]j − [Ca]i)

where pCa is the calcium permeability constant taken to
be uniform throughout the islet. This can be written
succinctly in matrix form as we do next in the Numerical
Methods.

3 Numerical Methods

Implementation of the Dual Oscillator Model (DOM) oc-
curred in a two-fold process: through a single cell model
and an islet model. The single cell model represents the
intracellular dynamics of a single β-cell within each islet.
The system of seven ordinary differential equations de-
scribed in (2.1)–(2.11) states the relationship between the
electrical, glycolytic, and mitochondrial activity that oc-
curs within a β-cell. The full islet model was implemented

by inserting the single cell model into a larger dynamical
system based on a collection of models implemented in
MATLAB files and utilized in previous work at the Uni-
versity of Maryland, Baltimore County High Performance
Computing Facility [3, 5, 6].

The culmination of our work involves the inclusion
of Ca2+ diffusion via gap junctions between individual
β-cells. By implementing Ca2+ permeability in the full
islet model we were able to investigate the role of calcium
in the metabolic oscillations in the face of heterogene-
ity and the overall synchronization of an islet. Hetero-
geneity was introduced into the islet model in one of two
ways: by varying the initial conditions between individual
cells or by modeling two types of slow cells with differ-
ent glucokinase reaction rates, JGK . Variation in initial
conditions was achieved by drawing independently from
a standard normal distribution scaled around the mean
initial conditions with a standard deviation of 20 percent
of the mean initial conditions. Lastly, a synchronization
index adapted from [11] was developed and implemented
to measure synchronization across an islet. More details
regarding the details of the synchronization index imple-
mentation can be found at the end of this section.

The Dual Oscillator Model (DOM) described in equa-
tions (2.1)–(2.11) was formally implemented using the
dynamical systems software XPPAUT in the form of an
“.ode” file [10]. Bertram et al. successfully solved the sys-
tem of equations and provided phase planes for each of
the seven variables using initial conditions and parame-
ter values found in [10]. Using the same initial condi-
tions and parameter values, we implemented the DOM
into MATLAB. This was accomplished by vectorizing
the DOM such that

dy

dt
= f(y), (3.1)

where

y = (V, n, Ca,Caer, ADP,G6P, FBP )T . (3.2)

It can be observed that equation (3.2) is a vector of the
seven state variables, and the rate of change of the sys-
tem as described in equation (3.1) holds with f equal to
a vector of the right hand sides of equations (2.1–2.11).

The built-in MATLAB solver ode15s was chosen to
obtain numerical solutions for the individual DOM model
since the system can be categorized as a stiff system of
differential equations. In a stiff system such as this, cal-
culations within the system are occurring on wide time
scales. Some interactions take milliseconds to complete,
while others are on the scale of minutes. The built-in
solver ode15s utilizes backward difference numerical dif-
ferentiation methods to approximate the derivatives, se-
lects the most efficient initial time step, and updates the
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Jacobian and time interval as needed throughout the it-
erations to achieve optimal results [8]. Numerical solu-
tions to the islet model utilized a modified version of
MATLAB’s ode15s function to accommodate for mem-
ory issues [7]. Additionally, the Automatic Differentia-
tion for MATLAB software was implemented to provide
a symbolic Jacobian matrix to the ordinary differential
equation solver [6].

Islets of Langerhans were simulated as cubes of N ×
N × N cells, where the islet configuration of β-cells was
chosen based on the type of simulation. For simulations
with varying initial conditions, the configuration con-
sisted entirely of slow-bursting cells that had identical
bursting parameter values but initial conditions drawn
from the normal distribution. For simulations with two
types of slow-bursting cells, the configuration consisted of
alternating layers of each type of slow cell but with the
same initial conditions. In the latter simulation, a 50-50
ratio of the two types of slow cells was used.

To simulate a slow-bursting cell, the parameter val-
ues for JGK , ḡK(Ca), and ḡK(ATP ) were selected to en-
sure slow bursting (ḡK(Ca) = 200 pS and ḡK(ATP ) =
17500 pS), and JGK lies within a region where metabolic
oscillations are independent of calcium oscillations (but
not calcium level) or “calcium independent” region where

0.045 µM/s < JGK < 0.15 µM/s,

approximately [10]. To simulate two types of slow-
bursting cells, the value for JGK was varied by ten per-
cent. One slow cell type is denoted by having JGK =
0.143 µM/s and the other slow cell type with JGK =
0.133 µM/s. Values for the glucokinase flux were cho-
sen at the upper bound of the calcium independent re-
gion to ensure the bursting period stayed within a rea-
sonable time frame. The values chosen accomplished this
given the sensitivity of the system dynamics to changes
in JGK . All other parameters can be found online with
links from [10].

In order to realistically simulate β-cell islets, coupling
was introduced into the model to represent the movement
of ions between cells. Voltage coupling and calcium per-
meability were implemented into the DOM by introducing
a matrix, G, such that

dy

dt
= f(y) +Gy. (3.3)

Matrix G contains an adjacency matrix with values of
either one or zero: elements equal to one represent a
connection between neighboring cells, and elements equal
to zero represent no connection and coupling constants
multiplying the ones in the adjacency matrix where the
variables are coupled. Simulations involving no coupling,
only voltage coupling, and voltage coupling paired with
calcium permeability were performed. When coupling

was introduced to the system, an assortment of coupling
strengths for both voltage (1, 5, 10, 50, 100, and 500 pS)
and calcium (0.1, 0.011, 0.01, and 0.009 ms−1) was im-
plemented.

3.1 Synchronization Indexing

A synchronization index was developed to quantitatively
describe the synchronization of the voltage, V , free cy-
tosolic calcium concentration, [Ca], and the fructose-1,6-
bisphosphate concentration, [FBP] throughout the islet.
The Pearson correlation matrix was used to determine the
pairwise correlation between nearest neighboring cells.
Next we found the minimum row mean of the correlation
matrix. This was accomplished by taking the averages
across each row in the matrix. Then the minimum of
each of the averages was chosen as the synchronization
index for the islet. Given the correlation matrix C = cij
the synchronization index, SI, is SI = mini

∑
j cij/N

3

where N ×N ×N is the size of the islet.

4 Results

In contrast with previous work at the University of Mary-
land, Baltimore County High Performance Computing
Facility [3, 5, 6], our modifications incorporate calcium
permeability along with voltage coupling and allow us to
study how calcium handling between individual β-cells
affects the oscillations and synchronization within pan-
creatic islets, particularly in FBP. Using these modifica-
tions, we simulate and describe how varying parameters
and the heterogeneity of cells change oscillations within
a multicellular islet.

4.1 Single β-cell Model Results

After implementing the original DOM file from XPPAUT
to MATLAB, we compared the results between the two
to ensure that we converted the model accurately. We
compared the oscillations for all variables and confirmed
that the oscillations were the same between the two files.
Figure 4.1 shows the voltage, calcium, and FBP oscilla-
tions for slow- and fast-bursting β-cells produced by the
MATLAB version of the DOM.

4.2 Coupling Between Individual β-cells

We extended our studies further by observing how voltage
coupling and calcium permeability effects the metabolic
oscillations and synchronization of a 3× 3× 3 pancreatic
islet. The islet consists of only slow-bursting β-cells with
initial conditions drawn as described in 3.
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(a) Fast-bursting β-cell (b) Slow-bursting β-cell

Figure 4.1: Single cell traces of voltage, calcium, and FBP obtained from the revised DOM in MATLAB for the
(a) fast-bursting and (b) slow-bursting β-cells in a 30-minute period.

Figure 4.2: No Coupling. Voltage, calcium, and FBP traces for 3× 3× 3 islet containing heterogeneous β-cells with
voltage coupling = 0 pS and calcium permeability = 0 ms−1.

4.2.1 Voltage Coupling

We simulated islets with uniform, constant voltage cou-
pling between nearest neighboring β-cells and various lev-
els of voltage coupling, including 0, 1, 5, 10, 50, 100,
500 picoSiemens (pS). In Figure 4.2, the absence of volt-
age coupling allows the cells to oscillate independently
from one another and no synchronization between the
cells is observed. As the amount of voltage coupling be-
tween the β-cells was increased to 10 pS as shown in Fig-
ure 4.3(a), the oscillations slowly began to synchronize.
Increasing the voltage coupling even further to 50 pS, Fig-
ure 4.4(a) showed that a high amount of voltage coupling
between cells allowed for the oscillations to synchronize
more rapidly than when the voltage coupling was lower.
As the amount of voltage coupling was increased, the syn-
chronization of the oscillations within the pancreatic islet
also increased. For islets that were uncoupled, and hence
unsynchronized, a 3×3×3 islet used about 26.27 minutes
of computational time to simulate 30 minutes, whereas an
islet that was highly synchronized took about 1.42 min-
utes.

4.2.2 Calcium Permeability

In addition to adding voltage coupling to the pancreatic
islet model, calcium permeability was also incorporated
into the code to observe if calcium handling had an ef-
fect on oscillations between β-cells. For each of the volt-
age coupling parameters, we simulated various levels of
calcium permeability as percentages of the voltages, in-
cluding 0.9, 1, 1.1, and 10 percent. We only show traces
for 0.9 percent of voltage coupling because we did not
notice any different effects when the calcium permeabil-
ity value was higher than this. For simulations in which
calcium permeability was 100 or 1000 percent of the volt-
age coupling parameter, the oscillations did not change
drastically, which suggests that calcium permeability did
not kill the oscillations as mentioned by [9]. As seen in
Figure 4.3(b), when calcium permeability was added, the
oscillations become more synchronized in comparison to
when there was only voltage coupling present. When volt-
age coupling is around 50 pS, as shown in Figure 4.4, there
is not very much difference between Figure 4.4(a) when
only voltage coupling present and Figure 4.4(b) when
there is an addition of calcium permeability. As voltage
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(a) Voltage Coupling Only (b) Voltage Coupling & Calcium Permeability

Figure 4.3: Electric and metabolic oscillations in voltage, calcium, and FBP with (a) voltage coupling = 10 pS and
(b) both voltage and calcium permeability = 10

110 ms−1

(a) Voltage Coupling Only (b) Voltage Coupling & Calcium Permeability

Figure 4.4: Electric and metabolic oscillations in voltage, calcium, and FBP with voltage coupling = 50 pS and
calcium permeability = 50

110 ms−1

increased higher than 50 pS, calcium permeability did not
affect the synchronization of the oscillations as much as
when the voltage coupling was lower. In summary for het-
erogeneous initial data, calcium permeability further syn-
chronized the islets that had lower electrical coupling, but
the higher electrical coupling within the islet was already
synchronized and the calcium permeability did nothing
to change that.

4.3 Varying JGK in Slow β-cells

Beyond only varying the initial conditions of the β-cells,
we also chose two different JGK values to simulate how
two different types of slow cells interact with one another
when voltage coupling and calcium permeability is intro-
duced. Figure 4.5 represents the oscillations when there
is no voltage coupling or calcium permeability involved.
Unlike the varying initial condition experiments, the two
different kinds of cells begin at the same initial conditions,
but continue to oscillate at their own respective rhythms.

When introducing voltage coupling, represented in Fig-
ures 4.6 and 4.7, the electrical and metabolic oscillations
synchronize over time, but it is still possible to see that
the traces are not completely overlapped. However, when-
ever calcium permeability is introduced, the traces be-
come synchronous in both cases. The addition of voltage
coupling when varying the JGK values has the same ef-
fects as seen when varying the initial conditions of the
β-cells within an islet. When calcium permeability is in-
troduced in every case of voltage coupling, the traces be-
come more synchronous, unless voltage coupling being at
a high enough level has already completely synched the
traces.

4.4 Synchronization of Pancreatic Islets

In Figure 4.8, the yellow boxes indicate high synchroniza-
tion, whereas the blue boxes represent low synchroniza-
tion. Figure 4.8(a) represents the synchronization plots
for the varying initial conditions experiments, whereas

www.sporajournal.org 2016 Volume 2(1) page 6

http://www.sporajournal.org


Oscillations and Synchronization of Beta Cells Eskandar et al.

Figure 4.5: Voltage, calcium, and FBP traces for 3 × 3 × 3 islet containing two different slow β-cells with voltage
coupling = 0 pS and calcium permeability = 0 ms−1.

(a) Voltage Coupling Only (b) Voltage Coupling & Calcium Permeability

Figure 4.6: Oscillations in voltage, calcium, and FBP for varying JGK experiment with (a) voltage coupling = 10 pS
and (b) calcium permeability = 1 ms−1, as well.

Figure 4.8(b) represents the synchronization plots for the
two different JGK value experiments. As seen in both fig-
ures in the voltage synchronization plot, as voltage cou-
pling increased, regardless of the amount of calcium per-
meability, the voltage oscillations became more synchro-
nized within the islet. When the voltage coupling was
a low value, the synchronization index of the voltage os-
cillations were close to zero, and therefore, not synchro-
nized; however, when calcium permeability increased, the
synchronization index of the voltage oscillations slightly
increased. In both experiments, the calcium synchroniza-
tion plots remained highly synchronized through all volt-
age coupling and calcium permeability parameters with
synchronization index values ranging from around 0.95
to 1. In the FBP synchronization plot, the same phe-
nomenon was observed as in the voltage synchronization
plot: as voltage coupling increased, the synchronization
of the islet also increased. As calcium permeability in-
creased for low values of voltage coupling, the synchro-
nization of the islet increased slightly. Within the FBP os-
cillations, it is important to note that in the experiments
where we incorporated two different slow cells within the

islet, the range of the synchronization indices for the FBP
plots was between approximately 0.85 and 1. When volt-
age coupling was very high, such as 500 pS, the synchro-
nization of the islet seemed to be lower. This occurred
because we only simulated the oscillations for 30 minutes;
when we run the simulations for longer times with volt-
age coupling at 500 pS, the FBP oscillations eventually
synchronize.

4.5 Computational Challenges

Although there were many successes during our research
project, we also faced several computational challenges
while running simulations that we believe can be im-
proved in the future. In the 5×5×5 islet, there were spe-
cific cases where the cluster maya at the UMBC High Per-
formance Computing Facility (HPCF) ran out of mem-
ory, despite only saving the variables V, Ca, and FBP,
because there were too many time steps in the simu-
lations. This occurred in cases when the islet’s initial
conditions were perturbed by 20 percent and when the
coupling was low, resulting in low synchronization within
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(a) Voltage Coupling Only (b) Voltage Coupling & Calcium Permeability

Figure 4.7: Oscillations in voltage, calcium, and FBP for varying JGK experiment with (a) voltage coupling = 100 pS
and (b) calcium permeability = 10 ms−1, as well.

(a) Varying Initial Conditions (b) Varying JGK Values

Figure 4.8: Plot showing scaled image data from a 2-D matrix containing synchronization indices of i slets with
corresponding voltage coupling and calcium permeability parameters for varying (a) initial conditions and (b) JGK

values.

the islet. We also attempted to run the pancreatic islet
model containing 10×10×10 cells, but this also proved to
be too computationally challenging for the cluster maya
as only the simulations that were completely synchronous
finished running with results. As an example, for 3×3×3
islets with varying initial conditions that were uncoupled,
and hence unsynchronized, it took about 26.27 minutes
to run completely, whereas an islet that was highly syn-
chronized took about 1.42 minutes. For simulations that
have many time steps, such as uncoupled 5 × 5 × 5 and
10× 10× 10 islets, these would not only take a long time
to run, but also need a large amount of memory in order
to save the traces for voltage, calcium, and FBP.

5 Conclusion

Synchronous islet bursting and the resulting coordinated
insulin release is important for the pulsatile insulin that is
measured in the blood and is known to effect physiological
function [11]. The coupling current between β-cells is able
to facilitate synchrony but whether calcium ions, which

are critical to the subcellular processes coordinating glu-
cose sensing and secretion, have a strong effect in a full
islet is less well understood. Understanding this calcium
function through coupling may point to ways of alleviat-
ing insulin secretion dysfunction and stemming the effects
of diabetes.

Our implementation of the Dual Oscillator Model was
created in a two-step process. The first step was the
replication of the single cell model from XPPAUT to
MATLAB. Using the same initial conditions and pa-
rameter values in the XPPAUT file, we implemented the
DOM into MATLAB. The second step was creating the
islet model. The full islet model was implemented by in-
serting the single cell model into a larger multi-cellular
system on a 3-D lattice. We used the built in MATLAB
solver ode15s, which helped the model run faster by cut-
ting down time in calculating derivatives and updating
Jacobians. By introducing coupling between the cells,
the cells started to develop synergy. In order to measure
synchronization between cells in the islet, we successfully
built on a previous synchronization index and developed
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and implemented an updated synchronization index. We
were able to produce plots that show the effect of cal-
cium permeability in a 3 × 3 × 3 islet with initial condi-
tions drawn individually from a normal distribution with
20 percent standard deviation.

Utilizing a revised version of the Dual Oscillator
Model we were able to better understand the effects
of calcium permeability between β-cells. The individ-
ual β-cells have gap junctions which allow Ca2+ to dif-
fuse. By implementing Ca2+ diffusion in the full islet
model, we were able to focus mainly on the role of cal-
cium in the metabolic oscillations and synchronization.
Through multiple trials we came to a conclusion that cal-
cium diffusion between β-cells in a pancreatic islet does
indeed synchronize metabolic oscillations when voltage
coupling is low. For example when voltage coupling is 1,
5, 10 picoSiemens and calcium is applied, the β-cells have
a higher synchronization index. However when voltage
coupling is high (approximately 50 pS), the role of cal-
cium in the synchronization of metabolic oscillations is
overshadowed by voltage coupling. Although there were
slight variation in the plots, there was no significant evi-
dence that calcium permeability plays a role when voltage
coupling is high. Ultimately, calcium diffusion between
pancreatic β-cells plays an understudy role in the syn-
chronization of metabolic oscillations.

We focused here on the slow islet oscillations that are
independent of calcium oscillations though not indepen-
dent of calcium level. It will be important to see if when
parameters shift to the calcium dependent regime how
the coupling impact changes.
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