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A B S T R A C T

Network based medical data computing and collaborative visualization have been commonly used in remote
medicine and distributed diagnosis, where visualizing 3D medical data on web browsers and sharing medical
information on internet are critically important. However, due to the lack of efficient algorithms and compatible
graphics hardware support, there are still some major technical challenges in web based medical data visuali-
zation and information exploration on internet. To address these practical issues, we created a new network
based medical data rendering and information sharing system, where an Apache HTTP Server was applied to
handle data information, and MySQL and PHP were exploited for data storage and management. In this system,
medical data rendering and computation were supported with GPU and WebGL 2.0 (WebGL2), and a novel data
information extraction algorithm was designed to optimize data storage and management. Taking advantage of
the new 3D features of WebGL2, a web based raycasting algorithm was developed to deliver real-time data
visualization on web browsers, in which a novel voxel classification method was integrated for color mapping
and high-quality image generation.

The developed medical information system can deliver 60 ± 2 frames per second rendering performance for
high-quality medical data visual exploration on modern browsers as well as medical information communication
on internet. The system has been seamlessly integrated with web server, database and client computers equipped
with modern graphics hardware, which has wide applications in the fields such as internet based computer-aided
medical decision and education, as well as distributed disease diagnosis.

1. Introduction

The evolution of web technologies and browser features in recent
years has made it possible to develop interactive medical data solutions
on internet and improve the delivery of healthcare to the whole society
[1]. Thanks to the development of graphic accelerators and web appli-
cation tools, interactive medical data visualization can be shared on in-
ternet and is thus easily and widely accessible [2–4]. In addition, as an
enhancement of internet based medical visualization, volume rendering
on the web is an important technique to visualize 3D medical datasets
and provide critical information about the spatial relationships of dif-
ferent tissue structures [5–7]. Web based volumetric data visualization
can grant doctors and medical researchers the capability to collabora-
tively perform disease diagnosis and preoperative surgery planning from
anywhere around the world where internet is available [8,9].

The importance of web based data visualization particularly in medicine
is increasing due to the advancements in technology and healthcare systems
[10,11]. There are many interesting research and applications of web based
medical data visualization, for example, Congote et al. presented a

raycasting algorithm implemented with WebGL and HTML5, which was
based on 2D texture composition and post-color classification method [12].
Mobeen and Feng designed a single-pass rendering pipeline for mobile de-
vices, where they used 2D texture to simulate 3D texture for volume ren-
dering [13]. Mahmoudi's group developed an interactive 2D and 3D med-
ical image processing and visualization software package using AJAX
technology in web-user-interface [14], and a software architecture was
presented by Marion and Jomier for visualizing 3D medical datasets on
internet using WebGL and WebSocket, which was applied for collaborative
data exploration [15]. Kaspar et al. [16] developed a web-based system, i.e.,
CoWebViz, for medical data stereoscopic visualization. Besides the appli-
cation of medical data rendering, Rego and Koes [17] used WebGL and
JavaScript to display molecular structures on the web, and Jaworski et al.
[18] implemented a raycasting platform to show composite materials mi-
crolevel structure models on network. WebGL-based raycasting was also
implemented to visualize protein structures by Sherif and his colleagues
[19], and the similar technology was implemented to display macro-
molecular structure in the application of computational drug discovery by
Yuan's group [20]. To allow users to explore the medical data in virtual
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reality (VR) environment, Kokelj and his colleagues integrated VR into a
web-based medical visualization framework [21].

WebGL, JavaScript and HTML5 were also employed to visualize 3D
surface and volumetric neuroimaging data in modern web browsers
[22], dynamically display and analyze genome on internet [23], build
web interface for 3D medical data interactive segmentation [24], and
develop surgical teaching tools through integrating interactive web-
based 3D models derived from patient-specific data [25]. The similar
technology was also used to render whole-body anatomy via a web
interface [26], interactively visualize and analyze 3D fractal dimension
of MRI data on the web [27], implement web applications to visualize
dynamic molecular data [28], interactively browse and segment med-
ical images on remote client computers [29], and collaboratively re-
present neurological images using Google Drive Realtime API and web
browsers [30]. Recently, Shi et al. [31]. introduced a 3D modeling
program, i.e., Web3DMol, which was a web application focusing on
protein structure visualization in modern web browsers. Tiwari et al.
[32] presented a web based rendering platform using image streaming,
where Wamp Server was employed to show 3D images on client ma-
chines. Campoalegre et al. [33] designed a client-server framework for
interactive data visualization on standard mobile devices, where a
compression scheme was designed to improve data transmission on
internet. Furthermore, a performance optimization model for web-
based interactive visualization was proposed by Halic et al. [34].
Through integrating remote volume rendering and surface rendering
algorithms, Qiao et al. [35] built a web-based platform that allowed
users to access large-scale 3D medical data on internet using a Master-
Slave interaction mode, while Pienaar et al. developed a cloud-based
medical image data and information management software platform
called CHIPS for clinical data sharing and exploration [36].

2. Comparison with existing work

For current applications, high-level libraries such as Visualization
Toolkit (VTK) [37] and Three.js are commonly used directly to visualize
medical data on the web directly without developing new custom high-
quality volume rendering algorithms, which result in inflexible scene ren-
dering primitives and limited medical data rendering quality and speed,
making it difficult for the software systems to satisfy modern clinical re-
quirements [20,25,35]. Next, for publications that are based on custom
developed volume data visualization algorithms, WebGL 1.0 was generally
used for voxel sampling and data calculation without 3D texture support on
graphics hardware, these algorithms used 2D texture to simulate 3D texture
for data sampling and interpolation, which generated image artifacts and
low rendering efficiency [12,13,16,17,26,31]. In addition, for data and in-
formation processing and visualization, using algorithms without efficient
color mapping and voxel classification can result in inefficient clinical data
exploration and information extraction due to the incapability of inter-
actively updating the rendered medical and molecular data [23,28,30,34].
Many applications used server to render the data and send the result to the
clients, which would increase the computing burden of server and slow
down the system's performance when multiple clients connected with the
server and requested data processing at the same time, and the there were
also information security concerns when sending data to sever on internet
without security protection [14,32,36]. Furthermore, the confliction of the
internet speed and data transmission would further delay data display and
exploration on remote client computers [24,27,29].

Due the challenges such as image quality, visualization speed, flexibility,
data and information transmission efficiency and security, there are still
many unsolved issues related to the network based collaborative medical
data visualization and information sharing. In this paper, we described new
algorithms and a software framework to address the mentioned issues. First,
for medical data visualization, our algorithm was based on WebGL 2.0
(WebGL2) [38] and low-level graphics programming instead of using
WebGL 1.0 or high-level libraries such as VTK and Three.js, which allowed
us to exploit 3D texture for raycasting computation on graphics processing

unit (GPU) directly instead of using the traditional solution of using 2D
texture for voxel extraction and sampling in 3D space. Our algorithm con-
ducted trilinear interpolation at each sampling step on GPU's vertex and
fragment shaders. In addition, we integrated some efficient methodologies
to improve the rendering speed and image quality, such as early ray ter-
mination and segment-based post color-attenuated classification, which
enabled our system to render medical data in high quality and can inter-
actively change the appearance of the rendered image for diagnosis and
medical data exploration. Second, we implemented a novel image in-
formation extraction algorithm to save the storage space of medical data, so
this system could effectively transmit data between server to client com-
puters and launch the program on client computers in near real time. Third,
Apache HTTP Server [39] was used to build web server and work with
MySQL [40] database and PHP (HyperText Preprocessor) [41] server-side
scripting language for data and information transmission and management.
Users could interactively extract data information and update database on
remote client computers. In addition, some security features, such as
granting users different level of privileges to access and manage database,
have been integrated into this system to protect user privacy and data in-
formation on internet. The developed algorithms and software can provide
important functions for medical applications such as distributed diagnosis
on internet.

3. Rendering data on web server

3.1. Server side programming

In this network based platform, a server scripting language PHP
(Hypertext Preprocessor) was used for server side programming. PHP is
a powerful tool for making dynamic and interactive Web pages, and can
generate dynamic page content. In this application, PHP and HTML5
were employed to develop programs for the network based system
framework. After the PHP code was interpreted and executed, the web
server sent the resulting output to its client in the form of generated
web page. The PHP code was utilized to generate a web page's HTML
code, an image, or some other data. In this software platform, the PHP
code ran on the server side, and emitted files that were then sent to the
client/browser, in which WebGL2 was running and was called from
JavaScript. So, our platform could emit WebGL2/JavaScript source
code from within a PHP program running on the server.

3.2. Volumetric data visualization

Direct volume rendering is an algorithm for 3D data visualization,
which can produce a projected image directly from volumetric data
without intermediate constructs. In the visualization process, volu-
metric data is sampled on a rectilinear grid with a trilinear interpola-
tion, and a transfer function is used to assign optical properties like
color and opacity to each sampling point. To generate an image, the
lighting optical properties should be integrated along each viewing ray,
which affect the light passing through a volume due to absorption,
scattering, or emission of light from small particles. The particles in an
actual cloud occlude incoming light and add their own glow. Thus a
realistic differential equation should include both source and attenua-
tion terms:

=dI
ds

s s I s( ) ( ) ( ) (1)

where s is a length parameter along a ray in the direction of the light
flow, and I s( ) is the light intensity at distance s. The source term s( ) is
a function of position specified by an independent transfer function.
The common optical model for volume rendering is the absorption plus
emission model, in which the volume itself emits and absorbs light, and
the absorption and emission are evaluated at each voxel throughout the
volume. Eq. (2) is the solution of Eq. (1):
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=d
ds

I s exp t dt s exp t dt( ) ( ) ( ) ( )
s s

0 0 (2)

Integrating from s= a at the edge of the volume to s= b at the eye,
and then bring the I0 to the other side, and multiplying by
exp t dt( ( ) )s

0 , we can get Eq. (3) as the solution for I a b( , ).

= +I a b I exp t dt s exp t dt ds( , ) ( ) ( ) ( )
a

b

a

b

s

b
0

(3)

In Eq. (3), the first term represents light coming from the back-
ground and entering the volume, i.e., I0 is the light intensity at s= a,
which is multiplied by the cloud's transparency. The second term is the
integral for the contribution of the source term s( ) at each position s,
multiplied by the transparency T s( ) = exp x dx( ( ) )s

b between s
and the eye (position b on the casting ray). Define s( ) = C s s( ) ( ),
where C s( ) is a particle's color at the position s, and the quantity s( ) is
called the extinction coefficient, we can the following Eq. (4).

= +

= +

I a b I exp t dt s T s ds

I exp t dt C s s T s ds

( , ) ( ( ) ) ( ) ( )

( ( ) ) ( ) ( ) ( )
a
b D

a
b

a
b

0 0

0 (4)

For volume rendering calculation, the initial intensity of a ray of
light before it hits the volume, i.e., the first item of Eq. (4), is set to zero.
We can then get the volume rendering integral Eq. (5).

=I a b C s s T s ds( , ) ( ) ( ) ( )
a

b

(5)

3.3. Numerical calculation

The integrals in Eq. (5) can be calculated using numerical integra-
tion. The Riemann sum = x x( )i

n
i1 is used to approximate the integral

x dx( )a
b . The interval from a to b is divided up into n equal segments,

getting length x = D n/ , and a sample xi is chosen in each segment, so
that i x( 1) ≤ xi ≤ t x . Set xi = i x, then ti =

i t exp i x x( ) ( ( ) ) can be thought of as transparency of the ith

segment along the ray. Setting Ci i = C i t i t( ) ( ) and approximate
the transparency i x exp x dx( ) ( ( )i x

b between xi and b by = + tj i
n

j1 .
The Riemann sum for C s s exp x dx ds( ) ( ) ( ( ) )a

b
s
b then becomes

= = +C ti
n

i j i
n

j1 1 . The final estimation of Eq. (5).

=
= = + = = +

I a b
n

C
n

t
n

C
n

( , ) (1 )
i

i
j i

j
i

i
j i

j
1 1 1 1 (6)

In Eq. (6), j is opacity of the jth segment, and the samples are
evaluated from the sampling point to the eye on the casting ray, which
is referred as back to front optical composition order.

3.4. WebGL based implementation

3.4.1. Data processing and loading
Commonly used 3D medical data sets, such as DICOM, NIfTI, or meta-

data, are composed of 2D image slices aligning in the x, y, or z direction. In
this project, ImageJ [42] was used to load the 3D data into CPU main
memory, and then transformed the loaded 3D image into a large 2D
montage image, i.e., tilling each slice beside the other in a matrix config-
uration. The generated large 2Dmontage image can be used as a 2D texture,
which can be loaded by WebGL 2.0, i.e., WebGL2 and save data storage
space. Optimized data format and storage size are important for fast data
transmission and processing on network. The following is the pipeline of 2D
image data loading and 3D texture generation.

For WebGL based data rendering and visualization in HTML web
browsers, the browsers cannot load 3D data directly into the WebGL ren-
dering pipeline. The HTMLImageElement was used as an interface to provide
special properties and methods for manipulating the layout and presenta-
tion of< img>elements, and the HTMLImageElement.src was employed to
contain the loaded 2D data/image, which is a DOMString that reflects the src
HTML attribute and contains the full URL of the image. The HTML based
web browsers can only display 8-bit data, so JavaScript's array Uint8Array
was employed to hold an array of 8-bit unsigned integers with the dimen-
sion 2D slices multiply the number of slices.

The data processing algorithm exploited the HTML canvas's drawImage()
method to draw the loaded big 2D image to graphics frame buffer. Then, the
getImageData() method of the WebGL's CanvasRenderingContext2D class was
employed to create the data texture, which was then used with the function
texImage3D() to generate 3D texture. Because commonly used web browsers
can't deal with images that are very large in any one dimension, so we
generated the 2D montage image with multiple rows and columns, as
shown in Fig. 1, where there are total 172 slices, and there are 4 columns in
the generated 2D montage MR brain image. The rendering system transfers
the number of images per row, the number of rows, the total number of
slices, and distance between z axis to the JavaScript image reader. Our
program transformed the 2D image into 3D texture and then loaded the
texture into the vertex and fragment shaders for raycasting computation on
web browsers using WebGL2.

Fig. 1. Two image parts selected from a
generated montage 2D MR brain image
using a 3D MR data set. Total slice
number is 172, and there are 4 columns
in the montage image, so there are 43
slice images per column. The left side
image is the top 5 rows, while the right
side is selected from the rows 15 to 20
from the montage MR brain image.
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3.4.2. Rendering pipeline
In this research, we took advantage of the new 3D texture support in

the WebGL2 for volume raycasting calculation on the graphics pro-
cessing unit (GPU). This image-based method renders a 3D scalar field
into a 2D image by casting rays along the 3D volume. Each pixel on the
screen is the result of a ray that is going through the cube and getting
intensity samples from the voxels at regular intervals. Using 3D textures
for volume rendering, the slices can be oriented perpendicular to the
viewer's line of sight and will not lead to sampling errors. Furthermore,
a 3D texture can naturally store normal textures, which can be used to
add lighting effect to the rendered volume.

To ease the process of low-level WebGL programming, we utilized the
OpenGL Shadering Language (GLSL) [43] for GPU programming. This ap-
proach enables us to achieve a high-performance rendering of 3D data. In
the following we will describe the pipeline of WebGL2 based volume vi-
sualization using graphics hardware accelerated raycasting algorithm.

- For every 3D data set or a series of 2D images acquired from a
medical scanner, using the method described in subsection 3.4.1 to
create a large 2D montage image, which includes all the 2D slice
images of the source data. The corresponding imaging information
such as the number of images per column, the number of columns,
i.e., the number of images per row, the total number of slices, and
distance between every two contiguous slices in x, y or z axis di-
rection is stored in a text file.

- Load the 2D montage image to WebGL rendering pipeline using
WebGL's image loading method getImageData(). At the same time,
the text file containing all the related image information generated
in the previous step is also loaded into the WebGL's rendering pi-
peline.

- The loaded big 2D montage image is used to build 3D texture using
WebGL2's method texImage3D(), mapping 3D data dimension from
data space to texture space, which can be used in graphics unit's
vertex shader and fragment shader: × ×h w d[1, ] [1, ] [1, ]

× ×[0,1] [0,1] [0,1] (h, w, and d are the volume's height, width and
depth respectively). The related image information was also loaded
into the WebGL's rendering pipeline.

- Create the vertex and fragment shader objects, then attach the
vertex and fragment shader source code to WebGL. Next, compile
these two shaders and link the shader programs to the WebGL
rendering pipeline.

- Load the 3D texture to the GLSL's vertex shader, compute vertex
positions using method gl_Position and output the image coordinate
texCoord to the fragment shader.

- The computing results in vertex shader are output to the GLSL's
fragment shader, where the raycasting computation is performed.
First, set the original position of the rendering system, such as (0.0,
0.0, 2.0, 1.0). Next, get the 3D image coordinate from vertex shader,
and create casting ray direction, i.e., from the eye (camera) to the
3D image. For each casting ray, acquiring texture information at
each equally sampled point along the casting ray inside the 3D
texture, and then map the intensity value to color and opacity using
loaded 2D texture generated by the transfer function. Our post color-
attenuated classification algorithm [44] was used to build the
transfer function's lookup table for optical mapping:

=s s d s s d( , , ) 1 1
2

( , , )f b f b (7)

= ×C s s d d
s s

c d c d˜ ( , , ) ( ) ( ) ( ) ( )f b
b f

s s

0 0

b f

(8)

where C s s d˜ ( , , )f b and s s d( , , )f b are color and opacity mapping for
ray segment between sf and sb with the segment length d, and c ( ) and

( ) are color and light attenuation function. The color and opacity
mapping user interface and 3D rendering result are illustrated in Fig. 2.

- During the calor and opacity calculation and mapping process, the
data of ambient light, specular color, normal at each sampling point
are utilized to add shading effect to the final 3D rendering result.

- The formula 6 is used to compose the mapped color and opacity at
each sampling point. The raycasting calculation will be conducted at
each casting ray in parallel on graphics hardware, i.e., GPU's vertex
shader and fragment shader, and will be terminated at any casting
ray if the next sampling point is outside the volume boundary or the
accumulated opacity exceeds the preset threshold on the casting ray,
i.e., early ray termination.

- Finally, the fragment shader computes the final color for each pixel
of the primitive, and draws it on the output image inside the web
browsers as the volume rendering result.

4. Network setup

4.1. System architecture and data management

The system was implemented using web-based tools to address data
rendering and information sharing on internet. As described in Fig. 3,
the client and server based system architecture enables us to provide an
easily accessible tool for data exploration over the web, which allows
users to simply open a web browser to start a data rendering and col-
laborative analysis. To setup the network of this system, the Wamp-
Server [45] was used to create the system architecture, including con-
figuring software packages such as Apache [39], PHP and MySQL
database. WampServer is a Windows web development environment,
which allows users to create HTML5 based web applications with
Apache, PHP and a MySQL database.

A main computer running Apache HTTP Server and Windows 10
was used as a server for web engine and data management, which could
be requested by client computers for granted connections, information
sharing and launching data visualization software. The server side of
the system running Apache was implemented with PHP and MySQL for
data storage and information communication management, while
WebGL2, OpenGL Shading Language (GLSL), and JavaScript are exe-
cuted client side on the browser for data real-time visualization as well
as information input and extraction. In this system, the communication
between the server and clients was done with the PHP, Ajax [46],
jQuery, and JSON (JavaScript Object Notation). Ajax is a set of web
development techniques, which use many Web technologies on the
client side to create asynchronous Web applications.

Fig. 2. Color and opacity mapping for data visualization in a web browser in-
terface. The bottom in the left side is the color at equally sampling points from 0
to 255, and the left top is the corresponding opacity values for each color point.
The control points can be manipulated by users interactively, which will dy-
namically update rendered 3D image. The point values between the control
points are acquired by linear interpolation. The right side is the rendered 3D
brain image on a Firefox web browser using left side transfer function and the
described WebGL2 based raycasting algorithm. (For interpretation of the re-
ferences to color in this figure legend, the reader is referred to the Web version
of this article.)
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The phpMyAdmin [47] was employed for database management,
which is one of the most popular PHP applications and MySQL ad-
ministration tools. It is a free and open source tool written in PHP in-
tended to handle the administration of MySQL or MariaDB [48] with
the use of a web browser. In this platform, system administrators can
use the administrative interface of phpMyAdmin to manage MySQL
database: creating, modifying or deleting databases, tables, fields or
rows; executing SQL statements; and granting users' privileges and
permissions. Through using SQL script programming language, the
system administrators can add, remove, edit, backup and view data-
bases. The right side of Fig. 3 describes the structure of the database
table: storing user feedback, ranking and comments for a specific 3D
data rendering on the client side web page, as well as granting system
connections through configuring phpMyAdmin's configuration file, i.e.,
httpd-vhosts.conf. On the client side of this system, all data sets are
rendered inside modern web browsers with the help of the client
computer's GPU using WebGL2, GLSL, HTML5 and javaScript.

4.2. Network connection

As shown in the left side of Fig. 3, the main volume rendering and
data manipulation engine was set on the Apache web sever. The client
computers can connect with the web sever using the IP address of the
sever computer. When the address was set, the end users can access this
address and launch the web sever's data exploration software. For
Apache server, the system should change the vhosts configuration file,
granting the end users' access to the web server, i.e., modifying “require
local” command to “require all granted” command in this configuration
file, so the clients from anywhere on internet can access the Apache
server through using verified user name and password granted by the
system administrators. The end users can use web browser such as
Firefox and Chrome to render the selected 3D data using the IP address

(192.168.2.14 in our experiment) and the project location on the server
(vr_proj/web_render/viscomput_proj/webgl22/in this experiment).

To access the web based visualization software in public domain,
the public IP of the network should be acquired first. The router's login
page is usually accessed via a private IP, and the router's admin inter-
face shouldn't be made available to the public internet. The following
steps are the procedure of creating public domain for our software
system running on server and how can it be accessed from public in-
ternet.

- First, find out the networking's router's public IP address.
- Second, setup port forwarding on the router. The connections made
to the routers public IP will be forwarded to the Apache HTTP
server. For example, if the router's public IP is 162.31.30.56 and the
server PC's private IP is 192.168.0.100. We need to configure a rule
which says that any connection made to 162.31.30.56:80 needs to
be forwarded to 192.168.0.100:80.

- Finally, setup a domain pointing to the public IP with a DNS
(Domain Name System) registrar and configure an Apache virtual
host for that domain.

Through using the above internet setting, users can request and
explore medical data and send back feedback to web server from client
computers on internet. Users enter a Uniform Resource Locator (URL)
to point to a web server by means of its Fully Qualified Domain Name
(FQDN) and a path to the required resource through entering granted
user name and password, and then the software for data exploration can
be launched and connections will be created for data communication
between the web server and the granted client computers on public
internet.

Fig. 3. Flowchart of the system network architecture, data rendering and exploration engine, and database management: internet-based data visualization, ma-
nipulation, management, and storage, information sharing, network permission granting and connections, as well as 3D medical data exploration using WebGL2,
OpenGL Shading Language (GLSL), Apache HTTP Server, HTML5, JavaScript, and MySQL database.
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5. Information exchange and sharing

5.1. User input and data update

In this web based data exploration and information sharing system,
MySQL was used to build database to accept user input and store data.
MySQL is a database system commonly used on the web, which can run
on an Apache HTTP server. The data in a MySQL database are stored in
tables. A table is a collection of related data, which consists of columns
and rows. For each data set in our visualization system, an independent
database table was created to store and manage the information such as
user input, user information, was well as login name and password.

The name of the built database is vr_db, which includes multiple
tables. As illustrated in Fig. 3, there are three tables in the experiment,
i.e., tablei, i= 1,2,3, which are used to store user feedback for three in-
dependent 3D data sets. In addition, there is another table with the
name user_info to store user name and password information. New ta-
bles can be added to the database when new 3D medical images are
added to the system. The existing tables will be deleted when the cor-
responding 3D images are deleted from the system. As demonstrated in
the top left of Fig. 4, all the tables (tablei, i= 1,2,3) have the same
structure, including id, user name, email address, phone number, data
quality ranking, feature ranking, user comments on the data, as well as
the date and time of the user's input.

For every loaded 3D medical data set, the graphical user interface of
the system has a corresponding user input interface, such as name,
email address, phone number, quality ranking, feature ranking, and
comments. Whenever users login the network system using granted user
name and password, they can input all these information except the
user id and date and time, which are generated by the system auto-
matically. The users can explore the 3D image in web browser, ma-
nipulate the rendered 3D image, comment on and rank the selected
image, as well as store all the feedback information into the corre-
sponding table inside the MySQL database vr_db on the main HTTP
Apache server.

When users click the submit button, the system will call PHP

program with the name “userInfor.php”. In the PHP program, the
system first builds links to the Apache sever, then login with user name
and password using MySQL link function mysqli. Each data set in the
system has a unique table to store user's input data and information.
When the login and connections are successful, the software use $_POS
method to acquire users' input data and information, and then insert all
these information input the database table corresponding to the se-
lected 3D data. The user id and date and time are generated auto-
matically. The user id is used for management, which can only be ac-
cessed by the database administrator.

The server will store the user input into the database table if the
client connection and data transaction are successful. The other users
on any client computers with granted connections to this system can
retrieve the stored information out and review the feedback. In the next
step, jQuery was used to build a serialize array for data update in the
database table, send the message of “success” or “failure” to the sys-
tem's user interface, which will be displayed at the location close to the
submission feedback. Finally, the input information will also be cleaned
by using a jQuery function clearInput. The whole interface of user input
and data update are described in Fig. 4.

5.2. Information extraction

The Ajax (Asynchronous JavaScript And XML) was used to retrieve
data from the database table, which requires a PHP file for server
connection and database content extraction. For the PHP program, first,
build a connection with the database vr_db using PI address, granted
user name and password, and then retrieve data from the table, such as
Table 1. Finally, all the rows of the query results are stored in an array,
which will be returned by a encoding method of JSON.

The queried data are input into a Ajax's asynchronous function, and
then the Ajax sends the output to the PHP file for database information
extraction from a running Apache server. The connection and in-
formation sharing are asynchronous, but the user input information can
be displayed to all the other users on networking who are using the
same visualization system. The feedback information can be displayed

Fig. 4. Data storage and communication between the data exploration platform and MySQL database on Apache HTTP Server. User's input and feedback can be used
to update the database table in real time. The information can be shared with multiple users on network who are using the same data visualization and information
sharing system.
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in a independent web page, which has an organized format designed
with HTML forms and tables.

6. Performance evaluation

The Apache server currently runs on two hardware systems, the first
one is a workstation with dual processor, dual Intel Xeon X5690
(Westmere-EP, 3.47GHz, 130W Six-Core Processor), 96GB DDR3
memory (12×8GB), and a Crucial MX300 1TB Internal SSD hard drive;
while the second one is a computer with Intel Core i7-3770K Ivy Bridge
Quad-Core 3.5GHz (3.9GHz Turbo), 32GB DDR3 memory (4×8GB),
and a Crucial MX300 1TB Internal SSD hard drive. Two graphics cards
are used interactively, the first one is Nvidia GeForce GTX 980 4GB
GDDR5 and the second one is Nvidia GeForce GTX 480 1.5GB GDDR5.

The hardware configurations provides enough computing power for
our current purpose and future extensions like running data analysis
algorithms on the server and distributing the results to all clients.
Nvidia graphics driver 398.36 for windows 10 64 bit was used to test
the system's performance.

6.1. User interface

The user interface of this network based medical data rendering and
information sharing system is intuitive and allows the user to easily ma-
nipulate data rendering, tissue feature extraction and enhancement, data
extraction from the system's database, and share information with other
users. Fig. 5 demonstrates the system interface of WebGL based volume
rendering of 3D medical data in Firefox web browser: the right image is the
whole interface of a volume rendered whole 3D CT heart data with

surrounding tissues and bones, while the left image only includes the dis-
played 3D medical image of a clipped heart data. The client computers can
link to the Apache server with IP address 192.168.2.14 to launch the vi-
sualization software. The system's location on the main server is vr_proj/
web_render/viscomput_proj/webgl22/.

Inside the user interface, users can select the data set rendered,
interactively manipulate the transfer function editor through adjusting
the control points, i.e., green points, using mouse, and the color map-
ping function can be selected and adjusted. The manipulation of the
transfer function editor and color mapping function can interactively
change the appearance and color of the rendered 3D data, helping users
to capture the volume and feature of interest inside the rendered 3D
medical data. In addition, the number samples along each casting ray
can also be adjusted to balance the image quality and volume rendering
speed on the web browser. The users can also add lighting effect to the
rendering results, enhancing the reality of the visualized volumetric
images.

As shown in the “user input” part of Fig. 5, user can input the user
name, email address, phone number, quality ranking (between 1 and
100), feature ranking (between 1 and 100), and leave comments on the
rendered image. When the user finishes the input, he/she can click the
“submit” button to send the input information to the database on server
through internet connection. The “Submission Feedback” will display
the result of the submission, such as “success” or “failure”. The user can
also click the button “Display User Feedback Sheet”, an independent
user feedback sheet will be displayed in an independent web page with
a data table including user name, email, phone number, quality
ranking, feature ranking, user comments, and time of the input, which
is illustrated in Fig. 6.

Table 1
Hardware configurations used in the experiment for data rendering. Four systems, i.e., system i (i= 1, 2, 3, 4), are listed and used to test our software system's
performance.

System number Central processing unit (CPU) Memory DDR3(GB) Graphics card (memory)

1 Dual Intel Xeon X5690 96 GTX 480 (1.5GB)
2 Intel Core i7-3770K 32 GTX 480 (1.5GB)
3 Dual Intel Xeon X5690 96 GTX 980 (4.0GB)
4 Intel Core i7-3770K 32 GTX 980 (4.0GB)

Fig. 5. The whole interface of the WebGL2 based volume rendering of 3D medical data in Firefox web browser. User can input ranks and leave feedback to the
rendered image and extract feedback report of all the users on this image from database on the server. The left side snapshot is a rendered clipped heart data, while
the right side snapshot is a visualized whole CT heart data with bones.
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6.2. Simulated medical study

Twenty two users evaluated this web-based medical information
and data visualization system through entering rankings and comments
on the right cardiac image of Fig. 5. The users input their names, email
addresses and phone numbers (not real information used for privacy
consideration), which will be used for the second step communication
and diagnosis between users. The users ranked the image quality and
information features using the 100 point based system. When they
viewed the rendered cardiac data, users could get the patient's in-
formation from our server, which described the patient's cardiac con-
dition. Then the users explored the 3D cardiac data on web browser
through internet connection. In their comments, they added their ob-
servations and diagnostic options based on the data visualization and
exploration. The patients's heart conditions usually can be identified in
their medical images in 3D, such as coronary heart disease, unstable

angina, heart attack, heart failure, valve disease, and congenital heart
conditions. Usually, higher ranking images will give higher weight in
the users' disease diagnosis comments.

The users' input information can be extracted for medical data
analysis and distributed diagnosis. Fig. 6 illustrates part of the output
information sheet of users' input information, comments, rankings and
feedback. Through using phpMyAdmin running on the main Apache
server, the system administrator can visualize and analyze the users’
input and rankings, and can visually output the result in a graph format
demonstrated in Fig. 7, which can help disease diagnosis through col-
lecting diagnosis information from internet.

6.3. Visual evaluation

In this section the visual appearance of the volume rendered med-
ical images will be evaluated. Effectively visualizing the medical

Fig. 6. Part of the web based table generated by the system's information extraction: the user name, email address, phone number, quality ranking, feature ranking,
comments, and the time that the user input the information are displayed in the table on an independent web page.

Fig. 7. Visualization and analysis of users' ranking for a specific 3D medical data rendering on a web browser, including image quality and feature. The ranking of all
the user ids are displayed on two graph tables, the top one is the line links of users' ranking, while the bottom one is the column of the users' ranking, which will give
the analyst different perspective of the data information.
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volumes without artifacts and in a manner which allows the data to be
understood correctly are paramount considerations in medical fields.
Fig. 8 illustrates the rendered 3D medical images using our new ray-
casting algorithm running graphics hardware's fragment shader and
vertex shader using GLSL programming language. Our unique post
color attenuated voxel classification algorithm was used to build the
transfer functions, which can seamlessly work with raycasting algo-
rithm and deliver high image quality and interactive voxel classification
speed on web browsers.

Fig. 8(a) is a clipped heart CT image with bones, and the vessels and
heart are enhanced with red and green colors, while (d) is MR data of heart
inside the chest, we can see that the heart with vessels and the chest with
bones are extracted and emphasized with skin and red colors. The image (b)
and (c) are brain images, (b) is rendered CT data with relatively low image
quality displayed with skin color, while (c) is high quality MR data, which is
visualized with green color with red boundaries and enhancement. The
overall appearance of the volumes can satisfy the requirement of medical
research and normal clinical applications such as distributed diagnosis on
internet using 3D medical data exploration.

When using the post color-attenuated classification algorithm with
raycasting method running on GPU shaders of WebGL2, the medical
data features of interest can be effectively captured and enhanced. The
four images in Fig. 9 demonstrate the experimental results of visua-
lizing a dataset of heart in chest. Through adjusting the transfer func-
tion, our post color-attenuated classification algorithm can interactively
update color and opacity of a volume rendered heart data with sur-
rounding tissues and bone. Different organ structures can be visualized
and enhanced through using different opacity settings. Fig. 9(a) is the
whole heart with surrounding tissues, and (b) displayed part of bones
inside the muscles. Image (c) extracted heart organ and bone very well,
and only most of the bone is displayed (d).

Our algorithm can keep the image quality and data information
well, as shown in Fig. 10, this system can effectively extract tissue

information and keep high image quality when zoom in the rendered
image in web browser. The zoom in part (left image of Fig. 10) of the
right image of Fig. 5 clearly show the vessels with high quality, while
the right image displays the enlarged part of Fig. 9 (d), which keeps the
bone structures well with super image quality.

6.4. Rendering speed evaluation

This section will describe the experimental results of running the
software system on four hardware systems listed in Table 1 and five
datasets illustrated in Table 2. We use a Dell UltraSharp U3014 monitor

Fig. 8. The rendered 3D medical images using our new raycasting algorithm
running graphics hardware's fragment shader and vertex shader. Our post color
attenuated voxel classification algorithm and lighting effect were used to de-
liver realistic high image quality and interactive classification speed. (For in-
terpretation of the references to color in this figure legend, the reader is referred
to the Web version of this article.)

Fig. 9. Different organ structures can be effectively visualized and enhanced
using our post color-attenuated classification algorithm: from the whole heart
with surrounding tissues (a), to image with heart extracted from surrounding
tissues with different extent described in the images (b) and (c) respectively,
and to only most of the bone being displayed (d). (For interpretation of the
references to color in this figure legend, the reader is referred to the Web
version of this article.)

Fig. 10. Volume part captured from the zoom in rendered images: the left one is
a zoom in part of the right image of Fig. 5, while the right one is the zoom in
part of Fig. 9 (d). The zoomed in images can keep in the same high data ren-
dering quality as the original image and keep all the data details.
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with resolution 2560×1600 to display all these datasets in full screen.
Mozilla Firefox Quantum 61.01 64-bit and Google Chrome Version 67.0
(Official Build) (64-bit) are employed to run the 3D datasets on host and
client computers. To calculate the rendering speed, for each hardware
system, we use the average rendering speed of every 5 seconds as one

test for each dataset. To get stable test results, we conduct more than 40
tests for every dataset and hardware system in our experiment, and use
the tests from 21 to 40 to analyze the system's performance.

The original raw datasets are pressed using the method described in
subsection 3.4.1, extracting the 2D images from the 3D raw data and
then aligning the 2D slices in a big 2D montage image with one or
multiple columns. The distance between the 2D slices are set based on
the information of the raw data or meta data. The 2D montage images
are then loaded into the web browser to create 3D textures for ray-
casting computation on GPU's fragment and vertex shaders, so 3D
textures can be generated and used during the volume rendering pro-
cess.

Table 3 shows the system's performance of rendering the five da-
tasets listed in Table 1 using the four hardware systems described in
Table 2. From this table, we can see that using the different central
processing unit (CPU) and main memory have less impact on the ren-
dering performance than using different graphics processing unit
(GPU), i.e., different generation of graphics cards.

Table 2
Datasets used in the rendering experiment, including data number, visualized
image in the figures of subsections 6.1 and 6.3, number of slices, original data
size of raw data format in megabyte (MB), and the extracted data size in MB.

Data
number

Visualized
figure

Number of
slices

Original data
size

Extracted data
size

1 Fig. 9 84 187 1.78
2 Fig. 5 (right) 280 21.4 1.52
3 Fig. 8 (a) 100 64 3.43
4 Fig. 8 (c) 176 22 1.71
5 Fig. 8 (d) 122 72.5 2.80

Table 3
System rendering performance of five medical datasets described in subsection 6.1 and 6.3. Four different hardware configurations and Firefox and Chrome web
browsers are used in the experiment. Twenty average speeds are selected, and the mean speed of these 20 recorded tests with standard deviation (SD) are also
calculated.

Hardware Browser Data Data rendering performance tests: frames per second (fps) Static analysis

system number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Mean ± SD

System 1 Firefox 1 60 32 59 54 26 49 59 55 58 20 56 57 54 54 56 41 39 56 55 58 49.9 ± 11.8
2 28 9 35 31 34 34 35 29 34 34 35 31 34 34 34 30 34 33 35 32 31.8 ± 5.7
3 47 18 44 19 46 53 43 17 41 53 42 42 47 51 41 39 41 53 42 42 41.1 ± 10.9
4 40 47 49 40 9 40 42 49 39 37 43 53 39 40 43 5 40 39 6 40 37.0 ± 13.7
5 43 44 38 59 43 44 43 59 43 45 43 59 42 43 43 59 42 45 44 59 47.0 ± 7.2

Chrome 1 40 57 55 59 60 57 57 59 48 57 57 47 40 57 45 59 60 53 57 59 54.1 ± 6.5
2 34 35 32 39 36 36 35 39 32 36 37 40 36 35 33 40 36 36 37 40 36.2 ± 2.5
3 52 42 46 52 46 42 46 52 53 42 42 52 52 42 46 52 39 41 46 52 46.9 ± 4.8
4 43 42 47 51 43 39 51 51 43 42 51 51 43 42 47 51 42 42 45 43 45.5 ± 4.1
5 38 33 49 22 42 45 54 47 42 45 54 51 43 44 54 50 42 45 54 49 45.1 ± 7.9

System 2 Firefox 1 45 55 30 52 43 46 55 51 52 31 54 46 57 50 58 46 57 50 42 21 47.1 ± 9.9
2 34 30 33 31 34 29 34 21 33 32 33 32 34 31 33 32 33 30 34 31 31.7 ± 2.9
3 38 43 38 46 40 47 37 37 39 34 36 47 39 46 38 18 28 38 13 39 37.1 ± 8.7
4 42 32 42 46 42 45 43 30 21 19 49 41 23 41 42 41 48 38 44 19 37.4 ± 9.8
5 51 57 16 47 53 34 41 46 53 57 41 47 53 31 47 46 20 39 45 60 44.2 ± 11.7

Chrome 1 45 49 49 45 49 49 49 44 49 49 46 42 42 49 29 49 49 45 49 49 46.3 ± 4.8
2 42 42 43 43 43 37 43 42 38 40 43 38 38 43 42 40 40 42 39 42 41.0 ± 2.1
3 42 46 39 46 44 44 44 46 46 45 46 40 43 45 39 46 45 45 44 43 43.9 ± 2.3
4 44 41 43 46 44 42 44 48 40 53 41 53 37 53 44 42 44 50 44 43 44.8 ± 4.5
5 17 46 55 51 33 38 48 52 43 46 54 49 44 46 55 52 44 46 40 52 45.6 ± 8.9

System 3 Firefox 1 60 60 60 60 54 60 60 60 60 60 48 53 60 60 60 60 50 53 60 60 57.9 ± 3.9
2 60 60 60 59 57 60 60 60 60 58 60 59 60 60 60 60 59 35 60 60 58.4 ± 5.6
3 57 60 60 60 46 60 60 60 60 60 40 60 60 60 60 49 55 60 60 60 57.6 ± 5.7
4 52 60 60 60 60 59 57 60 60 60 60 60 60 60 60 59 46 60 60 60 58.7 ± 3.5
5 60 19 49 60 55 60 51 60 60 60 37 59 51 59 60 60 54 59 60 58 54.6 ± 10.2

Chrome 1 60 60 58 60 60 50 57 60 60 60 60 46 59 60 60 60 60 60 60 60 58.5 ± 3.7
2 60 57 56 60 60 60 60 54 57 48 45 60 60 57 60 55 60 60 60 60 57.5 ± 4.2
3 60 60 52 59 60 60 60 54 60 60 60 59 57 60 58 60 60 58 60 60 58.9 ± 2.2
4 60 60 52 52 60 60 60 60 52 53 60 60 60 60 58 60 60 60 60 54 58.1 ± 3.3
5 60 60 55 56 57 60 60 60 56 58 55 45 60 60 60 60 60 49 60 60 57.6 ± 4.1

System 4 Firefox 1 60 60 60 60 53 60 60 60 60 60 60 60 59 57 60 60 60 60 57 60 59.3 ± 1.8
2 58 60 57 60 60 60 60 58 58 57 60 60 60 60 60 59 60 35 47 60 57.5 ± 6.1
3 60 54 60 55 60 60 58 60 60 60 60 49 59 60 59 59 60 60 60 60 58.7 ± 2.8
4 46 48 60 60 60 55 60 60 60 58 57 60 60 24 48 60 59 52 60 60 55.4 ± 8.7
5 56 60 56 58 60 60 60 36 60 60 58 60 60 60 24 50 60 51 60 60 55.5 ± 9.4

Chrome 1 60 60 50 60 60 60 60 60 60 60 55 35 60 60 60 60 59 60 60 45 57.2 ± 6.6
2 60 60 60 60 59 60 57 57 60 60 60 60 55 60 57 60 60 60 59 58 59.1 ± 1.5
3 60 60 58 60 60 59 60 60 60 60 58 60 60 58 57 56 60 60 60 60 59.3 ± 1.2
4 60 60 60 58 58 60 60 60 58 60 60 60 60 55 60 60 60 53 60 60 59.1 ± 1.9
5 57 60 60 60 60 57 60 49 60 60 60 60 53 51 56 28 45 60 60 60 55.8 ± 7.9
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When using GTX 480 graphics card and Firefox web browser, the system
1, i.e., dual Intel Xeon X5690 with 96GB memory can deliver mean ren-
dering speed with standard deviation (SD) 41.4 ± 9.9 frames per second
(fps), while the system 2, i.e., Intel i7-3770K with 32GB memory can
achieve 39.5 ± 8.6. When using the same hardware configuration of sys-
tems 1 and 2, the speeds of Chrome are 45.6 ± 5.2 fps and 44.3 ± 4.5 fps
respectively. For both web browsers, the dual Intel Xeon can only increase
∼1 fps average speed with similar standard deviations. However, Chrome
browser can deliver ∼11% better performance when using these two sys-
tems than Firefox, and the speed standard deviation when using Chrome is
∼9% smaller than that of using Firefox, which means that when using the
same hardware configurations, Chrome can deliver better unified rendering
performance than that of Firefox.

At the same time, when using GTX 980 graphics card with the same
above hardware configure, i.e., systems 3 and 4 listed in Table 1, there
is great rendering speed enhancement, i.e., Firefox web browser can
deliver rendering speeds of 57.4 ± 5.8 fps and 57.3 ± 5.8 fps re-
spectively, which are 38.65% and 45.06% performance enhancement,
and the average speed standard deviation deceases 37.3%. The web
browser Chrome's corresponding performance are 58.1 ± 3.5 fps and
58.1 ± 3.8 fps, which are 27.41% and 31.15% speed increase, and the
average performance standard deviation deceases 31.96%. We can see
that both browsers have the similar performance patten, i.e, delivering
the similar performance when using the same GPU and different CPU
and main memory, and we can also notice that Chrome can achieve a
little bit better performance of ∼1 fps with less variation of ∼2 fps. The
performance advantage of Chrome is much less when using newer
graphics card than that of employing older graphics hardware. The
comparison results are visualized in the left figure in Fig. 12.

As shown in Table 3 and Fig. 11, when using the older graphics
card, i.e., GTX 480, the browser Chrome can deliver better performance
than Firefox in the 20 average speed tests and their speed variations are
almost the same. However, when using the newer graphics card, i.e.,
GTX 980, the average speed performance of the two web browsers is

similar, but the speed average deviation of Chrome is smaller than that
of Firefox. We also notice that in the 20 average speed tests, some tests
have large speed changes, i.e., during the rendering process, at some
time points, the browser's rendering speed is much slower than the rest.
Based on the fact that the speed variance when using GTX 980 is much
smaller than that of using GTX 480, we believe that the reason of the
big speed variances maybe the issues of graphics driver and GPU's
WebGL2 support and compatibility. We also believe that new graphics
drivers and next generation graphics hardware may address this issue
effectively. For both web browsers, when using GTX 980, their per-
formance difference is smaller than that of using GTX 480 graphics
card, but the speed variance of Chrome is smaller than that of Firefox
when using the first two system as shown in Fig. 11. This speed variance
trend can also be demonstrated in the right figure of Fig. 12.

As demonstrated in Fig. 11, when using newer graphics hardware,
the average rendering speed is higher than 55 fps constantly in all of the
20 tests of our experiment for both web browsers and CPU hardware
configurations, i.e., systems 3 and 4 of Table 1. For Firefox, the speed
variance range is 1.8∼10.2 fps and the average speed variance is ∼5.8
fps, while the speed variance range is 1.2∼7.9 fps for the Chrome web
browser and the average speed variance is ∼3.7 fps, which is ∼56.8%
better than that of using Firefox. Therefore, we can see that the per-
formance of Chrome is more uniform than that of Firefox. However,
both browsers can achieve real time performance when using the newer
graphics hardware, i.e., GTX 980. We can conclude that when using
current generation graphics card and commonly available web brow-
sers, our system can deliver real time rendering speed of average size
medical datasets. We can also conclude that the system's performance
more depends on GPU than CPU and system's memory. Also, the
Chrome browser has better WebGL2 based graphics rendering perfor-
mance than that of Firefox.

In the performance testing experiment, we use a network with
average 30 Mbps download speed and 2.5 Mbps download speed, we
find that the data download from the Apache server to our client system

Fig. 11. Rendering performance calculated with frame per second (fps) using the five datasets listed in Tables 2 and 3. Web browsers Firefox and Chrome are used in
the experiment. Four hardware configurations are employed in the test as demonstrated in the four figures titled with System i (i= 1, 2, 3, 4) respectively.
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is usually less than 2 seconds. All the messages of user input can be
uploaded to the Apache server and shared with other users in the net-
work in real time. The Apache sever is used to store our software system
and datasets, any users in the network can launch the system and use
the medical data for feature detection and data exploration. Also, users
can input their feedbacks to the Apache server and all the comments
can be visualized in a separate web page for information sharing.
Furthermore, the data rendering speed relies on the client computer
rather than the host server that runs Apache. We have tested different
hardware system as a web server, such as the described four hardware
systems listed in Table 1 and a Dell Laptop XPS 15 9550, and find that
the difference of the system's performance is very similar.

7. Results and discussion

In this paper, we presented a network based collaborative software
platform for exploring medical data and sharing information. In this
system, clinical users can visualize medical data in high quality and real
time on modern web browsers through internet and explore medical
data interactively. The users can also analyze medical data on web
server dynamically and extract targeted clinical information for dis-
tributed disease diagnosis and treatment.

Taking advantage the 3D texture support of WebGL2, we developed a
new raycasting algorithm on GPU vertex and fragment shaders, in which an
efficient voxel classification method was integrated in data sampling and
color mapping process for high-quality medical data visualization and ma-
nipulation on web. The high image quality of data rendering results are
demonstrated in Figs. 8 and 9, and our visualized can keep high image
quality when being zoomed in to see image details 10. In this HTML5 and
WebGL based medical data rendering framework, volume data was first
downloaded to the local client computer from the server, where the data
was then transformed into textures representing the volume and rendered
on screen. As shown in Table 3, the normal size medical data can be ren-
dered in around 60 frame per second using commonly available hardware
and internet speed, and the performance standard deviation of our system is
very good (illustrated in Fig. 11). In addition, as demonstrated in Fig. 12,
this software platform can maintain high performance on various modern
browsers, such as Firefox and Chrome. Therefore, we can conclude that the
developed software system can satisfy the requirements of common medical
data exploration and visualization in clinical research and applications such
as distributed disease diagnosis.

As illustrated in Fig. 5, our network based web interface allowed
remote access, visualization and manipulation of medical data and
sharing information through a dynamic web page, where Apache HTTP
Web Server, MySQL database, HTML5, and the server scripting lan-
guage PHP were utilized to achieve these functions. The users can

interactively update server database and the system administer can
grant users with different right for database access, manipulation and
data extraction. The users' feedback and input can be analyzed and
visualized in a web browser interface of phpMyAdmin, and an example
result is illustrated in Fig. 7. As demonstrated in Fig. 6, our system
enables users at arbitrary locations to explore and analyze medical data,
leave comments, update sever's database, as well as extract data from
database and display users' information and feedback.

The online nature of our software platform makes it feasible for users
spread across the globe work together to explore medical data in real time
and interactively share information. This collaborative application will assist
users by providing them a “common ground” in the shared workspace. In
our platform, users do not have to download and install additional software
packages or plug-ins to start data exploration and analysis. Furthermore,
real-time high-quality data rendering can be linked to server's database,
providing users with intelligent feedback and capabilities for data man-
agement and information sharing. For exploring large medical data, we can
use software tools such as Microsoft OneDrive, Google Drive or Dropbox to
synchronize the data between client and server computers, and then load
data from the client computer directly into the software platform, which
will decrease the burden of data transmission on network and improve the
performance of the system.

In the next step of this project, some advanced features such as in-
tegrating doctors’ marks, notes, data mining, machine learning and data
segmentation results into this software framework, and display medical data
in multiple windows. The synchronization of data navigation will also be
developed and included into the system. Currently, due to the data storage
limitation of WebGL2, our system cannot load very large medical data for
rendering. We believe that this limitation will be addressed successfully in
the next version of WebGL and HTML5. We plan to collaborate with local
hospitals in the near future and will recruit additional medical users to test
and evaluate the system in a real world clinical environment. In our future
work, we also will add quantitative rendering quality evaluation when we
get more clinical data sets through collaborating with hospitals and medical
centers. This network based system can be used as an efficient platform for
medical data exploration and information sharing, providing medical users
with a solid basis for collaborative disease diagnosis and clinical research.
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