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used for building heating and air conditioning in
recent years.5,6 Related studies found this
method as feasible for recovering heat from
urban sewage, dishwasher disposals, and waste
bathwater with economic benefits.7–9

Researchers have also noticed the challenges in
collecting high-temperature wastewater, filtering
large-sized particles, and cleaning fouling.8,10

Bio-fouling, such as heterotrophic bacteria,
microbial nutrients, and suspended substances,11

can significantly reduce heat transfer efficiency.12

Efforts have been made to experimentally exam-
ine the performance of WWSHP in various con-
ditions. For example, Li et al.2 applied WWSHP
to generate heat for desalination, and found its
coefficients of performance (COP) to be 3–11.

Numerical methods have also been applied to
predict the performance of heat pump devices.
In general, three modeling approaches have been
used, i.e., the dynamic model, empirical model,
and artificial neural network (ANN) model. To
use dynamic models, a well-established dynamic
theory about each part of the heat pump is
required. However, the mechanism of fouling
caused by waste water in a WWSHP is still not
explicitly understood, which presents a technical
hurdle in simulating the gradually deteriorating
WWSHP performance. Likewise, fouling also
invalidates the application of empirical models.
As noted, there are six mechanisms involved in
the waterside fouling, i.e., scaling, particulate,
chemical reaction, corrosion, bio-fouling, and
freezing.13 In a WWSHP, fouling on the surface
of the heat exchanger is a complex issue that
may involve multiple mechanisms due to the
tangled driving factors. Besides, after cleaning,
the fouling growth trend may be different from
the previous cycle, which makes it difficult to
develop an empirical model. The ANN has an
excellent approximation and fast processing cap-
acity14,15 and can dynamically predict the per-
formance of the WWSHP based on its current
and past operating conditions. Therefore, the
ANN model was selected to predict the perform-
ance of the WWSHP in this study.

Previous studies have employed the ANN
technique to estimate potential outputs of

refrigerant compressors,16 evaporative conden-
sers,17 heat exchangers,18 and cooling coils,19

with successful outcomes. Commonly used
ANN models are back propagation (BP),20

radial basis function (RBF),21 the nonlinear
autoregressive model with exogenous input
(NARX),22 and the adaptive neuron fuzzy inter-
face systems (ANFIS).23 Esen et al.24 used the
BP model to simulate the performance of a hori-
zontal ground-coupled heat pump and achieved
excellent results in terms of 1% root-mean-
squared error (RMSE), 99.999% of absolute
fraction of variance (R2), and 28.62% of coeffi-
cient of variation (COV); Balcilar et al. applied
the RBF model to determine the heat transfer
coefficient and pressure drop of R134a inside of
the vertical smooth tubes, and found that the
predicted results were close to the experimen-
tally measured results with �5% deviations for
all tested conditions;25 Hayati et al.26 worked on
the ANFIS model to predict the heat transfer
rate of a wire-on-tube type heat exchanger,
and noted that the predicted values agreed
with the actual values from the experiments
with a mean relative error less than 2.55%.
These studies demonstrated the feasibility of
the ANN models for simulating heat pump per-
formance, and also indicated that the applica-
tion of the ANN models may depend on the
type of heat source/sink and the structure of
the tested devices. Selection of the ANN
models, however, was addressed in previous stu-
dies, although it was generally believed that high
accuracy, fast speed, and limited training data
requirement were preferred.

Our previous study of the WWSHP using
waste bathwater as a heat source has shown
that its performance (heat transfer capacity,
COP) was a function of a variety of factors,
including inlet wastewater flowrate and tem-
perature, inlet refrigerant flowrate and tempera-
ture, build-up of fouling, and so on. The
involvement of multi-variations inspired us to
consider using ANN to simulate the heat recov-
ery process. Also, given the fact that factors
such as build-up of fouling are often non-
linear,11,27,28 ANN would be an effective tool

Introduction

A wastewater source heat pump (WWSHP) is considered as an environmentally friendly and 
energy-saving device,1–4 and has been widely



in this case.29 To our best knowledge, no such
test has been carried out. Therefore, we
hypothesize that the performance of the
WWSHP system depends on its current and
past performance. To test this hypothesis, a
pilot-scale WWSHP system was built using
waste bathwater as feedstock and was operated
for 30 days. Measured results taken during a
certain period of time were employed as train-
ing data so that the ANN model could predict
the system performance on the following days.
The objectives of this study are composed of:
(i) examining the performance of the WWSHP
using waste bathwater as a heat source; (ii)
testing the feasibility of the ANN models in
predicting the performance of the WWSHP
system; three ANN models were selected,
including BP, RBF, and NARX; and (iii) pre-
dicting performance of the WWSHP using the
most appropriate ANN model.

Materials and methods

Experimental set-up

The pilot-scale WWSHP system was composed
of three units: a wastewater collection and stor-
age unit, a heat pump, and a fresh water heating
unit (Figure 1). The wastewater tank (WWT)
measured 0.9m (L)� 0.7m (W)� 1.2m (H),

inside which a wastewater pump (WP1) circu-
lated wastewater into the heat pump. Heat was
recovered and then was used to warm up fresh
bathwater that was stored in a fresh water tank
(FWT). After extraction of the heat, the waste-
water was returned to the WWT. When tempera-
ture T6 was lower than 26�C, the wastewater was
drained off from the bottom of the WWT by the
wastewater pump (WP2). Two-level sensors
(LV801, OMEGA, Shanghai, China) were
installed on the WWT, and were used to main-
tain the wastewater in the WWT at an appropri-
ate level by regulating the solenoid valves (SV).
Wastewater temperature inside of the WWT was
measured along its centerline, 1080mm (T4),
750mm (T5), and 50mm (T6) above the bottom
using platinum-resistance thermometers (range:
�50 to 500�C; accuracy: �0.1�C). Flowrates of
the two WPs were measured using flow meters
(range: 0.1–11.8m3/h; accuracy: �1.5%; Omega,
FTB8010B-PT, Stamford, CT, USA). The fresh
water at the inlet of the FWT had a temperature
of about 26�C (T3), and was warmed up in the
FWT. When the temperature (T2) reached a high
limit (THL), the hot fresh water was drained off
from the top of the FWT, and the cool fresh
water was compensated from the bottom of the
FWT. The selected shell-and-tube evaporator
had a de-fouling function that was des-
cribed in detail in a previous study.12

Figure 1. Schematic design of the experimental set-up: FWT – fresh water tank; PC – plate condenser; EX –

expansion valve; CO – compressors; EV – evaporator; WP1 – wastewater pump 1; WP2 – wastewater pump 2;

WWT – wastewater tank; SV – solenoid valve; LS – level sensor; FM – flowrate meter; T – temperature sensor;

P – pressure sensor.



Electric consumption was recorded continuously
using a current meter (range: 0–20A, accuracy:
�0.5%, YOKOGAWA-CW120, Chelmsford
Essex, England) and a voltage meter (range:
0–400, accuracy: �0.5%, YOKOGAWA-
CW120, Chelmsford Essex, England). Data
were recorded every 30 s using a data logger
(Model: SWP-NSP-M, Changhui, Hongkong
SAR). Specifications of the WWSHP are given
in Table 1.

Experimental procedure and performance
evaluation

The system was designed to provide warm
bathwater with the THL designated to be
45�C, 50�C, or 55�C. For each condition, five
heating processes were conducted and each
process took about 30min. One heating pro-
cess refers to the procedure of warming the
fresh bathwater in the FWT to the desired
temperature. The system was operated for
30 days.

Six operating parameters were monitored,
including operating time, inlet wastewater tem-
perature, inlet freshwater temperature, outlet
freshwater temperature, and flowrate of WP1
and WP2. Then, the system COP and the

evaporator heat transfer capacity were calcu-
lated using equations (1) and (2).

COP ¼
Qc

W
¼

Vc�0c0 Tc,o � Tc,i

� �
Wc þWp

ð1Þ

Qe ¼ Vw�wCw Te,i � Te,o

� �
ð2Þ

where Qc and Qe: heat transfer capacity of the
condenser and the evaporator, respectively; W:
total system power consumption, include Wc

(two compressors) and Wp (one freshwater
pump and two WPs); Vc: condenser wastewater
flowrate; Vw: evaporator wastewater flowrate; �0
and c0: density and specific heat of freshwater,
respectively; �w and cw: density and specific heat
of wastewater, respectively; Tc,i and Tc,o: fresh-
water temperature at the inlet and outlet of the
condenser; Te,i and Te,o: wastewater temperature
at the inlet and outlet of the evaporator.

The daily averaged results of the COP,
heat transfer capacity of evaporator, and
refrigerant evaporating temperature were used
for the ANN simulation and are reported in
this paper.

Artificial neural network analysis

Three ANN models, including the BP, RBF,
and NARX methods, were examined in this
study with the purpose of testing their feasibil-
ities in predicting the performance of the
WWSHP system. Descriptions about these
three networks can be found in many previous
studies;21,29,30 therefore, they were only briefly
introduced here. As a multi-layer feed-forward
neural network, the BP model has an input
layer, an output layer, and one or more
hidden layers. A schematic form of an artificial
neuron model is shown in Figure 2(a). In multi-
layer feed-forward networks, neurons are
arranged in layers and there is a connection
among the neurons in neighboring layers.
However, the second model RBF (Figure 2(b))
is embedded in a two-layer neural network,
where each hidden layer implements a radial
activated function. The inputs of an RBF

Table 1. Wastewater source heat pump specifications.

Component Configurations

Refrigerant R134a

Expansion valve Thermal expansion valve

Compressor Current: 5.3–5.6 A

AC voltage: 220–240 V

Hermetic piston

Condenser Heat transfer area: 0.032 m2/piece

Plate number: 36

Max. operating pressure: 3.0 MPa

Braze, plate heat exchanger

Evaporator Heat transfer area: 2.38 m2

Shell length: 1.1 m

Shell diameter: 0.22 m

Has a de-fouling function



network are nonlinear while its outputs are
linear and implement a weight sum of hidden
layer outputs. The third model NARX is a
recurrent dynamic network, with feedback con-
nections enclosing several layers of the network.
This model relates the current value of a time
series which one would like to explain or predict
to both past values of the same series and cur-
rent and past values of the driving (exogenous)
series. A diagram of the resulting network of
NARX is shown in Figure 2(c).

Experimental data were used as the training
data to train these three models, respectively. In
order to find out which ANN model could
achieve an acceptable accuracy based on less
training data, experimental data taken on differ-
ent continuous days were used as the training
data for each ANN model. In each training pro-
cess, all the training data were divided into three
contiguous sets. In all, 70% of the data was used
as the first set for the training, 15% of the data
was used as the second set for validation and the
remaining 15% was used as the third set for
testing. This training model was used to predict
the system performance (evaporating tempera-
ture, heat transfer capacity, COP) for the follow-
ing three days. The predicted results were then
compared to the measured data of those three
days. To compare the feasibility of the three
models in this report, only the comparison
results (between the predicted data and the
experimental data taken on the following three
days) based on the training experimental data

taken on first continuous 18 days (means from
the 1st day to the 18th day), first 21 days, first
24 days, and first 27 days were presented select-
ively, which represents the comparison results
distinctly.

For comparison purposes, the daily system
performance under the three working conditions
(THL¼ 45�C, 50�C, and 55�C) was combined
together; thus, for each output operating param-
eter, nine data (three conditions/day� three
days) were obtained. Paired Student’s t tests
were conducted to compare the predicted data
and the measured data. The RMSE and COV of
the predicted data were calculated using the fol-
lowing two equations30

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 Pi �Mið Þ

2

n

s
ð3Þ

COV ¼
RMSE

�M
ð4Þ

where Pi: predicted value of data i;Mi: measured
value of data i; n: number of data, equal to 9; �M:
mean value of measured data.

If the COV of all three operating parameters
(evaporating temperature, heat transfer cap-
acity, and COP) was lower than 0.02, the simu-
lated results were considered acceptable;
otherwise, the simulation requires improvement,
and more training data (measured on more
days) should be applied.

Figure 2. Network models. (a) Back propagation artificial neuron (BP); (b) Radial basis function (RBF); and (c)

nonlinear autoregressive model with exogenous input (NARX).



Uncertainty analysis

Parameter uncertainty was estimated accord-
ing to Holman’s method31 as shown in
equation (5)

Wr¼
@R

@x1
w1

� �2

þ
@R

@x2
w2

� �2

þ���þ
@R

@xn
wn

� �2
" #0:5

ð5Þ

where Wr: total uncertainty; R: function of
interested, R¼ f(x1, x2 , . . . , xn); xi: independent
variable; wi: uncertainty of each independent
variable, which was obtained based on sensor
resolution and accuracy.

The maximum uncertainty of T1, T3, T4, WP1
flowrate, WP2 flowrate, evaporating tempera-
ture, evaporator heat transfer capacity, and

system COP was 0.3%, 0.4%, 0.4%, 2%, 2%,
1.2%, 4.2%, and 5.6%, respectively.

Results and discussion

System performance

Warm freshwater was produced at a desired
temperature with minor fluctuations in all
three working conditions during the 30-day
operation (Figure 3(a)), showing the reliability
of the WWSHP system. The outlet freshwater
temperature, T1, was 0–1.5�C higher than the
designated THL, mainly due to the vertical tem-
perature gradient in the FWT with a slightly
higher temperature in the upper layer compared
to the lower layer. Note that the stable function
of the system was achieved with the supply

T 1, 
o C

40

45

50

55

60

Operation time, day
0 5 10 15 20 25 30

C
O

P

2.0

2.5

3.0

3.5

H
ea

t t
ra

ns
. c

ap
., 

kW

5

6

7

8

(a)

(b)

(c)
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of �29�C wastewater and �26.7�C freshwater
(Table 2). The wastewater circulating rate in
the evaporator was 4–5 times higher than the
wastewater drain off rate.

The heat transfer capacity of evaporator
gradually dropped from about 8 kW to 6 kW
in all three tests. The initial COP was 3.5 at
THL of 45�C, but decreased during the test and
became relatively stable on days 25–30 at 2.6.
Similar trends were observed for the THL of
50�C and 55�C. The lowest COP was 2.3. The
primary reason for these decreases was the
build-up of fouling on the surface of the heat
exchangers which reduced the performance of
the evaporator. A higher COP and a lower eva-
porating temperature were observed when the
THL was set to 45�C, then followed by 50�C
and 55�C. As shown in Figure 3(b) and (c), the
trends were not linear, which favors application
of the ANN models.

Feasibility of ANNs

Statistical analysis showed that the predicted
results were not significantly different from the
measured data with p< 0.05 for all cases. For all
three models and their three output parameters,
the results showed that the differences between
the predicted data and the measured data were
generally large using 18-day training data; the
differences were reduced if more training data
(measured on more days) were employed, indi-
cating that using ANN depends on the amount
of available training data (Figure 4) while users
would like to employ ANN models that require
a small amount of training data but have accept-
able predicted results.

With regard to the evaporating temperature,
the BP- and NARX-predicted results increased
with the designated THL, while mixed trends
were observed for the RBF-predicted results.
The difference between the predicted data and
the measured data was dramatically reduced
when compared to the results using 18-day and
21-day training data (Figure 4). RMSE and
COV were significantly decreased, and the
COV of BP and NARX predicted results was
lower than 0.02 using the 21-day training data
(Table 3). However, using 24-day training data,
did not improve the prediction accuracy, and
only the NARX method achieved acceptable
results (COV< 0.02). With 27-day training
data, both BP- and NARX-predicted results
were acceptable, and the COV of RBF-predicted
results was very close to 0.02.

With regard to the heat transfer capacity, the
RBF-predicted results were very active using
18-day training data, although the trend of mea-
sured data was relatively flat (Figure 4(a)); the
simulation quality was improved by using more
training data taken on more days. However, the
COV (0.067) of the RBF method was still much
higher than 0.02 when the 27-day training data
were used (Table 3). The BP and NARX results
were much closer to the measured data com-
pared to the RBF-predicted results. The COV
of BP and NARX became lower than 0.02 if
27-day and 24-day training data were used,
respectively.

With regard to the system COP, it decreased
with increased THL, and the predicted data were
all quite close to the measured data, although
RBF had a few points that were significantly
shifted (Figure 4). The RBF-predicted COP

Table 2. System performance at three operating conditions.

THL
�C T3

�C T4
�C Evap. temp., �C WP1 flowrate L/s WP2 flowrate L/s

45 26.63� 0.37 28.90� 0.39 9.59� 0.62 1.28� 0.04 0.28� 0.05

50 26.70� 0.51 29.07� 0.71 10.12� 0.71 1.29� 0.04 0.30� 0.06

55 26.72� 0.40 29.05� 0.46 10.83� 0.98 1.29� 0.04 0.28� 0.05

WP: wastewater pump.
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using 24-day training data was lower than the
measured data for all nine points, but was higher
using 21-day and 27-day training data, indicat-
ing that this method was not reliable. Both BP
and NARX methods achieved acceptable COV
results using 24-day and 27-day training data.

Combining the above observations together,
the NARX method displayed the highest predic-
tion accuracy while RBF showed the lowest. The
COV of the NARX method-predicted results
was lower than 0.02 using 24-day training data
and further decreased when using 27-day train-
ing data for all three system outputs (Table 3).
The COV of the BP-predicted COP result was
lower than 0.02 using 24-day training data, but
not for evaporating temperature or heat transfer
capacity; they achieved this goal when 27-day
training data were used, indicating more training
data are needed to obtain acceptable predicted
results (Table 3). However, the COV of the
RBF-predicted results was still higher than
0.02 for all three system outputs using 27-day
training data, although their COV values

decreased when compared to the results when
less training data were applied. A group of train-
ing data taken on more than 27 days is needed
for the RBF method.

Stability of WWSHP

The performance of the WWSHP on following
days (from the 31st to 42nd day) was further
predicted using the NARX model. The perform-
ance on continuous three days (for instance, the
31st to 33rd day, or the 34th to 36th day) was
predicted as a group and the experimental/pre-
dicted data of previous 24 days (from the 7th to
30th day for the prediction on the 31st to33rd
day, from the 10th to 33rd day for the prediction
on the 34th to 36th day) were used as the train-
ing data. The results are shown in Figure 5; it
indicates that the evaporating temperature was
slightly decreased and stabilized at 8.7 and 9.0�C
for the THL of 45�C and 50�C, respectively,
while the evaporating temperature was relatively
constant (9.7�C) at the THL of 55�C. Similar

Table 3. RMSE and COV results.

Days Model

Evaporating temp. Heat transfer capacity COP

RMSE COV RMSE COV RMSE COV

18 BP 0.400 0.042 0.371 0.059 0.063 0.024

RBF 0.391 0.041 0.955 0.152 0.100 0.038

NARX 0.232 0.024 0.196 0.031 0.070 0.027

BP 0.164 0.017a 0.210 0.034 0.074 0.0298

21 RBF 0.278 0.029 0.455 0.074 0.166 0.066

24 NARX 0.146 0.016a 0.218 0.036 0.071 0.028

BP 0.244 0.026 0.146 0.025 0.034 0.014a

RBF 0.340 0.037 0.551 0.093 0.218 0.088

NARX 0.179 0.019a 0.115 0.019a 0.044 0.018a

27 BP 0.067 0.007a 0.112 0.019a 0.035 0.014a

RBF 0.205 0.022 0.395 0.067 0.114 0.046

NARX 0.131 0.014a 0.060 0.010a 0.027 0.011a

aThe simulation result is acceptable.

RMSE: root-mean-square error; BP: back propagation; RBF: radial basis function; NARX: the nonlinear autoregressive model with

exogenous input; COV: coefficient of variation.



phenomena were observed for the heat transfer
capacity and the COP. Note that the heat trans-
fer capacity decreased 3–5% before being stabi-
lized for the THL of 45�C and 50�C. Given the
reliability of the NARX in predicting the
WWSHP performance (Table 3), it is reasonable
to consider the predicted results as the

performance in the actual tests without extra
artificial fouling cleaning. Compared to the ini-
tial system performance, the values of the three
operating parameters dropped by 15–30%, as
shown in Table 4, indicating a necessity for
system cleaning and refreshing.

Conclusions

AWWSHP with a de-fouling function was oper-
ated for 30 days. The system successfully recov-
ered heat from waste bathwater and warmed up
fresh bathwater to the desired 45�C, 50�C, and
55�C with a COP of 2.3–3.5. Three ANN
models, including BP, NARX, and RBF, were
used to predict the performance of the WWSHP
in terms of evaporating temperature, heat trans-
fer capacity, and COP. Statistical analysis results
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Table 4. Percentage decreases of three output

parameters.

THL,
�C Evap. temp. Heat trans. cap. COP

45 15.2 26.8 22.4

50 20.5 30.2 19.0

55 25.4 29.8 19.8

COP: coefficients of performance.



showed that the NARX model can accurately
predict the system performance using at least
24-day training data, the BP model can achieve
this goal by using at least 27-day training data,
while the RBF model was not able to accurately
predict system performance. Thus, the NARX
model was selected to continue predicting the
WWSHP performance. The results indicated
that the performance of the WWSHP system
would be stabilized within 42 days. The decrease
of the system performance suggested that foul-
ing cleaning is necessary for the WWSHPs.
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