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Accessing and Assessing Components of Elementary and Middle 
School Students’ Mathematical Disposition Through Metaphors
Emily Deala, Edward Mooneya, Amanda Cullena, Allison Kroeschb, Neet Priya Bajwaa, 
Julien Corvena, and Beth MacDonaldc

aMathematics Department, Illinois State University, Normal, IL, USA; bSpecial Education Department, Illinois State 
University, Normal, IL, USA; cSchool of Teaching and Learning, Illinois State University, Normal, IL, USA

ABSTRACT
This study examined student-generated metaphors comparing food to math 
as a means of accessing and assessing components of prekindergarten 
through Grade 8 students’ (N = 306) mathematical disposition. Previous 
research provided insight into predominantly affective components of 
older students’ mathematical disposition (i.e. Grade 4 through college). 
However, we extend these findings to include nonaffective components 
and younger students. Our study highlights the value in conceptualizing 
mathematical disposition as the sum of three mental functions, namely 
cognitive (e.g., mental processes such as reasoning), affective (e.g., attitudes, 
feelings, beliefs about mathematics or oneself as a learner), and conative (e. 
g., effort, grit, or level of challenge), and whose components may span 
multiple categories of these mental functions. Our study also extends the 
research on mathematical disposition by revealing that it is conditional in 
addition to being complex. Furthermore, several notable grade-based trends 
from data emerged in relation to students’ enjoyment of mathematics as well 
as their views regarding the applicability, prevalence, and variety and com
plexity of mathematics.

KEYWORDS 
Elementary; mathematical 
disposition; mental 
functions; metaphor; middle 
school

Many of today’s educators and researchers define the learning of mathematics as more than the mere 
acquisition of content-related facts and procedures (e.g., Gresalfi & Cobb, 2006, National Council of 
Teachers of Mathematics, 2020). Because “what is learned cannot be separated from how it is learned” 
and experienced (cf. Beach, 1999; Boaler, 1997; Cobb & Bowers, 1999; Gresalfi & Cobb, 2006, p. 50; 
Lave, 1988), students’ mathematical dispositions are receiving considerable attention (e.g., Beyers,  
2011; Graven, 2012; Kamid et al., 2021; Young et al., 2021). Research indicates a positive disposition 
toward mathematics may increase the likelihood that students will seize opportunities to learn 
mathematics (Kilpatrick et al., 2001), increase motivation for learning (Cobb & Hodge, 2002), help 
students engage with mathematics (Ames & Archer, 1988; Gresalfi & Cobb, 2006), and positively 
impact students’ overall success and achievement in mathematics (Kilpatrick et al., 2001; NCTM,  
1989, 2000). In contrast, a negative disposition toward mathematics is said to limit students’ oppor
tunities to learn mathematics (Beyers, 2011) and cause students to avoid (or give up on) engaging in 
challenging problems (Beyers, 2011) or enrolling in advanced mathematics courses altogether (Cai 
et al., 2012). The field has traditionally recognized the influence of mathematical disposition on 
learning as either positive or negative, and as such has not yet fully uncovered how to productively 
and completely access and assess multiple components of students’ mathematical disposition for all 
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grade bands (Graven, 2012). As such, the focus of this study was to examine more closely components 
of mathematical disposition in prekindergarten (PK) through Grade 8 students.

Conceptual Framework for Mathematical Disposition

Although mathematical disposition has been conceptualized in a variety of ways, consistent among 
these conceptualizations is the recognition that disposition reflects a tendency, habit, or inclination to 
think or act in certain identifiable ways (Kilpatrick et al., 2001; McIntosh, 1997; NCTM, 1989). In this 
study, we adopted Beyers (2011) conceptualization of mathematical disposition as the “cognitive, 
affective, and conative functions that a student of mathematics tends or is inclined to engage or 
espouse in a mathematical context” (p. 72). In other words, we see mathematical disposition as the 
sum of cognitive (e.g., mental processes such as reasoning), affective (e.g., attitudes, feelings, beliefs 
about mathematics or oneself as a learner), and conative (e.g., effort, grit, or level of challenge) 
components that can be accessed and assessed.

The affective category of mental functioning refers to the feelings, emotions, moods, and tempera
ment students experience with respect to mathematics (Beyers, 2011). It also encompasses beliefs 
about oneself as a learner of mathematics (Beyers, 2011; McLeod, 1992), attitudes toward mathematics 
(Beyers, 2011; McIntosh, 1997; McLeod, 1992), beliefs about the nature of mathematics (Beyers, 2011; 
Fernandez & Cannon, 2005; McLeod, 1992), beliefs about the usefulness of mathematics, beliefs about 
whether learning mathematics is worthwhile, and beliefs about whether mathematics is sensible 
(Beyers, 2011; Kilpatrick et al., 2001). The cognitive category of mental functioning refers to processes 
of perception, recognition, conception, judgment, and reasoning (English & English, 1958). It also 
pertains to making mathematical arguments or connections (Beyers, 2011; McClain & Cobb, 2001). 
And lastly, the conative category of mental functioning pertains to effort, diligence, and persistence 
(Beyers, 2011). By operationalizing mathematical disposition with affective, cognitive, and conative 
constructs, we are given a multi-faceted lens with which to examine the complexity of several 
relationships.

Literature on Accessing and Assessing Students’ Mathematical Disposition

Researchers have used a variety of tools and approaches to access and assess students’ mathematical 
disposition. The following section outlines a few of the field’s previous attempts.

Likert-Scale Items
Large international and national studies have incorporated surveys to access components of students’ 
mathematical disposition. The National Center for Education Statistics’ (NCES) Trends in 
International Mathematics and Science Study (TIMSS) used four-point Likert scale items to access 
and assess students’ enjoyment of mathematics (e.g., NCES, 2019). Similarly, the National Assessment 
of Educational Progress’ (NAEP) Mathematics Student Questionnaire (e.g., NAEP, 2022), utilized 
five-point Likert scale items to access and assess components related to students’ enjoyment of 
mathematics. While both surveys provided insight into mathematical disposition, they were narrow 
and limited due to the fixed nature of responses set by researchers. Furthermore, these surveys were 
single-dimensional. These limitations are notable as components of mathematical disposition are 
multidimensional (Kanak Pervez et al., 2020).

Furthermore, the polarization of response choices provided on the TIMSS (e.g., NCES, 2019) 
assessment did not provide students with a neutral option. This limitation forced a positive or negative 
expression of attitude on respondents (Lavrakas, 2008). This is consistent with literature’s current 
categorization of mathematical disposition as either positive or negative (e.g., Beyers, 2011; Kilpatrick 
et al., 2001). These limitations indicate that Likert scale surveys can make it “difficult to assess . . . [a 
respondent’s] actual attitude toward a statement” (Kanak Pervez et al., 2020, p. 140).
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Affective Spectrum Items
Another instrument developed to assist researchers and educators in accessing and assessing the 
mathematical dispositions of younger learners was developed by Graven in 2012. In contrast to 
a Likert-scale survey, Graven (2012) asked 10 Grade 3 students to identify where they felt like 
they were on a spectrum from weakest to strongest and thereby access how a student saw (or 
didn’t see) themselves as an “effective learner and doer of mathematics” (p. 53; cf. Kilpatrick 
et al., 2001). In addition to providing a neutral option for students on this spectrum, Graven’s 
(2012) instrument also included several additional writing prompts and an interview compo
nent. According to Graven (2012), these writing prompts and interviews provided researchers 
with “rich textured utterances on how learners perceived productive (and unproductive) learn
ing dispositions” while also providing researchers with opportunities to access and assess even 
more components of students’ mathematical dispositions (Graven, 2012, p. 54). Specifically, 
Graven’s (2012) instrument had the capability to examine whether students saw sense in 
mathematics, perceived mathematics as useful and worthwhile, believed effort paid off, and if 
students saw themselves as effective learners and doers of mathematics (cf. Kilpatrick et al.,  
2001). Aspects of this instrument promise richer descriptions of students’ mathematical disposi
tion than Likert-scale items and may offer further promising results with students in additional 
grades.

Student-Generated Metaphor Items
Other researchers leveraged metaphors to access or assess components of students’ mathematical 
disposition. According to Lakoff and Johnson (2003), “The essence of metaphor is understanding and 
experiencing one kind of thing in terms of another” (p. 5). A metaphor can be understood simply as 
a “comparison between two things, based on resemblance or similarities” (Cai et al., 2012, para. 3). 
Most often these similarities are non-literal in nature (Dogan et al., 2019; Gentner, 1982) and tend to 
highlight a relational similarity between two objects or concepts (Gentner & Smith, 2012). In this 
manner, information from the more familiar object (i.e., source or base) is mapped onto the less 
familiar object (i.e., target; Chou & Shu, 2015; Gentner & Smith, 2012).

We focused our review of the literature on how researchers used metaphors to examine PK through 
high school (i.e., aged 4–18) students’ views of mathematics and have identified several key observa
tions. For example, researchers have used various structures when designing student-generated 
metaphor item instruments to study students’ mathematical dispositions. Some researchers asked 
students to create their own metaphors for mathematics (e.g., Schinck et al., 2010) or the learning of 
mathematics (e.g., Güner, 2012, 2013) without any constraints. When using these instruments, 
students could choose the source or base of the metaphor for comparison. In other studies (e.g., Cai 
& Merlino, 2011; Cai et al., 2012; Taing et al., 2015), researchers asked students to complete 
a metaphor already started for them. This structure is often called a metaphor starter because the 
source or base of the metaphor for comparison is pre-selected. For example, Cai and Merlino (2011) 
asked high school students to complete the following: “If math were an animal, it would be [blank for 
student response], because [blank for student response]” (p. 148). Other researchers used metaphor 
starters relating mathematics to food, colors, or animals—Taing et al. (2015) with middle school 
students (i.e., Grade 6) and Cai et al. (2012) with high school students (i.e., Grades 9–12).

Despite the variety in structure of metaphor instruments, Cai and Merlino (2011), Cai et al. (2012), 
Güner (2012), and Taing et al. (2015) all discussed how students’ metaphors indicated a variety of 
feelings toward mathematics. Specifically, Cai and Merlino (2011) and Cai et al. (2012) categorized 
responses along an affective spectrum spanning from very negative to very positive feelings about 
mathematics. In contrast, Güner (2012) and Taing et al. (2015) classified metaphors into more 
concrete levels or categories. Specifically, Güner (2012) classified metaphors as indicating either 
positive, negative, or neutral attitudes toward mathematics. In contrast, Taing et al. (2015) identified 
two levels of enjoyment (i.e., “like/love” and “variable enjoyment”) and reported that “no metaphors 
displayed an absolute and definitive dislike for mathematics” (p. 237).
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In addition to examining feelings toward mathematics, Cai and Merlino (2011), Cai et al. (2012), 
Güner (2012), Schinck et al. (2010), and Taing et al. (2015) described tangential themes from their 
coding. Cai and Merlino (2011) discussed themes related to why or how students felt as they did about 
mathematics, and Taing et al. (2015) related students’ feelings to motivation and engagement. 
Interestingly, Güner (2013) and Schinck et al. (2010) identified categories and themes that went beyond 
the affective spectrum. Güner (2013) identified eight themes: “(1) discovering an unknown, (2) learning 
a new skill, (3) solving a puzzle, (4) learning the rules and playing a game, (5) using a tool, (6) difficulties 
of learning mathematics, (7) pleasure of learning mathematics, (8) having a hardship” (p. 1947). In 
contrast, Schinck et al. (2010) identified five themes: perseverance (i.e., math is challenging, requires 
effort, and is rewarding), structure (i.e., math as an interconnected structure or hierarchical structure), 
journey (i.e., math is an enjoyable or uncertain journey that requires effort), tool (i.e., math is useful), and 
student role. These themes indicate that mathematical disposition is not just affective in nature, but 
rather that the full breadth and complexity of students’ mathematical disposition is not yet clear.

Results from these six studies (i.e., Cai & Merlino, 2011; Cai et al., 2012; Güner, 2012, 2013; Schinck 
et al., 2010; Taing et al., 2015) indicate middle and high school students have “complex but well- 
developed views about mathematics” (Schinck et al., 2010, p. 332). Although some researchers have 
argued that using metaphors is only appropriate with older students because they need to be able to 
think relationally and figuratively about concepts (e.g., Cai et al., 2012; Taing et al., 2015), others have 
argued that young children’s ability to think metaphorically may be underestimated (Billow, 1975; 
Gentner, 1988; Vosniadou, 1987). Further, because understanding or interpreting metaphors is more 
difficult or cognitively demanding than producing metaphors (cf. Gentner, 1988), we conjecture that 
researchers may be able to use metaphor starters to assess and access components of their mathema
tical disposition with students before they are in middle school.

Summary

Although the current literature offers a few ways in which researchers and teachers can access and 
assess older students’ mathematical dispositions, less is known about components of younger students’ 
mathematical disposition (i.e., PK – Grade 3). Further, previous research has not yet captured the full 
breadth and complexity of variation in older students’ mathematical disposition (i.e., Grades 4–8). 
Hence, we posed the following research question: 

What components of mathematical disposition are revealed when PK through Grade 8 students use 
metaphors to describe mathematics?

Methods

We developed and administered a survey to students enrolled in a PK-Grade 8 school during the 
spring of 2023. This study took place at a small public school (i.e., school population was 424 students 
during the 2022–2023 school year) in a suburban community located in the Midwestern region of the 
United States. During the 2022–2023 school year, 79% of the student population identified as White/ 
nonHispanic, 10% as Hispanic, 3% as Black/nonHispanic, 8% as Asian, and <1% as American Indian/ 
Alaskan. The school’s student population reflects the community’s demographics.

Survey Instrument and Data Collection

We examined PK-Grade 8 student responses to a metaphor starter relating food to mathematics. We 
chose this metaphor starter to build off the work of Cai et al. (2012) and because food was more 
accessible than other metaphor sources (e.g., animals). For PK, kindergarten (K), and Grade 1 
students, researchers conducted individual interviews and verbally asked students to finish the 
following prompt: If math were a food, it would be . . . (because . . .). Each student response to this 
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prompt was entered into Qualtrics in real time, and data were later de-identified. For Grades 2–8, 
students anonymously provided a written response to the questions: If math were a food, what food 
would it be? Why would it be that food?

Data Analysis

We engaged in five phases of data analysis. During Phase 1, Authors 2 and 3 took up an open coding 
scheme by independently reading each participant’s response (n = 306), our unit of analysis. 
Specifically, we segmented these responses into meaningful parts and coded each of these parts to 
generate a list of initial mathematical disposition codes (Saldaña, 2021). For instance, we segmented 
the following singular response into three meaningful parts: Math would be “Pasta [because] there are 
so many intertwining strands of knowledge,” “with little ‘meatballs’ of theorems.” “You also can’t eat 
too much at a time, you have to pace yourself.”1 We also assigned the following initial codes to this 
response: complexity of mathematics, specific topic in mathematics, and time commitment, 
respectively.

Next, in Phase 2, Authors 2 and 3 met to compare and sort their initial codes, create 
a unified list, and write initial definitions for each code. This list of initial codes and 
definitions was then used to independently recode all participant responses. As Authors 2 
and 3 compared their response codings, all disagreements were negotiated and resolved. 
Sometimes these negotiations involved collapsing codes, and other times these negotiations 
involved the creation of new codes. These negotiations allowed for the continual revision and 
refinement of codes and definitions.

In Phase 3, Authors 2 and 3 trained Author 1 on the coding scheme. Author 1 then independently 
coded 20% of the responses, which falls within the typical range of 10–25% (O’Connor & Joffe, 2020). 
When all three researchers compared Author 1’s coding with the coding of Authors 2 and 3 from 
Phase 2, a Cohen’s kappa score of 0.80 was achieved. According to Landis and Koch (1977), a kappa 
statistic between 0.61 and 0.80 indicates substantial agreement. To attain stronger agreement, Authors 
1–3 met in Phase 4 to resolve any outstanding disagreements, discuss component codes, and clarify 
definitions. The three researchers then independently recoded all responses to create a final set of 
codes and code definitions, resulting in a Fleiss kappa statistic of 0.93 of agreement, which is 
considered near perfect agreement (Landis & Koch, 1977).

During Phase 5, Authors 1–3 returned to the conceptual framework to consider each code 
individually. Using our code definitions, we determined that most codes could be categorized as 
a component of one of the three mental functions outlined by Beyers (2011). In terms of the 
pasta example, the final component codes assigned were Specific Content or Component of 
Mathematics, Variety and Complexity of Math, and Time Element, which indicated both 
cognitive and conative mental functions (see Figure 1). However, we found that our definitions 
for two component codes, Other and Outcome Focus, could span more than one mental 
function. For those component codes, we determined which mental function was indicated 
based on the essence of the individual response.

Of the 306 participants in this study (see Table 1), 50 participants did not create a metaphor. Hence, 
we attempted to code responses from 256 participants. In the end, only eight metaphors were not 
coded using our coding scheme and are excluded in the results below. Two such examples include 
“Paper because I eat paper like napkins but not anymore” and “Matharoni. Macaroni and add some 
math.” Below we discuss our findings from the remaining 248 responses that we coded and then 
categorized using Beyers (2011) framework. 

1We changed spelling to improve readability when it was clear to Authors 1–3 which word was intended, but we did not adjust 
sentence structure or phrasing of student responses.

INVESTIGATIONS IN MATHEMATICS LEARNING 5



Results

We categorized the majority of the 248 student responses (71%) as affective mental functioning. We 
also categorized about one-fourth (28%) of student responses as cognitive mental functioning and 
almost one-sixth (16%) as conative mental functioning. Because a student’s response may reflect 
multiple components of mathematical disposition, some responses indicated more than one mental 
function.

Affective Mental Function Components

We classified seven components as reflecting affective mental functions. These seven components 
pertain to student feelings, attitudes, and beliefs about the learning or doing of mathematics as well as 
the nature of mathematics (i.e., its relevance or usefulness). In total, 177 student responses included at 
least one affective mental function component. Table 2 shows the distribution of responses.

noitinifeDedoC Example 

A
ff

ec
tiv

e 
Ability to Learn Mathematics  

Indicating beliefs about learning mathematics  Grapefruit. You will spend some time trying to figure it 
out and then it will become easy like math.  

Applicability of Mathematics  Indicating beliefs about the utility of mathematics Pie because we will use pi in other grades.  

Mathematics is Foundational  
Indicating beliefs about the fundamental value of 
learning mathematics 

Meats made of protein, which is the building block of life. 
Math is sort of the building block of everything.  

Enjoyment of Mathematics—  
Conditional Enjoyment  
Negative Enjoyment  
Positive Enjoyment  

Others’ Enjoyment  

Indicating one’s (conditional, negative, or positive) 
or others’ attitudes or feelings about mathematics  

One’s Enjoyment: 
   Spicy food. Because sometimes I like it and sometimes, 

I despise it. (Conditional) 
   A strawberry because I hate strawberries. (Negative) 
   Cupcakes - because I like cupcakes and math. (Positive) 
Others’ Enjoyment:  
  Brussel sprouts because most people don´t like it.

Prevalence of Mathematics Indicating versatility of mathematics  Leftovers. When you think it's done, there's always more.  

Outcome Focused Indicating a focus on outcome or result Crepes...the results are worth it. 

C
og

ni
tiv

e 

Processes and Approaches Used in 
Mathematics  

Indicating variety in ways to solve or do 
mathematics

Cauliflower because depending on how you cook it, it 
tastes different just like different math problems.

Specific Content or Component of 
Mathematics 

Indicating specific concepts, topics, or ideas of 
mathematics

Pizza and pie because if you slice it up you could make a 
fraction.

Variety and Complexity of Math 
Indicating connections among various aspects, 
topics, or components of mathematics  

Pickles because pickles have complex flavors and a deep 
meaning. not just what's one the surface. so does math I 
think.

Outcome Focused Indicating a focus on outcome or result A hamburger...[different ingredients] to find a different 
outcome.

C
on

at
iv

e Level of Challenge  Indicating the mental work or effort it takes to learn, 
understand, or do mathematics

Ramen noodles because it would be hard to untangle it.   

Time Element 
Indicating the amount of time it takes to learn, 
understand, or do mathematics or how one’s 
experience with mathematics changes over time  

Watermelon. It takes a long time to prepare, but there are 
many ways to use it when finished. 

Outcome Focused Indicating a focus on outcome or result A lemon [making lemonade] is like you kind of solved the 
problem...

Figure 1. Final code definitions per mental function.

Table 1. Distribution of Student metaphors.

Metaphors

Grade Number of Students Coded Not Coded Blank or Not Created

Pre-Kindergarten 22 4 2 16
Kindergarten 26 14 1 11
1 36 28 4 4
2 22 14 0 8
3 23 21 0 2
4 12 12 0 0
5 42 40 1 1
6 48 43 0 5
7 43 41 0 2
8 32 31 0 1
Total 306 248 8 50
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Enjoyment of Mathematics
We identified approximately 72% of affectively categorized student responses as reflecting 
Enjoyment of Mathematics. Some of the participants’ responses indicated that their enjoyment 
varied in some ways (i.e., Enjoyment of Mathematics – Conditional). For example, a fifth-grade 
student wrote, “Chocolate because it is good and fun but if you do too much of it or eat too 
much it is not fun anymore.” Some of the participants responded in a way that referred to 
others’ attitudes or feelings rather than explicitly indicating their own enjoyment (i.e., Enjoyment 
of Mathematics – Others).2 For example, a sixth-grade student said math would be, “Lemons 
because some people love it and think that lemons are sweet, but some people think that lemons 
are sour and don’t like them.” Participants whose responses indicated a positive or negative 
enjoyment of mathematics also tended to indicate the extent to which they positively or 
negatively enjoyed mathematics. For example, we note a difference in the extent of negative 
enjoyment when juxtaposing the responses: “Peas are my least favorite food” (Grade 5 student), 
and “A flaming cactus covered in dirt and glass because math is painful” (Grade 8 student).

Additional Affectively Categorized Components
More than 40% of affectively categorized student responses reflected the remaining six components. 
Specifically, 9% of these responses indicated a sense that mathematics was important or vital (i.e., 
Mathematics is Foundational). A sixth-grade student, for example, wrote that math would be “A carrot 
[because] carrots are good for you [because] bones and math is kinda like the structure of your mind.” 
An additional 6% of student responses reflected a perceived ability to learn (i.e., Ability to Learn 
Mathematics). A first grader said if math were a food, it would be “Yummy – because you will get 
smarter and smarter, and you would be the smartest person in the world.”

Approximately 5% of student responses referred to when mathematics is used or applied. For 
instance, a fifth-grade student responded that math would be pi “because we will use pi in other 
grades,” which indicated the component Applicability of Mathematics. Yet another 5% of student 
responses indicated a focus on mathematical outcomes in affective ways (i.e., Outcome Focus – 
Affective). Take, for example, the eighth-grade student who wrote, “All jokes aside, a pie is a really 
good representation of math because it shows that if you learn it right, it can turn out great, but if you 
learn something wrong it can be bad (burning the apples).” Only 2% of responses indicated an affective 
function that referred to the Prevalence of Mathematics, such as the Grade 8 student who said, “when 
you think it’s done, there’s always more.”

Table 2. Affective function code frequency.

Code n %

Enjoyment of Mathematics 128 72.3
Conditional Enjoyment 22
Negative Enjoyment 28
Positive Enjoyment 55
Others’ Enjoyment 23

Mathematics is Foundational 16 9.0
Applicability of Mathematics 9 5.1
Outcome Focus–Affective 9 5.1
Ability to Learn Mathematics 10 5.6
Prevalence of Mathematics 4 2.3
Other–Affective 25 14.1

N = 177. Sum of percentages exceeds 100% since a response can 
contain more than one affective function.

2We determined that some responses clearly indicated the participants’ personal feelings or attitudes toward mathematics, and we 
were able to code those responses as Enjoyment of Mathematics – Positive, Negative, or Conditional. However, other responses 
were murkier. Participants’ phrasing made it unclear how the individual personally felt about mathematics. Hence, we coded such 
responses as Enjoyment of Mathematics – Others to capture this difference.
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For the remaining 14% of student responses categorized as affective, we were unable to identify one 
of the existing seven components (i.e., Other – Affective). Take, for example, the eighth-grade student 
who wrote, if math were a food, it would be dirt because “There is a lot of gray areas” or the PK student 
who said it would be “a clown pancake because it’s funny.” Both responses indicate feelings these 
students experience with mathematics; however, what the eighth-grade student meant about gray 
areas and what is funny about mathematics for the PK student are both unclear.

Affective Grade-Based Comparisons
When we compared Enjoyment of Mathematics subcomponents across grade levels (see Table 3), we 
noticed that a greater proportion of older participants’ metaphorical responses reflected Enjoyment of 
Mathematics – Negative more than the younger participants. Specifically, of the responses that 
indicated Enjoyment of Mathematics – Negative, 81% came from participants in Grades 5–8. 
Similarly, of the responses that indicated Enjoyment of Mathematics – Positive, 76% came from 
PK – Grade 4. We also noticed that none of the younger participants’ responses indicated Enjoyment 
of Mathematics – Conditional, and only 12% of younger participants referred to Enjoyment of 
Mathematics – Others.

When comparing five affectively categorized components (excluding Enjoyment of Mathematics 
and Other – Affective) across grade levels (see Table 4), we noticed that none of the PK and K students’ 
responses reflected these components. Similarly, we noticed that none of the younger participants’ 
metaphors referred to the Applicability of Mathematics. We also noticed that all the responses 
reflecting the Prevalence of Mathematics were produced by older participants in Grades 6 and 8.

Table 3. Proportion of enjoyment type per grade.

Enjoyment of Mathematics

Positive Negative Conditional Others’

Grade n % n % n % n %

PK 1 1.8 0 0.0 0 0.0 0 0.0
K 9 16.4 1 3.6 0 0.0 1 4.3
1 15 27.3 1 3.6 0 0.0 0 0.0
2 9 16.4 2 7.1 0 0.0 0 0.0
3 6 10.9 0 0.0 0 0.0 1 4.3
4 2 3.6 1 3.6 0 0.0 1 4.3
5 4 7.3 8 28.6 5 22.7 0 0.0
6 5 9.1 5 17.9 8 36.4 7 30.4
7 3 5.5 6 21.4 6 27.3 7 30.4
8 1 1.8 4 14.3 3 13.6 6 26.1

Table 4. Proportion of non-enjoyment affective components per grade.

Mathematics is 
Foundational

Ability to Learn 
Mathematics

Applicability of 
Mathematics

Prevalence of 
Mathematics

Outcome Focused– 
Affective

Grade n % n % n % n % n %

PK 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0
K 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0
1 4 25.0 2 20.0 0 0.0 0 0.0 0 0.0
2 0 0.0 1 10.0 0 0.0 0 0.0 0 0.0
3 1 6.3 2 20.0 0 0.0 0 0.0 1 11.1
4 0 0.0 0 0.0 1 11.1 0 0.0 0 0.0
5 4 25.0 1 10.0 2 22.2 0 0.0 3 33.3
6 1 6.3 0 0.0 2 22.2 1 25.0 0 0.0
7 4 25.0 2 20.0 0 0.0 0 0.0 2 22.2
8 2 12.5 2 20.0 4 44.4 3 75.0 3 33.3
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Cognitive Mental Function Components

We categorized five components as indicating cognitive mental functions. The components in this 
category referred to specific mathematical symbols, concepts, skills, or processes, and included 
reasoning, making arguments, following steps, or solving problems. We identified 69 responses that 
reflected at least one cognitive mental function component, Table 5 shows the distribution of 
responses.

We found almost half of the responses categorized as a cognitive mental function referred to 
specific symbols, concepts, numbers, or operations (i.e., Specific Content or Component of 
Mathematics). For example, a first-grade student noted that may would be, “Number cookies because 
math is all about numbers,” and a Grade 4 student wrote math would be cookie bars because “It’s 
easier to do fractions with a rectangle.” About 40% of the responses categorized as a cognitive mental 
function focused on the Variety and Complexity of Mathematics. For example, a seventh-grade 
student asserted that if math were a food, it would be grapes because “there are the basics which 
would be the vine connecting everything but the grapes would be different types of problems.”

Another 12% of student responses referred to the Processes and Approaches of Mathematics. This 
fifth-grader’s response: “Rice has many different ways to eat it and like math you can solve it in many 
different ways” is one such example. Finally, 3% of student responses indicated a focus on outcomes in 
cognitive ways (i.e., Outcome Focus – Cognitive), and another 4% of responses referred to an 
indeterminant cognitive function (i.e., Other – Cognitive).

Cognitive Component Comparisons
When we compared these five cognitively categorized components across grade levels, several trends 
emerged (see Table 6). Students from nearly all grade bands (K through Grade 8) produced metaphors 
that referred to Specific Content or Component of Mathematics. In contrast, only older participants’ 
(i.e., Grades 5–8) metaphors referred to Variety and Complexity of Mathematics. Similarly, most 
metaphors reflecting the components Process and Approaches of Mathematics and Outcome Focus – 
Cognitive were produced by participants older than Grade 2.

Table 5. Cognitive function code frequency.

Code n %

Specific Content or Component of Mathematics 34 49.3
Variety and Complexity of Mathematics 28 40.6
Process and Approaches of Mathematics 8 11.6
Outcome Focus–Cognitive 2 2.9
Other–Cognitive 3 4.3

N = 69. Sum of percentages exceeds 100% because a response can contain more 
than one cognitive function.

Table 6. Proportion of cognitive components per grade.

Specific Mathematical 
Content

Variety and Complexity of 
Mathematics

Processes and Approaches of 
Mathematics

Outcome 
Focused– 
Cognitive

Grade n % n % n % n %

PK 0 0.0 0 0.0 0 0.0 0 0.0
K 1 2.9 0 0.0 0 0.0 0 0.0
1 3 8.8 0 0.0 0 0.0 0 0.0
2 0 0.0 0 0.0 0 0.0 0 0.0
3 9 26.5 0 0.0 1 12.5 1 50.0
4 6 17.6 0 0.0 0 0.0 0 0.0
5 7 20.6 6 21.4 5 62.5 1 50.0
6 4 11.8 4 14.3 1 12.5 0 0.0
7 3 8.8 7 25.0 0 0.0 0 0.0
8 1 2.9 11 39.3 1 12.5 0 0.0
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Conative Mental Function Components

We categorized three components as indicating conative mental functions. These components 
emphasized “diligence, effort, or persistence in the face of mathematical activity” (Beyers, 2011, 
p. 72). We identified 39 responses that reflected at least one conative mental function component. 
Table 7 shows the distribution of responses.

More than 80% of the responses categorized as a conative mental function referred to challenges or 
difficulties associated with mathematics (i.e., Level of Challenge). For example, a sixth-grade student 
wrote, it would be “a complicated dish like a souffle, because just like math, there are a lot of different 
things you need to do, and a lot of different things that could go wrong.” Furthermore, about 20% of 
student responses referred to the time it takes to learn, understand, or do mathematics (i.e., Time 
Element). Finally, approximately 3% of student responses indicated a focus on outcomes in conative 
ways (i.e., Outcome Focus – Conative). Similar to results discussed with cognitive mental functions, 
these latter two components always occurred in combination with other components, which will be 
discussed in the section on multiple mental functions.

Conative Component Comparisons
As for grade-based trends pertaining to conative components (see Table 8), we identified trends 
similar to those we reported for cognitive components. For example, much like Specific Content or 
Component of Mathematics, students PK – Grade 8 produced metaphors that referred to Level of 
Challenge. However, only older participants’ (i.e., Grades 5–8) metaphors referred to Time Elements.

Multiple Mental Functions

Although many student responses illustrated solely affective, cognitive, or conative mental func
tioning, 36 responses indicated a combination of two or more mental functions (see Figure 2). We 
categorized 15 of these responses as both affective and cognitive, 17 as both affective and conative, 
three responses as both cognitive and conative, and one response as all three mental functions (see 
Figure 3). The response indicating all three mental functions was math would be “Noodles [because] 

Table 7. Conative function code frequency.

Code n %

Level of Challenge 32 82.1
Time Element 8 20.1
Outcome Focused–Conative 1 2.6
Other–Conative 5 12.8

N = 39. Sum of percentages exceeds 100% because a response 
can contain more than one Conative disposition.

Table 8. Proportion of conative components per grade.

Level of Challenge Time Element
Outcome Focused– 

Conative

Grade n % n % n %

PK 1 3.1 0 0.0 0 0.0
K 1 3.1 0 0.0 0 0.0
1 2 6.3 0 0.0 0 0.0
2 1 3.1 0 0.0 0 0.0
3 4 12.5 2 25.0 0 0.0
4 1 3.1 0 0.0 0 0.0
5 2 6.3 1 12.5 0 0.0
6 9 28.1 3 25.0 1 100.0
7 8 25.0 0 0.0 0 0.0
8 3 9.4 3 37.5 0 0.0
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sedoCesnopseRstnenopmoC

Multiple 
Affective 

Components 

Candy because it’s good and math is 
good because it helps you learn. 

Enjoyment of Mathematics– 
Positive 

Mathematics is Foundational 

Salmon. I don't like salmon but I eat it 
because it’s good for you 

Enjoyment of Mathematics– 
Negative 

Mathematics is Foundational 

Multiple 
Cognitive 

Components

Pizza. You can change you way of how 
you do math like changing to a different 

type of pizza you can split math into 
many parts like pizza. 

Processes and Approaches Used 
in Mathematics 

Variety and Complexity of 
Mathematics 

If math was a food, it would be a 
hamburger. Math is still one thing in 

general, meat with bread and a topping of 
some sort, but it can be looked at with 

different approaches and types of math, 
different flavors/ toppings, to find a 

different outcome. 

Variety and Complexity of 
Mathematics 

Processes and Approaches Used 
in Mathematics 

Outcome Focus–Cognitive 

Multiple 
Conative 

Components 

Chocolate hard at first but gets easy to 
chew after a while. 

Level of Challenge 
Time Element 

Ice cream because at first it’s hard but 
once you set it out for a little bit it gets 

easier. 

Level of Challenge 
Time Element 

Affective 
and 

Cognitive 
Components 

Pizza because I love pizza and it can be 
cut into fractions. 

Enjoyment of Mathematics – 
Positive 

Specific Content or Component 
of Mathematics 

Affective and 
Conative 

Components

An avocado because when they are not 
ripe it is hard to eat because it would not 

taste good but if it is it is easy to eat 
because it taste really good. 

Enjoyment of Mathematics – 
Conditional 

Level of Challenge 

Figure 2. Responses indicating multiple affective, cognitive or conative functions. Note. Codes are not necessarily listed in the order 
functions are listed or segments were coded.

Figure 3. Venn diagram of Student responses across affective, cognitive, and conative functions.
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they always slip through your fork, and you can’t get them like how math problems don’t always 
work out right.” This metaphor reflected Ability to Learn (an affective mental function), Level of 
Challenge (conative mental function), and Variety and Complexity of Mathematics (a cognitive 
mental function).

Discussion

This study’s purpose was to access and assess components of mathematical disposition when PK 
through Grade 8 students use metaphors to describe mathematics. Notably, our findings in this study: 
(1) align with several themes, categories, and codes previously identified in literature; (2) expand on 
those from others in the field by revealing that mathematical disposition is not only complex but also 
conditional; and (3) expand on additional existing research by revealing that components of mathe
matical disposition may trend in relation to grade bands.

Alignment of Themes, Categories, and Codes

Although some studies on students’ mathematical dispositions lack clear descriptions for all their 
themes, categories, or codes, several notable comparisons between our codes and those utilized in 
other studies can be productively juxtaposed. In total, we identified seven affective components, 
five cognitive components, and three conative components. Of the seven affective components, five 
were productively juxtaposed with findings of other researchers including Schinck et al. (2010), 
Taing et al. (2015), and Cai et al. (2012). For example, our component Ability to Learn Mathematics 
appears to be relatively consistent with Schinck et al.’s (2010) themes of “Perseverance” and 
“Student Role” in recognizing that math requires effort and that students must take an active 
role in their learning (p. 329). In a similar manner, our component Applicability of Mathematics 
was compared to Schinck et al.’s (2010) theme “Tool,” our component Mathematics is 
Foundational was compared to Taing et al.’s (2015) sub-category “Valuing of Mathematics,” the 
components Enjoyment of Mathematics – Positive and Enjoyment of Mathematics – Negative were 
compared to Cai et al.’s (2012) and Taing et al.’s (2015) views of enjoyment of mathematics, and our 
component Outcome Focus – Affective was compared to Schinck et al.’s (2010) sub-themes of 
“Math is Rewarding” and “Journey of Discovery.”

Of the five cognitive components, two were productively juxtaposed with the findings of 
Schinck et al. (2010) and Cai and Merlino (2011). For example, our component of Variety and 
Complexity of Mathematics appears to be consistent with Schinck et al.’s (2010) “Structure” 
theme as well as their “Interconnected” sub-themes (p. 329). Similarly, our component of Specific 
Content or Component of Mathematics aligns with Cai and Merlino’s (2011) study in which 
student reasoning referenced specific mathematical content. Processes and Approaches Used in 
Mathematics, Outcome Focus – Cognitive, and Other – Cognitive were not clearly aligned with 
findings of other researchers.

Of the four conative components, two were productively juxtaposed with the findings of 
Schinck et al. (2010), Cai and Merlino (2011), and Güner (2013). The most prominent compo
nent in the conative category was Level of Challenge, which aligns with all three studies and 
specifically, Güner’s (2013) categories of “Solving a Puzzle” or “Difficulties of Learning 
Mathematics” (p. 1948). Similarly, our component Time Element can be compared to Schinck 
et al.’s (2010) theme of “Journey” (p. 329). By contrast, Other – Conative and Outcome Focus – 
Conative did not align productively with themes in the literature. Other and Outcome Focus are 
certainly unique and complex components as they span all three mental function categories 
outlined by Beyers (2011).
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Complexities and Conditionality of Mathematical Disposition

In alignment with Schinck et al.’s (2010) belief that the categorization of metaphors into a singular 
theme fails to properly contextualize student metaphors, we created and identified multiple disposi
tion components for further investigation with respect to each mental function (i.e., affective, 
cognitive, or conative). We also allowed components to span multiple categories of mental functions. 
This method of examining and coding segments of students’ responses proved useful in highlighting 
the complexities of mathematical disposition.

With respect to affective mental functioning, we identified and defined seven components. One of 
these components, Enjoyment of Mathematics, was then further divided into four subcomponents 
related to how that enjoyment was expressed. Like researchers Cai et al. (2012) and Taing et al. (2011), 
we noted that most of the metaphors reflected positive or negative enjoyment of mathematics (i.e., 
subcomponents Enjoyment of Mathematics – Positive and Enjoyment of Mathematics – Negative). In 
addition to these two expressions of enjoyment, however, we also identified metaphors that revealed 
conditional enjoyment of mathematics (i.e., Enjoyment of Mathematics – Conditional), when 
a student indicated that they may have more positive feelings about mathematics during one moment 
in time but less positive feelings at another. Our component code Enjoyment of Mathematics – 
Conditional also indicated that a student may value mathematics or experience struggle in one context 
differently than in another.

Further extending the existing body of evidence was the emergence of metaphors that referred 
to others’ enjoyment of mathematics (i.e., Enjoyment of Mathematics – Others, our fourth 
subcomponent). Several student responses referred to some people liking mathematics and 
others not liking mathematics. Several more student responses referred to others in ways that 
caused researchers to infer the student’s own sentiments. One student used the phrase “bitter 
nobody likes it” which caused researchers to infer that the student completing the metaphor also 
did not like math. This important distinction between self and others resulted in a fourth 
subcomponent, Enjoyment of Mathematics – Others. This unintentional surfacing of others’ 
feelings toward mathematics in our study seems to align with Graven’s (2012) decision to 
intentionally ask students to articulate views of themselves in terms of other learners. Perhaps, 
like Graven argued in her study, students in our study felt safer, or more comfortable, expressing 
components of their own mathematical disposition in terms of the mathematical dispositions of 
others.

Grade-Based Trends

As mentioned throughout our results section, a closer examination of components across grade levels 
revealed several notable trends. First, the depth and breadth of detail provided by some of the 
metaphors used by many of the younger students in our study were narrower than the older students. 
Furthermore, their metaphors also tended to be more literal in nature.

Second, grade-based trends also highlighted a clear divide between certain grade bands for 
a particular component. For example, younger students in PK through Grade 4 clearly held the 
largest proportion of Enjoyment of Mathematics – Positive components. In contrast, older 
students in Grades 5–8 clearly held the largest proportion of Enjoyment of Mathematics – 
Negative component. Findings from prior studies conducted with older students (e.g., Güner,  
2013) indicate a major shift in mathematics content and experiences may be part of the reason 
for this shift in enjoyment-related affective components. Based on conversations with school 
personnel at the study site, it is our conjecture that this shift is a result of a change in rigor and 
classroom structure. At this school, Grades 5–8 are considered middle school and subjects are 
departmentalized, whereas PK – Grade 4 are self-contained classrooms.

Third, grade-based trends often highlighted a saturation of components for certain grade bands. 
For example, the only affectively categorized component exhibited in metaphors used by PK and 
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K students was Enjoyment of Mathematics. On the other end of the grade level spectrum, only older 
participants used metaphors to describe the Applicability of Mathematics, Prevalence, and Variety and 
Complexity of Mathematics. This may be due to older students having more life and school experi
ences with mathematics, thereby providing them with more opportunities to see the usefulness, 
pervasiveness, or complexity of mathematics than younger students. Yet another code occurring 
predominately in responses of Grade 5–8 students was Time Element. In fact, no students in PK to 
Grade 2 mentioned Time Element in their metaphorical responses. The remaining four components 
spanned PK through Grade 8.

Study Limitations

This study provided a platform for students from a wide range of ages, grades, and therefore levels of 
cognitive maturity to utilize metaphors as a means of accessing and describing their mathematical 
disposition. As conjectured, we were able to use metaphor starters to assess and access components of 
students’ mathematical disposition before middle school. That said, although PK and K students were 
included in our study sample, we could only code four of 22 PK metaphors and 14 of 26 K metaphors. 
It was not until Grade 3 (i.e., approximately ages 8–9) that more than 90% of student-generated 
metaphors were codable. Thus, it is reasonable to acknowledge that the metaphorical reasoning of 
younger students included in this study may not be as effective or productive in expressing their 
mathematical disposition as the reasoning of older students. However, it is nonetheless important to 
recognize the emergence of these higher-order thinking skills in even our youngest students.

Another limitation of the study pertains to the interpretation of student responses. For example, 
some terms used by students like the word “funny” could be interpreted as silly and goofy or as strange 
and unusual. It would have been helpful in the case of several student responses to have the 
opportunity to follow up with clarifying questions. Without the opportunity for students to further 
elaborate on or explain their responses there is a possibility of misinterpreting the relational intent of 
a metaphor.

Implications for Researchers and Practitioners

In reflecting on key findings from this study, we offer several implications for mathematics education 
researchers and practitioners. We consider these implications in terms of our conceptual framework 
(i.e., the three categories of mental functions) and in terms of the grade bands included in this study.

First, our study demonstrates the value of focusing on all three categories of mental functions. As 
mentioned, 39 student responses attended to conative mental functions and 69 student responses 
attended to cognitive mental functions, and 36 responses attended to at least two mental functions. 
This contrasts to most prior research focused on only one mental function category (most frequently 
affective). And, as it specifically pertains to affective mental functions, our findings suggest that 
labeling a student’s mathematical disposition as either positive or negative is an unproductive and 
overly simplified practice. Our findings reveal the often conditional and complex nature of students’ 
enjoyment (or lack thereof) associated with mathematics.

Second, these findings suggest that researchers and practitioners should dig deeper into the 
complexities and nuances of individual students’ mathematical disposition to determine what factors 
are influencing how students engage with mathematics. For example, a researcher or practitioner 
might be interested to know what classroom conditions, teaching practices, specific mathematical 
content may cause certain students to enjoy (or not enjoy) mathematics at that point in time. For 
example, knowing that a particular student relates math to peanut butter because “peanut butter is 
tough and hard to spread, but sometimes if you get the perfect amount, it can be good. Too much is 
just a lot to handle” may help a practitioner actively look for when that student may be feeling like the 
math is getting to be “too much” to handle.
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Third, in terms of the developmental readiness of students to engage in metaphorical reasoning, our 
results provide additional evidence that some young children can reason with or about metaphors before 
Grade 3 (cf. Billow, 1975; Gentner, 1988; Vosniadou, 1987). Certainly, many of the metaphors utilized by 
PK – Grade 2 students were more literal in nature than those utilized by older students, but again, it is 
important to recognize the emergence of these higher-order thinking skills in even our youngest of students. 
For example, both a PK student and a Grade 5 student metaphorically reasoned about the challenges or 
difficulties with mathematics. The PK student stated that math is like an apple because “science is hard and 
an apple is hard,” whereas the fifth-grade student stated that math is like Sour Patch Kids because “Sour 
Patch Kids are sour then sweet which reminds me of times when math is really hard and then becomes easy.” 
We consider this PK student’s metaphor to be more literal in nature, whereas the Grade 5 student’s 
metaphor to be more relational in nature. We conjecture the literal nature of many of these metaphors 
may be due to a lack of the use of the term “math” or “mathematics” in the early grades, especially in PK and 
K. Teachers of students in the study sample indicated that they often referred to their math curriculum 
activities as number corner, calendar, center, or game time instead of explicitly math activities.

Finally, researchers and practitioners should pay attention to the presence and absence of specific 
components among various grade bands. It is possible that the strong presence of a given component may 
help researchers and practitioners understand which components of mathematical disposition are most 
influential on students of certain grade bands. For example, findings from our study revealed that the only 
affectively categorized component exhibited in metaphors used by PK and K students was Enjoyment of 
Mathematics. This indicates to researchers and practitioners that younger students’ feelings toward 
mathematics should not be ignored and instead must be acknowledged and considered. Findings from 
our study also revealed that the Enjoyment of Mathematics – Negative component was most prominent 
with older students in Grades 5–8. This indicates to researchers and practitioners that attention should be 
given to promoting positive associations with mathematics with this population. Components that span 
multiple grade bands may also provide meaningful opportunities for researchers and practitioners to track 
and observe the development of mathematical disposition over time.

Future Research

The results of this study extended the literature to reveal how mathematical disposition is complex, 
especially in terms of its many components. However, we cannot say that the components identified in 
this study capture all possible components of mathematical disposition. Future research should examine 
whether other components exist as well as reexamine and extend definitions of currently identified 
components.

Additionally, further research needs to examine students’ mathematical disposition in other 
schools or geographical locations. Students in new settings may link food and mathematics via 
additional components of mathematical dispositions not identified in this study. Similarly, research 
should examine the components of mathematical disposition revealed through the creation of other 
metaphors. While food is an accessible source for many students to metaphorically reason with, it may 
not fully allow for the expression of all components of a student’s mathematical disposition. In other 
words, other sources may reveal additional components to provide a more complete picture of 
a student’s mathematical disposition.
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