Dynamic Terminal Investment in Male Burying Beetles
Paige A. Farchmin, Anne-Katrin Eggert, Kristin R. Duffield, and Scott K. Sakaluk
Behavior, Ecology, Evolution and Systematics Section, School of Biological Sciences, Illinois State University, Normal, IL, U.S.A.

Background

- Animals often increase their investment in reproduction in response to a threat to their survival, a life history strategy known as terminal investment.
- The dynamic terminal investment threshold model proposes that the tendency of an individual to terminally invest depends on other factors that alter an individual's residual reproductive value.
- We tested the dynamic terminal investment model in burying beetles (Nicrophorus marginatus), insects that bury small vertebrate carcasses as a source of food and that provide extensive biparental care.

We injected males at two different ages with heat-killed bacteria and measured their reproductive effort.

Predictions
1. Experiment 1: Immune-challenged males would show a longer period of parental care, consume less of the carcass, and produce a greater number of larvae in the current reproductive attempt compared with control males.
2. Experiment 2: Older males would be more likely to terminally invest than younger males.

Materials and Methods

Experiment 1
- Adult beetles collected using baited pitfall traps.
- N = 20 experimental males and 20 control males.
- Males paired singly with females, provided with a carrass, and housed in peat-filled pails.
- Δ adult mass and duration of brood care recorded.
- Number and mass of young recorded.

Experiment 2
- Treatments reassigned to original males at an older age.
- Previous protocol replicated.

Results

• Animals often increase their investment in reproduction in response to a threat to their survival, a life history strategy known as terminal investment.
• The dynamic terminal investment threshold model proposes that the tendency of an individual to terminally invest depends on other factors that alter an individual's residual reproductive value.
• We tested the dynamic terminal investment model in burying beetles (Nicrophorus marginatus), insects that bury small vertebrate carcasses as a source of food and that provide extensive biparental care.

We injected males at two different ages with heat-killed bacteria and measured their reproductive effort.

Predictions
1. Experiment 1: Immune-challenged males would show a longer period of parental care, consume less of the carcass, and produce a greater number of larvae in the current reproductive attempt compared with control males.
2. Experiment 2: Older males would be more likely to terminally invest than younger males.

Results – Part 1

Experiment 1: Males, when challenged with heat-killed bacteria as virgins prior to their first reproductive attempt, did not terminally invest.

Experiment 2:
- a. Older, immune-challenged individuals gained less mass during their time on the carcass than control males.
- b. These same individuals when challenged in a second reproductive bout produced a greater number of offspring.

Results – Part 2

Discussion

In conclusion, age-specific terminal investment in immune-challenged burying beetles was evidenced by a decrease in consumption of the resource critical to larval development (i.e. carrion) and an increase in the number of larvae produced.

Acknowledgments

This research was funded by a grant from the National Science Foundation.