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PHYSICAL REVIEW A 83, 053402 (2011)

Electron-positron pair creation induced by quantum-mechanical tunneling
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We study the creation of electron-positron pairs from the vacuum induced by two spatially displaced static
electric fields. The strength and spatial width of each localized field is less than required for pair creation.
If, however, the separation between the fields is less than the quantum-mechanical tunneling length associated
with the corresponding quantum scattering system, the system produces a steady flux of electron-positron pairs.
We compute the time dependence of the pair-creation probability by solving the Dirac equation numerically
for various external field sequences. For the special case of two very narrow fields we provide an analytical
expression for the pair-creation rate in the long-time limit.

DOI: 10.1103/PhysRevA.83.053402 PACS number(s): 34.50.Rk, 32.80.Wr, 12.20.Ds, 03.65.−w

I. INTRODUCTION

The creation of electron-positron pairs from the vacuum
under an external supercritical electric force is one of the most
fascinating subjects in quantum electrodynamics [1]. In 1951,
Schwinger showed that a strong static electric field could break
down the vacuum to generate a steady flux of electron-positron
pairs [2]. Even though the theory does not require a precise
threshold field strength, the typical field associated with such
a pair creation is on the order of Ec = 1.32 × 1016 V/cm.
More recent theoretical investigations have shown that there is
a second mechanism to create pairs. Even if the field strength
is below Ec, pairs can be created if the external field varies
rapidly in time, as is characteristic of a laser pulse [3–7].

So far all experimental attempts to observe this intriguing
phenomenon of the direct conversion from light to particles in
the lab have been unsuccessful. The pioneering experiment at
SLAC [8] has observed a pair-production process triggered
from collisions of an electron beam with an intense laser
pulse. While this experiment was operated essentially in the
perturbation domain, it did observe the onset of nonpertur-
bative signatures [9,10]. Beginning in the 1980s attempts
were made to create a supercritical field via two overlapping
Coulomb fields associated with colliding heavy ions [11,12].
Positrons were measured but it is believed today that their
main production mechanism was not necessarily caused by
the Coulombic field itself, but triggered by nuclear transitions,
which are unavoidable in highly relativistic collisions.

In order to reach the Schwinger limit in a more controllable
environment with a time-varying external field, the laser
intensity has to exceed ∼4×1029 W/cm2. The highest intensity
level of high-power laser systems is presently ∼1022 W/cm2,
but there are tremendous efforts underway at various labs to
approach the Schwinger limit and hopefully one day to observe
a laser-only induced pair-creation process experimentally [13].
In view of the present difficulty to provide sufficiently strong
fields, several theoretical proposals [14–17] to lower the
threshold have been investigated involving combinations of

*qcsu@ilstu.edu

static electric, magnetic, and time-dependent laser fields. In
all cases the fields are required to overlap spatially and to be
applied simultaneously.

In this work we show that there is a third and independent
process that could also contribute to the creation of electron-
positron pairs even if the external field is neither supercritical
nor time dependent. This additional mechanism can be loosely
associated with quantum-mechanical tunneling. It can be ob-
served if two static and subcritical electric fields are separated
by less than the quantum-mechanical tunneling length. It is
worth mentioning that the pair creation initiated by quantum
tunneling between spatially localized fields discussed here is
fundamentally different from the constant field arrangement
considered by Schwinger. For example, Schwinger’s result
does not require a threshold value for the field. However
Schwinger’s formula shows an exponential dependence on
the electric field strength and is often associated with a
tunneling-like process.

We compute the time dependence of the pair-creation
probability and the positron spectra for such a two-field config-
uration from the quantum field operator. The operator’s space
and time dependence is obtained by solving the Dirac equation
numerically [18–21]. This computational approach to quantum
field theory has been introduced recently to study the pair-
creation process with full space-time resolution. For a recent
review, see Ref. [22]. It can provide an alternative approach
to the traditional S-matrix approach, which is based on the in-
and out-states only and therefore cannot visualize the processes
inside the interaction zone. In addition to visualizing the details
of the pair-creation dynamics, direct time-dependent quantum
field theoretical solutions to the Dirac equation have also
contributed to the resolution of various conceptual problems
related to the negative energy states such as the Zitterbewegung
[23], the relativistic localization problem [24], as well as the
Klein paradox [25–28].

This paper is organized as follows. In Sec. II we introduce
our model system characterized by two subcritical fields.
In Sec. III we discuss how the quantum field theoretical
pair-creation rate in the long-time limit can be related to the
single-particle transmission coefficient of the corresponding
quantum-mechanical system. In Sec. IV we compare our
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numerical data with an analytical expression for the pair-
creation rate that can be derived for the special case in which
both fields are narrow. In Sec. V we provide a discussion of
our results.

II. QUANTUM FIELD THEORETICAL SIMULATIONS

The interaction of electrons and positrons with external
force fields is described by the Dirac equation (in atomic units),

i∂�̂(t)/∂t = [cαzpz + βc2 + V (z)]�̂(t), (1)

where V(z) represents the scalar potential associated with the
external force acting along the z direction. If we focus on
that direction and only a single spin direction, the quantum
field operator �̂(z,t) has only two instead of the usual four
components. In Eq. (1) αz denotes the z component of the
2 × 2 Pauli matrix, β is the diagonal matrix, and c is the
speed of light. As the details of how the time-dependent
field operator and the associated fermionic operator algebra
can be obtained numerically from Eq. (1) has been detailed
in the literature [22], we present only a brief review in the
Appendix. We also show there how the positive energy part
of the field operator �̂(p)(z,t) can be used to compute the
spatial density of the created electrons via the field theoret-
ical expectation value in the initial vacuum state, ρ(z,t) ≡
〈〈vac‖�̂†(p)(z,t)�̂

(p)
(z,t)‖vac〉〉. As the positive energy part of

�̂ is based on free states, this density describes in a strict
sense the true density only if the fields were instantaneously
turned off [29,30]. This would include the possible changes
in particle number due to the time dependence of the turnoff.
The corresponding integral over all space, N (t) = ∫

dzρ(z,t) ,
yields the time-dependent number of electron-positron pairs.

The specific configuration of external fields together with
the associated potential is sketched in Fig. 1. The two electric
fields have a width of W each and the maxima E1 and E2

are separated by a distance denoted by D. It is important
to note that the maximum strengths of the two electric
fields are chosen subcritical such that each field by itself is
not able to produce pairs. While we choose the maximum
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FIG. 1. The two electric fields E(z) = (E1/2)sech2(z/W ) +
(E2/2)sech2[(z − D)/W ] and their associated potential V (z) =
− ∫ z

−∞ dz′ E(z′). We have graphed the field and the potential for the
parameters used in the simulations discussed below, D = 0.005 a.u.
and W = 0.05/c].

value of E to be larger than Ec, the width of each field
is so narrow that an electron would be accelerated to a
kinetic energy much less than 2c2. Note that the Schwinger
criterion applies only to an infinitely extended field. We
also choose D � W such that the spatial overlap of the
two electric fields is negligible. The figure also displays
the corresponding double Sauter [31] electric potential,
defined as V (z) = − ∫ z

−∞ dz′ E(z′) = V1[1 + tanh(z/W ]/2 +
V2{1 + tanh[(z − D)/W ]}/2, where V1 and V2 are the heights
of two subcritical potentials with amplitudes V1 = E1W and
V2 = E2W .

For simplicity we have turned the potential on instantly at
time t = 0. In Fig. 2 we show how the number of created
electron-positron pairs changes as a function of time for four
different interforce separations D ranging from D = 0 to
D = 0.03 a.u.

We note that each graph is characterized by three different
temporal regimes. At very early times, directly after the
sudden onset of the two fields, the number of pairs grows first
quadratically in time N (t) ∼ t2. This is generally associated
with the abrupt turn-on of the fields. A comparison of the
graphs suggests that this early time growth behavior is rather
independent of D. In other words, this initial growth can be
viewed as the result of an incoherent process due to each
(subcritical) electric field pulse, where the created particles
at one force location do not have sufficient time to affect the
creation process (via Pauli blocking [27,28,32]) at the other
location.

The next time regime depends strongly on the spatial shape
of the fields. In each case, the long-time behavior is character-
ized by a permanent linear growth in time, N(t) ∼ St, where
the corresponding pair-creation rate S = S(V1,V2,D) depends
crucially on the interfield separation D. In other words, the
graphs show that even though each of the electric fields is
subcritical and time independent, this field configuration is
able to produce a permanent flow of electron-positron pairs.

0
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0.4

0 0.0002 0.0004

t [a.u.]

N
(t

)

D=0

0.005

0.01
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FIG. 2. The electron-positron pair-creation probability N(t) due
to the two subcritical fields shown in Fig. 1. The number beside
each graph denotes the D chosen in the simulations with V1 =
V2 = 1.5c2 and W = 0.05/c. The dashed line was obtained from a
single supercritical field with potential height V = 2.5c2. (Numerical
simulation parameters: Length of the numerical box L = 0.15 a.u.,
number of spatial grid points Nz = 512, and temporal grid points
Nt = 1000).
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In order to better estimate the magnitude of this effect,
for comparison we have also included in the figure (dashed
line) the number of created pairs for a single supercritical
electric field with strength V = 2.5c2. The slope of this graph
is similar to the one obtained by two pulses with strength
V1 = V2 = 1.5c2 and separation D = 0.01 a.u. and far less
than the slope for D = 0.005 a.u. This comparison nicely
illustrates that even though each electric field has only 60%
of the amplitude of the supercritical single pulse, the resulting
pair creation can be much stronger. In fact, for D → 0 we
approach the production rate of a single electric field with
supercritical amplitude V1 + V2 = 3c2.

Once the distance D is too large (D > 0.03 a.u.), the slope of
N(t) approaches zero and there is almost no permanent particle
growth. Any particle pair is then created exclusively during the
temporal phase when the fields are turned on. It is obvious that
using multiple field configurations, the creation dynamics of
particles can be controlled.

III. THE PAIR-CREATION RATE AND ITS RELATIONSHIP
TO THE TRANSMISSION COEFFICIENT

In this section we will focus on the relationship of the
long-time pair-creation rate S with the transmission coefficient
associated with a (physically different) situation where a single
incoming electron scatters off of the same field configuration
that produces the electron-positron pairs. Based on an original
conjecture by Hund [33], one can show that the rate can
be obtained from the energy integral over the transmission
coefficient [16,34], as

S = 1

2π

∫ V −c2

c2
T (E)dE. (2)

This surprisingly simple relationship follows from the
underlying structure of the energy eigenstates associated with
the Dirac Hamiltonian given in Eq. (1). It is valid for the energy
regime c2 < E < V − c2 with V > 2c2, at which a portion of
the wave function (modeling an incoming particle) can actually
penetrate the potential barrier of total height V. This purely
mathematical transmission, however, does not mean that an
actual physical electron can pass through this barrier as its
energy E is less than the barrier height V. This mathematical
property of the Dirac (and also of the Klein-Gordon) equations
is related to the famous Klein paradox [25–28].

As this transmission is quite useful to understand the
quantum field theoretical pair-creation process, we illustrate
here the dynamics of the underlying quantum-mechanical
system. In such a simulation, we approximate the initial state
of the incoming electron by a Gaussian wave packet with the
two-component wave function:

φ(z,t = 0) ≡ Nm

(
1
p

c+
√

c2+p2

)
exp[ipz − (z − z0)2/(2�z)2].

(3)

Here Nm denotes the normalization factor such that the
total norm is equal to 1, which is conserved in time as H is
unitary. The spatial width is denoted by �z and p is the central
momentum corresponding to the incoming energy. The spatial

0.02

0.000N
(t

)

D=0.005 a.u.

0.04

0.001

0.06

0.196

0.08

0.351

0

0.2

0.4

-8 -4 0 4 8
z [a.u.]

0.10

0.356

0.000

D=0.010 a.u.

0.001

0.069

0.124
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z [a.u.]
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FIG. 3. Snapshots of the charge density for the quantum-
mechanical scattering off the two-field configuration shown in Fig. 1
with a spacing D = 0.005 a.u. (left) and D = 0.01 a.u. (right), taken at
times separated by the interval �t = 0.02 a.u. The incoming energy
E = 1.5c2 corresponds to a central momentum of p = (5/4)1/2c. The
numbers next to the densities are the corresponding total probabilities
for z > D. (Numerical parameters: Length of the numerical box L =
30 a.u., number of spatial grid points Nz = 65,536, and temporal grid
points Nt = 20,000, W = 0.05/c].

length of the numerical box is 30 a.u. The wave packet is
initially localized at z0 = −6 a.u.

In Fig. 3 we describe the time evolution of the charge
density approaching the two fields that are located at z =
0 and z = D. The computational algorithm is similar to the
split-operator method described in the appendix. The electron
wave packet enters the potential region from the left side,
interacts with the two electric force fields, and splits into the
reflected and transmitted parts. The interaction with the field is
characterized by the occurrence of high-frequency oscillations
based on the interference of incoming and reflected portions
of φ, whose wavelength is related to the incoming momentum
p. We compare the time evolution for two different field
configurations; the left sequence is for the interforce separation
D = 0.005 a.u., while the snapshots in the right column are for
D = 0.01 a.u.

In order to test the validity of Eq. (2), we compute the
total area of the transmitted portion of the charge density
to determine the transmission coefficient for that particular
incoming energy E. The final transmission coefficients for the
Gaussian wave packet amount to T = 0.356 for D = 0.005 a.u.
and T = 0.125 for D = 0.01 a.u., respectively. We will see
in Sec. IV that the amount of the transmitted wave packet
portion and the transmission coefficient decrease exponentially
with increasing field separation D, suggesting that tunneling
is the main mechanism leading to this effect. A more global
description of the relationship between these key parameters
will be presented in the next section based on a stationary state
analysis that will permit us to compare our numerical data with
analytical results.
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IV. THE TRANSMISSION COEFFICIENT
FOR NARROW FIELDS

In this section we will derive an analytical expression for
the transmission coefficient T (E,V1,V2,D) and use its energy
integral to predict the long-time pair-creation rate S(V1,V2,D)
according to Eq. (2). This will permit us to compare the rates
with the long-time slopes dN(t)/dt obtained from the quantum
field theoretical number of created pairs.

Here we will focus on the narrow-field limit W → 0, for
which the potential becomes V (z) → V1θ (z) + V2θ (z − D),
where θ (. . .) denotes the Heaviside unit-step function, defined
as θ (z) ≡ (1 + |z|/z)/2. This choice has two advantages;
first, for any distance D �= 0, the two electric fields have
a completely vanishing spatial overlap that will permit an
unambiguous interpretation of the results in terms of tunneling.
Secondly, this special case leads to analytical expressions
for the pair-production rate that can be compared with the
long-time limit of the time-dependent particle numbers.

In order to determine the transmission coefficient, we have
to find the stationary energy eigenstates for the Hamiltonian
cαz + βc2 + V (z) with the two narrow fields located again at
z = 0 and D. As a result there are three spatial regions for
which the electric field vanishes, region I (z < 0), region II
between both electric fields (0 < z < D), and region III to the
right of both fields (D < z).

In region I the potential height is zero, such that
the momentum of the incoming and reflected state is
p ≡ (1/c)

√
(E2 − c4). In region II the subcritical po-

tential height is less than the incoming energy E <

V1; the wave function decays or grows exponentially
with a factor β ≡ (1/c)

√
[c4 − (V1 − E)2] characteristic of

quantum-mechanical tunneling. In region III, the poten-
tial provides nondecaying states with the momentum q ≡
(1/c)

√
[(V1 + V2 − E)2 − c4]. The relevant wave functions

can be written as


I = 1√
2π

1√
2E

(√
E + c2

√
E − c2

)
eipz

+ 1√
2π

r√
2E

( √
E + c2

−√
E − c2

)
e−ipz, (4a)


II = A
1√
2π

( √
c2 − (V1 − E)

−i
√

c2 + (V1 − E)

)
eβz

+B

( √
c2 − (V1 − E)

i
√

c2 + (V1 − E)

)
e−βz, (4b)


III = 1√
2π

t√
2(V1 + V2 − E)

×
[√

(V1 + V2 − E) − c2√
(V1 + V2 − E) + c2

]
e−iqz|J |. (4c)

The parameters r and t are the reflection and transmission
amplitudes and we have T = |t |2|J |. By matching wave
functions at the boundaries z = 0 and D, we can find the

expansion amplitudes A and B and after some cumbersome
calculations derive the transmission coefficient T as

T (E,V1,V2,D)

= 2c2pq

2c2V1V2 sinh2(βD)/β2 + E(V1 + V2 − E) + c2pq + c4
.

(5)

Note that the expression depends asymmetrically on V1

and V2. However, when integrated over the energy E the
result is symmetric about the sequence of V1 and V2 as one
might have expected. For large spacing D, the transmission
coefficient falls off exponentially with increasing D, T =
4β2pq/(V1V2)exp(−2βD), as characteristic of a tunneling
effect. In the opposite limit, D = 0, T is characteristic of a
single barrier with height V1 + V2.

In order to test the validity of this formula, we compare its
prediction with the actual transmission coefficients obtained
from the area of the transmitted wave function portion obtained
in the quantum-mechanical wave packet simulation of the
previous section.

In Fig. 4 we compare the analytical expression for T from
Eq. (5) with the numerical transmission data (circles) for the
small width W = 0.05/c as a function of the separation D for
two incoming energies E = 1.2c2, and 1.5c2. The agreement
is superb. The two black dots represent the transmission
coefficients T = 0.125 and 0.356, for which the time evolution
was presented in Fig. 3. The small amount of discrepancy
is expected and associated with the finite width of the wave
packet used in the simulations leading to Fig. 3.

As a next step we compute the actual pair-creation rates
S via the energy integral over the analytical transmission
coefficient according to Eq. (2). As the energy E is contained
in the momenta p and q, and in the tunneling length β−1, this
integral must be determined numerically in general.

In Fig. 5 we compare the analytical rate with the actual
slope of the time-dependent number of particle pairs N(t)
obtained from quantum field theory. We can see that the results

0
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0 0.01 0.02

Field separation D [a.u.]

T
ra

ns
m

is
si

on
 T E=1.5c

2

E=1.2c
2

Eq. (5)
simulation

FIG. 4. The transmission coefficient T as a function of the
distance D for electrons with two different incoming energies,
E = 1.5c2 and 1.2c2. Solid lines are predicted by Eq. (5). The circles
are the corresponding transmission coefficient obtained from the
time-dependent wave packet simulations while the two solid circles
indicate the transmission coefficient from Fig. 3.
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Growth rate S

Eq. (2)
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FIG. 5. The pair-creation growth rate S as a function of the
distance D of the two electric fields. Solid lines are the predictions
by Eqs. (2) and (5) for W → 0. The circles are the corresponding
growth rates obtained from the time-dependent simulations while
the solid circles indicate the slopes in Fig. 2. (Numerical simulation
parameters: Length of the numerical box L = 0.15 a.u., number of
spatial grid points Nz = 512, and temporal grid points Nt = 1000,
W = 0.05/c).

simulated by quantum field theory also match very well with
the analytical solution of Eq. (5). The error with the data shown
is <0.1%.

V. SUMMARY AND DISCUSSION

In this work, we discussed a theoretical formalism that al-
lows us to compute the time-dependent pair-creation probabil-
ity for multiple force field configurations under the description
of both quantum field theory and quantum mechanics. These
studies suggest that there is a third mechanism that can lead to
the creation of electron-positron pairs from the vacuum, even
if the external electric field is neither supercritical nor rapidly
oscillating in time. The formal mathematical relationship
between the asymptotic pair-creation rate and the transmission
coefficient permits us to study complicated field configurations
relatively easily. Instead of carrying out involved quantum field
theoretical computations, one can optimize the transmission
for a special field arrangement. Based on this relationship
one can loosely associate this third mechanism with quantum
tunneling.

In order to avoid potential confusion, we should mention
that in the case of a supercriticality induced pair creation, the
corresponding quantum scattering system is characterized by
a nonvanishing transmission coefficient, based on the fact that
there are energetically permitted nondecaying (nontunneling)
states under the potential step barrier leading to a nonvanishing
transmission. This particular mechanism has sometimes been
called “Klein tunneling” [26], even though in contrast to
our mechanism, there are no exponentially decaying states
involved.

The effect of tunneling on the pair-creation mechanism
also contributes to the general discussion about whether
global properties such as the potential and its resulting energy

levels or local properties such as the electric field strength at
certain spatial regions are more important for the pair-creation
process. Traditionally, the diving of the lowest-lying bound
state into the negative energy continuum has been associated
with the onset of pair creation [1]; on the other hand, spatially
resolved simulations show that the particles are being created
only at those local regions where the force field is maximum
[32]. To examine this question further, we simulated the
pair-creation process for a potential well with an increase
of the width of the well while leaving the regions of largest
force (the wings of the well) unchanged. We observed a clear
onset of supercriticality at widths where the lowest-energy
eigenstate shifts into the negative energy continuum. The
results suggest that the location of lowest-energy eigenstate
plays a crucial part during pair creation. These studies are
also slightly more complicated as one has to rely entirely on
quantum field theoretical simulations because the analogous
quantum scattering system does not permit Klein tunneling and
the long-time creation rate vanishes due to Pauli blocking [32].

The observation also raises interesting questions about
the locality and causality of the pair-creation process under
external fields [35]. As the two electric fields did not overlap,
the early charge densities associated with the created particles
at each location also should not overlap, suggesting that at early
times, the turn-on induced initial growth of particles growth at
each location are completely independent of each other. Only
once the particles created at one location have propagated to
the other region, does the system evolve into its steady state
pair-creation mode.

A possible experimental set-up would be obviously much
more complicated than described by our oversimplified model
system. But in view of the difficulty to generate supercritical
fields, we point out that having a sequence of multiple external
fields (even if they do not or only minimally overlap) could
help to enhance the chance of detecting electron-positron pairs
in this experimentally challenging endeavor.
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APPENDIX

In computational quantum field theory, �̂(t) is the field
operator for the electron-positron complex. As a hybrid of an
operator and a quantum-mechanical wave function it satisfies
not only the Heisenberg equation of motion but also the
ordinary Dirac equation given by Eq. (1). We can expand �̂(t)
into terms of creation and annihilation operators in the energy
range c2 < E < V − c2, where the particle is expected to be
created and ignore other terms outside this range.

�̂ (t) =
∑

p

b̂p(t) |p〉+
∑

n

d̂†
n(t) |n〉. (A1)
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Here the states |p〉 and |n〉 denote the quantum-mechanical
energy eigenstates of the force-free Hamiltonian and the
subscripts p and n represent positive and negative energy,
respectively. These eigenstates are time evolved under the
whole Hamiltonian with the external field interaction leading
to |p(t)〉 and |n(t)〉. The creation and annihilation operators
satisfy the fermionic anticommutator relationship [b̂p, b̂

†
p′ ]+ =

δ(p − p′) and [d̂n, d̂
†
n′ ]− = δ(n − n′). These operators evolve

in time according to

b̂p(t) =
∑
p′

b̂p′ 〈p|p′(t)〉 +
∑

n

d̂†
n〈p|n(t)〉

=
∑
p′

b̂p′Up,p′ (t) +
∑

n

d̂†
nUp,n(t), (A2a)

d̂†
n(t) =

∑
p

b̂p〈n|p(t)〉 +
∑
n′

d̂
†
n′〈n|n′(t)〉

=
∑

p

b̂pUn,p(t) +
∑
n′

d̂
†
n′Un,n′ (t). (A2b)

The matrix elements Up,p′ = 〈p|p′(t)〉, Up,n =
〈p|n(t)〉, Un,p = 〈n|p(t)〉, and Un,n′ = 〈n|n′(t)〉 can be
computed from the evolution of the single-particle Dirac
equation. The solution of Eq. (1) can be used to calculate
various quantum field theoretical observables. For the
pair-creation process we need to compute the corresponding
expectation value in the fermionic vacuum state ||vac〉〉. To
analyze the total pair creation, first we compute the average
particle density ρ(p)(z,t) of the created electrons by using the
density operator �̂†(p)(z,t)�̂(p)(z,t).

For electrons, which have positive energies, the space-time-
dependent field operator is

�̂(p)(z,t) =
∑

p

b̂p(t)wp(z), (A3)

where wp(z) denotes the two-component spatial representation
of the eigenvector of force-free Hamiltonians with positive
energy. With Eq. (A3) and Eq. (A2a), the probability density
of the electrons is

ρ(z,t) = 〈〈vac||�̂†(p)(z,t)�̂(p)(z,t)||vac〉〉

=
∑

n

∣∣∣∣∣
∑

p

Up,n(t)wp(z)

∣∣∣∣∣
2

(A4)

By integrating the probability density spatially, we obtain
the average number of created electrons as

N (t) =
∑
pn

|Up,n(t)|2. (A5)

In order to compute Up,n = 〈p|n(t)〉, we solve the
single-particle Dirac equation starting from negative en-
ergy state |n〉 at t = 0. The single-particle Dirac equa-
tion is solved numerically by the split-operator technique
[18–21]. In this method the time-evolution operator exp[–
iht] is decomposed into Nt consecutive actions; each
subinterval operators can be approximated by exp(−iht) ≈
exp[(−iV �t/2)(−ih0�t)(−iV �t/2)], where h0 denotes the
force-free Hamiltonian. The action of exp(–iV�t/2) can be
performed conveniently in the discretized coordinate space
with Nz grid points. By using the Fourier transformation
between spatial and momentum spaces, we can compute the
action of the corresponding propagators via simple multipli-
cations in the relevant space.
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