
Illinois State University Illinois State University 

ISU ReD: Research and eData ISU ReD: Research and eData 

Faculty publications – Physics Physics 

3-2001 

Effects of relativity on the time-resolved tunneling of electron Effects of relativity on the time-resolved tunneling of electron 

wave packets wave packets 

P Krekora 
Illinois State University 

Q Su 
Illinois State University 

Rainer Grobe 
Illinois State University 

Follow this and additional works at: https://ir.library.illinoisstate.edu/fpphys 

 Part of the Atomic, Molecular and Optical Physics Commons 

Recommended Citation Recommended Citation 
Krekora, P; Su, Q; and Grobe, Rainer, "Effects of relativity on the time-resolved tunneling of electron wave 
packets" (2001). Faculty publications – Physics. 32. 
https://ir.library.illinoisstate.edu/fpphys/32 

This Article is brought to you for free and open access by the Physics at ISU ReD: Research and eData. It has been 
accepted for inclusion in Faculty publications – Physics by an authorized administrator of ISU ReD: Research and 
eData. For more information, please contact ISUReD@ilstu.edu. 

https://ir.library.illinoisstate.edu/
https://ir.library.illinoisstate.edu/fpphys
https://ir.library.illinoisstate.edu/physics
https://ir.library.illinoisstate.edu/fpphys?utm_source=ir.library.illinoisstate.edu%2Ffpphys%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/195?utm_source=ir.library.illinoisstate.edu%2Ffpphys%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.library.illinoisstate.edu/fpphys/32?utm_source=ir.library.illinoisstate.edu%2Ffpphys%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ISUReD@ilstu.edu


Effects of relativity on the time-resolved tunneling of electron wave packets

P. Krekora, Q. Su, and R. Grobe
Intense Laser Physics Theory Unit and Department of Physics, Illinois State University, Normal, Illinois 61790-4560

~Received 24 January 2000; revised manuscript received 10 April 2000; published 14 February 2001!

We solve numerically the time-dependent Dirac equation for a quantum wave packet tunneling through a
potential barrier. We analyze the spatial probability distribution of the transmitted wave packet in the context
of the possibility of effectively superluminal peak and front velocities of the electron during tunneling. Both
the Dirac and Schro¨dinger theories predict superluminal tunneling speeds. However, in contrast to the Dirac
theory the Schro¨dinger equation allows a possible violation of causality. Based on an analysis of the tunneling
process in full temporal and spatial resolution, we introduce an instantaneous tunneling speed that can be
computed inside the potential barrier.

DOI: 10.1103/PhysRevA.63.032107 PACS number~s!: 03.65.Pm

I. INTRODUCTION

The phenomenon of tunneling in which a quantum-
mechanical particle can penetrate a repulsive barrier with a
height that exceeds the total energy of the particle is coun-
terintuitive. Any explanation or intuition for this process
based on classical mechanics fails. At the same time, this
effect is extremely important and has been studied widely.
The Josephson effect in high-speed semiconductors@1#, b
decay in nuclear physics, and instantons in high-energy
physics are just a few examples. In the early 1930s it was
already recognized that there was no appreciable temporal
delay in the transmission of wave packets through barriers
@2#. Wigner discussed the possibility that a particle can ef-
fectively travel faster than the speed of light when passing
through the barrier. Chiao and co-workers have more re-
cently addressed the realization of superluminal speeds in a
more systematic way. They used a periodic potential barrier
to demonstrate experimentally that superluminal velocities
can indeed be obtained, and showed that this result does not
violate causality.

In this article we intend to address the following ques-
tions: Can one trust the predictions of a nonrelativistic theory
at all if superluminal effects are being investigated? How
accurate are these predictions? Does the relativistic quantum
theory predict superluminal speeds? Does a fully relativistic
treatment of tunneling increase or reduce the tunneling prob-
ability? Does the existence of superluminal velocities imply
the violation of Einstein’s causality when they are computed
in the framework of the Schro¨dinger equation? Can causality
be restored in the Dirac theory? Can one define a physical
quantity that describes the time evolution of a wave packet
inside the barrier which reduces to the regular peak velocity
when calculated from a wave packet that is outside the bar-
rier? Due to its lacking a counterpart in classical mechanics,
it is not obvious how to apply any intuition to relativistic
quantum-mechanical tunneling and to predict any answers to
these questions. A full Dirac theory calculation seems nec-
essary.

Quite remarkably, despite the large amount of literature
on nonrelativistic tunneling, we are aware of only two works
@3# that have addressed some of these questions. Leavens and
Aers @3# used the stationary-state approach to analyze

Larmor-clock transmission times for single and double rect-
angular barriers. In some special cases the problem of
quantum-mechanical tunneling can be mapped onto the fully
relativistic problem of evanescent electromagnetic radiation
@4–7#.

For the special case of nonrelativistic tunneling, the ques-
tion of how much time it takes a particle to pass the barrier
has triggered considerable controversial debate to the present
day. Even though by 1993 the community had largely ac-
cepted the fact that there actually is a time scale associated
with the duration of tunneling, there is still a lack of consen-
sus with regard to the existence of a unique expression for
this time scale and on the exact implications of this expres-
sion @8#. In fact, Hauge and Stovneng@9# stated that with the
exception of two candidates all expressions for tunneling
times have logical flaws sufficiently serious that they must be
rejected. The only two survivors are the dwell time@10# and
the asymptotic phase time@8,9#, which have complementary
weaknesses.

In this article, we stay away from most of the controver-
sial issues and focus on investigating the effect of relativity
on the tunneling process. Our model system is an electron
that tunnels through a one-dimensional repulsive barrier. The
time evolution of this system is given by the solution of the
Dirac equation

i ]C/]T52 icax]C/]x1c2bC1W~x!C, ~1.1!

where the repulsive potentialW(x) is centered aroundx
50 and has an effective width ofw and a heightW0 .
In order to check the generality of our results we have
used a variety of different tunneling potentialsW(x)
5W0 exp@2(2x/w)n#. For large even integersn we recover
the rectangular barrier for which the energy eigenstates can
be found analytically and also some approximate analytical
estimates can be derived. Hereax and b denote the 434
Dirac matrices. The time-dependent solution of the spinor
wave functionC(x,T)5@C1 ,C2 ,C3 ,C4# can be obtained
numerically on a space-time grid using a split-operator algo-
rithm based on fast Fourier transformation that is accurate up
to fifth order in time @11#. In all of our simulations, the
spatial axis was discretized into at least 65 536 grid points
which together with up to 1 500 000 temporal points led to
fully converged results.
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As an incoming electron wave packet we used the state

C~x,T50!5N exp@2~x2x0!2/~4Dx2!#exp~ ik0x!c~k0!,
~1.2!

where the spinor c(k0) is given by @1,0,0,ck0 /
(E012c2)# and the normalization factor N[@(E0

12c2)/(2(E01c2)DxA2p)#1/2. Here the total energyE0

[A@c41c2k0
2#2c2. The central canonical momentumk0 is

related to the initial speedv0 via v05k0 /A@c21k0
2#. We

should mention that, instead of a Gaussian distribution in
position space, we could have equally well chosen a Gauss-
ian in momentum space, which in the nonrelativistic limit
v0!c would yield the same state as Eq.~1.2!. The initial
location of the wave packetx0 was chosen far enough to the
left of the barrier that the total spatial probability for positive
values ofx was negligible at timeT50. The total energy
E05A@c41c2k0

2#2c2 in our case will be consistently cho-
sen smaller thanW0 . The potential heightW0 was also cho-
sen smaller than 2c2 to avoid the effect of the negative-
energy continuum as characteristic of the so-called Klein
paradox@11–13#. This will restrict our initial velocities to
v0,0.94c (5129 a.u.). The potential heightW0 was cho-
sen to be 1.5 times the kinetic energyE0 such that we can
essentially exclude the effect of high-momentum contribu-
tions that can simply pass over the barrier without tunneling.
Please note that the predictions of the corresponding Schro¨-
dinger equation can be obtained quite conveniently in our
numerical simulations by increasing the ‘‘parameter’’c to
infinity @14#.

The most direct way to ‘‘measure’’ the electron’s speed
inside the barrier would be to compare its ‘‘position’’ at
various times during the tunneling. However, the wave func-
tions are essentially delocalized during the scattering event
and previous definitions of effective average tunneling ve-
locities under the barrier were based on extrapolating the
information from the positive or negative spatial delay of the
scattered wave packets outside the tunneling region. After a
discussion of these effective velocities and a critical analysis
of their regime of validity, we will propose in the last section
an instantaneous tunneling speed that can be calculated di-
rectly from the wave packet inside the barrier. It turns out
that the dynamics can be roughly divided up into two re-
gimes depending on the relative magnitude of the initial spa-
tial width in the Gaussian wave packetDx and the barrier
width w. We will discuss them separately below.

II. THE RELATIVISTIC MODIFICATION OF THE
WIGNER TUNNELING SPEED

A. Spatially broad wave packets: DxÌw

With the exception of an overall amplitude reduction the
wave packet does not get significantly distorted as it tunnels
through the barrier for the caseDx.w. In this regime the
center of mass for the transmitted wave packet~denoted in
the following by ^x& t! agrees approximately with the peak
value of the spatial probability density. For the nonrelativis-
tic case this regime has been studied very intensively as the
stationary-phase approximation is qualitatively reliable, per-

mitting some analytical investigations based on the phase of
the complex transmission amplitude. Below we will test this
approximation and compare it with the exact numerical so-
lution of the time-dependent Dirac and Schro¨dinger equa-
tions.

For the special case ofn→` in the mentioned model
potential we recover the rectangular barrier, for which the
complex transmission amplitude can be derived fully analyti-
cally asut(k,w,W0)uexp@ia(k,w,W0)#, where

t~k,w,W0!5
exp@2 ikw#

cosh~kw!1 i @~12G2!/2G#sinh~kw!
,

~2.1!

a~k,w,W0!52kw2 tan21F ~12G2!

2G
tanh~kw!G ,

~2.2!

and where

k[
1

c
Ac42~E1c22W0!2 and

G[AE~E12c22W0!/~E12c2!~W02E!.

Comparing the tunneling probabilityut(k,w,W0)u2 obtained
from Eq. ~2.1! with its nonrelativistic limit~calculated from
setting c→`! we find that relativity reduces the tunneling
efficiency but increases the effective tunneling speed as we
will see below; a result that might be counterintuitive.

In the stationary-phase approximation discussed below,
the center of the transmitted wave packet^x(T)& t at timeT
can be calculated from

^x~T!& t5x02
da~k!

dk U
kp

1
dE~k!

dk U
kp

T, ~2.3!

where the energyE(k)[A@c41c2k2#2c2, and the right-
hand side has to be evaluated at the momentumkp for which
the product of the absolute value of the momentum ampli-
tude andutu takes its maximum value. After some algebra we
obtain

2
da~k!

dk
5w2

c2k

2~E1c2!@11@~12G2!2/4G2#tanh2~kw!#

3H W0

2 S 1

G
1G D tanh~kw!F 1

E~W02E!

1
1

~E2W012c2!~E12c2!
G1

w

k S 1

G
2G D

3sech2~kw!F12
~W02E!

c2 G J , ~2.4!

dE~k!

dk
5

c2k

Ac41c2k2
. ~2.5!
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Equation~2.4! predicts that the distance2da(k)/dkuk0
is

always smaller thanw; in other words, the tunneling process
cannot advance the packet by more than the width of the
potential. Only if the tunneling were to happen instanta-
neously could we obtain a spatial shift with its maximum
valuew. This is consistent with the condition of the validity
of the stationary-phase approximation, which requires that
the momentum scale on which the phasea(k) varies
„'a/@da(k)/dk#… should be larger than the momentum
width of the Gaussian wave packetDk.

The parameter 1/(2Dx)5Dk is the momentum width ac-
cording to the Heisenberg uncertainty relation. IfDk is
smaller than the momentum scale on whicht(k) varies, i.e.,
Dk,utu/@dut(k)u/dk#, then the central velocity of the trans-
mitted wave packet, denoted byv t5^C tucaxuC t&, agrees
with that of the initial wave packet,v t'v0 , such that the
distance between the peaks of the transmitted packet and one
that propagated without any barrier is just given by^x(T)& t

2^x(0)(T)&52da(k)/dkuk0
, wherek05v0 /A12v0

2/c2.
The fact that the propagation velocities on the two sides

of the barrier can be different (v t.v0) @15# has been noted
earlier for the nonrelativistic case. Becauseut(k)u always in-
creases monotonically withk, the smaller momentum com-
ponents in the wave packet are attenuated more during the
tunneling, such that the emerging ‘‘truncated’’ wave packet
has higher average momentum. This effect has been de-
scribed in the literature as an effective electron acceleration
@8,16#. For the case wherekp is significantly larger thank0 ,
the distancê x(T)& t2^x(0)(T)& between the peaks of the
tunneled and~barrier! free-wave packet increases as a func-
tion of time. In order to provide a more unambiguous com-
parison, the tunneled wave packet could be compared with a
special free-wave packet whose initial momentum ampli-
tudes were multiplied initially by the transmission amplitude
ut(k)u, in order to compensate for the attenuated low-
momentum components and to have the same average veloc-
ity v t as the tunneled packet. In this comparison, the distance
between the peakŝx(T)& t2^x̃(0)(T)& does not depend on
time and is equal to

D[^x~T!& t2^x̃~0!~T!&52da~k!/dkuk0
. ~2.6!

Clearly, without any ambiguity, this parameterD can be cal-
culated directly from the wave packet. To associate aneffec-
tive average tunneling velocity across the potential with this
distanceD, we define a quantityve as

ve[
w

T2~T11T2!

5
w

T1~w/21x0!/v01@w/22^x~T!&#/^v~T!& t
,

~2.7!

where T1[(2w/22x0)/v0 and T2[@^x(T)& t
2w/2#/^v(T)& t correspond to the time intervals spent out-
side the potential region2w/2,x,w/2. If v05v t this defi-
nition reduces tove5v0w/(w2D). At this point we should

stress that the ‘‘speed’’ve is just a defined quantity similar to
the concept of a ‘‘tunneling time.’’ It is by no means clear
whether the propagation of the peak through the barrier is
really a microscopically correct physical picture in describ-
ing the center-of-mass motion as it tunnels through the bar-
rier. We will comment on this question in more detail in Sec.
III. Here we plot the ‘‘speed’’ defined in Eq.~2.7! in Fig. 1
as function of the barrier widthw. The graphs turns out to be
quite helpful in many respects.

First of all, we should mention that the markers
correspond to the exact wave-packet solutions to the
time-dependent Schro¨dinger ~circles! and Dirac ~crosses!
equations. For the Dirac case we have computed the
quantum-mechanical spatial probability densityP(x,T)
5( i 51

4 uC i(x,T)u2, where the summation extends over the
four spinor components. For each barrier widthw we have
evolved the initial wave packet in time and then measured
the distanceD between the maxima of the tunneled and
force-free wave packets which was then converted into the
effective speedve according to Eq.~2.7!. In each case the
peak position differed by less than 1022% from the center of
mass of the packet. So the transmitted state is quite symmet-
ric for these parameters. The agreement between the exact
numerical data and the analytical prediction shows that the
stationary-phase approximation leading to Eq.~2.3! is reli-
able in the relativistic and nonrelativistic cases for these pa-
rameters.

Second, having established the validity of the approxima-
tion in Eq. ~2.3!, we point out the difference between the
relativistic and nonrelativistic tunneling speeds. For our ini-
tial velocity of v05100 a.u. the nonrelativistic tunneling
speedve turns out to be 20% smaller than the relativistic
speed. This result is a little surprising as one typically ex-
pects that smaller velocities are associated with relativistic
corrections such as the nonlinear mass increase. In fact our
result is in contrast to that of Leavens and Aers@3#, who
reported a reduction of the tunneling speed due to relativity
for the case of a double-rectangular potential.

Relativistic as well as nonrelativistic theories consistently
predict that for a sufficiently large barrier width~w.0.023
and 0.038 a.u., respectively! the effective tunneling speed
can exceed the speed of light and become superluminal. In

FIG. 1. Comparison of the relativistic and nonrelativistic predic-
tions for the tunneling speed defined in Eq.~2.7!. The solid lines are
the predictions from the approximate analytical relativistic and non-
relativistic theories. The open circles and crosses are obtained from
the exact spatial probability densities calculated from the Schro¨-
dinger and Dirac equations. The parameters werex052100 a.u.,
Dx520 a.u.,v05100 a.u.,T52 a.u., andW051.5E0 .
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fact, for a large barrier widthw, the tunneling velocityve
given in Eq.~2.7! simplifies because the spatial delay takes
the form

D5w2
c2kW0G

~11G2!E~E1c2!~W02E!

3F11
E~W02E!

~E12c2!~E12c22W0!
G . ~2.8!

In the nonrelativistic case this phenomenon is called the
Hartman effect @17#, when D(c→`)5w2A2/(W02E),
andve→v0wA(W02E)/2 increases linearly withw.

Third, the two graphs forw50 are different from the
initial velocity v0 as one could have conjectured. In fact, the
regime of small barrier widths is characterized by tunneling
velocities smaller thanv0 . In other words, the center of the
tunneled wave packet falls behind the force-free one in this
case, associated with a negative distanceD in this regime.

The stationary-phase approximation allows in general for
determination of the locationxp of a function uC(x)u
[u*dk C(k)exp@if(k,x)#u at which it takes its maximum
value. This peak valuexp is obtained from the condition
df(k,xp)/dk50, where the derivative is evaluated where
the ~real! functionC(k) peaks,k5kp . By Taylor expanding
the phasef as well asC(k) aroundkp one can see that a
breakdown of this approximation is associated with nonzero
third-order derivatives inC(k) or f. In the context of our
situation, the functionC(k) corresponds to the product of the
energy state amplitude and the absolute value of the trans-
mission coefficient andf(k,x), which is defined asa(k)
1k(x2x0)2E(k)T. If we decrease the initial spatial width
of the wave packetDx, Dk increases and the functionC(k)
becomes more asymmetric, and an increasing third-order de-
rivative d3C(k)/dk3 will lead to a breakdown of the
stationary-phase approximation. Equivalently, this break-
down can also be caused by an increase of the barrier width
w, leading to an increase of the third-order derivative
d3f(k)/dk3.

In order to demonstrate this breakdown of the stationary-
phase approximation for larger barrier widths, we show in
Fig. 2 similar graphs as in Fig. 1 but on a larger scale for the
barrier width. We see that in the regime in which the barrier
width w approaches the spatial width of the initial stateDx
~which was chosen to beDx54 a.u. in this simulation! the

predictions of the analytical curves become less reliable. In
fact, as we will demonstrate in Sec. II B, the definition of the
spatial delay based on the peak value becomes meaningless.

Let us finish this section with a comment on the relation
of superluminal speeds and the possible violation of Ein-
stein’s causality. We agree with the work of Chiao and co-
workers, who point out that superluminal tunneling speeds
are just a pulse-reshaping effect and therefore do not neces-
sarily violate Einstein’s causality. Other works@18# have ar-
gued that causality is not violated, because of the strong
attenuation suffered by the transmitted signal. The special
theory of relativity could be violated if the total spatial prob-
ability of the tunneled packet to find the particle to the right
of positionx, i.e., *x

`dxuC(x,T)u2, were larger than the cor-
responding probability for a fictitious wave packet that has
moved with the speed of lightc, i.e., *x

`dxuC(x2cT,T
50)u2. The latter is defined by a wave packet that has been
shifted from its initial position by the amountcT, whereT is
again the total time. Due to the relativistic suppression of
spatial spreading first discussed in@19,20#, the width of this
‘‘light-cone’’ packet is identical to its initial widthDx. A
nonrelativistic theory, however, does not take this relativistic
effect into account, and the wave front of a Schro¨dinger state
with a relatively large initial speed close toc can actually
exceed the integrated light-cone probability due to spreading,
and therefore violate causality.

We demonstrate this violation of causality in Fig. 3 where
we have evolved the same initial state withv0
5136.411 a.u. andDx51 for T58.027 08 a.u. using the
Dirac and the Schro¨dinger theories. The thick line shows the
light-cone probability. The sufficient condition for a viola-
tion of causality, *x

`dxuC(x,T)u2.*x
`dxuC(x2cT,T

50)u2, leads to x.1001.5 a.u. for the~nonrelativistic!
Schrödinger wave packetC(x,T). Clearly, causality is vio-
lated in the regionx.1001.5 a.u. for the nonrelativistic wave
packet. On the other hand, the corresponding time-evolved
wave function obtained from the Dirac equation is located
entirely to the left of the light front and we have
*x

`dxuC(x,T)u2,*x
`dxuC(x2cT,T50)u2 for the entire

spatial domain. The latter result can even be shown analyti-
cally @14#; the integral kernel associated with the free time
Dirac evolution operator vanishes outside the light cone,
therefore preventing any acausal behavior. In other words, if
a spinor has a compact support in a finite domain of radiusx,

FIG. 2. The same graph as in Fig. 1 but on a larger scale of
width w to show the breakdown of the analytical predictions for
w.Dx. Same parameters as in Fig. 1, butDx54 a.u.. FIG. 3. The final spatial probability obtained from the solution

of the Dirac and Schro¨dinger equations. The thick line is the light-
cone probability as defined in the text. The parameters werex0

52100 a.u.,Dx51 a.u.,v05136.411 a.u., andT58.027 08 a.u.
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then at timeT the state vanishes outside a domain of radius
x1cT, which, of course, is not true for the Schro¨dinger
equation.

To summarize, if tunneling is treated within the frame-
work of the Dirac theory, causality cannot be violated in
principle. This agrees with the conclusion@18,21# that the
peak amplitude of the pulse emerging from the barrier is
always lower than the amplitude that the pulse would have at
the same instant of time if it were just propagating atc with-
out attenuation.

B. Spatially narrow wave packets: DxËw

As we have demonstrated in Fig. 2, if the spatial width
Dx is of the same order as the width of the potential barrier
w, the stationary-phase approximation becomes unreliable
and one does not have the additional benefit of analytical
approximations. In this regime the momentum scale on
which the complex phase of the transmission amplitude var-
ies, a/(da/dk), is larger than the momentum width of the
wave packet. As a result, each momentum amplitude has a
quite different complex phase and the superposition of the
momentum states does not lead to a simple Gaussian-shaped
spatial probability distribution as in the initial state. In fact,
the spatial density of the transmitted pulse can be multi-
peaked with peak sizes varying as a function of time. In a

space-time picture this could be interpreted as a kind of tun-
neling resonance. In fact, even the reflected density need not
be describable by a simple spatial Gaussian. After the wave
packet has tunneled through the barrier, its time evolution is
described by that of a free particle whose center increases
linearly in time independent of the spatial and temporal in-
terference oscillations.

III. TIME-RESOLVED TUNNELING UNDER THE
POTENTIAL BARRIER

In this section we will analyze the tunneling process from
a microscopic point of view. In Figure 4 we present snap-
shots of the spatial probability of the electron at initial, in-
termediate, and late times. As the initial wave packet was
prepared to the left of the barrier, the probability density in
the region2w/2,x,w/2 vanishes until the front edge of
the incoming wave packet enters the barrier. Then the den-
sity grows and after the tunneling process it reduces back to
zero. Clearly, at each time the density inside the barrier de-
creases monotonically as a function ofx, as shown in Fig. 5.
This stresses the point we made earlier that it is not trivial to
trace directly the peak motion under the barrier. The almost
parallel lines in the logarithmic plot for the region under the
barrier indicate the exponential spatial decay. If these lines
were actually precisely parallel, then the tunneling process
could take place instantaneously in principle. The details of
the incoming wave packet atx52w/2 could then be instan-
taneously transmitted and copied over to the transmitted por-
tion at x5w/2. On the other hand, we have shown in the
previous section that the tunneling process does not happen
instantaneously and requires a finite time associated with ef-
fective sub- or superluminal speeds.

As a side remark we should mention that, in contrast to
the stationary solutions of the Schro¨dinger equation whose
derivatives atx56w/2 are continuous, the Dirac equation in

FIG. 4. The spatial probability densityP(x) before, during, and
after scattering off a square potential barrier at timesT50, 0.05,
and 0.1 a.u. The vertical dashed line indicates the location of the
potential atx50. The parameters werex0525 a.u.,Dx50.5 a.u.,
v05100 a.u.,w50.05 a.u., andW051.5E0 .

FIG. 5. The spatial probability density displayed in the spatial
region near and inside the barrier at various timesT in a.u. Same
parameters as in Fig. 4.
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principle permits its stationary solution to have a discontinu-
ous derivative at the interfaces. Our time-dependent calcula-
tions, however, suggest that the wave-packet solution is ac-
tually smooth at these boundaries.

To investigate the mechanism of the tunneling in more
detail, we have defined a quantity that will provide us with
additional insight. For a given locationx, we have computed
numerically from our time-dependent wave function solution
that specific time~which we denote byTp! at which the
spatial probability densityP(x,T) takes its maximum value:

max(
i 51

4

uC i~x,T!u25(
i 51

4

uC i~x,Tp!u2. ~3.1!

Inside the barrier the wave function is certainly not spatially
localized, as it always takes its spatial maximum at the left
edgex5w/2, but it istemporally localizedsuch that the peak
time Tp(x) can be unambiguously defined and calculated
under the barrier as well. Before the wave packet arrives at
the boundary,T!(2x02w/2)/v0 , the function Tp(x) is
given by the linear dependenceTp(x)5(x2x0)/v0 for x!
2w/2, if the wave-packet spreading is not significant
@19,20#. Here the inverse value of the slope is the incoming
velocity v0 .

In Fig. 6 we display the locationx as a function of this
temporal peak time~3.1! around and inside the barrier. For
comparison we have indicated by the straight line the result
obtained from a wave packet without any tunneling barrier,
x(0)(T)5v0T1x0 . There are two striking observations.

First, due to the details of the scattering process at the left
edge of the barrier and the resulting interference of the in-
coming and reflected wave packets, the peak time for the
tunneling case is actually different from that of the corre-

sponding force-free wave packet atx52w/2. For our cho-
sen parameters, it turns out that this arrival time is actually
larger than that associated with the free electron.

A second observation is about the region inside the bar-
rier. We can define aninstantaneoustunneling speedvT as

vT5
1

dTp~x!/dx
, ~3.2!

which is a continuous function of the locationx and whose
value can be read off the graph.

For the special case of the square-well potential, the ana-
lytical form of the stationary states inside the potential is
known and it is possible within the framework of the
stationary-phase approximation to derive analytical formulas
for this instantaneous tunneling velocity as a function of the
distance:

1/vT5dTp~x!/dx

5
kW0GB1 sech2@k~x2w/2!#$12G2 tanh2@k~x2w/2!#%

2$11G2 tanh2@k~x2w/2!#%2

1
GB2 sech2@k~x2w/2!#$11G2 tanh2@k~x2w/2!#22k~11G2!~x2w/2!tanh@k~x2w/2!#%

k$11G2 tanh2@k~x2w/2!#%2
, ~3.3!

where

B15F 1

E~W02E!
1

1

~E2W012c2!~E12c2!
G

and

B25F211
~W02E!

c2 G ,

and whereTp is given by

FIG. 6. The locationx as a function of the temporal-peak time.
The dashed line corresponds to the graph associated with a free
wave packet in the absence of any scattering potential. The open
circles denote the prediction according to the analytical formula
based on the stationary-phase approximation@Eq. ~3.4!#. The pa-
rameters were x052100 a.u., Dx520 a.u., v05100 a.u., w
50.01, andW051.5E0 .
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Tp5
A11k2/c2

k S w

2
2x0D2

w

k S 11
E

c2D 1
W0~G211G!B1 tanh~kw!12w~G212G!B2 sech2~kw!

4$11@~12G2!2/4G2# tanh2~kw!%

1
W0GkB1 tanh@k~x2w/2!#12GB2~x2w/2!sech2@k~x2w/2!#

2k$11G2 tanh2@k~x2w/2!#%
. ~3.4!

To test the validity of the analytical formula~3.4!, we have
superimposed on the curve in Fig. 6 the predictions accord-
ing to this formula~circles! for the Schro¨dinger theory, and
the agreement is astonishing.

We should note that all analytical formulas derived in this
section are based only on the first spinor component of the
wave function. In the previous sections we have shown that
this approximation works quite well for predicting the wave
function outside the barrier region. However, inside the bar-
rier the other spinor components are more important and the
agreement between the exact peak time computed from all
spinor components of the Dirac solution and its analytical
approximation@Eq. ~3.4!# is only qualitative and not as good
as in the nonrelativistic case. We observed that, if the peak
time was computed only from the first spinor component of
the exact Dirac state, the analytical estimate of Eq.~3.4!
~based on the first spinor! produces a relative error of less
than 1023%.

Let us finish with a quick comparison of the effective
tunneling speedve based on the spatial delay after the tun-
neling event with the instantaneous speedvT introduced in
Eq. ~3.2!. As an example, for the parameters discussed in the
previous section~x052100 a.u., v05100 a.u.! we found
that the spatial delay wasD525.531023 a.u. for a wave
packet that was associated with a temporal delayDT
525.531025 a.u. Using Eq.~2.7! we associated this delay
with an effective average tunneling speed ofve564.5 a.u.
For these parameters, the graph in Fig. 6 shows that the
center of the wave packet formed from the incoming and
reflected waves reaches the left edge at the timeTL
51.000 030 5 a.u., which due to the interference is already

delayed compared to the arrival time of a force-free wave
packet (TL

(0)50.999 950 0 a.u.). Figure 6 also shows that the
tunneled portion reaches the right edgex5w/2 at a time
TR51.000 106 8 a.u. As a result, the time the electron has
spent under the barrier is onlyTR2TL50.000 076 3 a.u.,
which is shorter than the corresponding timeTR

(0)2TL
(0)

5w/v050.0001 a.u. of the force-free electron. This time
would amount to an average tunneling speed ofv̄T5w/(TR
2TL)5131 a.u. This average velocityv̄T is much larger than
the effective tunneling speedve calculated above in Sec. II.
This huge difference~between 64.5 and 131 a.u.! is due to
the delay of the wave function already present on the left
edge of the barrier before the electron enters the potential.
The speeding up of the particle under the barrier~associated
with v̄T5131 a.u.! is compensated by the slowing down be-
fore entering the barrier, so that the effective speed that takes
both mechanisms into account amounts to a net value of 64.5
a.u. We will present a more detailed discussion of the general
properties ofvT elsewhere.
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