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The Wabash #1 well, drilled for the Wabash CarbonSAFE Project and located in Vigo 
County, Indiana, USA, was drilled in early 2020 as a stratigraphic test well to characterize 
and evaluate the basal Cambrian Mt. Simon Sandstone for carbon dioxide storage 
(TD=8750 ft; 2667 m). The Wabash #1 well is located along the eastern flank of a newly 
interpreted Cambrian aulacogen that occurs in western Indiana and eastern Illinois. Here 
we present 938 new detrital zircon U-Pb ages (LA-ICPMS) from early Cambrian 
sandstones sampled near the base of the well. A basalt lava flow was penetrated at ~8530 
ft (2600 m) and has an 40Ar/39Ar age of 525.03 +/- 1.10 Ma, which represents the first 
known Cambrian crust in the Illinois Basin. The two sandstone samples from beneath the 
basalt are dominated by zircons derived from the Midcontinent Granite-Rhyolite terrane. 
The sandstone samples from above the basalt reflect a mixture of these locally derived 
Mazatzal and Granite-Rhyolite terrane zircons, but also distal Archean, Grenville, and 
Yavapai zircons. Each sample has small numbers of Cambrian zircons, which is consistent 
with those in basal Cambrian sandstones in other deep wells to the west. These early 
Cambrian detrital zircons and early Cambrian age of the basalt, combined with sediment 
thickness patterns permit the interpretation of the Illinois aulacogen, which formed 
during the final stage of Rodinian rifting. 

INTRODUCTION  

The Illinois Basin is an intracratonic basin that extends 
across most of Illinois into Kentucky and Indiana and con
tains more than 5 km of Paleozoic strata (Heidlauf et al., 
1986). In southern Illinois, Neoproterozoic-Cambrian rift
ing is evident in the Reelfoot Rift System (Kolata & Nelson, 
1997) where seismic data indicates that the Cambrian Mt. 
Simon Sandstone unconformably overlies Precambrian 
basement rocks. Recent deep boreholes drilled for indus
trial-scale CO2 storage projects recovered the first core 
samples from the lower Mt. Simon Sandstone (Freiburg, 
Holland, et al., 2020) which occur more than 160 km north 
of the Pennsylvanian Illinois Basin depocenter in southern 
Illinois (McBride et al., 2003; McBride & Kolata, 1999). In 
the central and northern the Mt. Simon Sandstone is more 
than 700 m thick. 
The Wabash #1 well, which is part of the CarbonSAFE 

Wabash Project and located in Vigo County, Indiana, was 
drilled in early 2020 as a stratigraphic test well to char
acterize and evaluate the basal Cambrian sandstones for 
CO2 storage (TD=8750 ft; 2670 m). This well has a thicker 

and more complete Cambrian succession than the other 
three CarbonSAFE wells to the west (Freiburg, Holland, et 
al., 2020; Figure 1). The Wabash #1 well penetrated the 
lower Mt. Simon sandstone and a basalt lava flow, which 
is the first Cambrian igneous rock recognized in the Lau
rentian midcontinent. Here we present 938 new detrital zir
con U-Pb ages from four core samples of the Mt. Simon 
Sandstone. We also present new 40Ar/39Ar age data for the 
basalt. The concept presented and argued here is that an 
early Cambrian Illinois aulacogen, akin to the better-known 
Oklahoma aulacogen, formed as the Cuyania (i.e Argentine 
Precordillera) terrane rifted from southern Laurentia. Thus, 
these new data support the hypothesis advanced by Thomas 
et al. (2004) and further constrain the nature of the Rodin
ian supercontinent along the southern margin of Laurentia. 

BACKGROUND  

The core of Laurentia formed by a series of Paleoprotero
zoic collisional events between Archean cratons. Progres
sive addition of volcanic arc and oceanic terranes accreted 
onto this core (Whitmeyer & Karlstrom, 2007; Figure 2). 
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Figure 1. Geophysical log cross-section of the Mt. Simon Sandstone in the (right to left) Wabash #1 well, Vigo                  
Co., Indiana; Verification #1 well (VW1), Macon Co., Illinois; T.R. McMillen #2 well, Christian Co., Illinois; and                  
the FutureGen Alliance #1 well, Morgan Co., Illinois.         

The Archean Superior province is bounded to the south by 
the Penokean orogen, which includes the Archean Marsh
field terrane (Craddock et al., 2018). Further to the south, 
Yavapai (1.8-1.70 Ga) and Mazatzal Province (1.70 -1.60 Ga) 
occur and are overprinted by rocks related to Grenville-age 
tectonism to the east (Craddock et al., 2017). Yavapai and 
Penokean age rocks are the basement for ~1.6 Ga Bara
boo Interval strata (Stewart et al., 2021). Igneous and sedi
mentary rocks of the ~1.1 Ga Midcontinent rift are present 
in the Lake Superior area and extend southward into Ohio 
and Indiana (Craddock et al., 2013; Malone et al., 2020; 
Moecher et al., 2018; Stein et al., 2015). 
The basement rocks of Illinois consist of a voluminous 

Mesoproterozoic magmatic belt (ca. 1.37-1.48 Ga) referred 
to as the Granite-Rhyolite province (GRP; Bickford et al., 
2015; Van Schmus et al., 1993). Although no Mazatzal 
crustal rocks have been sampled by deep drilling in this 
area as yet, its presence is interpreted through the abun

dance of Mazatzal age zircons in the basal Cambrian strata 
(Freiburg, Holland, et al., 2020) in Illinois and the upper
most Baraboo Interval strata in Wisconsin (Medaris et al., 
2021). The GRP is bisected by a southwest–northeast trend
ing isotopic discontinuity dubbed the “Nd line” (Van 
Schmus et al., 1996). The Nd line separates Mesoprotero
zoic igneous rocks with Nd model ages > 1.55 Ga to the 
northwest from those with <1.55 Ga model ages to the 
southeast. Mesoproterozoic rocks to the south-east are 
thought to represent 1.55–1.35 Ga juvenile crust that ac
creted as part of a long- lived arc system, whereas rocks to 
the northwest were derived from melting of Paleoprotero
zoic crust during Granite-Rhyolite magmatism (Bickford et 
al., 2015; Van Schmus et al., 1996; Whitmeyer & Karlstrom, 
2007). 
The rifting and eventual breakup of the Rodinian super

continent occurred from ~780-530 Ma, with the thickest 
(~10 km) and best exposed being along the Cordilleran con
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Figure 2. Map of basement terranes of the Laurentian midcontinent (modified from           Bickford et al., 2015;     
Freiburg, McBride, et al., 2020      and  Malone et al., 2016   ).  
The locations of the Marshfield Terrane (MT), Oklahoma Aulocogen (OA), Reelfoot rift (RR), Rome Trough (RT), and Illinois aulacogen (IA). The 1.1 Ga Midcontinent rift (MCR) is in
dicated in orange. Light blue pentagons = Illinois Basin Decatur Project and CarbonSAFE Macon Co. Project samples. Green pentagons = sampling sites for late Cambrian arenites re
ported in Konstantinou et al. (2014). Dark blue pentagon = Mt. Simon drill core sampling locality reported in Lovell and Bowen (2013). Red pentagons = Mt. Simon samples from the 
Wabash #1 well. Dark blue line is the “Nd line” Bickford et al. (2015), which separates crust yielding Nd model ages greater than 1.55 Ga to the north and less than 1.55 Ga to the 
south. The rifted Cuyania terrane is indicated. 

tinental margin (Yonkee et al., 2014). Neoproterozoic to 
Cambrian passive margin strata are also occur along the 
Appalachian continental margin (Smoot & Southworth, 
2014; Walsh & Aleinikoff, 1999). The Oklahoma aulacogen, 
which consists of 530–540 Ma rift-related volcanic and plu
tonic rocks, represent the latest stage of Rodinian rifting 
and the departure of the Cuyania terrane, which later ac
creted to South America (Hanson et al., 2013; Thomas, 
1991; Thomas et al., 2004, 2012). Freiburg et al. (2020) pre
sented Early Cambrian detrital zircon ages in the lower Mt. 
Simon and pre-Mt. Simon sandstones in central Illinois. 

METHODS  

Sandstone was sampled from a full-diameter (10 cm) 
core near the base of the Wabash #1 well at a depth of 
7,972.0-7,972.5 ft (2429.8-2430.0 m). Five rotary side wall 
cores (2.5 cm) were recovered and sampled from sandstone 

at depths of 8500 ft (2591 m), 8655 ft (2638 m), 8660 (2640 
m), and 8680 ft (2646 m), and basalt at 8530 ft (2600 m; 
Figure 3). The core taken at 8655 ft did not yield zircons. 
Zircons were separated using standard gravitational and 
magnetic techniques. U–Pb geochronology of zircon was 
conducted by laser ablation–inductively coupled plasma 
mass spectrometry (LA-ICPMS) at the Arizona LaserChron 
Center, following the methods of Gehrels et al. (2006, 2008) 
and Gehrels and Pecha (2014). Unknown zircons were 
mounted with the standard Sri Lanka, FC-1, and R33 zir
cons on a 1″ puck with epoxy, sanded down to a depth of 
~20 μm, polished, and cleaned prior to analysis. The analy
ses were performed by ablation of zircon with a Photon Ma
chines Analyte G2 excimer laser equipped with HelEx ab
lation cell using a spot diameter of 20 μm. Figure 4 is a 
stacked probability plot of the detrital zircon age spectra for 
the sandstone samples. 
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Figure 3. Photographs of Wabash #1 well Mt. Simon Sandstone full diameter (3.5 inch) core sample from                
7,972-7,973 and rotary sidewall core samples (1-inch diameter) from the Wabash #1 well.              

Figure 4. Stacked probability plots of detrital zircon age spectra from the Wabash #1 well core samples.                
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40Ar/39Ar ages were obtained by incremental heating 
methods using the ThermoFisher Scientific ARGUS-VI mass 
spectrometer and data collection using internal lab soft
ware ArArExperiments version 4.5.7. The samples were irra
diated for 6 Megawatt hours (Irradiation 21-OSU-01) in the 
CLICIT position in the Oregon State University’s TRIGA nu
clear reactor. The 40Ar/39Ar incremental heating age deter
minations were performed on a multi-collector ARGUS-VI 
mass spectrometer at Oregon State University. Data reduc
tion and age calculation were processed using Ar-Ar Calc 
2.7.0. Figure 5 presents a photomicrograph and plateau age 
for the basalt. The details of these analytical procedures 
and geocryological data are provided in the supplementary 
files. 

RESULTS  

A total of 295 detrital zircon ages are presented from 
the lower Mt. Simon Sandstone full diameter core sampled 
from a depth of 7,972-7,972.5 ft (2429.8-2430.0 m). The 
dominant age peak is ~1,367 Ma, with lesser peaks at 1,460; 
1,179; 1,643; 522; 2,678, and 1,807 Ma. The sidewall core 
sample at a depth of 8,500 ft. is located approximately 15 
ft (5 m) above the top of the basalt. A total of 342 zircon 
ages are presented. The dominant age peak is at ~2,696 Ma, 
with lesser peaks at 1,461; 1,789; 1,122; and 541 Ma. A to
tal of 19 detrital zircon ages were analyzed for the 8660 
ft depth sample that occurs below the basalt. The domi
nant age peak is ~1,474 Ma. A major difference compared 
to shallower samples is the absence of detrital zircon ages 
older than ~1,900 Ma. The sample from 8,680 ft had 290 
detrital zircon ages presented. The dominant age peak is 
~1,477 Ma, with lesser peaks at 1,203 Ma and 541 Ma. 
The basalt is about 30 ft (10 m) thick and consists of 

plagioclase phenocrysts in an aphanitic groundmass. The 
basalt is concordant with the adjacent strata and can be in
terpreted as either a lava flow or sill; the latter is preferred. 
The 40Ar/39Ar dating age (plateau ages with 2σ uncertain
ties) is 525.19 +/- 1.10 Ma. A succession of micaceous silt 
occurs below the basalt, which may have been deposited in 
a lacustrine environment, which are common in rift basins 
(Katz, 1990). Two-dimension seismic reflection across the 
area of the Wabash #1 well suggest several layers of basalt 
interbedded with the Cambrian strata (Freiburg et al., 
2022). 

DISCUSSION  
Age of the Mt. Simon Sandstone and Rift-Related         
Volcanism  

Cambrian strata, particularly the upper Mt. Simon sand
stones exposed in Missouri and Wisconsin are late Cam
brian in age (Konstantinou et al., 2014). The maximum de
positional age (MDA) of basal Cambrian sandstones in the 
Illinois basin are Early Cambrian in age (Freiburg, Holland, 
et al., 2020). This Early Cambrian age is supported by the 
~525 Ma age for the interbedded basalt in the Wabash #1 
well. The Early Cambrian age of the basalt is consistent 
with other syn-rift igneous rocks reported along the south
ern Laurentian margin (Aleinikoff et al., 1995; Badger & 

Sinha, 1988; Hanson et al., 2013; Thomas et al., 2012) and 
marks the end of the break-up of Rodinia (Li et al., 2008). 
Image logs of this basalt show a sharp horizontal contact 
with sedimentary rocks at both the top and bottom. 

Lower Zircon Chronofacies    

The sandstones sampled from beneath the basalt have a 
distinct detrital zircon chronofacies that has a prominent 
unimodal age peak of ~1.475 Ga, which is slightly older 
than that reported by Freiburg et al. (2020) for the basal 
Cambrian sandstones sampled from other CarbonSAFE 
wells to the west. The small ~1.2 Ga Grenville age peak is 
also distinct, and reflects basement rocks emplaced dur
ing the earliest, Elzevirian phase of the Grenville orogeny 
(Bartholomew & Hatcher, 2010; McLelland et al., 1996), 
which occur largely in the central and southern Ap
palachian continental margin. Small numbers of Archean, 
Paleoproterozoic, younger GRP and Cambrian zircons also 
are present. Freiburg et al. (2020) reported an MDA of ~525 
Ma for basal Mt. Simon and Argenta samples in the wells 
to the west and speculated that these zircons were either 
locally derived or transported to Illinois from elsewhere in 
Laurentia like the Oklahoma aulacogen, favoring the for
mer. The presence of the basalt of 525 Ma encountered 
in the Wabash #1 well supports our earlier interpretation. 
Thus, the lower chronofacies is dominated from zircons 
derived from within the Illinois aulacogen, with smaller 
amounts of sediment from its environs, mostly from the 
east or southeast. 

Upper Zircon Chronofacies    

The Mt. Simon sandstone sampled from above the basalt 
has small ~2.7 Ga age peaks. This age peak is definitive of 
the Archean Superior province, which occurs more than 500 
km to the north (Freiburg, Holland, et al., 2020; Konstan
tinou et al., 2014). Zircons of this age don’t occur along 
the western flank of the aulacogen (Freiburg, Holland, et 
al., 2020) but are common outside of the aulacogen par
ticularly in the upper Mt. Simon (Lovell & Bowen, 2013). 
This absence may reflect the burial of localized sediment 
sources as the aulacogen was filled and more input from 
the north. Penokean, Yavapai, and Mazatzal age peaks are 
also unique to the samples taken from above the basalt. 
Like the Archean grains, these reflect derivation from distal 
sediment source areas to the north (Craddock et al., 2018; 
Medaris et al., 2021). The uppermost sample has a small 
1660 Ma peak, which is not known in the southern Superior 
province or in the Illinois Basin basement. Zircons of this 
age are present in abundance in the Neoproterozoic Jacob
sville Sandstone of the Midcontinent Rift (Malone et al., 
2016, 2020), and Baraboo Interval quartzites from the Wa
terloo area and Baraboo Hills of southern Wisconsin (Mal
one et al., 2022; Medaris et al., 2021). 
GRP zircons in the uppermost sandstones have promi

nent ~1.37 and ~1.46 Ga age peaks. Rocks of these ages are 
exposed in the St. Francis Mtns of Missouri and are inter
preted to be the basement rock of much of the Illinois Basin 
(Bickford et al., 2015; Van Schmus et al., 1996). Freiburg et 
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Figure 5. Thin section cross-polarized light photomicrographs of the basalt, which consists of plagioclase             
phenocryst in a fine-grained groundmass of pyroxene, amphibole, and magnetite (upper). Groundmass plateau              
age of 525.79 +/- 1.10 Ma (lower).        

al. (2020) reported a 1.467 Ga rhyolite penetrated by Veri
fication well # 1 at the Decatur CarbonSAFE project (Figure 
1). 
Small Grenville age peaks of ~1.1-1.2 Ga age peaks re

flecting the Shawingian phase of the Grenville orogeny 
(Craddock et al., 2017; McLelland et al., 1996) are present 
in both sandstone units that overlie the basalt. The abun
dance of Grenville zircons is well known throughout the 
Laurentian midcontinent (Moecher & Samson, 2006), in
cluding rift basins of the eastern midcontinent (Moecher et 
al., 2018; Schneider Santos et al., 2002), in the Midconti
nent Rift (Craddock et al., 2013; Malone et al., 2016), the 

Cambro-Ordovician arenites in the Laurentian midconti
nent (Konstantinou et al., 2014) and the Neorproterozoic-
Cambrian Cordilleran continental margin (Spencer et al., 
2014; Yonkee et al., 2014). 
In summary, the upper zircon chronofacies represents 

distally derived sediment, mainly to the north and east, 
and outside of the Illinois aulacogen. Small amounts of lo
cally derived Cambrian and MGR sediment also is present, 
but these zircons wane in abundance as the Illinois aulaco
gen was filled and the local sediment source areas were 
buried. By late Cambrian time, most of the crust in the Illi
nois basin area was buried, leaving distally derived sedi
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ment from the Superior province and Grenville orogen to 
dominate the Cambrian depositional environments (Kon
stantinou et al., 2014; Lovell & Bowen, 2013). 

Defining the Illinois Aulacogen     

Aulacogens are long troughs extending into continental 
interiors from rifted continental margin and contain ac
cumulations of mainly terrestrial siliciclastic and volcanic 
strata several times thicker than the adjacent cratonic suc
cessions (Burke, 1977). Early Cambrian Mt. Simon sand
stone thickness patterns, detrital zircon geochronology, 
and the occurrence of an Early Cambrian (~525 Ma) basalt 
lava flow interbedded with the Mt. Simon sandstone require 
a re-evaluation of the northern Illinois basin sedimentary 
and tectonic history. Freiburg et al. (2020) speculated on a 
northern extension of the Realfoot rift (Kolata & Nelson, 
1997), which occurs beneath the depocenter of the Illinois 
basin to the south. We herein name this northern extension 
of the Realfoot rift the Illinois aulacogen. The Wabash #1 
likely occurs along the axis or deep eastern margin of this 
aulacogen. The CarbonSAFE wells to the west penetrate 
progressively shallower parts of the western shoulder of the 
aulacogen. The Illinois aulacogen is temporally (i.e. Late 
Neoproterozoic and Early Cambrian in age) and tectonically 
related to the Oklahoma aulacogen (i.e. both related to the 
Rodinian breakup along the southern margin of Laurentia), 
which occurs about 1000 km to the southwest. 

CONCLUSIONS  

Several conclusions can be drawn from this effort: 
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1. The lowermost sandstone samples beneath the basal 
have a unique detrital zircon provenance, which re
flects GRP and Cambrian zircons derived locally from 
within the Illinois aulacogen. In contrast, sandstone 
samples from above the basalt have a mixed prove
nance with zircons derived locally and distally, with 
Archean, Paleoproterozoic, MGR and Grenville source 
areas indicated. 

2. The first direct evidence of early Cambrian crust in 
the Laurentian midcontinent occurs as a 525 Ma 
basalt lava flow that is interbedded within Early Cam
brian sandstone. 

3. The Illinois aulacogen, which extends north from the 
Reelfoot rift, is another failed arm of Rodinian rifting 
along southern Laurentia, which culminated during 
the early Cambrian with the departure of the Cuyania 
terrane. 
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