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Dirac theory of ring-shaped electron distributions in atoms

P. Krekora, R. E. Wagner, Q. Su, and R. Grobe
Intense Laser Physics Theory Unit and Department of Physics, Illinois State University, Normal, Illinois 61790-4560

~Received 12 June 2000; published 12 January 2001!

The time-dependent Dirac equation is solved numerically on a space-time grid for an atom in a strong static
magnetic field and a laser field. The resonantly induced relativistic motion of the atomic electron leads to a
ringlike spatial probability density similar to the features that have been recently predicted@Wagner, Su, and
Grobe, Phys. Rev. Lett.84, 3282 ~2000!# based on a phase-space method. We further demonstrate that
spin-orbit coupling for a fast-moving electron in such an atom becomes significant and the time dependence of
the spin can dephase even if initially aligned parallel to the direction of the static magnetic field.

DOI: 10.1103/PhysRevA.63.025404 PACS number~s!: 32.80.Rm, 32.60.1i

There are two main optical methods by which an atomic
electron can acquire relativistic speeds. The first one in-
volves an extremely powerful laser pulse, where the large
force associated with the electric-field component of the laser
is primarily responsible for accelerating the electron during a
single cycle of the field. A second method to excite atoms
into relativistic orbits is based on exploiting cyclotron-type
resonances of the electron interacting with a combined laser
and magnetic field.

Atomic resonances, however, cannot be exploited directly
to bring an electron’s speed up to the relativistic regime be-
cause an unlimited increase in an electron’s speed at reso-
nance is typically avoided by the nonlinearity of the atomic
potential encountered by the large-amplitude motion. This
limitation typically sets in at velocity scales much smaller
than the speed of light. However, for an electron in a suffi-
ciently strong magnetic field nonlinear atomic effects are not
so important, and the velocity can grow to extremely large
values until relativistic effects that limit the speed from
growing beyond bound become important.

If the cyclotron frequencyV associated with a static mag-
netic field is approximately commensurate with the laser fre-
quencyvL ~nV'mvL , n,m51,2,3, . . . !, the interaction of
the electron with the combined laser and magnetic field be-
comes resonant. In this regime a wide variety of relativistic
phenomena have been investigated recently@1#. The elec-
tronic charge distribution, for instance, can develop into ring
@2#, figure-8@3#, and propellerlike structures@4# whose center
rotates around the nucleus. These relativistic charge-cloud
distributions emerge from initial atomic states after a few
laser cycles. The absence of these distributions in the corre-
sponding nonrelativistic solution for the same parameters
demonstrates that this ring structure is a genuinely relativis-
tic phenomenon. To understand the formation of these struc-
tures, a simplified model based on the spiral orbits of indi-
vidual classical trajectories was proposed which associates
the relativistic dephasing with a strong velocity dispersion
enhanced by the resonance between the magnetic and laser
fields @1#.

Until now, all theoretical predictions about these phenom-
ena have been based on solutions to the Liouville equation
for the classical phase-space density. It is thus quite crucial
to determine whether these predictions can be trusted at all
even qualitatively in regimes for which the nonlinearity in-

duced by the high-speed electron motion is the dominant
factor for the evolution. Are intrinsic quantum-mechanical
features such as interference, spin, or the discreteness of
Landau levels really negligible in the relativistic regime?
How well can a quantum-mechanical wave function be mim-
icked by a classical distribution in the nonlinear relativistic
regime? Addressing these questions certainly requires an ex-
tended theory beyond classical mechanics and a full solution
to the corresponding relativistic quantum system. Insight into
these questions was suggested in a recent work in which for
a one-dimensional harmonic oscillator the probability den-
sity from the Dirac equation turned out to be remarkably
similar to the spatial density distribution from the relativistic
Liouville equation despite the inherent nonlinearity due to
relativity @5#.

Wave-function solutions to the time-dependent Dirac
equation for atoms in external fields are difficult to obtain
analytically; for a few exceptions, see@6#. To overcome this
technical limitation and to obtain some insights into the rela-
tivistic dynamics, numerical solutions have been studied.
This computational challenge is at the forefront of computa-
tional physics and has been undertaken in the study of rela-
tivistic heavy-ion collisions@7–9# and of the interaction of
atoms with intense laser fields@10–14#. The limitations due
to the finite amount of CPU time and memory, even on the
fastest supercomputers, are severe and restrict the accessible
parameter regime that can be studied today.

However, due to recent progress in high-performance
computing and in the associated software development, the
dynamics of ring-shaped electron distributions can now be
studied on very short time and length scales of the order of a
few atomic units in two spatial dimensions~2D!. Compli-
cated by the static magnetic field, the electron motion cannot
be reduced to a single spatial dimension, in which a numeri-
cal solution to the Dirac equation is feasible on even larger
scales. In order to sample the initial wave function as well as
the final ringlike structure on a 2D spatial grid, we had to
identify a parameter regime with respect to the laser and
magnetic fields such that the dynamics can develop on short
time scales. The calculations described below serve more the
purpose of proving the existence of quantum-mechanical
ring-shaped distributions and establishing the validity of the
classical mechanics approach used in Refs.@1–4# than of
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simulating details of experimental situations that could be
realized with today’s technology.

We investigate below whether the qualitative features re-
ported in Refs.@1–4# really hold for the fully quantum-
mechanical case. By comparing the spatial phase-space den-
sity with the quantum-mechanical probability distribution we
establish the validity of the classical approach. We also ana-
lyze a pure quantum effect and find that the spins can get out
of phase even for an initial spin alignment that is parallel to
the direction of the static magnetic field.

The classical dynamics is governed by the relativistic
Liouville equation@15# ~in atomic units!

]r~r ,p,t !

]t
5$Ac41c2@p1~1/c!A~r ,t !#21V~r !,r~r ,p,t !%r ,p

~1!

for the phase-space densityr(r ,p,t). Here $¯% r ,p denotes
the Poisson brackets with respect to the phase-space vari-
ables,V(r )52(r211)21/2 is the smoothed Coulomb poten-
tial, andc is the speed of light. The vector potentialA(r ,t)
52E0c/vL sin(vL t2vL /cy)ex1(Vez)3r /2 represents the
linearly polarized laser field along thex direction and the
static magnetic fieldV is along thez direction.

Equation ~1! is solved numerically via a Monte Carlo
technique typically based on 50 000 particle orbits. The cor-
responding spatial probability distribution can be obtained
via Pcl(r ,t)[*dp r(r ,p,t). None of the phenomena dis-
cussed here are sensitive to the details of the initial state
r(r ,p,t50), which is chosen asr(x,y,px ,py ,t50)
5(1/p2)exp@2(r /Dx0)2/2#exp@22(pDx0)2# centered ini-
tially at the origin with a spatial widthDx0 .

The classical distributionPcl(r ,t) will be compared di-
rectly with the corresponding quantum-mechanical density
Pqm(r ,t)5S i 51

4 uC i(r ,t)u2, where the summation extends
over the four spinor components. The wave function
C(r ,t)5(C1 ,C2 ,C3 ,C4) can be obtained from the corre-
sponding numerical solution to the Dirac equation:

i
]

]t
C~r ,t !5FcaS p1

1

c
A~r ,t ! D1bc21V~r !GC~r ,t !,

~2!

wherea and b denote the 434 Dirac matrices. The time-
dependent wave functionC(r ,t) can be obtained on a space-
time grid using a recently developed split-operator algorithm
based on a fast Fourier transformation that is accurate up to
the fifth order in time@13#. In all of the simulations presented
below, the two spatial axes are discretized into 65 536 grid
points, which together with up to 45 000 temporal points per
laser cycle lead to converged results with an overall error of
less than 5%.

To have an initial quantum-mechanical state that is closest
to the classical density used above we have chosenC(r ,t
50)5(2pDx0

2)21/2exp@2(r /Dx0)2/4#Fx,z . We used Fx

5(1,21,0,0)/& andFz5(1,0,0,0) to represent initial states
with the spins ^Sx(t50)&520.5 a.u. and ^Sz(t50)&
50.5 a.u., respectively. The initial expectation values
@^xnpx

m&qm1^px
mxn&qm#/2 for all positive integersn and m

match the corresponding classical average values calculated
from r(r ,p,t50) via ^xnpx

m&cl[**dr dp r(r ,p,t50)xnpx
m .

In the parameter regime for which the Dirac solution is
numerically feasible the electron needs to be resonantly ex-
cited within a few laser cycles. It is characterized by a cy-
clotron frequencyV596 a.u., a laser-field amplitude of
E05800 a.u., and a frequencyvL580 a.u. The combined
magnetic and laser field accelerates the electron to 44% of
the speed of light after four laser cycles. We should note that
due to the relativistic resonance shifts discussed in@1,3,4,16#
the maximum speed obtained in the corresponding nonrela-
tivistic calculation is onlyv50.33c. This is quite counterin-
tuitive in that relativistic effects normally lead to a less ac-
celerated and less rapid motion that can be associated with a
nonlinear mass increase.

Let us now present our results. In Fig. 1 we compare the
classical with the quantum-mechanical spatial probability
density after 8.4 cycles~0.66 a.u.! of the external laser force.
The wave packet with an initial widthDx050.1 a.u. devel-
ops after a few laser oscillations into a ‘‘bananalike’’ shape
that evolves into a ring as shown in the figure. The center of
this ring structure follows a circular orbit around the nucleus
with the laser period.

Along the three lowest-density contour lines@P
,1022.5# in the Dirac state a ‘‘sickle’’ shape is visible that is
absent in the Liouville density. This sickle can be associated
with a fully developed second ring structure that is associ-
ated with the negative-energy solutions of the Dirac equa-
tion. It rotates in the opposite direction to the electron ring,
as characteristic of a positive-charge cloud. The jagged con-
tour lines at the edges of the ring~lowest densities! in the
classical density are a numerical artifact due to the discrete-
ness of the individual trajectories.

To provide a more quantitative comparison between the
quantum and classical results we have displayed in Fig. 2 the
effective one-dimensional probabilities obtained by integrat-
ing the total densities along thex-coordinate axis. It is clear
that within the accuracies of our numerical calculations the
details of classical predictions are well confirmed by the
Dirac calculations. The graphs also demonstrate that the dis-
tribution along the ring is not uniform. To demonstrate that

FIG. 1. Comparison of the spatial probability distributions pre-
dicted by classical and quantum mechanics. The left graph shows
the solution of the relativistic Liouville equation, and the right
graph is the exact solution of the Dirac equation( i 51

4 uC i(x,y,T)u2.
The nine contour lines are chosen at heights 102n/2, where n
521,0,1, . . . ,7. ~The parameters areE05800 a.u., vL

580 a.u.,V596 a.u., andT50.66 a.u.!
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ring-shaped distributions are genuinely relativistic in nature,
we display as a contrast in the inset the density obtained
from the corresponding nonrelativistic calculations for the
same parameters. The nonrelativistic distribution bears no
similarity to the relativistic counterpart.

In Fig. 3 we present the time evolution of the expectation
values for the position̂x(t)& and the spatial widtĥDx(t)&.
Again the classical and quantum predictions match fairly
well. The maximum spatial width occurs after about seven
laser cycles, which coincides with the time when the ring
structure is fully developed. After this time we observe a
periodic breathing pattern between the ring structure and a
more localized distribution. To stress once more the fully
relativistic character of the dynamics, the corresponding non-
relativistic time evolution of̂ Dx(t)& is drawn as the dotted
line in Fig. 3. A nonrelativistic theory cannot explain the
formation of ring-shaped electron distributions.

Let us now analyze a quantity that does not have a direct
classical counterpart. For an initial state with a sharp spin
value along thex direction, ^Sx(t50)&520.5 a.u., we
present in Fig. 4 the time evolution of the spin. At early
times the spin precession with frequencyV is obvious and
also expected. While the electron is accelerated to relativistic

speeds, however, the spin gets out of phase, leading to a
drastic reduction of the precession amplitude from 0.5 to
only 0.1 a.u. after about seven laser cycles. This is a nice
illustration of the fact that for relativistic speeds the time
evolution of the spin cannot be viewed as independent of the
orbital motion of the wave packet. We also display in Fig. 4
the variance in the spin̂DSx&, which takes its largest value
~0.5 a.u.! when the envelope of̂Sx(t)& takes its smallest
value, consistent with the spin dephasing. All expectation
values are averages computed from the total quantum state.
By ~arbitrarily! dividing the wave function into different spa-
tial sectors, we find that the spin alignment depends on the
position. In the future we plan to investigate the time evolu-
tion of the spatial spin distribution in more detail@17#.

We should mention that the same type of spin dephasing
can be observed even parallel to the static-magnetic-field di-
rection. Figure 4~b! shows this effect for an initial eigenstate
of Sz . The spin̂ Sz(t)& decays from 0.5 to 0.4 a.u. in a more
or less monotonic fashion. The early-time behavior in
^Sz(t)& and ^DSz(t)& can be crudely mimicked if we ap-
proximate the state by a~field-free! positive-energy eigen-
state with an average square velocity^v2&. This assumption
leads to the expression̂Sz(t)&5 1

2 A12@^v(t)&/c#2. This
prediction and the corresponding one for^DSz& are repre-
sented by the circles in Fig. 4~b!, where^v2(t)& is calculated
from the numerical data for̂x(t)& and ^y(t)& similar to
these presented in Fig. 3.

The graphs in Fig. 4 are essentially unchanged if the
laser-field coupling is evaluated in the dipole approximation.
This suggests that the oscillating magnetic-field component
of the electromagnetic radiation pulse is not relevant for the

FIG. 2. The effective spatial probability along they axis. Dis-
played are *dx ( i 51

4 uC i(x,y,T)u2 ~continuous line! and
***dx dpxdpyr(x,y,px ,py ,T) ~dashed line!. To stress that the dy-
namics is fully relativistic, the inset shows the two corresponding
nonrelativistic probabilities for the same parameters.~Same param-
eters as in Fig. 1.!

FIG. 3. Time evolution of the position̂x(t)& ~left axis, in a.u.!
and the spatial widtĥDx(t)& ~right axis, in a.u.! according to the
Dirac equation~continuous line! and the relativistic Liouville equa-
tion ~dashed line!. The dotted line is the~nearly constant! width
according to the corresponding nonrelativistic theories.~Same pa-
rameters as in Fig. 1.!

FIG. 4. Time evolution of the spin~left axis, in a.u.! and its
variance~right axis, in a.u.! for the Dirac spinor state.~Same pa-
rameters as in Fig. 1.! ~a! Initial state with^Sx(t50)&520.5 a.u.
~perpendicular to the static magnetic field!; ~b! initial state with
^Sz(t50)&50.5 a.u.~parallel to the static magnetic field!.
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unexpected spin dephasing. We have also recalculated the
orbital data leading to Figs. 2 and 3 but for an initial state
with ^Sz(t50)&50.5 a.u. The spatial data for̂x(t)& and
^Dx(t)& differed by less than 5% from those with a different
initial spin state. This difference is too close to our numerical
error to allow for a definite conclusion about how the spin
affects the orbital motion.

In summary, we have shown that the predictions of ring-
shaped electron distributions based on classical mechanics
are confirmed by the Dirac theory. A direct comparison of
the quantum expectation values of the position and spatial
width with the classical counterparts does not reveal any ma-

jor difference in the relativistic domain. Furthermore, this
resonance regime reveals a spin-dephasing effect that may be
associated with the coupling between the spin and the orbital
motion.

This work was supported by the NSF under Grant No.
PHY-9970490. We also acknowledge support from the Re-
search Corporation for Cottrell Science Awards and ISU for
URGs. R.E.W. thanks the Illinois State University Under-
graduate Honors Program for support of his research work.
The numerical work was performed at NCSA.
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