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Electric-field-induced relativistic Larmor-frequency reduction

P. Krekora, Q. Su, and R. Grobe
Intense Laser Physics Theory Unit and Department of Physics, Illinois State University, Normal, Illinois 61790-4560

~Received 11 February 2002; published 18 July 2002!

Using the numerical solution to the time-dependent Dirac equation we show that the effect of relativity on
the usual Larmor period for an electron in a magnetic field can be enhanced drastically if a suitably scaled and
aligned static electric field is added to the interaction. This electric field does not change the electron’s speed
but leads to an elliptical spin precession due to relativity. This spin precession is accompanied by a position-
dependent spin distribution.

DOI: 10.1103/PhysRevA.66.0134XX PACS number~s!: 32.80.Rm

I. INTRODUCTION

Relativistic effects have traditionally been investigated in
atomic physics with respect to their impact on corrections to
energy levels and transition matrix elements. Due to the
availability of laser sources with very high intensity@1#, re-
cent interest has grown to also investigate those relativistic
effects that arise due to the large speed atomic electrons can
gain in such laser fields@2–4#. The theoretical analysis of
relativistic phenomena in quantum systems relies on solu-
tions to the Dirac equation for which analytical and nonper-
turbative approaches are very difficult to obtain. However,
originally started in computations for heavy-ion collisions
@5–7#, numerical techniques to the time-dependent Dirac
equation for simplified situations have been developed
@8–18#. These numerical solutions are quite beneficial and
have opened the door to explorations of dynamic relativistic
phenomena in quantum-mechanical systems. In this work we
study the effect of relativity on the time evolution of the spin
for an electron wave packet in static magnetic and electric
fields.

In previous works we have simulated on a computer an
electron that is accelerated in a static electric field and ob-
served that the spin component that is perpendicular to the
velocity is reduced. This contraction is different compared to
the usual length Lorentz contraction, which occurs in the
direction parallel to the velocity. As a consequence of this
kinetic relativistic mechanism the perpendicular spin compo-
nent in the front of the wave packet is smaller than the com-
ponent associated with the slower trailing end, as spatially
resolved spin distributions for a single quantum state have
revealed@14,15#. We should note that for this situation the
external field does not couple directly to the spin, and due to
the kinematic~which means reversible! character of this ef-
fect, the spin returns to is original value when the electron
comes back to rest.

A nonkinematic and irreversible relativistic effect, how-
ever, can be observed for the same setup in the time evolu-
tion of the spatial width of the wave packet. It turns out that
the spreading rate of the wave packet can be severely re-
duced if the wave packet attains a relativistic velocity. Due to
the intrinsic coupling of the three spatial dimensions, even
the spreading rate along the two spatial directions that are
perpendicular to the propagation direction is suppressed.
This relativistic effect first introduced in@16–18# is associ-

ated with a relativistic reduction of the velocity dispersion
and leads to a spatially narrower electron wave packet even
after the electron has been decelerated back to rest.

In addition to these spin and spatial contraction phenom-
ena the time dilation effect can be observed for an electron
that is injected into a static magnetic field. The center of the
wave packet performs the well-known circular motion on a
time scale given by the relativistic cyclotron period. Under
the assumption that we can neglect effects that are exclu-
sively associated with negative-energy states such as the
Zitterbewegung, one finds that the product of the spin and the
velocity operator is a constant of motion. In other words, the
angle between the spin and the velocity remains constant. As
a result, the spin performs a precession motion around the
magnetic-field lines with the same Larmor period. The com-
ponent of the spin that is parallel to the magnetic field re-
mains constant at its Lorentz contracted value, whereas the
other component rotates around a circle. The radius of the
circle depends on the projection of the initial spin onto the
initial velocity: if the projection is zero the Larmor radius is
1/~2g! ~in atomic units!, whereg is the~dimensionless! rela-
tivity factor defined asg[1/A@12(v/c)2#. On the other
hand if the projection is maximum, the radius is1

2 a.u.
The next question we will address is whether there are

any footprints of the Lorentz contraction with regard to the
spin. Does relativity induce transitions among the spin states
that can be measured when the electron returns back to rest?
In Fig. 1 we have sketched a possible setup for a computer
simulation. An electron wave packet initially located at rest
at aroundx50 with spin valuê Sy(t50)&50.5 a.u. is accel-
erated along thex direction by a constant electric field. As a
consequence, the spin will be contracted to the value^Sy(t

FIG. 1. Sketch of the setup permitting the observation of a rela-
tivistic spin precession motion.
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5t1)&51/(2g) when it enters a zone of static magnetic field
aligned along thez direction. Let us assume that the velocity
of the electron has been tuned in such a way that the electron
stays exactly a quarter of the Larmor period inside the
magnetic-field zone. As a result, the spin initially along they
direction is rotated into thex direction. When the electron
leaves the magnetic-field zone atx5x2 , a constant electric
field decelerates the electron back to rest. The question one
might ask is whether the initially contracted spin att5t1 is
rotated into a spin along thex direction that is equally con-
tracted. If this conjecture were true, the expectation value of
the spin when the electron returns to rest would be smaller
than 0.5 a.u., as the deceleration was along a direction par-
allel to the spin and therefore was not able to ‘‘undo’’ the
Lorentz contraction and we would have a manifestation of an
irreversible effect.

There are two levels at which this conjecture can be
proven to be incorrect. The first wrong assumption is that the
electron’s spin would evolve along a circle. In fact, the cor-
rect spin trajectory is that of an ellipse, whose semiminor
axis is perpendicular to the direction of the initial velocity
and its semimajor axis is equal to12 a.u. In addition, the
above analysis also neglected the fact that the center-of-mass
motion is coupled to the magnetic field and, as a conse-
quence, the electron would actually be rotated away from the
x axis. This means that this setup in its present form is not
appropriate to display the conjectured elliptical spin preces-
sion. In order to verify whether the spin precession can ac-
tually take place along an ellipse, we need to ‘‘force’’ the
electron to maintain its course along thex direction. In other
words, we have to couple the electron to an additional exter-
nal field, which forces the electron to take a quasistraight
path along thex axis.

It is the purpose of this paper to demonstrate in anab
initio computer simulation that an elliptical precession mo-
tion is indeed possible if we allow for an additional and
suitably tuned electric field acting along they direction,
which can cancel the Lorentz force due to the magnetic field
acting on the center of mass. This additional electric field
couples only relativistically to the spin.

II. ELLIPTICAL SPIN PRECESSION

The interaction of a relativistic electron with an external
field is described by the Dirac equation@19,20# in atomic
units,

i ]C/]t52 ica•“C1a•AC1c2bC, ~2.1!

wherea, b are the usual Dirac matrices. The vector potential
A(r ,t) is the sum of two parts, one modeling the static elec-
tric field with amplitudeEy along they direction, and the
other part corresponding to the static homogeneous magnetic
field of strengthBz along thez direction:

A~r ,t !5cEytey1Bzxey . ~2.2!

The initial state is a Gaussian,

C~r ,t50!5N exp@2~x2x0!2/~4Dx2!2~y2y0!2/~4Dy2!

2~z2z0!2/~4Dz2!#exp~ ik0•r !c~k0!, ~2.3!

which has a velocityvx along thex direction to represent the
state after its acceleration atx5x1 with the momentum vec-
tor k0[gvxex . The spinorC(k0) has been chosen to be
@1,1,ck0 /(E012c2),ck0 /(E012c2)#/2 or @1,i ,ick0 /(E0
12c2),ck0 /(E012c2)#/2 to represent a spin state aligned
along thex or y direction, respectively, andN is the normal-
ization factor, withE0[Ac41c2k0

22c2. In a previous work
@10# we have described the details of the computer algorithm
that permits us to solve the time-dependent Dirac equation
on a space-time grid. This algorithm is based on a split-
operator scheme that requires a repeated application of the
fast Fourier transformation to the Dirac state. We should
mention that in order to obtain sufficiently accurate and con-
verged data, the spatialx and y axes had to be discretized
into 10243256 intervals and the time step for the temporal
advancement of the Dirac equation required up to 360 000
steps per Larmor period.

As mentioned in the Introduction, the center-of-mass mo-
tion of the electron wave packet can be effectively ‘‘decou-
pled’’ from the interaction with the magnetic field if the
strength and alignment of the static electric field is chosen
appropriately with respect to the initial velocity. In fact, for a
classical point particle with an initial velocityvx along thex
direction, an electric field along they direction, and ampli-
tudeEy5vx V will exactly cancel the Lorentz force associ-
ated with the magnetic fieldBz along thez direction, where
V[Bz /c. As a result, a point particle would travel with a
constant speed along thex direction. This arrangement is
used in the Wien filter for beam alignment to control and
select particles that have a certain speed to charge ratio.

How good is this scheme to force an extended quantum
wave packet along a straight path? The Heisenberg uncer-
tainty in the velocity of the wave packet is approximately
given by Dv51/(2Dx); in other words, a typical range of
the velocity components of the wave packet is@2Dv
1vx ,Dv1vx#. The interaction time with the magnetic field
is on the order of the Larmor timeTr52pg/V. The time
which a point particle with velocityDv1vx would require to
perform a full precession in the presence of theEy field can
be estimated as 2p c/(VDv). In other words, if the velocity
width is small enough and the wave packet is sufficiently
monoenergetic, the deviation of the straight line motion is
negligible for the time scales considered here.

Let us now present our results. The initial velocityvx at
x5x1 was chosen to be equal tovx554.8 a.u. corresponding
to 40% of the speed of light and a value of the relativity
factor g[1/A@12(v/c)2#51.1918, the scaled magnetic
field V510 a.u., andEy5548 a.u. For simplicity, we start
here with an initially noncontracted spin aligned along thex
direction.

In Fig. 2 we present the time evolution of the expectation
value of the spin variablêS& obtained from the time-
dependent wave function,̂S&[^C(r ,t)uSuC(r ,t)&, where
S[(Sx ,Sy ,Sz) represents the three 434 spin matrices, and
the scalar product̂̄ u¯& involves the spatial integration as
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well as the summation of the four spinor components. Figure
2~a! shows the dynamics in the (Sx ,Sy) plane. The ellipse is
apparent, its semiminor axis is 0.457 a.u., which agrees
within 0.25% to the value of 1/(2g)50.458 a.u. For com-
parison, the dashed line in the figure represents the usual
nonrelativistic circular precession motion. The time evolu-
tion of the spin is resolved in Fig. 2~b!. The period of the
motion can be directly taken from the graph as 0.7511 a.u.,
which agrees with the numerical value ofT[2pg2/V up to
an error of only 0.75%. This period exceeds the nonrelativ-
istic Larmor period 2p/V by 19.1%, and it is 9.5% larger
than the relativistic Larmor period 2pg/V for the circular
precession.

Some approximate but analytical estimates for the ampli-
tude as well as the unusual period can be derived if we trans-
form our coordinate system into the rest frame with regard to
the center of mass. The transformation of the lab electric and
magnetic field into the effective ones for the rest frame yield,
in general@21#,

Er5g~E2b3B!2g2/~11g!b~b•E!, ~2.4a!

Br5g~B1b3E!2g2/~11g!b~b•B!, ~2.4b!

whereb5vx /cex , E5Eyey and B5BZez . Due to the spe-
cific choice of the orientation and size of the electric field
(Ey5vxBz /cey), the effective magnetic field in the rest

frame amounts toBr5B/g, whereasEr vanishes entirely.
Due to the absence of the electric field in the rest frame, the
dynamics of the spin operator in the rest frame timet r can be
simply obtained from the solution to

d

dtr
Sr5Sr3Br /c. ~2.5!

Returning to the lab frame, the spin matrices need to be
transformed with the Lorentz boost matrixL, defined as@19#

L5exp@~v/2!ax#

5cosh
c

2 3
1 0 0 tanh

v

2

0 1 tanh
v

2
0

0 tanh
v

2
1 0

tanh
v

2
0 0 1

4 ~2.6!

with

ax[F 0 sx

sx 0 G ,
wheresx[@1 0

0 1# andv[a tanh(vx /c).
We transform back to the lab time according tot5gt r and

calculate the expectation values from the operator solution.
In order to obtain simple analytical expressions we had to
assume that the expectation value of the product of the spin
operator and a nontrivial velocity function can be factorized.
We obtain the expression for the time evolution of the ellip-
tical spin precession:

^Sx~ t !&5^Sx~0!&cos~V/g2t !2^Sy~0!&sin~V/g2t !g,
~2.7a!

^Sy~ t !&5^Sx~0!&sin~V/g2t !/g1^Sy~0!&cos~V/g2t !,
~2.7b!

^Sz~ t !&5^Sz~0!&. ~2.7c!

In order to examine the validity of this approximate formula,
its prediction has been superimposed on the exact numerical
data obtained from the wave packet presented in Fig. 2. The
simple analytical estimate seems to be quite valid for these
parameters. In fact, the two corresponding graphs are practi-
cally indistinguishable for each spin component. This agree-
ment is remarkable in view of the fact that the spatial exten-
sion and the velocity dispersion of the wave packet were
neglected in the analytical derivation. We should note that, to
the best of our knowledge, this is the first example of a
relativistic time scale in a quantum system that depends qua-
dratically on the velocity factorg and not just linearly.

FIG. 2. The time evolution of the average spin^S& ~in atomic
units! for a relativistic electron in combined electric and magnetic
fields. ~a! Parametric plot in the (Sx ,Sy) plane.~b! Sx , Sy as func-
tions of time. The dashed lines present the prediction of the nonrel-
ativistic dynamics. The dots and circles are the numerical solutions
to the time-dependent Dirac equation. The analytical formula
~2.7! matches the numerical data well (Dx5Dy51 a.u., vx

554.9 a.u.,vy50, V510 a.u., andEy5548 a.u.).
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III. SPATIAL DENSITY DISTRIBUTION DURING THE
ELLIPTICAL SPIN PRECESSION

Following the analysis of the spin dynamics, let us now
investigate the space-time development of the spatial wave
packet for the same setup. As discussed, despite the presence
of the magnetic field, the center-of-mass motion is effec-
tively decoupled from the field and the wave packet evolves
with a constant speed. The spatial width of the packet, how-
ever, shows some interesting features that we will analyze
next. In Fig. 3 we display the time dependence of the widths
of the wave packetDx(t)[A@^x2&2^x&2# andDy(t) during
the first cycle. The expected wave packet spreading is com-
pletely suppressed and replaced by a nearly periodic time
evolution. After 1

4 of the relativistic Larmor period the ini-
tially spherical wave packet has deformed into a cigar shaped
distribution, the widthDx along the propagation direction is
reduced by almost 90%, whereas the transverse widthDy
has grown from its initial valueDy(t50)51 to 1.48 a.u.
This periodic breathing pattern@22# is reminiscent of the way
the electron was originally introduced into the magnetic
field. The response of a spatially extended wave packet to a
static magnetic field depends on whether the electron travels
into the magnetic field or whether the magnetic field was
turned on as a function of time. In either case the electron
experiences in its rest frame a short electric field which can
affect its motion. Due to the gauge choice of the vector po-
tential A5Bzxey in Eq. ~2.2!, the magnetic field turn-on ef-
fect is associated with an electric-field pulse which can in-
stantly alter the velocity distribution of the wave packet. In
fact, the corresponding electric-fieldd pulse creates a
strongly correlated dependence of the velocity component
and the respective position. The initial velocity along thex
direction is unaffected, as thex component of theE-field
pulse is zero; however, the velocity along they direction is
changed by thex-position-dependent amountVx. In other
words, electrons within the wave packet that are located at
the positivex axis have the amountvy(t50)5Vx added to
their original value that is associated with the Heisenberg
uncertainty. For weak magnetic fields this additional boost
velocity is negligible, however, for the size of the magnetic
fields discussed in our situation, this effect can be quite im-

portant. As the result of these strongly position correlated
velocities the dynamics of the wave-packet width shows the
breathing patterns displayed in Fig. 3.

Following a similar procedure which led to Eq.~2.7!
above, one can also derive some approximate analytical ex-
pressions for these breathing patterns by first analyzing the
effect in the electron’s rest frame using the effective fields of
Eq. ~2.4!. Again, neglecting any impact of the negative-
energy eigenstates, the Heisenberg equations of motion for
the position operator can be solved for an electron in the
effective magnetic field. This solution can be used to ap-
proximate the time evolution of the spatial variance in our
quantum state. If we Lorentz transform the results back into
the lab frame we obtain

Dx2~ t !5Dx2 cos2~V/g2t !11/@2V2Dy2#@12cos~V/g2t !#2

11/@2V2Dx2g2#sin2~V/g2t !,

Dy2~ t !5Dy21g2Dx2 sin2~V/g2t !

1g2/@2V2Dy2#sin2~V/g2t !

11/@2V2Dx2#@12cos~V/g2t !#,

Dz2~ t !5Dz2. ~3.1!

The prediction according to these equations is superim-
posed in Fig. 3 by the circles. The agreement is actually quite
good in view of the fact that the analytical derivation was
based on several approximations. A discrepancy with the ex-
act numerical data could be associated with the approxima-
tion to use the effective fields according to Eq.~2.4! for the
entire wave packet as well as the factorization assumption
when computing the expectation values. The fields are only
exact for the center-of-mass motion. Second, we have ne-
glected relatively for the position operator solution in the rest
frame. The latter approximation was necessary to simplify
the analytical calculation of the expectation values for the
variances.

Let us conclude this section with a comment about a nu-
merical simplification with respect to the dimensionality of
the problem. All aspects of the motion along the spatialz
direction are basically decoupled from the dynamics, which
simplifies the numerical solution of the Dirac equation sig-
nificantly. On the other hand, our numerical simulations in-
dicate that a further reduction of the dynamics to only one
spatial dimension~x direction! has almost no impact on the
~three-dimensional! spin datâ S(t)& presented in Fig. 2, and
even the graph forDx(t) shown in Fig. 3 is very closely
reproduced by a one-dimensional calculation. If one is only
interested in the spatial variable along thex direction, this
feature can lead to significant numerical reduction in CPU
time. In fact, the data presented in Fig. 3 took 40 CPU days
on an Origin 2000 cluster of supercomputers for the simula-
tion in all dimensions.

IV. SPATIAL SPIN DISTRIBUTION

Interesting relativistic effects can also be observed in the
spatial spin distribution. In previous works@14,15# we have

FIG. 3. The time evolution of the spatial widthsDx andDy for
a wave packet~in atomic units!. The circles mark the numerical
data points and solid lines present the prediction of the approximate
analytical formula~3.1! ~same parameters as in Fig. 2!.
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defined a position-dependent spin density, which allows one
to distinguish between different values of the spin within a
single quantum state. These densities can be defined as

S~r ,t ![C†~r ,t !SC~r ,t !/@C†~r ,t !C~r ,t !#, ~4.1!

whereS[(Sx ,Sy ,Sz) consists of the usual 434 spin matri-
ces.S(r ,t) is the average value of the spin one would mea-
sure if the electron were detected at timet and locationr .
Please note that the reference to the word ‘‘average’’ is used
in a quantum statistical sense; any individual measurement,
of course, leads to6 1

2 a.u. From this definition it follows
that ^S(t)&5^C†(r ,t)uSuC(r ,t)&5*dr S(r ,t)P(r ,t), where
P(r ,t)[C†(r ,t)C(r ,t) is the spatial probability density,
given by the sum of the four squared spinor components of
the wave function. In the absence of any relativistic effects,
the spin density would remain position independent in a spa-
tially homogeneous magnetic field.

In Fig. 4 we show the corresponding spin densities at
various times for our case. As the wave packet moves along
thex axis, we display the values of the spin density only over
a spatial region of total length 4Dx(t) that is centered at the
position of the packet at that time. To better guide the eye,
the circles displayed in the figure represent the expectation
values of the spin as shown in Fig. 2.

The spin density of the initial state is nearly flat. In other
words, one would measure the same spin value independent
of the position of the detector. The minor corrections to a
perfectly flat distribution are associated with the fact that it is
not possible for a spatially finite wave packet to be in an
exact spin eigenstate.

The development of the spin density into one with a non-
uniform distribution can be understood qualitatively. As an
example, after a time oft50.15T the front portion of the

wave packet has a lower spin value^Sx& as the trailing edge.
In the discussion in Sec. III we have seen that due to the
magnetic-field turn-on effect, the initial wave packet has
position-dependent velocities along they direction each of
which leads to a circular motion in the rest frame. After a
short time this effect leads to a reduced~increased! speedvx
of the front ~trailing! part of the wave packet. This effect
leads to an effectively less contracted magnetic field for the
front than for the back, and the spin componentSx in the
front requires a shorter Larmor period than the trailing part at
that instant in time. As a result, the front spin evolves ahead
of the back spin and the densitySx(x,t) monotonically de-
creases withx. The same argument explains why the density
for Sy(x,t) is tilted in the other direction at that time. It
might be interesting to note that both spin distributions
Sx(x,t) andSy(x,t) do not return to their precise initial dis-
tribution after a Larmor period. This is expected because
even the time evolutions of the spin expectation values are
not strictly periodic due to relativity for a wave packet with
a finite spatial extension.

V. SUMMARY AND CONCLUSION

Using the numerical solution of the time-dependent Dirac
equation for an electron in suitably tuned and aligned com-
bined electric and magnetic fields, it is shown that the spin
precession can take place along an elliptical trajectory due to
relativistic effects. We derived approximate analytical ex-
pressions for the time evolution of the spin expectation value
that match well with the numerical data obtained from the
wave-function solution. It turns out that, due to the presence
of the static electric field, the impact of relativity can be
enhanced significantly. The Larmor frequency is 2pg2/V
and not 2pg/V as one could expect from a simulation of the
usual circular relativistic precession motion in a magnetic
field alone. In contrast to the spatial dynamics, the electric
field can only partially cancel the magnetic field for the spin
dynamics. This increase of the Larmor period by a factor of
g enables the measurement of relativistic effects at effec-
tively lower electron speeds. Another relativistic effect can
be observed in the position-dependent spin density, which, in
contrast to the flat nonrelativistic distribution, changes its
shape as a function of time in a quasiperiodic fashion.

The present work is part of a sequence of projects aimed
at identifying relativistic effects in a quantum system that do
not have a direct counterpart in a corresponding theory based
on classical mechanics. We began this specific study with the
hope of finding a suitable experimental setup in which a
nonreversible effect of relativity on the spin motion could be
detected. However, as it turns out, the relativistically induced
spin transitions that are associated with the Lorentz contrac-
tion do not have their manifestation when the electron is
decelerated back to nonrelativistic speeds. Possibly other in-
teractions can be used to obtain a more irreversible impact of
relativity on the quantum-mechanical laser-atom interaction.
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FIG. 4. Snapshots of the spatial spin densitiesSx(x,t) and
Sy(x,t) of the electron’s wave packet~in atomic units! as it travels
along thex axis for times that are1

20 of the relativistic Larmor
periodT apart~same parameters as in Fig. 2!.
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