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Classical-quantum correspondence in electron-positron pair creation

N. I. Chott, Q. Su, and R. Grobe
Intense Laser Physics Theory Unit and Department of Physics, Illinois State University, Normal, Illinois 61790-4560, USA

�Received 9 October 2006; published 18 July 2007�

We examine the creation of electron-positron pairs in a very strong force field. Using numerical solutions to
quantum field theory we calculate the spatial and momentum probability distributions for the created particles.
A comparison with classical mechanical phase space calculations suggests that despite the fully relativistic and
quantum mechanical nature of the matter creation process, most aspects can be reproduced accurately in terms
of classical mechanics.

DOI: 10.1103/PhysRevA.76.010101 PACS number�s�: 12.20.Ds, 03.70.�k, 11.10.�z

As a conceptually simpler and computationally more fea-
sible theoretical framework, classical mechanics can some-
times provide valuable insight into the dynamics of linear
and nonlinear quantum mechanical systems �1,2�. Quite re-
markably, classical mechanics can even provide an adequate
description for systems that require quantum field theory. In
fact, we will suggest that several features of the creation
process of matter from vacuum can be recovered with aston-
ishing accuracy by simple classical mechanical calculations.
More specifically, we compute the spatial and momentum
probability distributions of electron-positron pairs that are
created in a very strong force field using quantum field
theory with spatial and temporal resolution.

The electron-positron field operator ��t� can be computed
from numerical solutions to the time-dependent Dirac equa-
tion, i���t� /�t=h�t���t�, where the spatial representation of
the Dirac-Hamiltonian �in atomic units� is given by h�t�
=c�p+�c2+V�z , t�, where � and � denote the 4�4 Pauli
matrices and c �=137.036 a.u.� is the speed of light. Details
of the CPU intensive computations on a space-time lattice
can be found in Refs. �3,4�. The specific form of the force
field is not so important; for our analysis we use the potential
V�z , t�=V0 �(1-tanh�z /W�) /2� ��t�, whose gradient repre-
sents a spatially localized force field along the z direction �5�
that is turned on via ��t�=sin2��t / �2T�� for 0	 t	T and
��t�=1 for t
T with T=5.1�10−6 a.u. The potential height
V0 was chosen as 2c2−104 a.u., which is less than twice the
rest mass energy of the electron such that pairs can be cre-
ated in the region −W	z	W from vacuum not due to su-
percriticality induced spontaneous emission but because of
the time dependence of the force field �6�. For a recent gen-
eralization of the Schwinger formula for the pair-production
probability in a time-dependent supercritical field, see �7�.

In contrast to the S-matrix based in or out formalism that
can predict asymptotic observables, we need to predict all
stages of the pair creation process with full temporal and
spatial resolution. It has been pointed out �6� that the inter-
action zone inside a space- and time-dependent force is theo-
retically difficult to access. Physical properties of real par-
ticles inside the interaction zone cannot be obtained directly
from the usual �time-independent� fermionic annihilation or
creation operators that are associated with �asymptotic� free
particle states �8�. In this work, however, we propose a
method to compute all observables for the electron inside the
interaction region. In this approach, the electronic portion of

the quantum field operator, denoted by �e�t�, has to be com-
puted. This can be achieved by projecting the full electron-
positron field ��t� onto the submanifold of the Hilbert space
of instantaneous energy eigenstates �p�t�� with energies ep�t�
larger than −c2, defined as h�t��p�t��=ep�t��p�t��. It is important
to note that these instantaneous states �p�t�� are not time-
evolved states. The electronic part of the field operator, ob-
tained as �e�t���p�p�t��	p�t����t�, is a generalization of the
so-called positive frequency part of �, discussed in text-
books �9� for the special case of time-independent systems.
�e�t� is the key quantity to determine the electronic proper-
ties. As an example, the electrons’ density operator ��t� can
be computed through the �Fock-space� expectation value
with the initial multiparticle state, the field-free vacuum

vac�, according to ��t�= 	vac
�e

†�t��e�t�
vac�. The diagonal
elements of this 4�4 operator ��t� in its spatial and momen-
tum representations determine the spatial and momentum
probability distributions, P�z , t��	z���t��z� and P�k , t�
�	k���t��k�, respectively.

The sequence of graphs in Fig. 1 shows �with the solid
lines� snapshots of P�z , t� and P�k , t� at five times t. To set
the spatial scale, the dashed line next to the position depen-
dent graphs �Figs. 1�a�, 1�c�, and 1�e�� shows the extent of
the potential V�z�. The dynamics is characterized by three
temporal regimes, the creation domain �0	 t	5.1
�10−6 a.u.� during which the force is turned on, is charac-
terized by a nearly shape-invariant growth of both densities,
P�z , t�= P0�z�f�t� and P�k , t�= P0�k�f�t�. The subscript in
P0�. . .� denotes the shape-invariant birth density and f�t� is
the total yield. This creation stage is followed by the accel-
eration out of the �repulsive� force region �Figs. 1�c� and
1�d�� and finally the force-free evolution �Figs. 1�e� and
1�f��. The latter snapshots for t=2.9�10−3 a.u. show that
most electrons are accelerated by the force into the positive z
direction corresponding to a positive momentum. Some of
the electrons, however, escape to z	0, reflecting those elec-
trons �called errants �10�� that were able to escape opposite
to the direction of the very force that created them. While the
electrons’ spatial density keeps spreading as the particles es-
cape with various energies, the momentum density reaches
its asymptotic distribution once the particles have left the
interaction region. This particular density is experimentally
most accessible as detectors are typically located outside the
interaction region and measure the energy spectrum related
to P�k , t�.
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In order to compare the spatial and momentum distribu-
tions with those computed from classical mechanics, we
have to know the functional form of the birth phase space
density Pcl�z ,k�. If the field theoretical densities based on the
transition matrix elements of V�z� are expanded perburba-
tively for short times, one can find under certain non-
relativistic approximations to the energy eigenstates remark-
ably simple analytical forms for the birth densities for an
arbitrary potential V�z�, P0�z���dV�z� /dz�2 and P0�k�
��dV�kW /c� /dk�2. These intuitive and universal expressions
agree nicely with the QFT data �circles in Figs. 1�a� and
1�b�� and show, e.g., that the spatial birth density P0�z� is
directly proportional to the square of the force field. Devia-
tions are expected for forces V��z� that are spatially more
localized than the Compton wavelength of the electron, 1 /c,
and also for longer turn on times for which the time scales
for creation and subsequent acceleration by the force are no
longer separable. In this domain the spatial regions would
contain a mixture of particles that were accelerated and that
were just created at that location �11�.

Quantum field theory does not necessarily give us imme-
diate information about the correlation between the initial
momentum k and position z, so as a first step we just assume
that the classical phase space density Pcl�z ,k� is initially
given by the �uncorrelated� product of the corresponding

marginal densities, Pcl�z , p�= P0�z�P0�k�. The validity of this
hypothesis will be examined in Fig. 2 below. The time evo-
lution of the phase space density can be obtained as the so-
lution to the Liouville equation for the Hamilton function
hcl���c4+c2k2�+V�z�,
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FIG. 1. Comparison of quantum field theory
�solid lines� with classical mechanics �open
circles�. The snapshots of the spatial �left col-
umn� and momentum �right column� distributions
P�z , t� and P�k , t� of the electrons created from
vacuum in a strong force field. The dashed line in
the left column is the potential V�z� �on a linear
scale� responsible for the pair creation. The
crosses in �c� and �d� represent nonrelativistic
calculations. In �f� the crosses represent an ana-
lytical formula �Eq. �2�� for the asymptotic mo-
mentum spectrum. The total norm of the classical
mechanical data were normalized to match the
quantum field theoretical yields. �V0

=2c2-104 a.u. ,W=6/c, classical data are ob-
tained from 1.5�106 orbits.�
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FIG. 2. The impact of the momentum-position correlation in the
birth phase space density P0�z ,k�. The quantum field theoretical
momentum distribution P�k , t� at time t=2.9�10−3 a.u. �solid line�
is compared with predictions for classical ensembles with various
degrees of correlation, no correlation �open circles�, maximum cor-
relation �crosses�, and anticorrelation �triangles� �same parameters
as in Fig. 1�.
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Pcl�z,k,t� =  dz0dk0Pcl�z0,k0���z − zcl�z0,k0,t��

���k − kcl�z0,k0,t�� , �1�

where zcl and kcl denote classical particle orbits with initial
conditions zcl�z0 ,k0 , t=0�=z0 and kcl�z0 ,k0 , t=0�=k0. They
can be obtained as numerical solutions to the Hamilton equa-
tions, dz /dt=dhcl /dk and dk /dt=−dhcl /dz.

The open circles in Fig. 1 show the predictions for the
marginal densities, obtained via Pcl�z , t���dk Pcl�z ,k , t� and
Pcl�k , t���dz Pcl�z ,k,t�. The agreement with the quantum
field theoretical data is nearly perfect for all times. Even
though the prediction of the total yield requires quantum
field theory and the overall norm of Pcl�z , t� and Pcl�k , t�
were matched, it is remarkable that nearly all details of the
momentum as well as spatial distributions are quite accu-
rately reproduced by classical mechanics for each of the
three stages of the dynamics.

As mentioned above, we are particularly interested in
computing the asymptotic momentum density, P�k�
��dz P�z ,k , t→�. It can be derived fully analytically and
does not require any solution to the Hamilton equations. It is
made up of three contributions, P�k�=�dz0 �F1�z0�+F2�z0�
+F3�z0��, with

F1�z0� � P�z0, k̃L���k2�c4 + c2k̃L
2�/�k̃L

2�c4 + c2k2�����− k� ,

F2�z0� � P�z0,− k̃R���k2�c4 + c2k̃R
2�/�k̃R

2�c4 + c2k2�����− k̃R

− kmin�z0����k − k*�z0�� ,

F3�z0� � P�z0, k̃R���k2�c4 + c2k̃R
2�/�k̃R

2�c4 + c2k2�����k

− k*�z0�� . �2�

We have used several abbreviations, the unit-step function
��z����z�+z� / �2z�, the maximum initial momentum to
overcome the potential barrier kmin�z0��
−���c2+V0−V�z0��2−c4� /c, the lower bound for the initial
momentum to escape to the right k*�z0�
���V�z0�2+2V�z0�c2� /c, and k̃L�z0 ,k��
−�����c4+c2k2�+V0−V�z0��2−c4� /c and k̃R�z0 ,k�
������c4+c2k2�−V�z0��2−c4� /c. As the three functions F1,
F2, and F3 in Eq. �2� can be directly associated with elec-
trons ejected to z	0 �errants� and electrons with birth mo-
menta k0	0 and k0
0 that are accelerated into the positive
z direction, this solution permits a microscopic insight into
the importance of the pre- and postacceleration dynamics for
the final energy distribution.

Having established this excellent classical-quantum field
theoretical correspondence permits us to use classical me-
chanics instead of the more difficult QFT to obtain some first
insight into three rather fundamental questions, concerning
the importance of relativity, initial state correlation, and the
dynamical relevance of interparticle forces.

In order to examine the importance of a relativistic treat-
ment, we have repeated the classical simulations for a non-
relativistic time evolution, which can be obtained in the limit

of the parameter c→. Due unrestricted velocities, the non-
relativistic spatial density �crosses� in Fig. 1�c� is much
wider than its relativistic counterpart �circles and solid line�.
If the �canonical� momentum density in Fig. 1�d� were
graphed as a function of the velocity kc2 /��c4+c2k2�, the
strict upper limit P�k�=0 for velocities 
c would be appar-
ent for the QFT calculation.

Second, the quantum-classical agreement seems to sug-
gest that the position and momentum in the �exact� quantum
density P0�z ,k� at birth might be rather uncorrelated. In order
to probe a possible impact of correlations, we have repeated
the classical mechanical simulation for an initial phase space
density with the same marginal densities as above, however,
with highly correlated position and momentum variables,
Pcl�z ,k�� P0�z� P0�k� ��z-kW /c�. In this case the electrons’
positions depend on their momentum, large positions are as-
sociated with large momenta. In the opposite case of anticor-
related variables, Pcl�z ,k�� P0�z� P0�k� ��z+kW /c�, elec-
trons with large momenta are located at small z. In Fig. 2 we
show that these two types of correlations can lead to drasti-
cally different final momentum densities, suggesting that in
the true QFT process the location and momentum are rather
independent variables at birth; of course, more systematic
studies could clarify further details.

Third, the quantum field description based on the Dirac
equation did not include interfermionic interactions �based
on an exchange of photons�, such as the electron-positron
attraction. To account for this interaction in quantum field
theory would require the inclusion of the vector potential as
a dynamically coupled second-quantized field operator, but
any solution to the combined Dirac-Maxwell operator equa-
tions is presently far beyond computational feasibility. The
classical mechanical simulations, however, are simple
enough such that this interaction can be included at least
phenomenologically and a first insight into its impact can be
obtained. For short distances, this force is not known, but a
comparison of the functional forms of lowest-order terms of
the quantum field theoretical transition amplitudes and non-
relativistic transition matrix elements �8,12� suggests that for
large inter-particle separations the potential is Coulombic,
�1/ �ze-zp�, where ze and zp are the electron and positron
positions. We have therefore examined a set of long-range
forces that are asymptotically Coulombic, of the functional
form �1/���ze-zp�2+s2�, where the parameter s represents
an unknown screening length.

In Fig. 3 we display the classical mechanical momentum
distribution P�k , t� for t=2.9�10−3 a.u. obtained for three
screening lengths, s=10−3, 10−4, and 10−5 a.u. The compari-
son with the QFT data �solid line� suggests that as long as
any �true� screening parameter is larger than s=10−3 a.u., the
resulting effect of the electron-positron attraction is negli-
gible compared to the interaction with the external force. The
small size of s=10−3 a.u. also suggests that only those few
particles that are closer to each other �13� than a hundredth
of the Compton wavelength �1/c=7.3�10−3 a.u.�, can be
affected by the mutual force. The linear vertical scale of the
quantum data P�k , t� in Fig. 3 reveals also small oscillatory
and time-dependent contributions for 200 a.u.	k	280 a.u.
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that are reminiscent of quantum interferences and obviously
cannot be predicted from a classical phase space density.

In summary, we have shown how quantum field theory
can be used to analyze the creation dynamics of particles
inside a spatially and temporally dependent force field. This
was possible by projecting the field operator on a set of in-

stantaneous energy eigenstates with energies above the nega-
tive energy threshold. We computed the spatial and momen-
tum densities of the created electron-positron pairs and
showed that the quantum field theoretical data can be repro-
duced with remarkable accuracy by means of classical phase
space calculations. As classical mechanical ensemble compu-
tations are much more efficient than quantum field theoreti-
cal approaches, they open the field to several new challenges
that were previously technically inaccessible. Future studies
might examine three-dimensional aspects including tempo-
ral, spatial, and spectral properties of possible laser pulses,
possible ponderomotive force effects �14�, the impact of pos-
sible nuclei, any interparticle Coulombic forces and many
other challenges. The microscopic insight obtained and its
first qualitative answers will be of relevance in the near fu-
ture, as laser sources are predicted to become available
�15–17� that are powerful enough to create electron-positron
pairs from vacuum and therefore open ways to control the
pair-creation dynamics.

We acknowledge many discussions with I. Bialynicki-
Birula, S. Bowen, and C.C. Gerry. This work has been sup-
ported by the NSF. We also acknowledge support from the
Research Corporation for Cottrell Science Awards, and
NCSA for supercomputing time.
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FIG. 3. The impact of the Coulomb force between the electrons
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sical mechanics �same parameters as in Fig. 1�.

CHOTT, SU, AND GROBE PHYSICAL REVIEW A 76, 010101�R� �2007�

RAPID COMMUNICATIONS

010101-4


	Classical-quantum correspondence in electron-positron pair creation
	Recommended Citation

	tmp.1398221602.pdf.OmPYa

