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Unitary and nonunitary approaches in quantum field theory

K. D. Lamb, C. C. Gerry,* Q. Su, and R. Grobe
Intense Laser Physics Theory Unit and Department of Physics, Illinois State University, Normal, Illinois 61790-4560, USA

�Received 21 September 2006; published 31 January 2007�

We use a simplified essential state model to compare two quantum field theoretical approaches to study the
creation of electron-positron pairs from the vacuum. In the unitary approach the system is characterized by a
state with different numbers of particles that is described by occupation numbers and evolves with conserved
norm. The nonunitary approach can predict the evolution of wave functions and density operators with a fixed
number of particles but time-dependent norms. As an example to illustrate the differences between both
approaches, we examine the degree of entanglement for the Klein paradox, which describes the creation of an
electron-positron pair from vacuum in the presence of an initial electron. We demonstrate how the Pauli
blocking by the initial electron comes at the expense of a gain in entanglement of this electron with the created
electron as well as with the created positron.

DOI: 10.1103/PhysRevA.75.013425 PACS number�s�: 03.65.Pm

I. INTRODUCTION

The possibility to create matter directly from a very in-
tense and focused laser beam has recently led to several the-
oretical investigations. Traditionally, the creation of electron-
positron pairs from vacuum has been studied theoretically
and also experimentally for heavy-ion collisions �1,2�, in
which the combined Coulombic fields of highly charged ions
can exceed the threshold of supercriticality when the ions are
accelerated towards each other.

Most of the theoretical investigations are based on the
evaluation of various transition matrix elements in order to
provide differential and total cross sections to accompany the
experimental data �3�. About 5 years ago we became inter-
ested in exploring the pair-creation process from a more fun-
damental point of view, addressing questions such as where
and when the pair-creation process takes place. These chal-
lenging questions require a quantum field theory that can
provide full temporal and spatial resolution. It turns out that
if the spatial dimensions are reduced to only one, forcing all
involved particles onto a single line, the Dirac equation for
the electron-positron quantum field operator can be solved
numerically. This approach has helped to illuminate a wide
range of controversial questions. Some of these questions
arose for complicated physical situations such as how an
electron scatters off a supercritical potential barrier �Klein
paradox� �4–8�. This situation required the application of
quantum field theory to study the combined effect of pair
production due to the supercriticality of the potential to-
gether with the scattering at the barrier involving the Pauli
principle. Other questions dealt with less complicated sys-
tems such as force-free environments. Two good examples
are the mathematical phenomenon of Schrödinger’s Zitter-
bewegung and the relativistic localization problem for a free
electron �9�. This computational approach also permitted a
first space-time resolved study of how a bound state is

formed in a supercritical and localized force field �10�.
Recently it was announced �11–13� that within the next

few decades new laser sources could become available
that—when sufficiently focused—have intensities large
enough to “break down” the vacuum and to spontaneously
produce electron-positron pairs. As this advancement would
be a first demonstration of how light can be converted di-
rectly into matter, one can expect that this program would
trigger new developments in quantum field theory.

The work reported here is part of a major project devoted
to obtaining a better insight into the pair-creation process
with full temporal and spatial resolution. The system we will
analyze is purposely reduced to its largest possible degree of
simplicity. It does not attempt to make any quantitative pre-
dictions for a real experiment, but it can help to explore
various fundamental questions within the simplest possible
context. It compares the predictions and the relationship
among two—at least in principle—equivalent approaches to
quantum field theory. In its unitary version, the total norm of
the quantum states containing all occupation numbers in-
volved is conserved, the generator of the time evolution is
known, and the vacuum, single particle, and multiparticle
states are treated in the same way.

The nonunitary version is more complicated, but at the
same time it is the key to a spatially resolved analysis of the
pair-creation process involving electron-electron entangle-
ment. For a situation in which the total number of particles
can change, the norm of the underlying single or multipar-
ticle states must change in time, and the precise form of the
corresponding �nonunitary� time evolution operator is usu-
ally not known. Here the electronic or positronic portions of
the electron-positron field operator or various direct products
of it need to be projected on the initial quantum state and the
vacuum to compute the corresponding density operators or
wave functions.

To make this comparison computationally feasible, in this
work we introduce an oversimplified model system where
the number of electronic and positronic states is only two
each. It is similar in spirit to the essential state approximation
used so successfully in quantum optics �14� and also in the
1980s in ionization physics �15–18�, in which only the rel-
evant electronic states were allowed to interact. However,
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our essential state model also has positronic states in its
manifold. As mentioned above, this approach cannot claim
any quantitative predictions for real experiments; however, it
has several advantages: first, it permits a direct and possibly
even fully analytical comparison between unitary and non-
unitary approaches to quantum field theory. Second, due to
an absence of the unnecessary complexity of a real system,
the model can serve as an alternative approach illustrating
main principles of quantum field theory involving renormal-
ization, charge conjugation, and fermionic noncommuting al-
gebras. Third, it more fully illuminates certain aspects, such
as the usefulness of the hole theory and the growth of en-
tanglement associated with Pauli blocking in the Klein para-
dox. We will also discuss how this model system could pro-
vide an efficient description of fermion-fermion interactions
on a nonperturbative basis, for the first time permitting the
observation of the birth of a force field between two created
particles.

II. ESSENTIAL STATE MODELS IN QUANTUM
FIELD THEORY

The interaction of electrons and positrons with time-
dependent external force fields modeled by the vector and
scalar potentials A�t� and V�t� is given by the Dirac-
Hamilton operator �in atomic units� �19�

h�t� � c��p − A0/c� + �c2 + V0 − �A�t� + V�t� , �2.1�

where � and � are the 4�4 Pauli matrices and c
�=137.036 a.u.� is the speed of light. We assume that h0

�c��p−A0 /c�+�c2+V0 is subcritical, which permits an un-
ambiguous separation of electronic states �p� �with energy
ep�−c2�, with h0�p�=ep�p�, and states associated with the
negative energy continuum, h0�n�=en�n� and en�−c2. For
simplicity we assume that V0 is negative, making it attractive
for the electronic states.

As we will need it below, let us mention the charge con-
jugation operation associated with the operator C��w. Here
� is the �antiunitary� complex conjugation and w=−i�y� is a
real unitary operator. If we were to interpret h�t� as an op-
erator predicting the time evolution for a single particle wave
function, it would describe the dynamics for a negative
charge. The operator h+�t�, obtained from h�t� by reversing
the signs of the vector and scalar potentials, would describe
the evolution of a positively charged particle. It turns out that
these two generators h�t� and h+�t� can be related to each
other via Ch�t�C−1=−h+�t�. As a consequence the negative
energy eigenstates of the time-independent part obtain a nice
interpretation. If we assume h0�n�=en�n�, then we immedi-
ately obtain h+0C�n�=−enC�n�; in other words, we can iden-
tify the charge conjugated states of the negative energy con-
tinuum, C�n� �which we abbreviate as �Cn� from now on�, as
eigenstates of h+0 for a positron with positive energy −en.

The operator h�t� can also be expressed in terms of the
transition elements between the energy eigenstates of the
system h0, denoted by �p� and �n�. As a result, h�t� becomes

h�t� = �
pp�

	p�h�t��p���p�	p�� + �
nn�

	n�h�t��n���n�	n��

+ �
np

	n�h�t��p��n�	p� + �
pn

	p�h�t��n��p�	n� , �2.2�

where the double summation �integration� ∑ is performed
over the states as indicated by the subscript.

To introduce the essential state model, we restrict the
available levels to only �1�, �2�, �3� and �4�. The first two
states can be electronic bound or free states, and the second
pair is related to positron states �C3� and �C4�. In this four-
dimensional finite Hilbert space, the Hamiltonian h�t� takes
the form

h�t� = e1�1�	1� + e2�2�	2� + e3�3�	3� + e4�4�	4� + h12�t��1�	2�

+ h13�t��1�	3� + h14�t��1�	4� + h21�t��2�	1� + h23�t��2�	3�

+ h24�t��2�	4� + h31�t��3�	1� + h32�t��3�	2� + h34�t��3�	4�

+ h41�t��4�	1� + h42�t��4�	2� + h43�t��4�	3� , �2.3�

where the matrix elements are defined as hij�t��	i�h�t��j�.
For simplicity we have assumed that the time-dependent per-
turbation does not affect the size of the energy of each level,
hii�	i�h�t��i��	i�h0�i�=ei. Due to the assumption that the
Hamiltonian is subcritical at time t=0, where h�t=0�=h0, the
two electronic energies e1 and e2 are larger than −c2, whereas
the other two states have negative energies less than −c2.
Also note that the time-dependent couplings h12 and h34 de-
scribe ordinary quantum mechanical transitions within the
electron or positron manifolds, whereas the group of h13, h14,
h23, and h24 involves intermanifold transitions that—as we
discuss below—are associated with a change in the total
number of particles.

The Hamiltonian for the unitary quantum field theory
�U-QFT�, denoted by H�t�, can be obtained from h�t� if we
introduce the quantum field operator ��t�. It is defined as a
hybrid of single-particle states and fermionic operators

��t� � b1�t��1� + b2�t��2� + d3
†�t��3� + d4

†�t��4� . �2.4�

Here bi�t� and di
†�t� are the fermionic annihilation and cre-

ation operators. It is important to note that d3
†, e.g., does not

create the true positron state �C3�, but only its charge conju-
gated form �3�. These operators fulfill the following anticom-
mutation relationships �bi�t� ,bj

†�t��+=�ij and �bi�t� ,bj�t��+

=0 at all times, where the anticommutator is defined as
�A ,B�+�AB+BA. If we exclude the time dependence in our
notation below, we refer to the operators at the initial time
t=0. The Hamiltonian for the U-QFT is then defined as
H��t���†�t=0�h�t���t=0� and takes the form H��t�

H��t� = e1b1
†b1 + e2b2

†b2 + �− e3�d3
†d3 + �− e4�d4

†d4 + e3 + e4

+ h12�t�b1
†b2 + h13�t�b1

†d3
† + h14�t�b1

†d4
† + h21�t�b2

†b1

+ h23�t�b2
†d3

† + h24�t�b2
†d4

† + h31�t�d3b1 + h32�t�d3b2

+ h34�t�d3d4
† + h41�t�d4b1 + h42�t�d4b2 + h43�t�d4d3

†,

�2.5�
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where we have replaced didi
† by −di

†di+1 for i=3,4. The
constant negative energy term e3+e4 is dynamically irrel-
evant and can be subtracted out �renormalized�. As a result,
we obtain H�t��H��t�− �e3+e4�. Please note that as e3 and
e4 are negative, all diagonal terms �bare energies� in H�t� are
positive.

The time evolution of the fermionic operators bi and di is
given by the Heisenberg equations of motion, i�A /�t
= �A ,H�t��−, where A� 
bi , di , bi

† , and di
†� using the usual

commutator defined as �A ,B�−�AB−BA. We note that also
the electron-positron field operator ��t� fulfills the same re-
lationship, i���t� /�t= ���t� ,H�t��−. As a side remark, we
should note that this operator also satisfies the original Dirac
equation i���t� /�t=h�t���t�. Using either equation, the time
evolution of ��t� can be obtained. We obtain two fully
equivalent solutions,

��t� = U−1�t���t = 0�U�t� = u�t���t = 0� , �2.6�

where we have used the notation for the time-ordered unitary
propagation operators, U�t��exp�−i�td	H�	�� and u�t�
�exp�−i�td	 h�	��. If we enter the Dirac equation with the
ansatz ��t�=b1�1�t��+b2�2�t��+d3

†�3�t��+d4
†�4�t��, we can ob-

tain the time evolution of the states as �i�t��=� j	j�u�t��i��j�,
where uij�t� is the matrix element of the time-ordered unitary
propagation operator u�t�, which is the key building block of
nonunitary quantum field theory of noninteracting fermions.
The same solution can be obtained if we use the Heisenberg
equation of motion for ��t�, using the solutions for the time-
dependent annihilation and creation operators,

bi�t� = ui1�t�b1 + ui2�t�b2 + ui3�t�d3
† + ui4�t�d4

†, �2.7a�

dj
†�t� = uj1�t�b1 + uj2�t�b2 + uj3�t�d3

† + uj4�t�d4
†, �2.7b�

where i=1,2 and j=3,4.
Let us now introduce the Hilbert space associated with

H�t�. This space is 16 dimensional, corresponding to all pos-
sible combinations of the four �single particle� states men-
tioned above. To distinguish these states from the single par-
ticle states �i�, i=1,2 ,3 ,4, we use the notation bbbb��,
where each of the four bits denotes the occupation number �0
or 1� of the corresponding single particle state. They are the
fermionic analog of the Fock states for bosons. For example,
the book keeping symbol 0101�� represents an occupied
state �2� and �4�, describing an electron in state �2� and a
positron in state �C4�.

The �unperturbed� vacuum state is the one with lowest
energy, denoted by 0000��. All of the other 15 states are
defined by the action of the creation and annihilation opera-
tors on this vacuum. We use here the convention based on an
ascending ordering in which the left-most creation operator
acts on the left-most occupation bit �20,21�. For example,
the fully occupied state 1111�� can be generated from
the vacuum via the definition 1111���b1

†b2
†d3

†d4
†0000��,

or the two-particle state 0101�� is defined as 0101��
�b2

†d4
†0000��.

We should also point out that these book-keeping symbols
merely represent the occupation of our original levels and

therefore do not allow any direct association with particular
particles. As a consequence the states denoted by the double
bars bbbb�� do not have any symmetry property that one
usually associates with an exchange of particles. However,
these states bbbb�� can be converted into true wave function
states with N electrons and M positrons. These wave func-
tions are then given by scalar products of the vacuum state
and bbbb�� acted on by sequences of direct products of the
electronic and positronic parts of the field operator �22�,

�
� = 		0000�e � ¯ �e � �p � ¯ �pbbbb��/ � �N!M!� .

�2.8�

As an example, N and M can be 0, 1 or 2 for our system,
where the subscript e�p� is the electronic �positronic� part of
��t�, defined as �e���1�	1�+ �2�	2��� and �p�C��3�	3�
+ �4�	4���. Please note that due to the charge conjugation
operation C, we have �=�e+C−1�p. To give a few
more examples, we obtain 		0000�e0100��= �2�,
		0000�p0001��= �C4�, 		0000�e � �p0101��= �2��C4�,
and 		0000�e � �e1100�� / �2= ��1��2�− �2��1�� / �2. The
latter state describes two indistinguishable electrons and is
therefore antisymmetric under a particle exchange.

We should finish with a short note on how to express the
annihilation and creation operators in this basis. The book-
keeping symbols bbbb�� naturally factor into electronic �e�
and positronic �p� groups, such that we can use the notation
bbbb���bb��e � bb��p, and Ip for the unit operator in
positronic space can be expressed as Ip�00��p		00p
+ 10��p		10p+ 01��p		01p+ 11��p		11p. For each operator
we obtain the sum over eight projectors:

b1 = �00��e		10e + 01��e		11e� � Ip, �2.9a�

b2 = �00��e		01e − 10��e		11e� � Ip, �2.9b�

d3
† = Ie � �10��p		00p + 11��p		01p� , �2.9c�

d4
† = Ie � �01��p		00p − 11��p		10p� . �2.9d�

III. TIME EVOLUTION OF THE HILBERT STATES

Let us now analyze the time evolution for the states
bbbb��. It turns out that due to the special functional form of
our Dirac Hamiltonian h�t� from Eq. �2.1� and correspond-
ingly the bilinear form for H�t� in Eq. �2.5�, not all of these
16 states are coupled. In fact, there are five invariant sub-
spaces. The largest one �the vacuum space� is six dimen-
sional and contains the vacuum 0000�� �which we denote
from now on by the short-hand notation �1���, four electron-
positron pair states 1010�� ���2���, 1001�� ���3���,
0110�� ���4���, and 0101�� ���5��� as well as the two-
pair state 1111�� ���6���. Its six energies are 0, e1−e3, e1

−e4, e2−e3, e2−e4, and e1+e2−e3−e4. The Klein submani-
fold of states �called Ke� consists of the four states that are
coupled to the state with a single electron 1000�� �which
we denote as �1���. The other three states are 0100��
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���2���, 1110�� ���3���, and 1101�� ���4���. Its four
energies aree1, e2, e1+e2−e3, and e1+e2−e4. The corre-
sponding Klein manifold for the positron �labeled Kp� is
spanned by 0001��, 0010��, 1011��, and 0111��. Due to
the constraint of finitude for the essential state model, the
two-particle states 1100�� and 0011�� are each invariant

submanifolds. In this notation the vacuum state associated
with h0 satisfies h0 �1�=0 �1��.

As we mentioned, in this basis not all states are coupled
and the matrix representation of H�t� is block diagonal in
these five subspaces, H�t�=Hvac�t�+HKe�t�+Hee�t�+Hpp�t�
+HKp�t�, which take the form

Hvac�t� =�
0 h31 h41 h32 h42 0

h13 e1 − e3 − h43 h12 0 − h42

h14 − h34 e1 − e4 0 h12 h32

h23 h21 0 e2 − e3 − h43 h41

h24 0 h21 − h34 e2 − e4 − h31

0 − h24 h23 h14 − h13 e1 + e2 − e3 − e4

� , �3.1a�

HKe�t� =�
e1 h12 h32 h42

h21 e2 − h31 − h41

h23 − h13 e1 + e2 − e3 − h43

h24 − h14 − h34 e1 + e2 − e4

� ,

�3.1b�

Hee�t� = �e1 + e2� , �3.1c�

Hpp�t� = �− e3 − e4� , �3.1d�

HKp�t� =�
− e3 − h43 − h41 − h42

− h34 − e4 h31 h32

− h14 h13 e1 − e3 − e4 h12

− h24 h23 h21 e2 − e3 − e4

� .

�3.1e�

As mentioned above the evolution of the state ��t���
is given by the “Dirac-like” equation i� /�t��t���
=H�t� ��t���. Let us assume an initial state inside the
vacuum space is given by ��t=0���=� j� j�t=0�� j��. The
general time evolution is given by

��t��� = �1�t�0000�� + �2�t�1010�� + �3�t�1001��

+ �4�t�0110�� + �5�t�0101�� + �6�t�1111�� ,

�3.2�

where the time-dependent expansion coefficients �i�t� are
given by the sum, �i�t�=� j� j�t=0�Uij�t�, where Uij�t�
�		�iU�t�� j�� is the matrix element of the time-ordered
unitary propagation operator U�t��exp�−�td	 H�	�� for a
given set of coupling parameters hij. For the special case of
�i�t=0�=�1i, the decay of the vacuum can be obtained. This
vacuum decay amplitude is an important measure for the
amount of spontaneous creation of supercritical fields.

Due to the fermionic anticommutation relationships we
have not been able to find a closed form simplification of the
operator U�t� in terms of the creation and annihilation opera-
tors. The exponentiated form of the operator H�t� can be
found numerically by diagonalization and exponentiation of
the diagonal matrix. Even though the matrix elements of the
4�4 matrix hij and the 16�16 matrix Hij are easily related
as shown in Eqs. �3.1�, the relationship between the expo-
nentiated forms uij and Uij is nontrivial. The most general
form to relate these coefficients is given by the equality �2.6�
U�t�−1��t=0�U�t�=u�t���t=0�, based on the fact that the
quantum field operator � solves simultaneously the Dirac
equation, i� /�t��t�=h�t���t�, as well as the Heisenberg
equation of motion, i� /�t��t�= ���t� ,H�t��−. The general re-
lationship between the matrix elements of u and U is not
straightforward.

We will need two specific solutions in Sec. V. If we start
with the vacuum as our initial state ��t=0���= �1��, then
we obtain the state ��t=0���=� jUj,1

vac�t�� j��, where the 6
�6 matrix Uji

vac is associated with Hvac defined in Eq. �3.1a�.
Since the total norm 		��t� ��t���=1 is conserved in this
unitary framework, it is a little bit misleading to view
the state �1�� as an infinite reservoir for particles. In fact,
once a single pair is created, the amplitude of �1�� in ��t���
becomes zero. Similarly, if we start with the single electron
state �1� as our initial state ��t=0���= �1��, then we obtain
the state ��t���=� jUj,1

Ke�t�� j��, where the 4�4 matrix Uji
Ke

is associated with HKe as defined in Eq. �3.1b�.

IV. ELECTRON-POSITRON AND ELECTRON-ELECTRON
ENTANGLEMENT

Since we have two types of particles, we need to define
two different types of degrees of entanglement between the
corresponding states. In order to compute the entanglement
between groups of electrons and positrons, we must compute
the total density operator, or ��t���		��t�, whereas the de-
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termination of the electron-electron entanglement requires
the computation of the electronic density operator, 		��t
=0��e

†�t��e�t���t=0���. In Sec. V we will study the time
evolution of the corresponding degrees of entanglement.

A. Electron-positron entanglement

Let us first describe how one could characterize a degree
of entanglement between two different groups of particles,
such as electrons and positrons �23,24�. In order to charac-
terize the amount of entanglement between a group of elec-
trons with a group of positrons, one strategy would be to
eliminate all positronic degrees of freedom from the total
density operator ��t���		��t� and explore the resulting
electronic density operator, Pe�t��Trp ���t���		��t��, to
determine whether it describes a pure or mixed state. The
tracing over the positronic states is possible, as the book-
keeping symbols bbbb�� naturally factor into electronic �e�
and positronic �p� groups, bbbb��= bb��e � bb��p as dis-
cussed above. In other words, the Trp operator is defined as
Trp¯ ��b�b		b�bp¯ b�b��p. If Pe�t� describes a pure state
�equivalent to Tre Pe

2�t�=1�, then the original state ��t���
did not entangle the electrons with their environment, the
positrons. On the other hand, if Tre Pe

2�t��1, it is not pos-
sible to describe the group of electrons by wave functions. In
1994 it was shown �25� that the numerical degree of en-
tanglement, measured by the numerical parameter Kep
�1/ �Tre Pe

2�t��, describes the number of single particle
states necessary to synthesize the original multiparticle
states, sometimes also called the Everett-Schmidt decompo-
sition �26,27�. Kep=1 corresponds to no entanglement and
the larger the value for Kep, the larger is the degree of en-
tanglement,

Kep = 1/Tre Pe
2 = 1/Tre
Trp��t���		��t��2. �4.1a�

Quite remarkably, it turns out that the same parameter Kep
can also be obtained directly from the expansion coefficients
��t��� without any tracing over positronic degrees of free-
dom. To demonstrate this method with a simple example, let
us analyze the vacuum space and neglect the vacuum state
�1� and the two-pair state �6�� for better illustration. In this
four-dimensional basis, each state describes a single
electron-positron pair, ��t���=� j� j�t�� j��. There is an im-
mediate way to determine directly from the four coefficients
� j�t� whether the underlying electron is entangled with the
positron: if �2�t��4�t�−�3�t��5�t�=0, then the electron is not
entangled. This determinant condition can be easily under-
stood, since we can write down the most general form
of an unentangled electron-positron state, �
ep�= �c1�1�
+c2�2���c3�C3�+c4�C4��. Because the superposition of the
electronic and positronic states is factorized, the two par-
ticles are unentangled. This state translates directly into the
special functional form of the four coefficients, �2=c1c2,
�3=c1c4, �4=c2c3, and �5=c2c4 �associated with 1010��,
1001��, 0110��, and 0101���, thereby proving the above
given determinant condition.

As a side remark, we should point out that this condition
generalizes to higher dimensional essential state models. If

the electron is permitted N states and the positron M states
described by state ��t��� then the two particles are not en-
tangled if any subdeterminant formed by the N�M matrix
�with elements �i , i=1,NM� vanishes. It turns out that the
degree of entanglement �also characterized by the trace over
all electronic states of the square of the reduced density ma-
trix in Eq. �4.1a�� can be expressed in terms of the sums of
� N

2
�� M

2
� determinants associated with all possible 2�2 sub-

matrices, denoted by det Si associated with ��t���,

Kep = 1��1 − 2�
i

�det Si�2� . �4.1b�

As Kep describes the entanglement of a group of electron
states with a group of positron states, it is interesting to note
that each 2�2 submatrix describes the entanglement be-
tween an individual electron and positron states. In other
words, the total entanglement among groups is identical to
the sum of the degree of entanglements within each single
pair of particles.

B. Electron-electron entanglement

So far our discussion used the unitary approach to quan-
tum field theory based on ��t��� and Pe�t�. In its nonunitary
version, the electronic density operator can be defined as

�e�t� � 		��t = 0��e
†�t��e�t���t = 0��� . �4.2�

Because the total number of electrons changes in time, the
trace of the operator �e�t� changes in time. This approach is
perfectly suited to calculating the degree of entanglement
between two individual electrons. If we were to normalize
�e�t� to fulfill tre �e�t�=1, then Kee�1/ tr �e�t�2 would serve
as an unambiguous measure for the degree of electron-
electron entanglement �25�. Here we define tre as the sum-
mation over the electron states, e.g., tre¯ �	1�¯ �1�
+ 	2�¯ �2�. The definition of the electron-electron entangle-
ment is

Kee � �tre		��t = 0��e
†�t��e�t���t = 0����2/tre		��t = 0�

��e
†�t��e�t���t = 0���2. �4.3�

We will examine a specific example in the next
section. Please note that the two electronic density
operators �e�t��		��t=0��e

†�t��e�t���t=0��� and Pe�t�
�Trp���t���		��t�� act in different spaces: a matrix repre-
sentation of �e�t� requires two states �1� and �2�, whereas
Pe�t� would be represented by a 4�4 matrix in general,
based on 10��e, 01��e, 11��e, and 00��e.

V. TIME EVOLUTION OF THE ELECTRON-ELECTRON
AND ELECTRON-POSITRON ENTANGLEMENT

FOR THE KLEIN SPACE

Analyzing the time evolution in Klein space can also be
illustrative in demonstrating how the Pauli-blocking mecha-
nism for the pair-creation process in the presence of an ex-
isting electron in state �1� contributes to a change in the
single-particle wave function character of the initial electron,
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as well as a growth in entanglement with the created positron
and the other electron. Once again we assume the Hamil-
tonian h is subcritical. This assumption permits a unique
identification of the states with electronic and positronic
properties. As the mechanism to create pairs, we use the time
dependence of an external force, which can be represented
by the instantaneous turn-on of the off-diagonal coupling pa-
rameters hij. For simplicity we assume the electron is ini-
tially in state �1�, which in the U-QFT framework corre-
sponds to the mode 1000��.

As outlined above, the single electron wave function can
be obtained from the projected electronic part of the quantum
field operator. We should note that in the context of a super-
critical field, the correct form of this projection operator is
not yet known. Also, for a time-dependent system such as
ours, this projection operator is itself time dependent �28,29�,
since the instantaneous energy eigenstates of h�t� change in
time. In our case, the correct electronic projection operator
should be e�t�= �1�t��	1�t��+ �2�t��	2�t��. Here it is important to
remark that the notation �1�t�� and �2�t�� does not represent the
time-evolved states �1�t�� and �2�t�� discussed in the last
paragraph of Sec. II, but merely the instantaneous energy
eigenstates defined as h�t� �1�t��=e1�t��1�t��, and similarly for
�2�t��. In order to get a simpler final expression, we approxi-
mate this projection operator here by e��1�	1�+ �2�	2�.
Even though the individual states change, it seems the total
upper subspace projector should change less. The interpreta-
tion for using e instead of e�t� is clear: while e�t���t�
describes the true electronic portion of the field operator dur-
ing the interaction, the field e��t� is the electronic property
that the system would take if the external time-dependent
field �given by hij� were turned off instantly �28,29�. If we
are willing to restrict our discussion based on the latter in-
terpretation, the replacement of e�t� by e is merely a sim-
plification and not an approximation at all.

The dynamics of the Klein space is described by the time
evolution of the initial state 1000� under the Dirac Hamil-
tonian of Eq. �3.1b�. The total state is given by a superposi-
tion of states with one and three particles,

��t��� = �1�t�1000�� + �2�t�0100��

+ �3�t�1110�� + �4�t�1101�� . �5.1�

The four expansion coefficients �i�t� carry all information
about the system and are identical to the matrix elements of
the propagator for the electronic Klein space, �i�t�
=UKe

i,1�t�. Due to the unitarity of the time-evolution operator
UKe, the total norm is conserved, �i��i�t��2=1. For instance,
the corresponding single and three particle states can be ob-
tained via

�
e�t�� � 		0000�e�t = 0���t���

= u11�t��1� + u21�t��2�

= �1�t��1� + �2�t��2� , �5.2�

�
p�t�� � 		0000�p�t = 0���t� = 0�� , �5.3�

�
eep�t�� � 		0000�e�t = 0� � �e�t = 0�

� �p�t = 0���t���/ � 2

= �3�t���2��1� − �1��2���C3�/ � 2

+ �4�t���2��1� − �1��2���C4�/ � 2

= u32
* �t���1��2� − �2��1���C3�/ � 2

+ u42
* �t���1��2� − �2��1���C4�/ � 2. �5.4�

Even though in principle a superposition of entangled states
could become unentangled, the position wave function
�
p�t�� in Eq. �5.3� vanishes at all times, as apparently the
positron is being created fully entangled with another elec-
tron.

We should also comment on another interesting property
concerning the conservation of particles in this Klein space.
Complementary to the wave function states �
e�t�� and
�
eep�t�� we can also compute the corresponding electronic
and positronic density operators:

�e�t� � 		��t = 0��e
†�t��e�t���t = 0��� , �5.5a�

�p�t� � 		��t = 0��p
†�t��p�t���t = 0��� . �5.5b�

As the created position must be produced together with an-
other electron, the average number of positrons is given by
the �time-dependent� norm of the three-particle wave func-
tion 	
eep�t� �
eep�t��. This must be identical to the total
“norm” contained in �p�t� and we obtain

trp�p�t� = 	
eep�t��
eep�t�� = ��3�t��2 + ��4�t��2. �5.6�

The latter equality makes sense as only the states �3�� and
�4�� contain an occupied positron bit. On the other hand,
whenever a positron is created, another electron is created as
well, whose average number is measured by tre �e�t�; in our
case a value between 1 and 2. As a result, we obtain
tre �e�t�−trp �p�t�=1, reflecting the conserved total amount of
charge, equivalent to a constant difference in the two average
particle numbers.

The relationships from Eq. �5.2�, u11=�1 and u21=�2 are
interesting as only the amplitude �1�t� �associated with state
1000��� determines the amplitude for state �1�. In principle,
the amplitudes of the following three states could contribute
to the single particle amplitude for state �1�, 1000�, 1110��,
and 1101��.

Let us now demonstrate the impact of the Pauli blocking.
Let us assume for the moment that the couplings hij are such
that the state 0100�� remains unpopulated corresponding to
h4j =hj4=0. Note that in each of the three remaining states
�1000�, 1110��, and 1101��� the level �1� is constantly oc-
cupied. One could �incorrectly� interpret the constant occu-
pation of this level with a “spectator electron” that simply
occupies its level �1� and passively observes how an indepen-
dent electron-positron pair is created. Depending on the final
state of the created positron, the created states would be
1110�� and 1101��.

It is important to note that this passive spectator view of
the initial electron is incorrect. As the dynamics evolves into
the states 1110�� and 1101��, the norm of its state
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e�t� �
e�t��= �u11�t��2+ �u21�t��2 changes in time and the
electron can no longer be described by a single-electron
wave function as the initial electron becomes entangled with
the other created electron as well as with the other positron.
Following the general description of Sec. IV we have com-
puted the amount of electron-position entanglement via the
reduced density operator for the electrons,

Pe = ��1�t��210��e		10e + ��2�t��201��e		01e + ���3�t��2

+ ��4�t��2�11��e		11e + �1�t��2�t�*10��e		01e

+ �2�t��1�t�*01��e		10e. �5.7�

The resulting degree of electron-positron entanglement is

Kep = 1/�Tre Pe
2�

= 1/�1 − 2���1�t��2 + ��2�t��2����3�t��2 + ��4�t��2�� .

�5.8�

This expression for Kep is just a special case of the general
expression Eq. �4.1a� and �4.1b� applied to the electronic
Klein subspace in which, among the possible � N

2
�2=16 sub-

matrices, only four are nonzero. We note that the degree of
entanglement is Kep=1 for the initial state ��1

2�t=0�=1�. In
other words, in this simplified situation the electron becomes
entangled with the positron as time goes on, but at a later
time it can become unentangled again, corresponding to
��1�t��2=0 and ��2�t��2=0.

Let us also show how the electron becomes entangled
with the other electron. As two electrons can only be de-
scribed by an antisymmetric state, one could �incorrectly�
expect that a minimal degree of entanglement of K=2 cannot
be avoided once the second electron is created completely.
However, one can expect even higher numbers for K if the
dimension of the subspace were extended to include more
states. While the computation of the degree of electron-
electron entanglement from two-electron states is trivial �30�,
the possible presence of the positron makes a computation
conceptually more challenging.

If we insert the time evolution of �e�t� from Eq. �2.4� into
this expression, we obtain �e�t�= 		1000�e

†�t��e�t�1000��
��ij�t��i�	j�, where

�11�t� = �u11�t��2 + �u13�t��2 + �u14�t��2, �5.9a�

�21�t� = u21�t�*u11�t� + u23�t�*u13�t� + u24�t�*u14�t� ,

�5.9b�

�22�t� = �u21�t��2 + �u23�t��2 + �u24�t��2. �5.9c�

Using �ij�t� we can compute the electron-electron entangle-
ment Kee defined in Eq. �4.3�.

VI. NUMERICAL EXAMPLES FOR THE TIME
DEPENDENCES

In order to show a specific example, we must introduce
numerical values for the original coupling coefficients. Let
us begin with the simplest nontrivial situation, a system in

which the electron can be in levels �1� and �2� and the posi-
tron has only the single state �C3�. We have chosen arbi-
trarily the coefficients �e1=0.1, e2=0.2, e3=−0.1, h12=0.3,
h13=0.3, h14=0.5�. Using numerical diagonalization we have
computed the average number of positrons, denoted by
	
eep �
eep�=trp Pp �see Eq. �3.1��, the degree of entangle-
ment between the groups of electrons and the positron Kep�t�
�see Eq. �5.6��, the entanglement between two electrons
Kee�t� �see Eq. �4.3��, the time-dependent norm of the single-
electron state 	
e �
e� �see Eq. �5.2��, and the norm of the
vacuum state ��1�t��2.

The top graph in Fig. 1�a� shows how the positron is
created from vacuum. The norm of �
eep� rises to nearly 0.8
after which the population shrinks to almost zero. At time
around t=5 the number of positrons reaches its largest value
close to 1. We believe that any oscillatory behavior is due to
the finiteness of the Hilbert space and the associated discrete
number of frequencies. The second graph from the top shows
the growth of the electron-positron correlation from Kep�t
=0�=1 to its largest value, Kep�t�=2. It is interesting that
shortly before time t=1.7, when the positron population ap-
proaches its first maximum, the entanglement Kep�t� actually
decreases. This clearly shows that the entanglement cannot
be a trivial function of the amount of available positrons. The
third graph �Fig. 1�c�� displays the electron-electron en-
tanglement Kee�t�. It follows the positronic population curve
relatively closely, suggesting that the created electron be-
comes immediately entangled with the initial electron.

The bottom graph �dashed line� shows the decay probabil-
ity of the vacuum state 0000�. It decays first to nearly zero
but then recovers back to nearly one, once again as a conse-
quence of the truncated Hilbert space. As one might expect,
the norm of the single-particle electron wave function cannot
exceed its initial value of 1, and even as the vacuum decays,
its norm cannot grow beyond bound.

In order to estimate how the results generalize if more
than just three levels are permitted, we have chosen �h23
=0.8, h24=0.4, and h34=0.1� to also permit the positron to
have two states. The resulting data are shown in the sequence
of graphs in Fig. 2. There are several differences. First, un-
like a real system �with infinitely many levels�, where the
vacuum can decay permanently to zero, after some delay it
begins to grow again. Second, also the three-particle norm
	
eep �
eep� does not return to zero, which is again more
typical of an irreversible growth pattern. Third, the electron-
electron entanglement Kee is also no longer able to return to
a value close to 1; the gain in entanglement appears more
permanent as the created positron has more degrees of free-
dom.

VII. OUTLOOK

We have shown the essential state model is pedagogically
illustrative for the analysis of the complicated electron-
positron creation process. In future studies we plan to in-
clude the nonperturbative interaction with a second quan-
tized photon field, with the goal of computing the fermion-
fermion interaction. The dream is to start with two electrons
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FIG. 1. The time dependence of various quantities for the cre-
ation of an electron-positron pair from vacuum in the presence of an
initial electron. The positron has the state �C3� available, whereas
the electron has �1� and �2�. �a� The number of positrons. �b� Degree
of entanglement between the groups of electrons and the positron.
�c� Degree of entanglement between the two electrons. �d� Norm of
the single-electronic state, the dashed line is the vacuum probability
�e1=0.1, e2=0.2, e3=−0.1, h12=0.3, h13=0.3, h23=0.8�.
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FIG. 2. The time dependence of various quantities for the cre-
ation of an electron-positron pair from vacuum in the presence of an
initial electron. The positron has the states �C3� and �C4� available,
whereas the electron has �1� and �2�. �a� The number of positrons.
�b� Degree of entanglement between the groups of electrons and the
positron. �c� Degree of entanglement between the two electrons. �d�
Norm of the single-electronic state, the dashed line is the vacuum
probability �e1=0.1, e2=0.2, e3=−0.1, h12=0.3, h13=0.3, h14=0.5,
h23=0.8, h24=0.4, h34=0.1�.
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and observe how these two electrons begin to repel each
other due to the mutual force between them, which is usually
pictured based on an exchange of photons. In certain limits,
this force is approximated by the Coulomb 1/r2 force. In this
study, it would be computed without any approximations.
Due to the increased number of dynamical degrees of free-
dom required in such a calculation, an ab initio reduction of
the number of dynamically accessible states would be very
beneficial.

Another challenge concerns the computation of true en-
tanglements involving more than just pairwise couplings.
The unitary quantum field theory provides a good framework
to determine the degree of entanglement of groups of elec-
trons with groups of positrons as the bits in the occupation
number representation allow for an unambiguous separation

of electronic and positronic states. In case of electron-
electron entanglement, however, the unitary approach is no
longer suitable; one must rely on nonunitary quantum field
theory. The latter, however, is difficult to apply for states that
contain a mixture of states with different numbers of par-
ticles.
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