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Abstract
Many aspects of box turtle development may depend on size rather than age. Notable
examples include sexual maturity and the development of the fully closing hinge in the shell
that allows box turtles to completely hide in their shells. Thus, it is important to understand
how turtles grow in order to have a complete understanding of turtle biology. Previous studies
show that turtle shell growth behaves in a logistic manner. These studies use functional
models that fit the data well but do little to explain mechanisms. In this work we use the
ideas found in dynamic energy budget theory to build a model of box turtle shell growth.
We show this model fits the data as well as previous models for ornate box turtles Terrapene
ornata ornata, but also offers explanations for observed phenomena, such as maximum sizes
and the appearance of biphasic growth.

Keywords: turtles, growth models, dynamic energy budget, dynamical systems

1 Introduction
Understanding how the individuals of an endangered or
threatened species grow over time is an important part
of conservation efforts. In conjunction with knowledge of
population size, demographics, and habitat we can get a
full picture of the species situation and make informed
decisions about conservation efforts. Life history studies
can help us understand individual growth rates, size and
characteristics at sexual maturity and how large we can
expect individuals to grow. [8]

Ornate box turtles are a terrestrial turtle that live
mainly in sandy grasslands throughout the Midwest re-
gion of the United States. They are not yet endangered,
but are a species of concern with decreasing numbers
likely due to habitat loss from increased agricultural use
as well as impacts from the illegal pet trade and use of
herbicides. [4, 24] As these turtles grow their shells dis-
play a ring displaying the amount of growth that occurred
over the year. Some of the earliest studies of ornate box
turtle life histories come from Legler’s work studying the
species in Kansas. In his work he found that the size of the
growth rings are positively correlated with the amount of
precipitation during the growing season. [19] Other stud-
ies have reported sizes of adult turtles, but data on growth
rates is hard to determine since juvenile turtles are dif-
ficult to find in the field. Because observational data is
difficult to obtain, mathematical models may help under-
stand scientists understand this species.

1Mathematics Statistics & Computer Science, University of
Wisconsin-Stout, Menomonie, WI

There are some previous studies modeling life histo-
ries of turtle species. Several studies use data to fit von
Bertalanffy models, Gompertz, or other models with sig-
moidal functions to describe turtle growth for a variety
of turtle species. [12, 3, 20, 15, 28, 2] In particular, Bern-
stein et. al show that a 4 parameter Richards model fits
shell length versus growth rings relatively well for ornate
box turtles. Each of these studies assumes turtle growth
obeys one functional form over the entire life of the tur-
tle. Armstrong and Brooks use piece-wise linear models
to examine growth of snapping turtles. In their model
they assume that the turtles in their study follow one
growth rate before reaching sexual maturity and a much
slower growth rate after, presumably because energy is
being devoted to reproduction and not growth. [1]

The models described above are entirely phenomeno-
logical. They describe the sigmoidal shapes observed in
turtle growth curves, but cannot explain why the mech-
anisms behind the curve. We extend the knowledge of
turtle growth by developing a mechanistic model that not
only matches data, but provides a understanding for the
shape of these growth curves. We build our model using
ideas from dynamic energy budget theory which describes
a balance between energies acquired and tasks that use
that energy such as growth and reproduction. [18, 16]
This framework is flexible and allows for modeling to con-
nect ideas related to individuals and the choices they en-
counter in their life histories with ideas for how species
fit into larger ecosystems. [21, 23] Dynamic energy bud-
get models have been used to successfully describe the
growth and reproduction of several organisms, including
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fish and oysters. [11, 25] Using this theoretical framework
and data collected from ornate box turtles in Iowa, we
build a differential equation model of turtle shell growth.
We then analyze this model’s equilibrium solutions and
discuss how turtle environment affects various compo-
nents of the model.

2 Methodology
2.1 Dataset
We have data from 510 ornate box turtles collected from
Hawkeye Wildlife Area in eastern Iowa in 1993 and be-
tween 2013–2015. We measure carapace length, width,
height, and turtle mass. In addition, we count the num-
ber of growth rings on each turtle.These data include
226 female, 231 male, and 53 juvenile turtles. We assume
turtles produce one growth ring each year. Juvenile tur-
tles (≤4 growth rings) could not be sexed and their data
are included in both male and female data sets. Data
collection is done under State of Iowa Scientific Collec-
tor Permit SC95, and we follow the American Society of
Ichthyologists and Herpetologists (2004) guidelines when
collecting the data. Further details about this dataset
can be found in. [2]

2.2 Model development
To develop our model we assume turtles perform four
tasks: eat, maintenance, grow, reproduce. Using the lan-
guage of [18] we build a net production dynamic energy
budget model. The main concept of the model is that
after eating to collect energy resources, turtles use some
of this energy to maintain themselves. A fraction of the
excess is used for growth while the rest is used for re-
production. We let L(t) be the length of the carapace of
the turtle shell at time t and use L as the fundamental
measure of turtle size.

Ornate box turtles collect energy by eating. They are
omnivorous with a varied diet including plant matter, in-
sects, and even carrion. [24] It has been observed that
larger turtles tend to outcompete smaller ones. [19] Thus
our expression for the rate of energy resource collection,
R, should be an increasing function of size or length. In
the absence of more detailed data we assume a linear re-
lationship,

R(L) = RsL+Rb,

where Rs > 0 and Rb are parameters to be determined.
In addition to eating, turtles must maintain their bod-

ies. We model this maintenance through a metabolic rate
term that is proportional to mass. Data collected show
that turtle mass goes as length cubed. See Figure 1. Com-
bining these ideas yields a maintenance term in the form

Figure 1: Cubic relationship between length and mass of
ornate box turtles.

of mL3, where m is a constant of proportionality to be
determined through parameter fitting.

Growth and reproduction

We assume a fraction 0 ≤ α ≤ 1 of resources not con-
sumed for maintenance are used for growth. The rest,
1 − α, are used towards reproduction. We assume α is
a function of length, and there is some evidence sexual
maturity depends on size (Lm). [19] All excess resources
are used for growth until turtle reaches sexual maturity,
α = 1, then α decays to zero as turtle ages. This decay
should be monotonic and a have a form representative of
a phase transition between two states as turtle’s behav-
ior changes from focused on growth to more focused on
reproduction.

α(L) =


1, L < Lm

(L1/2 − Lm)n

(L1/2 − Lm)n + (L− Lm)n , L ≥ Lm
(1)

In this model, when the turtle just reaches sexual ma-
turity all energy is used for growth, α(Lm) = 1, and
then decays to 0. In this equation, L1/2 represents the
length at which the turtle is equally devoting excess en-
ergy resources to growth and reproduction. The parame-
ter n > 0 describes the abruptness of the switch in behav-
ior from using excess energy toward growth to using ex-
cess energy for reproduction. When n is large the behav-
ior transitions quickly and occurs near L = L1/2. When
n is small, the change in behavior is more gradual. See
Figure 2. Parameters Lm, L1/2, and n are determined
through parameter fitting.
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Figure 2: Behavior of α(L) for n = {2, 5, 10} in red, black,
and blue, respectively.

Shell growth and allometry

We model the carapace of the turtle shell as a hemiellip-
soid. See Figure 3. The energy a turtle uses for growth
increases the time rate of change in the surface area of
the carapace, dSAdt . Formulas describing the surface area
of ellipsoids require elliptic integrals that cannot be com-
puted analytically. [29] In order to avoid these issues we
approximate the surface area of the shell using the ap-
proximation

SA ≈ 2π
p
√

3
p

√(
LW

4

)p
+
(
LH

2

)p
+
(
WH

2

)p
,

with p = 1.6. [30]
We simplify this expression by exploiting allometric

relationships in the turtle carapace. Figure 4 shows
scatter plots of the carapace widths W and heights H
against lengths for the turtles in our dataset. These plots
show two strong linear relationships, W = 0.89736L and
H = 0.51349L. Substituting these relationships into our
surface area expression above we see

SA ≈ πL2 p
√

0.89736p + 0.51349p + 0.89736p0.51349p

2 p
√

3
.

Differentiating with respect to time and simplifying yields

dSA

dt
= 2.9833LdL

dt
.

Combining the ideas above and including an initial con-
dition we have our model for turtle shell growth.

2.9833LdL
dt

= α(L)
(
RsL+Rb −mL3) ,

L(0) = L0

(2)

Figure 3: Hemiellipsoid model of turtle carapace.

Figure 4: Allometric relationships in the dimensions of
ornate box turtle shells. We see that as ornate box turtle
shells grow, there is a constant ratio between the length
and width of the shells and the length and height of the
shells.
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2.3 Parameter fitting and
model comparisons

This model contains six parameters in the differential
equation and an additional initial condition parameter
for a total of seven parameters. Our fitting scheme con-
sisted of looping over the parameter space for Lm and
L1/2 and then using built in R routines for nonlinear fit-
ting of other parameters. For each (Lm, L1/2) pair we use
the nls routine in R to fit the other five parameters (for
several starting values) and calculate the residual sum of
squares (RSS) for this parameter set. We then find the
best fit to the model by selecting the parameter values
with the lowest RSS among these values. We calculate
the RSS for each fit

RSS =
n∑
i=1

p(Li − L̂(ti))2,

where (ti, Li) are the values of the ith data point, L̂ is the
model prediction, and np is the number of points in our
dataset. This procedure minimizes the RSS between the
data and numerical solutions of Equation 2 with different
parameter sets. Numerical solutions are computed using
the ‘lsodes’ numerical differential equation solver based
on Backward Differentiation Formula (BDF) methods for
stiff problems. [5]

Once we have computed the parameters for our model
we compare the fit to other commonly used models in
practice. Three such models are the von Bertalanffy, lo-
gistic, and Richards models, which are all members of a
class generalized Richards models. [32, 26, 31] These mod-
els have three, three, and four parameters, respectively,
and each can be written as a differential equation. See
Table 1. We fit the parameters in these model equations
similarly to above using the nls routine in R.

The RSS is a good way to measure how close a model
fits the data, but models with more parameters can gen-
erally fit datasets more closely than those with fewer at
cost of increased complexity. A way to evaluate the bal-
ance of accuracy and complexity between models within
a single dataset is with the Akaike Information Criteria
(AIC). Using the RSS we calculate the AIC as

AIC = n ln
(
RSS

n

)
+ 2(k + 1),

where k is number of parameters. [17] This form of the
AIC is appropriate when the residuals are normally dis-
tributed. QQ-plots (not shown) and a Shapiro-Wilk tests
for normality show this to be the case for all proposed
models. With this formulation of the AIC function we
are not interested in the raw value of the AIC, but rather
the how these values compare to AIC calculations of other

models. Models with lower AIC values have more statis-
tical support and a higher likelihood of representing the
true nature of the dynamics. [27]

3 Results
Qualitative analysis

Since α(L) > 0 for all L in our model, we know equi-
librium solutions will occur when the resource collec-
tion terms balance the maintenance term, i.e., when
RsL+Rb = mL3. We can rewrite this as

RsL+Rb −mL3 = 0. (3)

This is a depressed cubic equation. The behavior of roots
of such equations has been studied as far back as the 1500s
and we know there will be either one or three real roots. [7]
From biological arguments we have Rs,m > 0 and Rb <
0. Using this we see that one real root is negative and
thus not biological. Using Cardano’s formulas [6] we know
that there are positive real roots only when

R2
b

4m2 −
R3
s

27m3 ≤ 0,

or

m ≤ 4R3
s

27R2
b

.

This shows the relationship that must exist between re-
source collection, which may be more dependent on ex-
ternal factors such as climate, habitat, etc., and mainte-
nance (metabolism) for there to be a positive equilibrium
solutions.

We know a bifurcation from zero to two biologically
relevant solutions occurs when the positive equilibrium
solution of Equation 3 is a repeated root, i.e., when
m = 4R3

s/27R2
b . In this case there is one non-biological

negative equilibrium solution and one semistable positive
equilibrium solution. If m exceeds this fraction it is im-
possible for a turtle to eat enough to survive. If m is
strictly less than this fraction there are two equilibrium
solutions. The smaller of the two is unstable and behaves
like a viability length. Turtles that hatch smaller than
this length cannot grow and thus die, while turtles that
hatch above this length grow toward the larger, stable
equilibrium solution. This larger equilibrium is the theo-
retical maximum length.

Results from our parameter fits show we are in the
situation where there are two positive equilibrium solu-
tions. See Figure 5. For females the viability thresh-
old is 22.85 mm and the theoretical maximum length
is 115.9 mm. For males these values are 16.3 mm and
128.7 mm, respectively.
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Figure 5: Resource collection RsL+Rb (blue) and main-
tenance mL3 (red). Equilibrium solutions occur where
the curves intersect (RsL+Rb−mL3 = 0). A phase dia-
gram showing stability shows two equilibria. The smaller
of the two is unstable and behaves as a viability threshold.
The larger is stable and can be interpreted as a maximum
length.

Parameter fitting and numerical solutions

Figure 6 shows the solutions to Equation 2 with fit param-
eters for males and females on the top left and top right,
respectively. We see curves that rise rapidly and level off
in a sigmoidal shape, characteristic of many other growth
models.

Table 1 and Table 2 show the RSS and AIC values for
males and females, respectively. For males and females
the RSS of the DEB models are lower than the RSS values
of other models, indicating these models have the best fit
of the ones compared. However the Richards model has a
lower AIC value than the DEB model for both males and
females. The DEB model performs better than logistic
for both males and females. The von Bertalanffy model
is consistently the worst model in this comparison in both
RSS and AIC values.

Results show both males and females have similar re-
productive maturity lengths 105.6 and 105.7 mm, respec-
tively. Once these lengths are reached, the transition from
growth to reproductive behavior is abrupt. For males this
is due to a large exponent value in the α(L) function cou-
pled with a half-response length near the maturity length
(n = 3.087, L1/2 = 107.0mm,Lm = 105.6mm). For the
female data the fit value for the exponent in α(L) is low
at n = 1.51, but the half response length is only 0.2 mm
beyond the maturity length. Such sharp transitions in-
dicate biphasic behavior, and that it may be possible to
simplify our model with a step function for α(L).

Step function α(L) results

Because of the abrupt transition from growth to repro-
ductive behavior found above, we consider a simplified
model where we replace α(L) in Equation 1 with αstep.

αstep(L) =
{

1, L < Lm

0, L ≥ Lm
(4)

Here turtles are either devoting all excess energy to
growth if not reproductively mature and then to repro-
duction upon achieving maturity. While this model is dis-
continuous, there are two fewer parameters to fit. Results
are shown in bottom left and bottom right of Figure 6 for
males and females, respectively. We do not see substan-
tial changes in parameter values beyond noting that the
maturity length has increased about 3 mm for males and
females. RSS and AIC values for male and female models
are shown in Tables 1 and 2 under the DEB α-step label.
Each show modestly larger RSS and AIC values. This
indicates that this simplified step function model has a
similar, but slightly worse, complexity to the full model
with a continuous transition from growth to reproductive
behavior.

4 Discussion
In this study we develop a model that uses ideas from
dynamic energy budget theory to describe turtle shell
growth. This model differs from previous models in that
it begins by describing turtle behaviors such as eating
and metabolism in a differential equation whose solution
has asymptotic behavior rather than choosing from a set
of functions that display roughly the same shape as the
data, e.g., von Bertalanffy, logistic, etc. In the language of
Ledder we are creating a mechanistic model versus an em-
pirical model, and there is a preference for choosing mech-
anistic models over empirical models, especially when the
AIC values are similar. [17] This is due in part to the fact
that empirical models depend on the data used to create
them. It is possible another dataset could show that a
different empirical model works better. For example, the
Richards model fit is the best empirical model for these
data. All these data come from a relatively small part
of the natural range of Ornate box turtles in Iowa. It is
possible that a logistic model with different parameters
describes the data better for a data set collected from an-
other part of the Ornate box turtle range, say Kansas.
It is possible that sometimes empirical models that fit
particularly well drive research into finding mechanistic
models that recreate the empircal results. [33] While the
emprical models and mechanistic models here both fit the
data similarly, the biological principles used to create the
dynamic energy budget model here are more universal.
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Figure 6: Data fits of DEB models (solid red) compared to Richards model (dashed black). In all four cases we
see the similarity between the data fits of the two models. (top left) DEB males parameter values: L1/2 = 107.0,
Lm = 105.6, n = 3.08, Rb = −683, Rs = 42.42, m = 0.00224, L0 = 29.39; (top right) DEB females parameter values:
L1/2 = 105.9, Lm = 105.7, n = 3.01, Rb = −1292, Rs = 58.38, m = 0.00352, L0 = 30.10; (bottom left) DEB α-step
males parameter values: Lm = 109.3, Rb = 106.3, Rs = 21.03, m = 0.000602, L0 = 28.59; (bottom right) DEB
α-step females parameter values: Lm = 109.3, Rb = −2070, Rs = 81.06, m = 0.005303, L0 = 30.69

Table 1: Comparison of model fits for males. Models are ranked by lowest AIC values. ∆AIC values refer to difference
between the model and top model.

Model DE Form Solution RSS AIC ∆AIC

Richards dL

dt
= aL

(
1−

(
L
L∞

)ν−1
)

L∞

(
1 +

((
L∞
L0

)ν
− 1
)
e−aνt

)−1/ν
15765 1265.8 —

DEB cL
dL

dt
= α(L)

(
R(L)−mL3) numerical 15490 1266.1 0.3

Logistic dL

dt
= aL(L∞ − L) L∞L0

L0 + (L∞ − L0) e−aL∞t
15882 1266.2 0.4

DEB α-step cL
dL

dt
= αstep(L)

(
R(L)−mL3) numerical 15693 1266.3 0.5

von Bertalanffy
dL

dt
= a(L∞ − L) L∞ − (L∞ − L0)e−at 18748 1319.7 57.1
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Table 2: Comparison of model fits for females. Models
are ranked by lowest AIC values. ∆AIC values refer to
difference between the model and top model.

Model RSS AIC ∆AIC
Richards 20570 1420.4 —
DEB 20511 1421.4 1
Logistic 20973 1425.1 4.7
DEB α-step 20821 1426.5 6.1
von Bertalanffy 23831 1469.1 48.7

While parameter values may change with a new dataset,
the interpretation of the model is consistent.

A consistent feature of all the models shown here is
the presence of a maximum length. For the Richards,
logistic, von Bertalanffy models, the presence of a max-
imum length is an assumption of the model. Indeed the
popularity of these models to describe organism growth
is because of this feature. [1, 2] In the DEB model, the
maximum length appears as a consequence of the model
as the stable equilibrium.

We also see a positive unstable equilibrium in this
model that can be interpreted as a viability length. This
does not appear in other models that assume all turtles
with positive length will grow. For female turtles here, the
viability lengths (22.8 mm) are slightly below fit hatch-
ing size (30.1 mm). This meshes well with optimum egg
size theory ideas that posit that in animals that with no
post-hatching parental involvement, eggs are optimally
designed to produce viable offspring. [9] For males we do
not see as close a relationship, viability and hatching sizes
are 16.3 mm and 29.3 mm, respectively. It is unlikely that
turtles are hatching near the viability length of 16.3 mm.
None of the data presented here has a hatchling under
20 mm. This discrepancy may be due to the difficulty in
observing sufficient amounts of hatchlings necessary for
good model parameter fits and difficulty determining sex
of hatchlings when observed skewing data. More work in-
vestigating the relationship between egg/hatchling sizes
and the viability thresholds from dynamic energy bud-
get theory in other species may provide more evidence to
support this idea. Additional model analysis looking at
how these viability lengths depend on other fit model pa-
rameters and possible egg size data may yield interesting
results and ideas on how to further refine these models.

In the model developed here, we use growth rings
as proxies for age with each growth ring representing
one year of growth. There is some critical discussion
about the efficacy of using growth rings to represent
age. [14, 10, 34] Rings can be difficult to count leading
to questions about data validity. Moreover, turtles may
produce multiple minor growth rings in years where there

is a substantial temporary disruption to the growing sea-
son, e.g., drought. However, we agree with Germano and
Bernstein that especially for juvenile turtles, growth rings
are relatively good predictors of age. [13, 2]

A next step in this area of work is to try and find
relationships between the parameters in the model and
environmental cues. In particular understanding how the
resource collection parameters depend on climatological
and habitat factors may lead to improved conservation
efforts. Headstarting is a technique of raising juvenile in-
dividuals in captivity and later releasing them into the
wild. With box turtle species understanding the growth
rates of juveniles until they reach a size where predation is
unlikely to occur, say at the size where a closeable hinged
shell occurs, is highly important to this process. [24] In
order to make our model predictions more accurate, espe-
cially for juvenile turtles, more and better data is needed
for turtles of this age. Since these turtles are very hard
to observe in nature, a possible avenue is to record lon-
gitudinal data of juvenile turtles in zoos or nature cen-
ters. Such a study also could provide records of feed-
ing and environment data further allowing researchers to
connect environmental parameters to growth model pa-
rameters. This knowledge allows conservationists to ac-
curately projecting the time in captivity, and thus costs,
of a project. [22] Once we have a better understanding of
the resource collection parameters, our mechanistic model
offers researchers a framework for predicting how long a
box turtle will need to be in captivity before being re-
leased.
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