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Abstract
We propose two SIR models which incorporate sociological behavior of groups of individuals.
It is these di�erences in behaviors which impose di�erent infection rates on the individual
susceptible populations, rather than biological di�erences. We compute the basic reproduc-
tion number for each model, as well as analyze the sensitivity ofR0 to changes in sociological
parameter values.

Keywords: epidemiology, SIR model, sociological phenomena

1 Introduction

The use of SIR models in the mathematical study of com-
municable diseases began in 1927 with the work of Ker-
mack and McKendrick [8]. Since then, SIR models, and
their variants, have been used to model different popu-
lation structures for different diseases. For an excellent
reference on Mathematical Epidemiology see [3]. Tradi-
tionally, SIR models have been employed to study biolog-
ical aspects of disease propagation. This includes multi-
ple populations with varying immunities, either natural
or vaccine induced, see for example [9, 10, 12].

In recent years, sociological interventions have been
employed to reduce infection rates of global diseases, such
as Severe Acute Respiratory Syndrome (SARS), H1N1,
and most recently COVID-19. Many such sociological
interventions include self-imposed quarantine. SIR mod-
els with such quarantine interventions have been devised
and analyzed. The interested reader is directed to [1, 2, 7]
as examples. In this paper, we propose two SIR models
which include sociological differences among 2 susceptible
populations. These sociological differences impose differ-
ent rates of infection, rather than biological differences.
Examples of such sociological differences might include

ˆ front-line workers versus general population during a
global pandemic

ˆ pro-maskers versus anti-maskers

ˆ individuals that adhere to a stay-at-home suggestion
and those that do not.

While many of the situations that come to mind can be
linked to COVID-19, the intent of this paper is not to

1Department of Mathematics & Statistics, University of Wis-
consin-La Crosse, La Crosse, WI, 2Department of Mathematics &
Actuarial Science, North Central College, Naperville, IL

delve into the political use of such a model. As the mod-
els include sociological behavior, data does not necessarily
exist to validate the models against or estimate parame-
ters. As what will be discussed in Sections 4 and 5, the
power of these models will be in the predicting how dif-
ferent sociological interventions can effect the spread of a
disease.

2 Simplified Sociological Model

In this section, we devise a mathematical model, referred
to as (MA), of two sub-populations S1 and S2 of healthy
individuals. Membership in each sub-population is de-
termined by sociological and not biological reasons. The
groups S1 and S2 are biologically identical, in that indi-
viduals in either group are equally likely to contract the
disease and recover identically. However, the behavior
of each group determines differences in infection rates.
The behavior of S1 is such that the incident of infection
is greater than that of S2. These rates are denoted by
β1 and β2. To model different types of group behavior,
we assume β1 > β2, so the two groups are distinguish-
able. In this model, we have two infected sub-populations,
those infected that exhibit symptoms and those who are
asymptomatic. In this model, any infected person is in-
fectious. The symptomatic group is denoted by Is and
the asymptomatic group by Ia. Any infectious individual
can contribute to the spread of the disease, and thus the
infectious individuals are denoted by I = Ia + Is. We as-
sume a mass-action transmission of the disease between
the groups S1, S2, and I. Since the healthy populations
S1 and S2 are biologically identical, the proportion of in-
fections that result in symptomatic individuals is denoted
by λ, where the proportion of infections resulting in an
asymptomatic individual is 1− λ.

The model we propose in this section allows for recov-
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Figure 1: Compartment diagram of simplified two sus-
ceptible population model.

ery, which we denote by the group R. We assume the
rate of recovery is the same for individuals in either Ia
or Is, which we denote by κ. Likewise, asymptomatic in-
dividuals develop symptoms at a rate of γ. Finally, we
assume our population to be closed with a total popula-
tionN = S1+S2+Ia+Is+R. The component diagram for
(MA) is provided in Figure 1, and the system of ordinary
differential equations is given below.

dS1

dt
= −β1

S1

N
(Ia + Is)

dS2

dt
= −β2

S2

N
(Ia + Is)

dIs
dt

= λ

[
β1

S1

N
+ β2

S2

N

]
(Ia + Is) + γIa − κIs

dIa
dt

= (1− λ)

[
β1

S1

N
+ β2

S2

N

]
(Ia + Is)− (γ + κ)Ia

dR

dt
= κ(Ia + Is) (MA)

Appendix B provides several numerical simulations of
model (MA), with an eye toward the effect of changes
in the system parameters β1, β2, and ρ. Specifically, the
reader is directed to Figures 15, 17, 19, and 23.

2.1 Stability analysis

We first compute R0 using the Next Generation Matrix,
as outlined in [6]. For the disease-free equilibrium, there
exists a 0 < ρ < 1 such that S∗

1 = ρN and thus S∗
2 =

(1− ρ)N . The linearized infection subsystem, about the
disease-free equilibrium (ρN, (1− ρ)N, 0, 0, 0) is given by

dIs
dt

= λBρ(Ia + Is) + γIa − κIs

dIa
dt

= (1− λ)Bρ(Ia + Is)− (γ + κ)Ia

where

Bρ = β1ρ+ β2(1− ρ)

and the Jacobian of the linearized infection subsystem by

J =

(
λBρ − κ λBρ + γ

(1− λ)Bρ (1− λ)Bρ − (γ + κ)

)
.

We decompose the Jacobian matrix as J = T+Σ, where T
is the new infection matrix and Σ is the transition matrix.
Thus

T =

(
λBρ λBρ

(1− λ)Bρ (1− λ)Bρ

)
and

Σ =

(
−κ γ

0 −(γ + κ)

)
.

The Next Generation Matrix is calculated as

K = −TΣ−1 =
1

κ
Bρ

(
λ λ

1− λ 1− λ

)
.

The eigenvalues of K are 0 and

ℓ =
1

κ

[
β1ρ+ β2(1− ρ)

]
.

Since all system parameters are positive and ρ ∈ (0, 1), it
follows that ℓ > 0, and thus the dominant eigenvalue of
K.

Theorem 2.1. For system (MA), the basic reproduction
number is

R0 =
1

κ

[
ρβ1 + (1− ρ)β2

]
.

Moreover, a disease-free equilibrium of the form
(
ρN, (1−

ρ)N, 0, 0, 0
)
for ρ ∈ (0, 1) is asymptotically stable if and

only if
ρβ1 + (1− ρ)β2 < κ. (2.1)

From Theorem 2.1, we see that R0 is a function of
κ, ρ, β1, and β2. Since κ is assumed to be constant, and
dependent only on the disease, we will analyze R0 as a
function of ρ, β1, and β2. First, we will determine for a
fixed value of ρ, the values of β1 and β2 for which R0 < 1.
Such a pair (β1, β2) is called ρ-feasible.

First note that it is assumed in the model that β1 > β2.
Also, (β1, β2) is ρ-feasible if and only if ρβ1+(1−ρ)β2 < κ
from inequality (2.1). Thus, the set of ρ-feasible points
must satisfy the system of linear inequalities{

β1 > β2,

κ > ρβ1 + (1− ρ)β2

and thus must be a subset of the shaded region in Fig-
ure 2. More specifically, the ρ-feasible set is a subset of
the convex hull of the points

{
(0, 0), (κ, κ), (κ/ρ, 0)

}
.

The following is an immediate consequence.
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Figure 2: Possible ρ-feasible set.

Theorem 2.2. The disease-free equilibrium
(
ρN, (1 −

ρ)N, 0, 0, 0
)
of System (MA) is asymptotically unstable

(i.e., R0 ≥ 1) if β2 ≥ κ.

If we impose the constraint that β2 < κ, then the set of
ρ-feasible points for System (MA) must satisfy the linear
inequalities 

β1 > β2,

κ > β2,

κ > ρβ1 + (1− ρ)β2.

The following linear stability of disease-free equilibrium
are established, each determining the ρ-feasible points
given two of the three quantities ρ, β1, β2 fixed.

Theorem 2.3. For fixed β1 ∈ (0, 1) and 0 < β2 <
min{β1, κ}, the disease-free equilibrium

(
ρN, (1− ρ)N, 0,

0, 0
)
of System (MA) is asymptotically stable if and only

if ρ ∈ (0,P) where

P =
κ− β2

β1 − β2
.

Theorem 2.4. For fixed ρ, β1 ∈ (0, 1), the disease-
free equilibrium

(
ρN, (1 − ρ)N, 0, 0, 0

)
of System (MA)

is asymptotically stable if and only if β2 ∈ (0,B2) where

B2 =


β1 if β1 ≤ κ

κ− ρβ1

1− ρ
if κ < β1 ≤ min

{
1, κ

ρ

}
.

Theorem 2.5. For fixed ρ ∈ (0, 1) and β2 ∈ (0, κ),
the disease-free equilibrium

(
ρN, (1− ρ)N, 0, 0, 0) of Sys-

tem (MA) is asymptotically stable if and only if β1 ∈
(β2,B1] where

B1 = min

{
1,

κ− (1− ρ)β2

ρ

}
.

As discussed in [4, Section 9.2], the number of contacts
made by an individual to infect a member of the S1 pop-
ulation is β1N . Thus, it is natural to take β1 ∈ (0, 1]

1

1 = κ

κ/ρ

κ
1−ρ

β2

β1

β1
=
β2

ρβ
1 +

(1−
ρ)β

2
=
1

Figure 3: Feasible sets of System (MA) for κ = 1.

and β2 ∈ (0, 1), since β2 < β1. Then the set of ρ-feasible
points will be the intersection of the shaded region in Fig-
ure 2 with the set (0, 1]× (0, 1).

At any time, κ(Ia+ Is) is the number of new recovered
individuals. Thus, it must be the case that κ ∈ (0, 1], or
else the number of new recovered individuals will exceed
the number of infected individuals which is biologically
impossible. If κ = 1, then the line ρβ1 + (1 − ρ)β2 = κ
intersects with the set (0, 1] × (0, 1) at the point (1, 1).
Thus, for every ρ ∈ (0, 1), every (β1, β2) ∈ (0, 1] × (0, 1)
which satisfies β2 < β1 is ρ-feasible, as depicted in Fig-
ure 3.

We now consider the case when κ < 1 to determine
the ρ-feasible points (β1, β2). For this case, the line
ρβ1 + (1 − ρ)β2 = κ will intersect non-trivially with the
set (0, 1]× (0, 1). However, the exact shape of the result-
ing ρ-feasibility set will be determined by the location of
the intercepts κ

ρ and κ
1−ρ with respect to the unit square

[0, 1]× [0, 1].
First, we consider the case when κ = 1

2 . The set of
ρ-feasible points is depicted in Figure 6 and the ρ-feasible
sets in the cases of 0 < κ < 1

2 and 1
2 < κ < 1 are shown

in Figure 8. The notable differences between the feasible
set types is the existence of (β1, β2) pairs which guarantee
an asymptotically stable disease-free equilibrium. From
these figures, we classify ρ-feasible sets as follows:

Type 1: The ρ-feasible set is the convex hull of the four
distinct points

{
(0, 0), (κ, κ),

(
1, (κ − ρ)/(1 − ρ)

)
,

(1, 0)
}
.

For every β1 ∈ (0, 1], there exists a 0 < β2 < β1 for
which (β1, β2) is ρ-feasible. Specifically, there exist
ρ-feasible pairs of the form (1, β2). Thus, for every
ρ ∈ (0, 1) and every β1 ∈ (0, 1], there exists a β2 for
which the disease-free equilibrium is asymptotically
stable.

Type 0: The ρ-feasible set is the convex hull of the three
distinct points

{
(0, 0), (κ, κ), (1, 0)

}
.

The only (β1, β2) pairs that are not ρ-feasible are
of the form (1, β2). So for every ρ ∈ (0, 1) and β1
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in (0, 1), there exists β2 for which the disease-free
equilibrium is linearly stable.

Type -1: The ρ-feasible set is the convex hull of the
three distinct points

{
(0, 0), (κ, κ), (κ/ρ, 0)

}
.

There are no (β1, β2) pairs that are ρ-feasible if κ
ρ <

β1 ≤ 1. So for every ρ ∈ (0, 1) and every β1 ≥ κ
ρ

there are no values of β2 for which the disease-free
equilibrium is asymptotically stable.

In fact, we see that for every value of ρ ∈ (0, 1), the convex
hull of the points

{
(0, 0), (κ, κ), (κ, 0)

}
is contained in the

feasible set.

Theorem 2.6. For System (MA), there exist β1 and β2

for which the disease-free equilibrium
(
ρN, (1 − ρ)N, 0,

0, 0
)
is asymptotically stable for every ρ ∈ (0, 1). Specifi-

cally, if β1 < κ, then for all β2 ∈ (0, β1), the point (β1, β2)
is ρ-feasible for every ρ ∈ (0, 1).

As ρ varies from 0 to 1, the System (MA) undergoes a
bifurcation in the type of ρ-feasible set which guarantees
asymptotic stability of disease-free equilibria, as depicted
in Figure 7. One can also view Figure 7 as a bifurcation in
the feasible type profile of System (MA) as the parameter
κ varies from 0 to 1.

2.2 Sensitivity analysis

In [5], the normalized forward sensitivity index of a vari-
able u that depends differentiably on a parameter p is
defined as

Υu
p =

( p
u

) ∂u

∂p
.

This sensitivity index is a measure of the relative change
in a state variable with respect to a parameter. In this
section, we compute the sensitivity indices of R0 with
respect to the three sociological parameters ρ, β1, and β2.
From Theorem 2.1, we have the explicit expression for

R0 as

R0 =
1

κ

[
ρβ1 + (1− ρ)β2

]
or

R0κ = ρβ1 + (1− ρ)β2.

Observe all sensitivity indices of R0 with respect to the
sociological parameters ρ, β1, and β2 have the same struc-

ture of 1− f(ρ,β1,β2)
R0κ

.

ΥR0
ρ =

(
ρ

R0

)
∂R0

∂ρ
= 1− β2

R0κ

ΥR0

β1
=

(
β1

R0

)
∂R0

∂β1
= 1− (1− ρ)β2

R0κ

ΥR0

β2
=

(
β2

R0

)
∂R0

∂β2
= 1− ρβ1

R0κ

(2.2)

Immediately, we see that each sensitivity index is pos-
itive, less than 1, and ΥR0

β1
+ ΥR0

β2
= 1. Also, as ρ in-

creases in the interval (0, 1), ΥR0
ρ is constant, ΥR0

β1
in-

creases, and ΥR0

β2
decreases. Thus, for larger values of

ρ, R0 becomes more sensitive to changes in β1 and less
sensitive to changes in β2. We can interpret this to mean
controlling R0 with large initial population of S1 will ben-
efit more from controlling the behavior of individuals in
S1 rather than those of S2.
Since the structure of each sensitivity index is the same,

determining with respect to which sociological parameter
R0 is most sensitive is determining the order of β2, (1 −
ρ)β2, and ρβ1. Since 1− ρ < 1, it is always the case that
(1−ρ)β2 < β2. Thus, Υ

R0
ρ < ΥR0

β1
, which is interpreted as

R0 is always more sensitive to changes in β1 than those of
ρ. Further orderings of ΥR0

ρ ,ΥR0

β1
, and ΥR0

β2
are dependent

on parameter values. While the next result demonstrates
how the sensitivity indices are ordered, the exact values
and relative magnitudes depend on exact values of ρ, β1,
and β2.

Theorem 2.7. For System (MA), the three sensitivity
indices are ordered in the following way:

(a) ΥR0
ρ < ΥR0

β1
< ΥR0

β2
if ρ < β2

β1+β2
.

(b) ΥR0
ρ < ΥR0

β2
< ΥR0

β1
if β2

β1+β2
< ρ < β2

β1
.

(c) ΥR0

β2
< ΥR0

ρ < ΥR0

β1
if ρ > β2

β1
.

Once again, we can see System (MA) undergoes a bi-
furcation as the parameter ρ varies from 0 to 1. In this
case, the change in the sensitivity of R0 to sociological
parameters changes as ρ increases.

3 A More Robust
Sociological-SIR Model

One considerable disadvantage to the model presented in
the previous section is the behavior of asymptomatic in-
dividuals. The previous model was devised in such a way
that healthy individuals were divided into two separate
populations with distinct sociological behaviors that in-
fluenced the contact rates and thus the infection rates of
the disease. However, an asymptomatic person from ei-
ther group was designed to behave the same regardless of
the healthy population from which they originated. While
this simplified the model greatly, this does not lend to the
usefulness in studying the effects of the sociological phe-
nomenon on the spread of a disease. To overcome this
shortcoming, we devise a more robust SIR model with
sociological phenomenon in this section, which we refer
to by (MB).
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In this new model, we still have two sub-populations S1

and S2 of healthy individuals. The groups S1 and S2 are
biologically identical, in that individuals in either group
are equally likely to contract the disease and recover iden-
tically. However, the behavior of each group determines
differences in infection rates. The behavior of S1 is such
that the incident of infection is greater than that of S2.
These rates are denoted by β1 and β2. To model different
types of group behavior, we assume β1 > β2, so the two
groups are distinguishable.

In this model, we have three infected sub-populations,
those infected that exhibit symptoms, denoted by Is and
those who are asymptomatic. Specifically, Ai is the
asymptomatic individuals that originated from healthy
population Si (for i = 1, 2). In this model, any infected
person is infectious. Any infectious individual can con-
tribute to the spread of the disease, and thus the asymp-
tomatic individuals are denoted by A = A1 +A2 and the
infectious individuals are denoted by I = A1 + A2 + Is.
Since the healthy populations S1 and S2 are biologically
identical, the proportion of infections that result in symp-
tomatic individuals is denoted by λ, where the propor-
tion of infections resulting in an asymptomatic individual
is 1 − λ. In this model, asymptomatic individuals have
the same rate of infection as their healthy counterparts,
the assumption is sociologically individuals in Si and Ai

are identical. Individuals in a healthy population can
decide to change their behavior and move to the other
healthy population. We assume the rate of change be-
tween healthy populations to be denoted by α1 and α2.
As individuals in the asymptomatic classes act the same
as those in the healthy classes, the same transition be-
tween A1 and A2 exist as for S1 and S2. As with the
parameters β1 and β2, we assume that individuals in S2

(or A2) will not likely change behavior, where as individ-
uals in S1 (and A1) are more likely to change behavior.
Thus, α1 > α2.

This marks a distinct difference between this model
and an SIR model where individuals in different healthy
classes are biologically different. What might be seen is
a vaccine administered, which would allow for transition
from one class to another, but not back (in the example of
a vaccine this reverse transition would not occur on small
time scales). The interested reader is refered to [10] as an
example of such a model.

The model we propose in this section allows for recov-
ery, which we denote by the group R. We assume the rate
of recovery is the same for individuals in either A1, A2,
or Is, which we denote by κ. Likewise, asymptomatic in-
dividuals develop symptoms at a rate of γ. Finally, we
assume our population to be closed with a total popula-
tion N = S1 + S2 + A1 + A2 + Is + R. The component
diagram for (MB) is provided in Figure 4, and the system
of ordinary differential equations is given below.

Is R

S1

S2

A1

A2

α
1
S
1

α
2
S
2

α
1
A

1

α
2
A

2

(1− λ)β1S1I

λβ1S1I

(1− λ)β2S2I

λβ2S2I

κA1

κA2

γA1

γA2

κIs

Figure 4: Compartment diagram of the interactions be-
tween sub-classes of the population.

dS1

dt
= α2

S2

N
− [α1 + β1I]

S1

N
dS2

dt
= α1

S1

N
− [α2 + β2I]

S2

N
dA1

dt
= (1− λ)β1I

S1

N
+ α2A2 − (α1 + γ + κ)A1

dA2

dt
= (1− λ)β2I

S2

N
+ α1A1 − (α2 + γ + κ)A2

dIs
dt

= λ

[
β1

S1

N
+ β2

S2

N

]
I + γA− κIs

dR

dt
= κI (MB)

Appendix B provides several numerical simulations of
model (MB), with an eye toward the effect of changes in
the system parameters β1, β2, α1, and α2. Specifically,
the reader is directed to Figures 16, 18, 20, 21, and 22.

3.1 Stability analysis

For System (MB) to be in equilibrium, it must be the
case that A1 = A2 = Is = 0 and α1S1 = α2S2. Thus,
System (MB) only exhibits disease-free equilibria, which
have the form

(S∗
1 , S

∗
2 , A

∗
1, A

∗
2, I

∗
s , R

∗) = (S∗
1 , S

∗
2 , 0, 0, 0, 0),

with N = S∗
1 + S∗

2 and α1S1 = α2S2.

Theorem 3.1. Equilibra of System (MB) have the form
(S1 = ρN, S2 = (1 − ρ)N,A1 = 0, A2 = 0, Is = 0, R = 0)
where

ρ =
α2

α1 + α2
.

The linearized infection subsystem about the disease-
free equilibrium from Theorem 3.1 is given by the follow-

www.sporajournal.org 2022 Volume 8(1) page 42

http://www.sporajournal.org


Sociological SIR Models Allen, Heller, Pons

ing

dA1

dt
= (1− λ)β1Iρ+ α2A2 − (α1 + γ + κ)A1

dA2

dt
= (1− λ)β2I(1− ρ) + α1A1 − (α2 + γ + κ)A2

dIs
dt

= λ
[
β1ρ+ β2(1− ρ)

]
I + γA− κIs

and the Jacobian of the linearized infection subsystem by

J =
(
J1 J2 J3

)
where

J1 =

(1− λ)β1ρ− (α1 + γ + κ)

(1− λ)β2(1− ρ) + α1

λ
[
β1ρ+ β2(1− ρ)

]
+ γ

 ,

J2 =

 (1− λ)β1ρ+ α2

(1− λ)β2(1− ρ)− (α2 + γ + κ)

λ
[
β1ρ+ β2(1− ρ)

]
+ γ

 ,

J3 =

 (1− λ)β1ρ

(1− λ)β2(1− ρ)

λ
[
β1ρ+ β2(1− ρ)

]
− κ

 .

We decompose the Jacobian matrix as J = T+Σ, where T
is the new infection matrix and Σ is the tranistion matrix.
Thus, for 1 ≤ i, j ≤ 3, T = (Tij) where

Tij =


(1− λ)β1ρ if i = 1,

(1− λ)β2(1− ρ) if i = 2,

λBρ if i = 3

and

Σ =

−(α1 + γ + κ) α2 0

α1 −(α2 + γ + κ) 0

γ γ −κ

 .

We then form the Next Generation Matrix K = −TΣ−1

and find that the eigenvalues of K are 0 (of multiplicity
two) and

ℓ =
1

κ

(
β1ρ+ β2(1− ρ)

)
Theorem 3.2. For system (MB), the basic reproduction
number is

R0 =
1

κ

[
ρβ1 + (1− ρ)β2

]
.

Moreover, the disease-free equilibrium(
ρN, (1− ρ)N, 0, 0, 0, 0

)
for ρ =

α2

α1 + α2
is asmptotically stable if and only if

ρβ1 + (1− ρ)β2 < κ. (3.1)

At first glance, Theorems 2.1 and 3.2 look quite similar.
This is to be expected as the form of R0 is the same for
both systems. One important difference to note at this
point is that in System (MA) the parameter ρ could take
on any value in (0, 1) freely. However, in System (MB),

ρ =
α2

α1 + α2
<

1

2
(3.2)

since α1 > α2 by assumption.
Since the form of R0 is the same for the two models,

much of the stability analysis holds the same for both.
The justification for Theorems 2.2 and 2.3 are the same
for System (MB). So we obtain analogous results, which
we combine into the following.

Theorem 3.3. The disease-free equilibrium
(
ρN, (1 −

ρ)N, 0, 0, 0, 0
)
of System (MB) is asymptotically unstable

if β2 ≥ κ. Moreover, if β2 < min{β1, κ}, then the disease-
free equilibrium is asymptotically stable if and only if

ρ <
κ− β2

β1 − β2
,

which is equivalent to

α1 > −α2
κ− β1

κ− β2
.

Thus, the diagrams depicted in Figure 3 apply to Sys-
tem (MB) exactly the same, and so we have the following
that holds.

Theorem 3.4. For the System (MB), if κ ≥ 1 then the
disease free equilibrium of the form

(
ρN, (1 − ρ)N, 0, 0,

0, 0
)
is asymptotically stable for every triple (ρ, β1, β2) ∈(

0, 1
2

)
× (0, 1]× (0, 1) with β2 < β1 and ρ =

α2

α1 + α2
.

When considering the feasibile sets for System (MB),
the upper bound of ρ established in inequality (3.2) plays
a roll in shaping the possible Type of ρ-feasible sets. In
the case that κ = 1

2 , in System (MB) it is not possible
for ρ ≥ κ. Since it must be the case that ρ < κ, the
only ρ-feasible set for this system is of Type 1, depicted
in Figure 5.

The feasible sets for the cases of 0 < κ < 1
2 and 1

2 <
κ < 1 are shown in Figures 9 and 10, respectively. Again
we see the upper bound of ρ plays a role in eliminating
possible feasible sets that were exhibited in System (MA).

The bifurcations in the feasible sets of System (MB)
also changes as a result in the bound on ρ as well as the
elimination of possible feasible sets. In the case of κ = 1

2 ,
there is no bifurcation in feasible set type when the value
of ρ varies in

(
0, 1

2

)
, unlike in System MA. The bifurcation

diagrams for the cases of 0 < κ < 1
2 and 1

2 < κ < 1 are
shown in Figure 11.
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β2

β1
1

1

κ
1−ρ

κ−ρ
1−ρ

κ

κ
ρ

κ−(1−ρ)
ρ

Figure 5: Feasible set of System (MB) for κ = 1
2 .

3.2 Sensitivity analysis

For System (MB), we wish to determine the sensitivity of
R0 to the sociological parameters ρ, β1, and β2, as we did
for System (MA). Since the form of R0 is the same for
both systems, the sensitivity indices ΥR0

ρ ,ΥR0

β1
, and ΥR0

β2

are the same as those calculated in (2.2).
However, unlike in the previous system, System (MB)

has two more sociological parameters, namely α1 and α2,
of which ρ is a function. Thus, we wish to also compute
the sensitivity indices of R0 with respect to α1 and α2,
and determine a relative order of sensitivity. We calculate
ΥR0

α1
and ΥR0

α2
thusly

ΥR0
α1

=

(
α1

R0

)
∂R0

∂α1
=

−ρ(1− ρ)(β1 − β2)

R0κ

ΥR0
α2

=

(
α2

R0

)
∂R0

∂α2
=

ρ(1− ρ)(β1 − β2)

R0κ
.

It is immediate that ΥR0
α1

< ΥR0
α2

< ΥR0
ρ . Thus, we

see that R0 will always be the least sensitive to α1 since
ΥR0

α1
is negative while the other indicies are strictly posi-

tive. The order relation of ΥR0
ρ ,ΥR0

β1
, and ΥR0

β2
from The-

orem 2.7 still hold. So we now determine how ΥR0
α2

is
ordered.

Theorem 3.5. For System (MB), the five sensitivity in-
dices are ordered in the following way:

(a) ΥR0
α1

< ΥR0
α2

< ΥR0
ρ < ΥR0

β1
< ΥR0

β2
if ρ < β2

β1+β2
.

(b) ΥR0
α1

< ΥR0
α2

< ΥR0
ρ < ΥR0

β2
< ΥR0

β1
if β2

β1+β2
< ρ < β2

β1
.

(c) ΥR0
α1

< ΥR0
α2

< ΥR0

β2
< ΥR0

ρ < ΥR0

β1
if β2

β1
< ρ < β2

β1−β2
.

(d) ΥR0
α1

< ΥR0

β2
< ΥR0

α2
< ΥR0

ρ < ΥR0

β1
if ρ > β2

β1−β2
.

Unlike in Model (MA), the value of ρ for System (MB)
is bounded above by 1

2 . Thus certain orderings of the sen-
sitivity indices will not be possible, depending on the val-
ues of β1 and β2. Specifically, if β2 ≥ 1

3β1, then case (d)
of Theorem 3.5 is not possible. Furthermore, if β2 ≥ 1

2β1,
then case (c) of Theorem 3.5 is not possible as well.

Table 1: Infection rates associated to three sociological
mitigation strategies, make wearing, avoiding common ar-
eas, and social distancing, observed on the USS Theodore
Roosevelt during a COVID-19 outbreak in April 2020 [11].

Infection Rates

not implemented implemented

mask wearing 80.8% 55.8%
avoiding common areas 67.5% 53.8%
social distancing 70.0% 54.7%

4 Conclusion

The models proposed in this paper can be used to de-
termine effects of sociological interventions on the prop-
agation of a disease. These include the implementation
of “stay in place” orders, mask mandates, and even vac-
cine mandates. In [11], the COVID-19 infection aboard
the USS Theodore Roosevelt in April 2020 was studied,
specifically determining the efficacy of social interventions
(mask wearing, avoiding common areas, and observing
social distancing) on the infection rate, as outlined in Ta-
ble 1.

This data is a means by which to estimate the parame-
ters β1 and β2 in both (MA) and (MB). In Figure 12, we
perform simulations of (MB) to model the spread of a hy-
pothetical disease under the three sociological mitigation
strategies. In these simulations, S1 represents individu-
als who do not implement the mitigation strategy, versus
the population S2 of individuals that do implement the
strategy. While it is unclear in the original study whether
these infection rates are independent of each other, we use
the values as a means of illustrating how the models in
this manuscript can be used to determine the most ap-
propriate mitigation strategy.

We devise the following scenario as means to show how
the models (MA) and (MB) can be utilized by policy mak-
ers to determine which sociological mitigation is most ap-
propriate. Suppose a closed population is subject to the
disease modelled by (MB), and that any symptomatic in-
dividual will require medical resources. Also suppose for
this discussion that the medical resources can support at
most 80 symptomatic individuals at any one time. We can
see from Figure 12, each mitigation strategy can result in
the peak of the symptomatic population being under the
threshold value of 80. The difference between the miti-
gation strategies is the level of participation required to
“flatten the curve.” From Figure 12, more than 60% of
the population will be required to wear masks for the in-
fection curve to peak under the threshold. In comparison,
it will require only about 20% of the population to either
avoiding common areas or practice social distancing to
have the same effect.
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So, to decide which strategy to implement, understand-
ing of the cost of implementation is required. In the ex-
ample of the USS Theodore Roosevelt, it may be easier to
implement a mask requirement rather than mandate so-
cial distancing or avoiding common areas on a ship, where
physically this may be impossible. So even through it
would require less of the population to implement social
distancing to flatten the infection curve enough to not
stress medical resources, it may be infeasible or impossi-
ble. Thus, the appropriate mitigation strategy, and the
level of participation, must be determined by those who
can determine the cost-benefit of each strategy.

5 Future Work

The use of the models developed in this paper only help
explore situations once the disease is present in the popu-
lation. A more realistic approach might be to first model
the population with a single susceptible population, the
results of which can then be used to develop the ini-
tial conditions for the sociological SIR models introduced
in this paper. This would rely on numerical simulation
over the basic reproduction number, as initial conditions
would no longer be near equilibrium.

As an example, we first simulate the disease propaga-
tion through the population with ρ = 1, that is a single
susceptible-population model. We then take the resulting
population profile as the initial condition for the Socio-
logical SIR model described in Section 3. In Figure 13
we simulate changing the value of ρ from 0.25 to 0.75. In
Figure 14 we simulate a change when the system switches
from one susceptible population to two.

This type of mixed model can be used to determine
the sociological response necessary depending on when
the disease is established in the population, as well as
the magnitude of the control mechanisms to “flatten the
curve”, for example.
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Appendix A: Feasibility Sets and
Bifurcation Diagrams

These feasibility sets and diagrams can be found in Fig-
ures 6–11 on pages 46–48.

Appendix B: Numerical
Simulations of (MA) and (MB)

See Figures 12–14 on pages 49–50.
The simulations seen in Figures 15–23 (on pages 50–54)

show the effects of varying the individual sociological pa-
rameters β1, β2, α1, α2, and ρ. Each of these simulations
begins very close to an equilibrium.

Interesting Dynamics

Figures 15 and 16 demonstrate that both models can ex-
hibit extreme end behavior.

Changing parameter β1 and β2

Figures 17 and 18 show the effect of changing the param-
eter β1.

Figures 19 and 20 show the effect of changing the pa-
rameter β2. It is worth noting that a casual inspection of
these figures might suggest that both systems may have
a similar sensitivity to changes in β1 and β2. This notion
is supported by the sensitivity analysis in Section 3.2 and
the discussion within.

Changing parameters α1 and α2

Figure 21 shows the impact of changing the parameter α1

on System (MB).
Figure 22 shows the impact of changing the parameter

α2 on System (MB). It is worth noting here that smaller
values of α2 not only result in a smaller peak in infections,
but that peak occurs slightly earlier compared with larger
values of α2.

Changing parameter ρ

Figure 23 shows the effect of changing the parameter ρ on
System (MA). There is no such figure for System (MB)
as ρ is not a free parameter.
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