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Abstract

Compartmental modeling serves as a necessary framework in many fields, especially biomathe-
matics and ecology. This article introduces readers to a user-friendly approach to constructing
compartmental models and solving the resulting systems of differential equations to simulate
real-world applications. The platform used is Berkeley Madonna, a software package that has
an intuitive graphical interface which empowers users—even those with limited mathematical
and programming backgrounds—to focus on modeling concepts rather than mathematical
or programming intricacies. This makes Berkeley Madonna an ideal platform for students,
educators, and researchers.

Keywords: Compartmental Models, Berkeley Madonna, SIR Model, Predator-Prey Model

1 Introduction

The focus of this article is on providing a quick illus-
tration of the ease with which the differential equations
solver Berkeley Madonna [10] can be used to create and
solve a compartmental model. With this platform, one can
simulate many scenarios by creating and numerically solv-
ing a variety of such models without having an in-depth
knowledge of systems of differential equations, numerical
methods, or coding. In fact, as of writing this article, the
co-author who developed the examples in Sections 4 and 5
had no formal coursework in programming, modeling, or
differential equations.

2 Compartmental Models

Let X1, X2, . . . , Xn represent time-dependent variables
and let F1, F2, . . . , Fn be functions of X1, X2, . . . , Xn,
each of which may also include one or more parameters.
Then, in certain scenarios, a system of first order differ-
ential equations of the form shown in the System 1 is
referred to as a compartmental model.

In mathematical biology, the variables X1, X2, . . . , Xn

may represent the sizes of different populations or sizes
of subsections of a given population determined by some
characteristic of interest at a given time. Each variable
can then be thought of as representing a compartment in
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versity of Alaska Southeast, Juneau, AK.

the system under study. The derivatives on the left side
of System 1 represent the rates of change with respect to
time of the quantities within each compartment.

dX1

dt
= F1(X1, X2, . . . , Xn),

dX2

dt
= F2(X1, X2, . . . , Xn),

...

dXn

dt
= Fn(X1, X2, . . . , Xn).

(1)

How the functions F1, F2, . . . , Fn in a compartmental
model are defined is important, as these describe the
mechanisms that drive changes in the system under study.
It is in constructing the functions F1, F2, . . . , Fn that
Berkeley Madonna shines for the novice modeler.

3 Berkeley Madonna

As described on its website [2],

Berkeley Madonna is an incredibly fast, general
purpose differential equations solver. Its graph-
ical interface provides an intuitive platform for
constructing complex mathematical models with
ease using symbols rather than writing equa-
tions. The software provides a suite of graphical
tools for plotting your results.

So, Berkeley Madonna has the potential to be an incredi-
bly useful tool for newcomers to the field of mathematical
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modeling in a wide range of areas involving, for example,
biological, chemical, ecological, and physical systems.

Go to the Berkeley Madonna website [2] for instructions
on downloading and installing the Berkeley Madonna
platform, and much more. When Berkeley Madonna is
started up, a blank gray screen titled Berkeley Madonna
opens up with a menu-bar at the top.

For purposes of this article, of interest at this point
is creating a new flowchart through the File menu-item
to begin the process of constructing a compartmental
model (see Figure 1). The next two items in the main
menu-bar that will be of use are Graph (see Figure 2)
and Parameters (see Figure 3). Under Graph, the op-
tions that will be of interest for this article are Choose

Variables and Axis Settings. Also for purposes of
this article, the options of interest under Parameters are
Define Sliders, Show Sliders, and Detach Sliders,
with an emphasis on the first.

To get started, click on the New Flowchart Document

option under File in the main-menu. This opens a blank
flowchart (see Figure 4) and it is in this window that
models will be constructed for the examples in Sections
4 and 5. Before continuing, hover the cursor over each
of the yellow icons in the menu-bar at the top of the
flowchart window to see what each icon is named. For the
time being, four of these are of interest: reservoir ( ),
arc ( ), flow ( ), and global ( ). Explanations
of how these four tools are used in the flowchart window
appear in the first of the examples to follow.

4 An Infectious-Disease Model

For infectious-disease models, the variables representing
the compartments are referred to as state variables—they
explain a system in equilibrium. These state variables all
have the same dimensions and typically represent sizes of
subsections of a given population at a given time, each
subsection being determined by some characteristic of in-
terest. The nature of the system being modeled requires
that members of the population move from one subsec-
tion to the next. Consider, for example, the SIR model
for the spread of an infectious disease.

SIR is an acronym for Susceptible–Infected–Recovered,
and the model described here is the basic model used
to introduce modeling the spread of communicable dis-
eases. The compartments in this scenario are identified
as being those subsections of a population of interest that
include individuals (S) who are susceptible to the disease
in question, (I) who have become infected, and (R) who
have recovered from the disease.

The underlying mechanics for this model can be de-
scribed by quantifying the rate (per unit time) at which
individuals move into, or out of, each of the three com-

Figure 1: Creating a new flowchart within the Filemenu.

Figure 2: Options within the Graph menu-item.

Figure 3: Options within the Parameters menu-item.
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Figure 4: A blank flowchart displaying the model construction buttons of interest and more.

partments. For a population of sizeN , denote the propor-
tion of individuals in this population who are susceptible
to the disease, who have become infected, and who have
recovered by S, I, and R, respectively.

Now consider modeling the spread of the Hong Kong
Flu in the city of Chicago, which has a population of
N = 2.7 million people. Suppose the starting number of
infected individuals is 10, with the remaining population
being classified as susceptible. Also, assume there are no
people in the recovered group to start with. The task at
hand, then, is to model the flow of individuals from one
compartment to the next.

In a Berkeley Madonna flowchart, reservoirs repre-
sent compartments, and flows provide the direction in
which members from each compartment move, see Fig-
ures 5 and 6 for how these are created. Then, initial
values for each compartment are assigned by double-
clicking on the “?” symbol on each reservoir and entering
the initial values for each—for this example, use S0 =
26999990/27000000, I0 = 10/27000000, and R0 = 0, see
Figure 7. Once this is done, notice in Figure 8 that the
“?” symbols on the reservoirs have gone away.

Now assume that the population is in equilibrium
(S + I + R = 1); that instantaneous mixing of the pop-
ulation occurs; that susceptible individuals who come in
contact with an infected individual become infected at
some constant rate per unit time; and that infected in-
dividuals recover at some constant rate per unit time.
Under these assumptions, the next task is to define the
flows from one reservoir to the next. Let α = 0.5 denote
the transmission rate per unit time of the disease for each
interaction a susceptible individual has with an infected
individual. Since the product SI represents the propor-
tion of interactions between the susceptible and infected
individuals—and because of instantaneous mixing—it can
be reasoned that at any given time the proportion of sus-
ceptible individuals will decrease through infections by
the quantity αSI per unit time. Note that under the cur-

Figure 5: First insert the reservoirs by dragging three of
them onto the flowchart sheet. Then insert flows from the
first to the second reservoir, and the second to the third.

Figure 6: Rename the reservoirs and flows one by one by
double-clicking on the existing names and then entering
the new names in the text dialog windows that pop up.
Once this is done, move the names by dragging them to
desired locations.

Figure 7: Double-click on the S reservoir to open the S-
icon window, then enter the initial value for the suscep-
tible population (as a proportion of 2.7 million). Repeat
the process for the I and R reservoirs.
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rent setup, the parameter α has units time−1 since the
proportions S and I are dimensionless.
Next, let β = 0.33 denote the recovery rate per unit

time of an infected individual. Then, at any given time
the rate at which the proportion of recovered individuals
increases per unit time will be βI. The parameter β also
has units time−1 since I is dimensionless.
Finally, at any given time, the rate at which the pro-

portion of infected individuals changes per unit time is
found by subtracting the proportion of individuals who
recover from the proportion who get infected.

The first step in defining the flows is to provide access
to the parameter values α and β. This is done by clicking
on the global button on the flowchart menu-bar and then
entering the values, see Figures 8 and 9. Next, go back to
the flowchart window and insert the relevant arcs from the
reservoirs to the respective flow buttons by clicking on the
arc button in the flowchart menu-bar and then dragging
an arc from, for example, the S reservoir onto the flow
button out of the S reservoir, see Figure 10. Finally,
double-click on the flow buttons and enter the appropriate
computational formulas, see Figures 11 and 12.

Once all of this has been done, save the completed SIR
model flowchart. Figure 13 provides a complete picture of
what appears on this flowchart. On careful examination it
will be noticed that the panel on the left provides details
of the model itself, that is, a specific case of the generic
SIR model:

dS

dt
= −αSI,

dI

dt
= αSI − βI,

dR

dt
= βI, (2)

with initial values being denoted by S(0) = S0, I(0) = I0,
and R(0) = R0.

The panel on the right provides relevant settings for
the numeric solution of the defined system of equations.
Before proceeding to the solution of this system, click
on STOPTIME in the panel on the right and set this to 150
(do not click on the Reset button), similarly set the time-
step DT to 0.01. Then, click on the Run button to solve
the system and obtain the solution curves, see Figure 14.
It should be noted that the vertical scale for the infected
curve, I, indicated on the vertical axis on the right is
different from the vertical scale for susceptible and recov-
ered curves. Axis settings can be changed, if so desired,
by clicking on the Graph button in the main menu-bar and
selecting Axis Settings to change the default settings.

To include an additional useful feature on this graph,
click on the Parameters button on the main menu-bar
and select the Define Sliders option. In the Define

Sliders pop-up window, see Figure 15, click on and add
the parameter alpha, setting the minimum to 0 and the
maximum to 1. Similarly, click on and add the beta

parameter and set its range from 0 to 1. The result is
displayed in Figure 16.

Figure 8: The flowchart appearance once the initial values
for S, I, and R have been entered.

Figure 9: Enter parameter values as global quantities.

Figure 10: Since the proportion of new infections is quan-
tified by αSI, insert arcs from the S and I reservoirs to
the flow out of the S reservoir. Since the proportion of
recoveries is quantified by βI, insert an arc from the I
reservoir to the flow out of the I reservoir.

Figure 11: The proportion of new infections is αSI.

Figure 12: The proportion of recoveries is βI.
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Figure 13: The completed flowchart for the SIR model.

Figure 14: Solution curves for the SIR model.

Figure 15: Defining and inserting parameter sliders.

Figure 16: Graphs of the solution curves with sliders.

www.sporajournal.org 2024 Volume 10(1) page 11

http://www.sporajournal.org


Compartmental Modeling for the Neophyte Akman, Bhumpelli, Cline, Hay-Jahans

Figure 17: The completed flowchart for the rabbit-fox predator-prey model.

It is now possible to explore the dynamics of the epi-
demic by moving the sliders back and forth. To do this,
drag the sliders or click on the blue arrows to the left of
the sliders. Note that it is very likely that the STOPTIME

will have to be adjusted with changes to the parameter
values—a STOPTIME slider would be useful for this.

Note that the range (Minimum and Maximum) for sliders
does not need to be [0, 1], choose a range that best suits
the scenario under study. Also, once sliders are defined
and inserted in a graph they can be hidden (or detached)
by selecting Hide Sliders (or Detach Sliders) in the
Parameters main-menu. Or they can be reinserted by
selecting Show Sliders (or Reattach Sliders) in the
Parameters main-menu.

Having constructed the model and set the stage for
solutions/simulations, it becomes possible to perform rel-
evant desired analyses of the epidemic under study. The
formal analyses stage is beyond the scope of this article,
so the interested reader is referred to, for example, [4] for
an elementary development of this model, and [5] or [8,
Sec. 6.6] for deeper treatments.

5 A Predator-Prey Model

For this example, consider modeling the population sizes
of a prey species, say rabbits, and its sole predator species,
say foxes, in a closed ecosystem. Let R and F denote the
sizes of these two populations, respectively. Then, un-
like for the SIR model, in the context of a predator-prey
model the variables do not describe a system in equilib-
rium, that is, the sum total of the prey and predator
populations does not remain constant. Regardless, each
species does represent a compartment in the system. In
addition to instantaneous mixing of the two populations,

some further assumptions are made here.

It is assumed that increases in the prey population
size per unit time occur through births, which are influ-
enced by the availability of food and which are assumed to
outpace natural mortality (in the absence of predation).
Then, net decreases in the prey population size can be
viewed as occurring soley through predation. Conversely,
it is assumed that increases in the predator population
size per unit time occur through births, which are also
influenced by the availability of food (the prey), and in
this case net decreases in the predator population size
are assumed to occur through natural mortality (which
includes deaths through starvation).

Let b denote the birth rate for the prey. Then, the prey
population size will increase by the quantity bR per unit
time. Denote the rate at which each predator-prey inter-
action results in a prey death by δ. Then the decrease
in the prey population size per unit time as a result of
predation will be δRF . Next, let d denote the death rate
for the predator. Then the decrease in the predator pop-
ulation size per unit time will be dF . Finally, denoting
the rate of growth in the predator population size due to
the effect of each interaction with a prey by γ, the preda-
tor population size increase per unit time will be γRF .
Observe that the units for the parameters b and d are
time−1, and the units for δ and γ are (counts×time)−1.

This information can then be used to construct a
flowchart that describes the predator-prey system in ques-
tion. There is one important point to note for this system.
Unlike in the previous example, individuals from the two
populations (compartments) R and F do not move from
one to the other. This means that flows between the two
reservoirs are not drawn. However, interactions between
the two do occur, and so arcs defining a flow may come
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from both reservoirs.
For purposes of this example, consider starting with

the parameter values1 b = 1, d = 0.5, δ = 0.01, and
γ = 0.0005, and consider initial populations of R0 = 15
and F0 = 25. Then, following the process described
for creating a flowchart in the previous example, the
flowchart describing this particular predator-prey system
takes on the appearance of Figure 17.

As before, the panel on the left in Figure 17 gives details
of the system being modeled, which corresponds to the
general form

dR

dt
= bR− δRF,

dF

dt
= −dF + γRF, (3)

with initial conditions being denoted by R(0) = R0 and
F (0) = F0. This system of equations, called the Lotka-
Volterra equations, serves as a popular first example of
modeling predator-prey systems.

Now, using a STOPTIME of 30, click on the Run button
to get graphs of the solution curves. Then, in the Axis

Settings pop-up from the Graph main-menu, deselect
the auto scaling boxes for the left and right vertical axes
and make them the same, see Figure 18 for the end result.

Another useful plot for this system is the plot of the
predator population size against the prey population size
(F against R). To get this graph, select New Graph from
Graph in the main-menu, and then with the Graph 2 win-
dow activated, select Choose Variables from the Graph
main-menu. Then, in the pop-up window, place R in the
X-Axis and F in the Y-Axis. Click on OK and then click
on Run again. The resulting graph, see Figure 19, reveals
that the population-size pairs follow a cyclic curve.

Here is another nice feature. In the Graph 2 window,
hover the cursor over the menu-bar above the graph to see
the names of the menu-buttons. There are two buttons of
interest, Overlay Plots ( ) and Initial Conditions

( ). Click on both of these menu-items and then hover
the cursor over the graph. Notice that the cursor takes
on the appearance of cross-hairs. Pick a location on the
axes and click the mouse. The new overlayed graph, see
Figure 20, represents the graph of a system with initial
conditions corresponding to the point on the axes where
the mouse was clicked, see the lower-left corner of Fig-
ure 20.

Just as shown for the previous example, sliders can
be attached to, or detached from, either of the graphs
constructed (be sure to deselect the Overlay Plots and
Initial Conditions buttons). These sliders can then be
used to explore the effects of adjusting parameter values
of interest.

Again, deeper formal analyses of such models are be-
yond the scope of this article. See, for example, [6,

1See https://mathinsight.org/introducing rabbit predators

Figure 18: Solution curves for the rabbit and fox popula-
tions against time.

Figure 19: Plot of fox populations against rabbit popula-
tions. If so desired, sliders for one or more of the param-
eters can be attached to this plot.

Figure 20: Plots with different initial conditions. The lo-
cation of the cross-hairs marks the new initial conditions.
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Sec. 9.5] or [8, Sec. 6.2] for technical details on the un-
derlying theory and model analyses.

6 Closing Comments

The examples presented in this article were chosen for
their relative simplicity so as to provide illustrations of
constructing flowcharts for two versions of compartmental
models. It is expected that readers may be interested in
delving deeper into such applications. There are some
additional useful features in Berkeley Madonna that lie
within the scope of this article and that can be explored
using the examples provided. Readers are encouraged
to explore the various capabilities available in the main
menu and the various options in the flowchart menu.

A user’s guide to Berkeley Madonna is available on
the Berkeley Madonna website [2], and examples of using
Berkeley Madonna in more complex settings can be found
in the tutorials [10] and [11], including importing data sets
and fitting data to models. The interested reader can also
find further details and directions to resources on the evo-
lution of models in epidemiology in, for example, [1], [3],
[7], and [9]. Similarly, details and directions to resources
on the evolution of predator-prey models can be found in,
for example, [6] and [8].
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