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Abstract

In this work, we employ a governing system of ordinary differential equations (ODEs) to
create a mathematical model for getting insights into the dynamics of migration of Ukrainians
evacuating due to war. A suitable assumption on coefficients of this model results in the
well-known logistic growth. Additionally, stability analyses of equilibrium solutions for these
ODEs are performed, and we employ parameter estimation techniques to identify coefficients
using online datasets via both a least-squares approach as well as a physics informed neural
network approach. Our findings indicate that over time, the daily influx of Ukrainian refugees
to Poland stabilizes at a constant rate, represented by an asymptotically stable equilibrium
solution.

Keywords: Russian-Ukrainian War, Social Dynamics, Mathematical Modeling, Parameter
Estimation, Physics-Informed Neural Networks

1 Introduction

Russia’s unprovoked, full-scale invasion of Ukraine, which
unfolded in February of 2022, had a significant impact on
Ukraine across various aspects, see [19, 16]. The con-
flict resulted in a devastating loss of life [9], both human
and ecological [6], causing immense human suffering and
trauma for Ukrainian civilians and military personnel as
well [7]. Infrastructure and residential areas were severely
damaged due to frequently massive missile attacks, lead-
ing to widespread displacement and an ongoing humani-
tarian crisis. The war had regional and geopolitical impli-
cations, heightening tensions between Ukraine and Rus-
sia, impacting regional and international relations. Power
dynamics and balances were shifted, leading to increased
global scrutiny and encouraging diplomatic efforts to re-
solve the war. Internationally, the war disrupted trade
and investments [5], hindering economic growth and de-
velopment. However, amidst these challenges, the conflict
emphasized the resilience, bravery, and solidarity of the
Ukrainian people as communities came together to sup-
port those who were affected by the war, where civil so-
ciety played a crucial role in providing aid and assistance
to those in need.

Research in computational mathematics, which com-
prises of modeling, analysis, simulation and computing
has become the foundation for solving most multidisci-
plinary problems in science and engineering. These real

1Texas A&M University, 2George Mason University

world problems often involve complex dynamic interac-
tions of multiple physical processes which presents a sig-
nificant challenge, both in representing the physics in-
volved and in handling the resulting coupled behavior. If
the desire to predict and learn from the system is added
to the picture, then the complexity increases even further.
Hence, to capture the complete nature of the solution to
the problem, a coupled multidisciplinary approach is es-
sential.

A true mathematical modeling process starts by iden-
tifying and observing a situation in the real-world from
multiple perspectives. This is followed by the modeling
process that involves learning to ask questions, making
reasonable assumptions, eliminating unwanted informa-
tion, identifying suitable variables (either quantitatively
or qualitatively), and understanding the constraints with
which they will have to contend [17]. It is well known that
many physical systems that involve rates of change can be
described by differential equations. Thus, understanding
the behavior of the solution to such equations is impor-
tant for elucidating an actual physical problem. Here, we
apply theoretical and computational mathematical ap-
proaches to evaluate a differential equation in a social
context. Theory is needed to guide the performance and
interpretation of the numerical technique, and computa-
tion is necessary to synthesize the results. Therefore, the
solution methodology often involves formulating a mathe-
matical model from a physical system and then being able
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to solve this model using analytical (exact) or numerical
(approximate) approaches. In addition, it is also impor-
tant to be able to validate models for known datasets
through efficient parameter estimation approaches [15].

While there have been some research in the past five
years on applying mathematics to economic modeling [8]
or rational urban land use [13] in the Ukraine context, to
our knowledge, the recent critical humanitarian issue of
understanding the dynamics of Ukrainian refugees across
the Polish border has not yet received rigorous mathemat-
ical investigation. In fact, recently there was a case study
of Ukraine on agent-based framework to study forced mi-
gration [11] where they study the efficacy of a data-driven
agent-based framework motivated by social and behav-
ioral theory in predicting outflow of migrants as a result
of conflict events during the initial phase of the Ukraine
war.

Our project aims to mathematically model and simu-
late the movement of Ukrainian refugees across the Pol-
ish border due to the ongoing war. We will model the
nonlinear dynamics of two groups of populations using a
system of differential equations leading to an initial value
problem. Upon simplification of the model to the logistic
growth, we are able to find an analytic solution to this
simplified model. Following this, we conduct a analy-
sis to determine equilibrium solutions and their stability.
Subsequently, we perform a parameter estimation study
to determine the coefficients of the proposed model, uti-
lizing observed data extracted from the Polish Boarder
Guard page using a traditional least-squares approach.
With realistic parameter values derived from this analy-
sis, our model predicts that, in the long term, the number
of Ukrainian refugees evacuated to Poland will tend to
stabilize at a constant value, represented by an asymp-
totically stable equilibrium solution.

Another innovative contribution in this paper is ap-
plying Physics Informed Neural Networks or PINNs
[14, 15, 12]. The PINNs approach has been shown to
be very efficient and robust approach for parameter es-
timation. So, we introduce the PINNs method in this
work and apply it to the same data-set that we applied
least squares method to identify the parameters in the
model. Our results using both methods (least square fit
and PINNs) are in good agreement, allowing us to capture
the problem’s parameters more precisely.

This paper is structured as follows: In Section 2, we dis-
cuss a social dynamics-based model governing the number
of Ukrainian evacuees to Poland. We present the model’s
exact solution in the implicit form and conduct a stability
analysis in Section 3. Section 4 covers parameter estima-
tion for real data from the Polish Border Guard. Both the
Least-Squares method and the PINNs framework are pre-
sented in this section that help to extract the parameters.
Finally, Section 5 contains discussions and conclusions.

2 Mathematical Modeling of
Migrations of Ukrainians

Various mathematical models, particularly those based
on initial value problems for ODEs, can effectively de-
scribe the migration of evacuated Ukrainian refugees to
Poland. In this context, we will specifically explore a
class of models that help to capture the social dynam-
ics, which are used to analyze interactions and changes
within social systems over time (see e.g. [18]). Social dy-
namics models employ ODEs to depict how different vari-
ables or components of a social system evolve based on
their interconnections and dependencies. In our investi-
gation, these variables represent various segments of the
Ukrainian population migrating from their home coun-
try (Ukraine) to a host country (e.g., Poland) due to the
ongoing war.

We denote by ui(t) the number of Ukrainian residents
in country i at time t, measured in days, where sub-
script 1 corresponds to Ukraine (the home country) and
subscript 2 refers to Poland (the host country). Addition-
ally, we introduce β±(t) as the transient probability per
unit time for a migrating Ukrainian evacuee between the
host and home countries. The social dynamics model is
formally described as follows{

u′
1(t) = β+(t)u2(t)− β−(t)u1(t),

u′
2(t) = β−(t)u1(t)− β+(t)u2(t),

(1)

where a closed system, for which u1(t) + u2(t) = 2U0, is
assumed, where U0 is the half of the current population
of Ukraine (taken from February 2022). Making change
of variable u(t) := u1(t)− U0 = U0 − u2(t), we obtain{

u′(t) = β+(t) (U0 − u(t))− β−(t) (U0 + u(t)),

u(0) = u0.
(2)

Variable u(t), measured in # of people, represents the
deviation from an equal distribution of Ukrainians be-
tween the two countries (Ukraine and Poland) and mea-
sures how far the system is from a balanced state where
both countries have exactly half of the total population
of Ukrainians.

Once again, one can select different models for the
transient probabilities β±(t), (measured in 1/day). We
assume that β+ is directly proportional to the number
of Ukrainian refugees moving to Poland. Since we do
not consider the reverse movement of Ukrainians, we set
β−(t) = 0. Thus, {

β+(t) = a u(t),

β−(t) = 0,
(3)
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for some a > 0. Substituting (3) into (2) results in the
logistic growth model:u′(t) = αu(t)

(
1− u(t)

K

)
u(0) = u0

(4)

where α := aU0 > 0, (measured in 1/day) represents
the the average rate of Ukrainians crossing the border
to Poland daily, and K, defined as U0 > 0, is the carry-
ing capacity, denoting the maximum number of Ukrainian
evacuees that Poland can sustain per day. The parame-
ter u0 corresponds to the number of Ukrainians crossing
the Polish border on February 24, 2022, set as t0 = 0.
The solution u(t) to equation (4) represents the number
of Ukrainian citizens entering Poland at time t. Prob-
lem (4) is autonomous and suitable for stability analysis.

3 Analysis of the Proposed Model
and its Solution

3.1 Exact solution

As mentioned earlier, the logistic growth model (4) has
an exact solution in implicit form, which can be obtained
using the method of separation of variables [3]:

u(t)

K − u(t)
=

u0

K − u0
eαt. (5)

The solution (5) admits an explicit form:

u(t) = K − K
u0

K−u0
eαt + 1

. (6)

Figure 1: Solution of (4) with parameters α = 0.05 and
K = 30,000.

3.2 Stability analysis

Stability analysis in the context of autonomous ODEs
is a mathematical technique used to determine the be-
havior of solutions near equilibrium points, see e.g. [3].

When one has an equilibrium solution for an autonomous
ODE, it means that the system remains unchanged at
that point, and the derivative of the solution with respect
to time is zero, i.e., u′(t) = 0 at the equilibrium point.
Stability analysis involves assessing how solutions behave
when perturbed slightly from the equilibrium. If a system
is asymptotically stable at an equilibrium point, a solution
corresponding to any initial condition sufficiently close to
that point will approach it as t → ∞. In an unstable equi-
librium, small perturbations will cause solutions to move
away from the equilibrium point.

Specifically, the equilibrium solutions of (4) are

u(t) ≡ 0, u(t) ≡ K, (7)

among which u(t) = 0 is unstable and u(t) = K is asymp-
totically stable as t → ∞.
The geometric representation of the stability analysis

for (4), with parameters α and K as in Figure 1, is shown
in Figure 2 for various values of u0.

Figure 2: Qualitative study of equation (4): Plots in-
dicate solutions of (4) with parameters as in Figure 1
corresponding to different initial conditions.

4 Parameter Estimation

To validate the model, next we consider a real data set,
in particular, the observed data taken from the Polish
Boarder Guard website and is displayed in Figure 3.
The number of Ukrainian refugees crossing the border
to Poland on February 24, 2022 according to this data is
31,260. This value will be used as the initial condition for
our model below.

4.1 Least-square fit approach

In various fields such as science, engineering, economics,
and more, mathematical models often have parameters
that are not directly measured but are necessary to ac-
curately describe the phenomenon being studied. Pa-
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Figure 3: Recorded number of Ukrainian refugees crossing
the Polish border at a given day.

rameter estimation aims to find the most likely val-
ues for these parameters based on the available data, see
e.g. [2]. In the context of this project on Ukrainian mi-
gration, parameter estimation would involve determining
the values of parameters in the proposed mathematical
model (4) that describes the migration of Ukrainian evac-
uees to Poland during the war. This process helps align
the model’s predictions with the actual observed data,
enhancing the model’s accuracy and usefulness for un-
derstanding and predicting real-world events.

In the previous section, we used synthetic parameters
in model (4). In this section, we aim to determine these
parameters using the real data. However, this dataset is
too dense to accurately determine just two parameters of
the problem, α and K. To address this, we will downsam-
ple the data. Downsampling involves reducing the number
of data points while attempting to preserve the essential
characteristics of the original data, decreasing the dimen-
sionality of the data, which helps regularize the ill-posed
inverse problem and makes it more stable to solve. We
are reducing 500 data points to 40 by applying uniform
interval reduction, where the original data is divided into
40 equal-sized groups and each group is represented by a
single data point.

Next, we outline the parameter estimation procedure,
which relies on a least-squares fit [1]:

� We solve the model (4) using u0 = 31, 260 and pa-
rameters selected in Section 3.2 and the numerical
procedures discussed earlier. We denote the obtained
numerical solution as gpar(ti), hereafter referred to
as simulated data. These simulated data points are
defined for a set of time points ti ∈ [0, T ], where
i = 1, . . . , N , with T chosen to be sufficiently large
(e.g., T = 550) and measured in days.

� Let M be the number of downsampled observed data
points, denoted as Gi for i = 1, . . . ,M = 40.

Figure 4: Downsampled observed data [red] based on
the data given in Figure 3; and the solution to model (4)
using fitted parameters (9) [blue].

� We calculate the residual S as the sum of squares of
the differences between the simulated and observed
data:

S(α,K) =

M∑
i=1

|gpar(ti)− Gi|2 , (8)

� Finally, we minimize the function (8) with respect to
the model parameters using a known optimization
method for nonlinear functions, such as Newton’s
method (see e.g. [4]). For this project, we employed
the minimize routine available in Python, where the
code for numerical simulation was generated:

(α̂, K̂) := arg min
(α,K)

S(α,K).

In our simulations, the data Gi for i = 1, . . . , 40 discussed
in Section 4 were utilized. Therefore, we obtained the
following

α̂ = 1.13; K̂ = 24, 447. (9)

With these parameter values, we display the solution
u(t) to the model (4) in Figure 4.

Here, we remark that the goal in this project was to
test two fundamental approaches to the inverse problems
of identifying problem parameters (the least square fit vs.
PINNs) based on the simplistic logistic growth model,
and we did not aim to capture the “spike” of a large influx
of Ukrainian refugees evacuating to Poland due to war,
as it was an isolated incident that occurred on March 7,
2022. This rare event was not the main focus of our in-
vestigation. To accurately capture the data of the Polish
Boarder Guard presented in Figure 3, one should either
consider a different model than that in (4) or model the
influx and outflux rates, β±, as variable functions, which
will be considered in a forthcoming paper.
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4.2 Physics-informed neural networks

Physics-Informed Neural Networks (PINNs) are novel
data-driven methodologies that combine the power of
neural networks with the laws of physics. These networks
are trained to understand and predict how things move
and behave based on the fundamental rules of physics.
PINNs set themselves apart from conventional neural net-
works by incorporating new components to the loss func-
tion, such as a residual of the differential equation and
boundary and initial conditions [14].

Let λ = (α,K) ∈ R2 be the vector of parameters re-
lated to the dynamics of the model (4). The training
data has been discretized as {tj , uj}Ndata

i=0 , where Ndata is
the amount of training samples. The approximation is
defined as û(t;λ, θ) where θ is the vector of learnable pa-
rameters defined by the architecture of the neural network
used, for example, for a fully connected neural network θ
corresponds to the concatenation of biases and weights.
In practice, during the training process, the elements of λ
are also considered as learnable parameters using the loss
function (10) L defined below, a linear combination of
differential residuals, initial conditions and training data:

L(λ, θ) = Lode(λ, θ) + Lic(λ, θ) + Ldata(λ, θ) (10)

where Lode, Lic and Ldata are the loss functions of the sys-
tem of differential equations, initial conditions and train-
ing data, respectively. While the overall loss function is
decomposed in other three parts, the loss function of dif-
ferential residuals is expressed as

Lode = ωode

[
û′ − αû

(
1− û

K

)]
, (11)

the loss function corresponding to the data may be ex-
pressed as:

Ldata =
ωdata

Ndata

Ndata∑
i=1

(ui − ûi)
2
,

and the loss function corresponding to the initial condi-
tion may be expressed just as

Lic = ωic (u0 − û0)
2
,

where ωode, ωdata and ωic are weights of the loss func-
tion of residuals, data and initial conditions, respectively.
Note these are hyper-parameters of the framework. Al-
gorithm 1 shows how to estimate u(t;λ) and λ.

The computational application of Algorithm 1 to the
same downsampled observed data mentioned in Sec-
tion 4.1 was done using Python as programming language.
In particular, the package DeepXDE [10], which allows flex-
ibility for defining the differential equation residual, ob-
served data, neural network architecture and automatic

Algorithm 1: PINNs algorithm.

Input : Training Data {tj , uj}.
Output: û and λ̂.

1 Initialize λ̂0 and θ̂0
2 Define time interval where the solution will be

found.
3 Define loss function L(λ̂, θ̂), related to residual

errors, initial conditions and training data.
4 Create a fully connected neural network with 1

neuron in the input layer and 6 neurons in the
output layer (one per compartment).

5 Choose optimization hyper-parameters (e.g. Adam
optimizer, learning rate and loss weights).

6 for iter = 1, . . . , max iter do

7 Compute total loss L(λ̂iter−1, θ̂iter−1) using
auto-differentiation for ODE residuals.

8 Train neural network with optimizer algorithm

and update θ̂iter−1 to θ̂iter.

9 Get approximation ûiter and λ̂iter.

end

10 Return ûmax iter and λ̂max iter.

Figure 5: Parameter estimation learning curves using
PINNs.
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(a) (b)

Figure 6: Comparison of two solutions to (4) obtained by the least square fitting (solid thick line −, blue) and the
solution to (4) obtained by the PINNs (dashed line −−, purple) with observed data of Figure 3 (circles ◦, orange):
(a) Full range of observed data t ∈ [1, 550]; (b) Zoom-in of the same results vs. data on the interval t ∈ [100, 250].

differentiation backend. For this experiment, we used a
fully connected neural network of 3 hidden layers with 64
neurons per layer and ReLu as activation function. The
optimizer selected was Adam with a learning rate of 0.01
and 100,000 training iterations. Finally, the weight hyper-
parameters were ωode = 1/5, ωdata = 4/5 and ωic = 0.
This particular selection of weights was based on experi-
mentation. For example, since the observed data already
included the initial condition, it was not necessary to in-
clude the initial condition residual. On the other hand, in
order to fit the model faster, the weight of the data resid-
ual is four times bigger than the differential equation loss.
This methodology led to the following estimations:

α̂ = 1.199; K̂ = 23, 201. (12)

These estimates are reasonably close to what was ob-
tained by the Least-Squares methods that helps to vali-
date our estimation. Figure 5 shows the learning curves
of this approach compared with the estimated values from
the least squares methodology, the horizontal axis corre-
sponds to the iteration and the vertical axis to the current
approximation the parameter.

The solutions to the discussed model (4) with parame-
ters α and K obtained by the least square method (9) and
by PINNs (12), respectively, are displayed in Figure 6.
Comparing the least squares and PINNs approaches for
parameter estimation in ODE models allows validating
the results, assessing robustness, gaining insights, and
guiding further methodological developments. The cur-
rent investigation, which resulted in the development of
numerical schemes and codes for both solving the ODE
and training neural networks to solve the ODEs while fit-
ting the model to data, has set the groundwork for future
studies on more complicated migration models.

5 Discussion and Conclusions

The current investigation aimed at the study of the num-
ber of Ukrainian refugees evacuating to Poland due to
war with Russia started on February 24, 2022. We em-
ployed a social dynamics model with specific parameter
values, resulting in the logistic growth model. The logis-
tic growth model provides a baseline understanding of the
fundamental dynamics at play, allowing one to establish a
foundation upon which to build more sophisticated mod-
els. It offers insights into the intrinsic growth rate α and
carrying capacity K that govern the migration process,
which are crucial parameters to consider even in complex
scenarios. Starting with a simple model helps identify
the most influential factors driving migration and sets the
stage for study of a more complicated model that will in-
corporate additional complexities, such as gender or spa-
tial distribution, or policy regulations/interventions, and
others, in a systematic manner. Aforementioned factors
will be accounted in forthcoming studies.

Additionally, our study encompassed analysis of this
problem, including stability analysis of equilibrium so-
lutions. Furthermore, we utilized parameter estimation
techniques to discern realistic parameter values.

It may be noted that one can enhance the model pre-
sented here by incorporating a time-dependant migration
rate and comparing fitting approaches. While this en-
hancement may lead to a more complex model that may
provide additional insights, the simpler logistic growth
model presented herein, provides a solid foundation for
understanding the overall migration dynamics. Under-
standing the limitation of the simpler model also would
allow one to refine or extend to more complex models in
future studies.

Finally, in Section 4, we estimated the model parame-
ters through the least square fit procedure and an alter-
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native way for determining the model’s parameters us-
ing a neural networks approach called PINNs [15]. The
two methods are in agreement, showing the robustness
of the numerical parameter estimation techniques used.
This also suggests that the daily migration of Ukrainian
refugees to Poland due to the war is expected to even-
tually stabilize at the level of approximately 24 thou-
sand people. Also, note that comparing the least squares
and PINNs methods (see Figure 6) for the simple logistic
model presented has provided a valuable reference point
to identify the strengths and limitations of each approach.

Lastly, it is crucial to note that the data presented in
Figure 3 is reported on a daily basis. A straightforward
summation of these figures projects an improbable sce-
nario of over 14 million people migrating from Ukraine
to Poland between February 24, 2022, and the end of
July 2023. This discrepancy arises because the model (2),
under assumption (3), does not account for Ukrainians
returning to Ukraine (i.e., β− = 0) or individuals cross-
ing the border repeatedly, leading to the counting of the
same individuals multiple times. To provide more realis-
tic projections, a refined model that considers these fac-
tors is needed, and, as mentioned above, will be reported
in forthcoming papers.
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