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 Sexual reproduction and genetic exchange via meiosis are important and highly 

conserved processes in many living organisms.  Occasionally, complications occur during 

meiosis that can result in chromosome abnormalities.  In humans, improper chromosome 

development can cause life altering disorders such as Down Syndrome, Edwards 

Syndrome, and Patau Syndrome.  Unfortunately, despite its importance, gaps remain in 

our knowledge of how this process works.  For instance, little is known about how 

homolog identification occurs and what proteins identify matching chromosomes during 

pairing.  This fundamental process occurs early during meiosis and ensures proper 

development of gametes. 

 Understanding the proteins involved during homolog pairing may be possible by 

studying a process called meiotic silencing by unpaired DNA (MSUD) in the eukaryotic 

fungus, Neurospora crassa.  During MSUD, unpaired regions (or regions that do not 

match during homolog identification) are thought to produce special RNA molecules. 

Discovery of these molecules should help elucidate how unpaired DNA is identified. 



 This is because it is possible that the proteins involved in identifying unpaired 

regions in MSUD are the same proteins that identify homologs in meiosis.  Furthermore, 

these proteins could contribute to homology searches required for DNA repair, which 

could contribute in the development of cancer research. 

 To gain a complete understanding of unpaired DNA detection, the Neurospora 

crassa transcriptome must be identified.  The transcriptome represents all the RNA 

molecules found within an organism at a certain point in time or stage of development.  

Knowledge of the transcriptome can be used in efforts towards identifying the theoretical 

RNA molecules of MSUD.  The meiotic transcriptome can be determined by performing 

an RNA-seq analysis on all the RNA transcripts produced during meiosis.  These RNA 

are then aligned to the N. crassa genome.  Then, a special algorithm is used to identify 

key regions of the genome that may prove particularly useful in MSUD research (i.e. 

transcriptionally quiescent regions).  Given the sheer size of the data sets required for 

identifying these regions, the algorithm must be time and memory efficient due to 

computational constraints.   
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CHAPTER I 

BIOLOGICAL BACKGROUND 

1.1:  Biological Background 

 This section is intended to give a brief description of the biological processes that 

are relevant to this project. 

1.1.1:  Meiosis 

 Meiosis is a specific type of cell division used for the production of sex cells 

(spores in the case of fungi) in eukaryotes.  The steps involved in meiotic cell division are 

similar to those for other somatic cells, which divide through a well-known process called 

mitosis.  Meiosis, shown in Figure 1, begins with a duplication of chromosomes (Figure 

1a).  Next, each chromosome pairs with its homolog (Figure 1b).  This pairing allows for 

the exchange of genetic material, which contributes to genetic variation, through a 

process called crossing over.  Homologous chromosomes are moved to opposite poles of 

the cell and the original cell is then split into two daughter cells (Figure 1c).  This process 

repeats again, this time without initial duplication of the chromosomes (Figure 1d).  This 

results in each of the two daughter cells dividing to produce four cells with half the 

genetic information (Figure 1e).  
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Figure 1.  Description of Meiosis.   

Chromosomes in a single cell duplicate, align, exchange genetic material, then 

segregate to form two new cells that are genetically different than the parent 

cell (a-d).  Haploid cells are produced in the final stage of meiosis (e). 

(a) 

(b) 

(c) 

(d) 

(e) 
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1.1.2:  DNA, RNA, Transcription & Translation 

 DNA (deoxyribonucleic acid) is a molecule found in all living organisms that 

contains the genetic instructions for protein synthesis.  DNA is made up of four different 

nucleotide bases: adenine (A), thymine (T), guanine (G) and cytosine (C).  The central 

dogma of molecular biology explains the process of how DNA's genetic information is 

used to create functional proteins.  Such proteins are responsible for representing the 

physical traits or the phenotype that we can see, i.e. height or hair color.  

 Transcription is the first step in this process.  Double stranded DNA is transcribed 

into single stranded RNA (ribonucleic acid) via transcription.  RNA is similar to DNA in 

that it has four nucleotide bases, except instead of thymine it has uracil (U).  The newly 

created RNA strand is known as the "complement" to its parent DNA strand.  In the case 

of DNA, a complement means that adenine pairs with thymine (uracil in RNA) and 

guanine pairs with cytosine. 

 Once the DNA has been transcribed, the RNA molecules can take on many 

different varieties each of which is responsible for a special role, such as protein 

production or gene regulation.  There are a few types of RNA that are important to know 

for this project.  The first and most common type is messenger RNA or mRNA.  Each 

mRNA contains a specific sequence that codes for an explicit amino acid chain.  This 

amino acid chain forms a functional protein product that gives rise to a phenotype.  The 

process by which proteins are produced from mRNA is called translation.  Other types of 

RNA, namely, aRNA, dsRNA, and masiRNA, are also important to know for the 
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background of this project.  However, they will be introduced and discussed in section 

1.2.2. 

1.1.3:  An Introduction to Neurospora crassa 

 Neurospora crassa is a type of bread mold belonging to the phylum Ascomycota.  

N. crassa is a model organism for genetics research projects because it is easily 

maintained and cultured and has a rich history that makes use of well established 

protocols for genetic and biochemical techniques (Davis 2000).  In particular, N. crassa 

has played a crucial role in the understanding of genome defense systems and gene 

silencing mechanisms, making it an important organism in which to better understand 

these processes (Davis 2000). 

1.1.4:  Genomic Invaders 

 Transposable elements are mobile sequences found within the genomes of most 

organisms.  They often replicate, and then move to new locations in their host genomes.  

Transposable elements can be dangerous because they can insert themselves into coding 

regions or regions that regulate gene expression.  This process is shown in Figure 2.  The 

structure of most eukaryotic genomes suggests that they contain a relatively large 

proportion of transposable elements (Slotkin and Martienssen 2007).  N. crassa, on the 

other hand, shows little evidence of these genome manipulators (Cambareri et al. 1991). 

 Given the potentially harmful nature of genomic invaders, such as transposable 

elements and viruses, it is not surprising that organisms have evolved different 

approaches to handle them.  N. crassa utilizes many different methods in an attempt to 
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keep these elements out of their genome (such methods are discussed in detail below).  

Plants, on the other hand, appear to have embraced the dynamic genome, as over half of 

their genome can be comprised of transposable elements (Feschotte et al. 2002). 

1.2:  Genomic Defenses in Neurospora crassa  

 Within the genome, there can be potentially harmful hitchhikers, like viruses or 

transposable elements, which can insert themselves into new locations the genomic code.  

There are many different ways organisms have evolved to defend their genomes against 

these 'selfish genetic elements'.  N. crassa, in particular, has developed several different 

methods.  They include DNA methylation, repeat point mutation (RIP), and meiotic 

silencing by unpaired DNA (MSUD) (Galagan et al. 2003, Borkovich et al. 2004). 

  

Transposon 

DNA 

Disrupted 

host gene 

Figure 2.  Depiction of Transposable Elements.   

Transposable elements are mobile sequences that often replicate and move to a new 

location in their host genomes.  Transposable elements can be dangerous because they 

can insert themselves into coding regions or regions that regulate gene expression.  

Figure adapted from Norris 2013. 
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1.2.1:  DNA Methylation & RIP  

 The process of DNA methylation serves many purposes. It silences genes by the 

addition of a methyl group to a nucleotide base.  Also, during gamete development, DNA 

methylation plays an important role for ensuring that embryonic stem cells differentiate 

into other specific cell types.  This is a permanent process that prevents a cell from 

changing to another type (Lister et al. 2009).  DNA methylation has also been found to 

play a critical role in the development of cancerous tumors (Foss et al. 1993).  

 Occurring during the premeiotic phase in certain fungal species, RIP (repeat 

induced point mutation) acts on duplicated sequences within DNA, such as transposable 

elements that insert themselves in the genome at multiple locations, by inducing C-to-T 

and G-to-A mutations (Kelly & Aramayo 2007, Freitag et al 2002, Hood 2005).  This 

process silences these sequences to protect the native genome against foreign invaders.  It 

is believed that such alterations by RIP may trigger cytosine DNA methylation (Singer et 

al. 1995).  It is also hypothesized to be the reason N. crassa has so few duplicated genes 

and almost no transposable elements found within its genome (Galagan et al. 2004).  

Essentially, the only transposable elements that exist are possible relics of old 

transposons that have been highly mutated by RIP (Singer et al. 1995).  

1.2.2:  MSUD 

 A process called meiotic silencing by unpaired DNA (MSUD) in N. crassa may 

better help us understand the largely obscure process of homolog pairing.  MSUD occurs 

when a mechanism identifies regions of the chromosome that do not "pair" during 

homolog identification in meiosis (Figure 3 (1)) (Shiu et al. 2001).  Currently, little is 
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Figure 3.  Neurospora crassa Meiotic Silencing Model.   

The first three steps of this process are performed by unknown proteins.  Aberrant 

RNA may be created from unpaired regions of DNA that do not have a homologous 

pair.  It would then be converted to dsRNA, then masiRNA (steps 4 and 5).  These 

masiRNA molecules silence complimentary mRNA (step 6).  The dashed ellipse 

represents the nuclear membrane. Figure adapted from Hammond et al. 2011. 

known about the proteins that work to identify homologous regions within chromosomes.  

Evidence suggests that N. crassa, more so than other organisms, requires a higher 

proportion of matches for a chromosome to be considered a homologous pair (Pratt et al. 

2004).  

 

 The current working model of MSUD is as follows: once an unpaired region is 

found, a theoretical aberrant RNA (aRNA) molecule is synthesized from that region's 

DNA (Figure 3 (2)).  The aRNA may then be exported out of the nucleus (Figure 3 (3)), 

before it is converted to dsRNA (double stranded RNA) by RdRP (RNA-dependent RNA 

polymerase).  Now, Dicer, a protein that cleaves dsRNA, can convert the dsRNA into 

siRNAs (short interfering RNA) (Figure 3 (5)), which are 20-25 base pairs in length 

(Galagan et al. 2003, Lee et al. 2003, Borkovich et al. 2004, Catalanotto et al. 2004).  

When these siRNAs are a part of the meiotic silencing process, they are called meiotic-
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silencing associated short interfering RNA (masiRNA) (Hammond et al. 2013).  These 

masiRNA are likely incorporated into an RNA-induced silencing complex (RISC), which 

uses them as templates for identifying complementary mRNA for destruction or 

translational suppression (Figure 3 (6)).  Thus, complementary mRNA is degraded no 

matter if is from an unpaired or paired sequence.  Additional information about the 

proteins involved in MSUD can be found in Table 1. 

 Since little is known of the proteins that identify homologs, it is possible that the 

proteins involved in identifying unpaired regions in MSUD could also be the same 

proteins that identify homologs in meiosis. 

Table 1.  Summary of Proteins Involved in MSUD.  

Protein Location Function 

SAD-5 nuclear unknown function 
a
 

SAD-1 perinuclear turns aRNA into dsRNA 
b
 

SAD-2  perinuclear serves as a scaffold for other MSUD proteins 
c
 

SAD-3  perinuclear helps SAD-1 
d
 

SAD-4 perinuclear unknown function 
a
 

DCL-1 perinuclear a Dicer protein that cleaves dsRNA into siRNAs 
e
 

SMS-2  perinuclear uses siRNA to target complementary mRNAs 
f
 

QIP perinuclear processes siRNAs into single strands 
g,h

 
Sources: Hammond et al. 2013a, Shui and Metzenberg 2002b, Shiu et al. 2006c, Hammond et al. 2011d, Alexander 

et al. 2008e, Lee et al. 2003f, Lee et al. 2010g, Xiao et al. 2010h 

1.3:  Importance of Quiescent Regions  

 Aberrant RNA or aRNA that is created from unpaired regions is currently 

theoretical.  One reason why it had not been detected may be that it is difficult to 

distinguish it from other forms of RNA.  Some attempts to do so have been made without 

success using standard molecular biology techniques.  Here we will try to identify the 

most transcriptionally quiescent regions of the genome with the use of next-generation 

sequencing.  Once the regions have been identified, we will try to force the creation of 
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aRNA in these regions by unpairing them during meiosis.  This novel technique for 

finding aRNA has never been attempted before.  If this is successful, all the transcripts 

from the unpaired loci should be aRNA.  Some of the proteins involved in aRNA 

generation may be involved in the recognition of unpaired DNA, others may be involved 

in aRNA generation, and others may be involved in later stages of the process. 

 To gain a complete understanding of unpaired DNA detection and the proteins 

that drive the mechanism, all of the regions that are unpaired during MSUD must be 

identified throughout the N. crassa genome.     
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CHAPTER II 

METHODS 

2.1:  The Data Sets 

 This section outlines the data sets and methods used for gathering and analyzing 

data.  

2.1.1:  RNA-Seq 

 A transcriptome is known as the set of all RNA molecules that are produced in a 

cell.  RNA-Seq uses deep-sequencing technologies to give us a precise measurement of 

the level of transcripts in an individual transcriptome.  In general, this information is 

important for determining the functional elements in the genome at any given point in 

time.  RNA-Seq is often used for determining the structure of genes in terms of location 

or splicing patterns and quantifying changes in expression levels at different time periods.  

This method is emerging as the dominant form for measuring transcriptomes, as opposed 

to using microarrays, since sequencing technologies have become cheaper and more 

accurate (Wang et al. 2009).
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2.1.2:  Description of Data Sets 

 The data sets used for this project come from four N. crassa crosses and represent 

their meiotic transcriptomes obtained via RNA-Seq.  There are two types of data sets: one 

that contains only large RNA's (>30 nucleotides) and one that only contains small RNA's 

(<30 nucleotides).  Data sets F201 (SRR957218) and 1005 (SRR957223) are the large 

RNA data sets and SRR751454 and SRR755946 are the small RNA data sets.  The goal 

of this project is to analyze the transcriptome of Neurospora and to map its quiescent 

regions.  It is possible that regions producing large RNA are different from those that 

produce small RNA.   Since we are looking for regions that have no detectable RNA at 

all, it is important to look at both types of data sets. 

 Data Set F201 (SRR957218):  This data set represents an RNA-seq analysis of all 

RNA from the fruiting bodies and associated vegetative tissue from a cross 

between strains P9-42 (Oak Ridge WT a) and F201 (fl A). 

 Data Set 1005 (SRR957223):  This data set represents an RNA-seq analysis of all 

RNA from the fruiting bodies and associated vegetative tissue from a cross 

between strains P6-07 (rid A) and F2-26 (rid; fl a).  This cross is theoretically the 

same as the one performed for data set F201 (fl A), except that both strains used in 

the cross are mutated in a gene known as rid. 

 Data Set SRR751454:  This data set represents an RNA-seq analysis of the small 

RNA from the fruiting bodies and associated vegetative tissue of a cross between 

strains P3-08 (Oak Ridge WT a) and F201 (fl A).  It was downloaded as a small 

RNA data set from NCBI.  
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 Data Set SRR755946:  This data set represents an RNA-seq analysis of the small 

RNA from the fruiting bodies and associated vegetative tissue of a cross between 

P3-08 (Oak Ridge WT a) and F5-39 (r
Δ
; fl A).  It was downloaded as a small RNA 

data set from NCBI.  

2.2:  Bowtie 

 This section is intended to describe how Bowtie, a free, open-source alignment 

program, works and is used for identifying the quiescent regions or regions of no 

transcription within the Neurospora crassa genome. 

2.2.1:  Introduction to Bowtie  

Bowtie is a fast, yet memory efficient alignment program that can be run on a 

typical desktop computer.  It works to align short sequences, such as 'reads' from an 

RNA-seq analysis, to a reference genome.  Such efficiency is achieved by use of a novel 

indexing strategy called a Burrows-Wheeler index along with a Burrows-Wheeler 

transformation (BWT) (Langmead et al. 2009).  

2.2.2:  Burrows-Wheeler Transformation & EXACTMATCH 

The BWT is a simple permutation of all the characters in a string.  For instance, 

let  T* = 'TAGTTAC' be a string of text.  Step 1 in BWT is to append a $ to the front of 

T* (See Figure 4).  '$' is set to be lexicographically less than all other characters in T*.  

Step 2 is to create a Burrows-Wheeler matrix.  The rows contained in the matrix are 

comprised of all the cyclic rotations of T*.  The next step (Step 3) is to sort the matrix 
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* 

* 

* 

Figure 4.  Burrows-Wheeler Matrix Example.   

This figure shows how a Burrows-Wheeler matrix is created in order to apply the 

Burrows-Wheeler transformation to a string of text, T*.  Figure adapted from Langmead 

et al. 2009. 

lexicographically by the first character in each row.  The Burrows-Wheeler 

transformation of T* (BWT(T*)) is the rightmost column of the matrix (Step 4). 

 The Burrows-Wheeler matrix has the property of last-first (LF) mapping.  That 

is, the i
th

 occurrence of a character X in the last column (or BWT(T*)) corresponds to the 

i
th

 occurrence of X in the first column (or the lexicographically sorted T*).  The last-first 

mapping property is necessary for the algorithms that use the BWT to search a text for an 

alignment.  

This LF mapping is used in Bowtie's EXACTMATCH algorithm (Figure 5) to 

find where a short read matches a reference sequence.  The example in Figure 5 uses the 

sequence 'TTA' as a read sequence to show how the EXACTMATCH algorithm works.  

The LF mapping method requires us to start with the last letter of the read, 'A', as seen in 

Figure 5 (a).  Next, we identify the range of the rows that start with the letter A.  Follow 
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those rows that start with A to the last column of the matrix.  Of these rows, the ones that 

contain T's (the next letter moving backwards through the read) correspond to the first 

and second occurrences of T in the last column.  As shown in Figure 5 (b), the process 

starts over.  We come back to the first column of the matrix to find the first and second 

occurrences of T's and again follow them to the rightmost column of the matrix.  The 

next letter moving backwards through the read is a 'T'.  In the rightmost column this is the 

third occurrence of T.  This is continued for each of the characters in the read until the 

range equals one.  Then the EXACTMATCH algorithm is done and the alignment of the 

read to the reference is complete. 

2.2.3:  Identifying Inexact Matches  

 It is possible for sequencing errors or genuine differences to exist between reads 

and the reference sequence.  Therefore, the EXACTMATCH algorithm may be 

insufficient in many cases.  Once Bowtie has gone through the EXACTMATCH 

(a) (b) (c) 

Figure 5.  Last-First Mapping Example.   

This figure shows how last-first mapping works to find where a read aligns to the 

reference sequence. Figure adapted from Langmead et al. 2009. 

 



15 

algorithm without identifying an exact match for a read, it proceeds to look for an inexact 

match.  It does so in a similar manner to EXACTMATCH.  A position that has already 

been matched within the read is selected and a different base is substituted in its place.  

This introduces a mismatch into the read.  Then the EXACTMATCH algorithm continues 

to check for an alignment with that mismatch.  If no such alignment is found, another 

position is randomly selected for a mismatch to be introduced. 

 Because Bowtie searches in this greedy, randomized, depth-first search manner, it 

may not find the best alignment that exists.  Options such as 'best' will improve the 

alignment in terms of number of mismatches or quality.  However, this will slow the 

program by as much as two or three times as much as the default mode. 

2.2.4:  Bowtie Compared to Other Alignment Programs  

 Many different topics are included as part of testing the "goodness" of an 

alignment program, such as CPU time, peak memory footprint, and percentage of reads 

aligned.  In some of these performance aspects, other popular open-source alignment 

programs, such as SOAP and Maq (Li et al. 2008a, Li et al. 2008b), have comparable 

performance statistics.  For instance, all three programs can achieve similar percentage of 

reads aligned with nearly equivalent peak memory footprint.  However, Bowtie far 

exceeds the other two in terms of speed.  For example, when aligning a set of reads with a 

length of 76  base pairs Bowtie takes 19 minutes of CPU time (with memory footprint: 

1,323 Mb, reads aligned: 44.5%) compared to Maq's 4 hours and 45 minutes (memory 

footprint: 1,155 Mb, reads aligned: 44.9%) (Langmead et al. 2009).  Additionally, Bowtie 
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has the option, unlike other programs, to achieve a higher percentage aligned at the cost 

of speed. 

2.2.5:  Bowtie Features Used 

 Bowtie has many options, such as 'best' described above, that give it flexibility for 

speed, memory usage and output formats.  Below are a list of the features used in this 

project: 

 -p: This option increases the size of bowtie's memory footprint, but increases its 

speed (scale: 1-8).  This causes it to search with a specified number of parallel 

threads on different cores. 

 --phred33: When sequenced, each nucleotide base is assigned a certain letter 

based on quality or confidence of the machine doing the sequencing.  This feature 

tells Bowtie that Phred quality scores are provided with the read sequences. 

 --local: This feature allows for some characters on each end to be omitted from 

the alignment (also known as soft clipping). 

 -a: This feature tells bowtie to report all valid alignments. 

2.3:  Perl Scripts -- Identify Quiescent Regions 

 This section describes the Perl scripts and algorithms that were developed to 

identify the quiescent regions of the Neurospora crassa genome.  
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2.3.1:  Identify Mapped Regions -- Convert CIGAR Scores 

 Bowtie outputs a file in SAM format (Sequence Alignment/Map Format) 

(Langmead and Salzberg 2012).  The SAM format is tab-delimited and begins with a 

header section.  Each line in the header begins with an '@' identifier to differentiate it 

from the alignment section which follows.  The alignment section has different fields that 

give information about the alignment of each read, i.e. reference sequence name, read 

alignment start position, a CIGAR (Compact Idiosyncratic Gapped Alignment Report) 

score, etc. (Li et al. 2009). 

 The fields that provided the most useful information for this project were the read 

start position and the CIGAR score.  A CIGAR string gives information about the 

alignment of each read.  It tells where there were matches, insertions, deletions, clipped 

regions, etc.  An example of a CIGAR string (see Figure 6) would be '8M2I4M1D3M'.  

Each number is followed by an operator (letter).  For a list of operators see Table 2.  In 

the example, the first 8 bases match exactly to the reference then 2 bases are inserted into 

the reference, and so on.  Other examples of read alignments and their corresponding 

CIGAR scores are provided in Figure 6. 

Table 2.  Description of CIGAR Operators from SAM 

Format. 

Op Description 

M Alignment match 

I Insertion to the reference 

D Deletion from the reference 

N Skipped region from the reference 

S Soft clipping 

P Padding (silent deletion from padded reference) 

X Sequence mismatch 
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Figure 6.  Example Output from Bowtie in SAM Format.   

This figure shows an example of multiple read alignments with their corresponding 

output in SAM format.  Column 4 contains the start position of the read.  Column 6 

contains the CIGAR score.  Figure adapted from Li et al 2009. 

 

  A Perl script was written to parse each CIGAR score in order to determine the 

length of each read based on this score.  Once the length was determined, the start and 

end position of each read was calculated.  Knowing the start and end positions for each 

read is necessary to determine which regions of the N. crassa genome (the reference 

sequence) had reads mapped to them. 

 

2.3.2:  Identify Quiescent Regions -- Memory Efficient Algorithm  

 Once the start and end positions for each read have been determined, the next step 

is to identify which regions of the N. crassa genome have reads mapped to them.  One of 

the major challenges of this task is to create an algorithm that can do this in the memory 
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footprint allowable on a personal computer.  Consider that the four data sets have a 

combined total size of over 200 Gb and the largest of the data sets has over 215 million 

lines. 

 This algorithm is described in detail below, but first, let a range be defined as a set 

of start and end points representing some superset of one or more reads. 

I.   Initial set up: 

 Create two arrays; startArray = { }, endArray = { }.  These arrays will mark the 

start and end points of the currently mapped regions and store only the necessary 

values to optimize memory usage.  Throughout this algorithm, transformations 

will be performed on the ranges stored in the arrays to ensure that at any point 

throughout the application, they represent the minimal set, M, of ranges required 

to describe the data set as a whole.  

II.  First line: 

 Parse or extract the start and end positions for the first read. 

 Push these values to the start and end arrays, respectively.  startArray = { s1 }, 

endArray = { e1 }. M = { ( s1, e1 ) }. 

III. Subsequent lines: 

 Parse the next line as a range representing the single read; R = ( rs, re ). 

 Find the index, i, where rs falls in the startArray such that rs ≤ startArray[i].  We 

can use this index, i, to ensure that the ranges stored in the arrays always stay in 

sorted order.  Let A = ( startArray[i - 1], endArray[i - 1] ) = ( as, ae ) and                

B = ( startArray[i], endArray[i]) = (bs, be).  
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 Determine which of the following scenarios apply for the new range, R, and 

perform the associated action.  Each scenario is shown in Figure 7. 

o Scenario 1: Composition.  Composition occurs when R ⊂ A. That is,         

re ≤ ae.  

 Action: Do nothing.  This read is already covered by our arrays. 

That is, R ⊂ M. 

o Scenario 2: Right Extension. When rs ≤ ae and re < bs, a right extension of 

A occurs. 

 Action: Transform A into ( as, re ). 

o Scenario 3: Connection.  When R joins A and B, then A and B form a 

connection by R.  That is, rs ≤ ae and re ≥ bs.  

 Action: If re < be, then transform A into ( as, be ) and delete B, 

adjusting trailing indices accordingly.  If re > be, transform A into   

( as, re ) and delete B.  Ensure re does not extend into any trailing 

ranges of M.  If it does, adjust ranges of M similarly.  

o Scenario 4: Insertion.  If R is mutually exclusive of A and B, then an 

insertion occurs.  This implies that rs > ae and re < bs. 

 Action: Insert R into M at index i, incrementing the existing 

indices ≥ i by 1. 

o Scenario 5: Left Extension.  If rs > ae, re ≥ bs, and re ≤ be, there is a left 

extension of B. 

 Action: Transform B into ( rs, be ).  
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o Scenario 6: Double Extension.  A double extension occurs when rs > ae 

and re > be, which means B needs to be extended to the right and the left. 

 Action: Transform B into ( rs, re ).  Check to make sure re does not 

extend into any trailing ranges of M.  If it does, adjust ranges of M 

accordingly. 

IV.  Identify quiescent regions: 

 The quiescent regions can then be described as the set Q, where Q is the inverse 

image of M. 

V.   Extract desired results: 

 Determine 35 largest quiescent regions from each data set for further analysis. 

 

  

Figure 7.  Scenarios for Memory Efficient Algorithm. 

For any given index, i, one of six scenarios arises that the algorithm has to 

consider.  Depending on the scenario, the algorithm has to decide how to alter the 

current set of ranges, M, in order to account for the newest read.  
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2.3.3:  Identify Quiescent Regions -- Speed Efficient Algorithm 

 While the algorithm described above is memory efficient since it only keeps the 

minimum information necessary to identify the locations of the quiescent regions, it has a 

very slow execution speed and the logic inherent in the algorithm is highly complex and 

therefore prone to human error.  Such slow speeds are most likely the result of the 

algorithm needing to find an index for each read to ensure the arrays stay in sorted order.  

This is a slow process since the size of the array grows as more information is processed.  

Also, every time a range is added or subtracted all the array indices must be adjusted up 

or down, respectively.  This accounts for most of the CPU time that makes it so slow. 

 An additional algorithm was developed to try and fix these problems.  The new 

method assigns each base in every contig or contiguous DNA segment a boolean value.  

The boolean value is 0 if the base has not been accounted for by a read and 1 if there has 

been at least one read aligned to that base.  Each of these values are stored in an array 

(baseArray) can be used to determine where each of the quiescent regions are located.  

This algorithm is simple enough to describe using pseudocode (below).  
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# Determine Quiescent Regions 

 

baseArray = [0 ,... ,0] 

 

Foreach( read in file )  

 For ( i from start pos to end pos )  

   If ( baseArray[ i ] equals 0 ) 

    set baseArray[ i ] to 1 

 

# Print Out Quiescent Regions 

 

test = -1  

 

Foreach( element in baseArray )  

 

 If ( test does not equal -1 ) 

  If ( baseArray[ i ] equals 1 ) { 

   set endQ to i - 1 

   print out "startQ endQ" 

                                   set test to -1 

  } 

  go to next element in baseArray 

  

 

 If ( test equals -1 and baseArray[ i ] equals 0 )  

  set startQ to i 

  set test to 1 
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CHAPTER III 

RESULTS 

3.1:  Chromosome Map 

 After all the quiescent regions had been identified, a chromosome map was 

created to see where they are located and how they are distributed throughout the 

genome.  Figure 8 shows this map.  The map was created by combining data sets 1005 

and F201.  A Perl script was written to determine which regions were distinct to each of 

the data sets and which were common between the two.  Each of the colored regions 

represents a quiescent region, where red represents data set 1005 only, green represents 

data set F201 only, and blue represents quiescent regions that the two data sets share.  We 

found that approximately 20.45% (average of 1005 and F201) of the genome is 

transcriptionally quiescent. 

 Since the large RNA data sets (1005 and F201) have theoretically identical 

genomes with the exception of a single point mutation, it is not surprising that we see lots 

of overlapping regions (shown in Figure 8 in blue).  Regions that the data sets do not 

share appear to be smaller in size.  These differences are possibly the result of errors 

during the read sequencing.  In general, the quiescent regions do not appear to follow a 

general pattern, but they do seem to be slightly more common near the ends of the 

chromosomes.  
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3.2:  Analysis of Largest Quiescent Regions 

 BLAST (Basic local alignment search tool) compares a query sequence to a 

database of other previously published sequences to give insight about its function  or 

relationship to other sequences (Altschul et al. 1990).  For each data set, the largest 35 

Figure 8.  Chromosome Map for Combine Data Sets 1005 and F201.   

The locations of the quiescent regions within the genome for the combined large RNA 

data sets (1005 and F201).  Each colored region represents a quiescent region, where red 

represents data set 1005 only, green represents data set F201 only, and blue represents 

quiescent regions that the two data sets share.  It should be noted that small regions will 

not show up due to the pixel limitations of the screen.  Similarly, not all continuously 

solid colored regions are quiescent throughout.  There may be small areas of 

transcription hidden within them.  The program used for drawing the chromosome map 

was written in C++ by Dan Souther. 
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regions were BLASTed against NCBI's (National Center for Biotechnology Information) 

database to help speculate why these regions are transcriptionally quiescent. 

 A BLAST analysis reveals what is among the largest quiescent region in the N. 

crassa genome.  The most common top hits were 'pol-like protein',  ' hypothetical protein 

CHGG_08065', and 'hypothetical protein CHGG_10614'.  These were the hits chosen to 

investigate further. 

 The 'pol-like protein' is related to a LINE-like retrotransposon in N. crassa called 

Tad (Cambareri et al. 1994).  This transposon is active in N. crassa and capable of 

internuclear transfer.  Among the most common classes, LINE-like transposable elements 

frequently appear in complex eukaryotes.  Tad is one of the few transposable elements 

found to be active in the N. crassa genome (Cambareri et al. 1994).   

 Sequences that found hypothetical protein CHGG_08065 and hypothetical protein 

CHGG_10614 aligned to transposable elements found in other fungal and non-fungal 

genomes.  In many cases these hypothetical proteins are thought to be reverse 

transcriptases responsible for the replication of retrotransposons and other mobile 

elements (Pérez-Alegre et al. 2005, DeMarco et al 2004, Kaneko et al. 2000).  While they 

appear to be inactive in N. crassa, in some genomes these elements have high 

transcriptional activities (DeMarco et al. 2004).  

 By looking at the BLAST tables (Table 4 and 5), we can see that we have in fact 

indentified the centromeres on each chromosome as quiescent.  Each of the centromere 

locations has been classified by Smith et al. 2011.  In the BLAST tables for the large 

RNA data sets, values marked with a star (*) indicated regions that fall within the known 
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centromere positions given by Table 3.  Each chromosome's centromere was represented 

in the largest quiescent regions, except chromosome four and seven.  It should be noted 

that chromosome four has the smallest sized centromere, which is possibly why it did not 

show up among the largest of the quiescent regions, but we still see it on the chromosome 

map.  

Table 3.  Centromere Locations.   

Locations of each of the centromeres on each of the seven chromosomes found in N. 

crassa (Smith et al. 2011). 

Chromosome Total Length 
Centromere 

Position 

Centromere 

Size 

Identified in Top 

Quiescent Regions 

I 9,798,893 
3,736,000-

3,969,000 
233,400 Yes 

II 4,478,683 
1,105,000-

1,346,000 
240,800 Yes 

III 5,274,802 
705,000-

951,000 
246,000 Yes 

IV 6,000,761 
894,000-

1,068,000 
174,000 No 

V 643,246 
932,000-

1,209,000 
276,800 Yes 

VI 4,218,384 
2,811,000-

3,060,000 
249,000 Yes 

VII 4,255,303 
1,801,000-

2,089,000 
287,400 No 
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Table 4.  Top BLAST Results for Data Set 1005.   

The top BLAST result from the 35 longest quiescent regions in the N. crassa 

genome according to data set 1005. 
Contig Start End Length Top BLAST Result E Value Accession Number 

12.6* 2843045 2913156 70112 pol-like protein 0 AAA21792.1 

12.2* 1288997 1340422 51426 pol-like protein 9E-179 AAA21792.1 

12.1 877947 924534 46588 hypothetical protein CHGG_10614 2E-110 XP_001228541.1 

12.3 2192924 2236543 43620 polymerase 2E-170 AAK01619.1 

12.10 60458 98020 37563 polymerase 3E-146 AAK01619.1 

12.1 2295247 2331212 35966 hypothetical protein CHGG_10614 0 XP_001228541.1 

12.2 3663764 3699364 35601 gag-pol polyprotein 5E-128 ACD86393.1 

12.4 2345634 2378979 33346 hypothetical protein SMAC_09651 1E-102 XP_003342462.1 

12.5 581326 614512 33187 hypothetical protein CHGG_00235 2E-82 XP_001219456.1 

12.5* 1033170 1066033 32864 pol-like protein  9E-160 AAA21792.1 

12.3* 743348 773864 30517 pol-like protein  0 AAA21792.1 

12.2 2123504 2153803 30300 gag-pol polyprotein 2E-90 ACD86393.1 

12.5 4442662 4472366 29705 hypothetical protein CHGG_10614 0 XP_001228541.1 

12.2* 1094120 1123588 29469 hypothetical protein CHGG_10614 0 XP_001228541.1 

12.1 6385143 6414537 29395 hypothetical protein CHGG_08065  6E-148 XP_001225721.1 

12.1 9481922 9511253 29332 hypothetical protein CHGG_08065  4E-106 XP_001225721.1 

12.6 2992687 3021711 29025 pol-like protein  0 AAA21792.1 

12.5 5659952 5688415 28464 hypothetical protein CHGG_10614 1E-153 XP_001228541.1 

12.6 2787934 2816281 28348 pol-like protein 0 AAA21792.1 

12.2* 1164034 1192055 28022 pol-like protein 0 AAA21792.1 

12.6 4181257 4209127 27871 hypothetical protein CHGG_10614 4E-164 XP_001228541.1 

12.4 5218762 5246454 27693 hypothetical protein CHGG_10614 0 XP_001228541.1 

12.4 3055027 3082226 27200 hypothetical protein CHGG_08065  0 XP_001225721.1 

12.10 98071 124249 26179 hypothetical protein SMAC_09594 7E-100 XP_003343904.1 

12.1* 3792820 3818921 26102 hypothetical protein, variant 0 ESA42110.1 

12.4 3743730 3769455 25726 hypothetical protein CHGG_08792  3E-63 XP_001226719.1 

12.3 350934 376626 25693 hypothetical protein SMAC_09651 6E-81 XP_003342462.1 

12.3* 932157 957687 25531 pol-like protein 0 AAA21792.1 

12.5 2594135 2619307 25173 polymerase 0 AAK01619.1 

12.7 3678169 3703281 25113 hypothetical protein NEUTE2DRAFT_169926 5E-51 EGZ68151.1 

12.2 111618 136717 25100 hypothetical protein CHGG_10614 1E-138 XP_001228541.1 

12.7 3406221 3431178 24958 hypothetical protein SMAC_09594 2E-143 XP_003343904.1 

12.1 4169861 4194781 24921 hypothetical protein CHGG_10614 9E-117 XP_001228541.1 

12.4 1126474 1150552 24079 hypothetical protein CHGG_10614 0 XP_001228541.1 

12.1 5920134 5944188 24055 hypothetical protein NEUTE2DRAFT_169926 2E-32 EGZ68151.1 
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Table 5.  Top BLAST Results for Data Set F201.   

The top BLAST result from the 35 longest quiescent regions in the N. crassa genome 

according to data set F201. 
Contig Start End Length Top BLAST Result E Value Accession Number 

12.6* 2835356 2866221 30866 pol-like protein 7E-163 AAA21792.1  

12.10 80009 109358 29350 putative retrotransposon nucleocapsid protein 1.00E-114 EMR88181.1 

12.4 1881482 1910463 28982 hypothetical protein CHGG_10614  0 XP_001228541.1 

12.4 5218614 5246451 27838 hypothetical protein CHGG_10614  0 XP_001228541.1 

12.4 5969351 5996397 27047 hypothetical protein CHGG_08288  2E-44 XP_001225944.1 

12.7 2248012 2274723 26712 hypothetical protein SMAC_09594 5E-161 XP_003343904.1 

12.5* 1021689 1047668 25980 hypothetical protein, variant 1.00E-168 ESA42110.1 

12.4 3743737 3769558 25822 hypothetical protein CHGG_08792 3.00E-63 XP_001226719.1 

12.1 6428798 6454471 25674 polymerase 7.00E-164 AAK01619.1 

12.1 9481998 9507656 25659 hypothetical protein CHGG_08065 4.00E-106 XP_001225721.1 

12.2 2118897 2143472 24576 hypothetical protein CHGG_02381 2.00E-64 XP_001228897.1 

12.1 5920169 5944131 23963 hypothetical protein NEUTE2DRAFT_169926 2.00E-32 EGZ68151.1 

12.5 5659960 5683728 23769 hypothetical protein CHGG_10614  9E-154 XP_001228541.1 

12.1* 3792803 3816294 23492 hypothetical protein, variant 0 ESA42110.1 

12.1 6385143 6408213 23071 hypothetical protein CHGG_08065 4.00E-148 XP_001225721.1 

12.5 591727 614523 22797 hypothetical protein CHGG_00235 1.00E-82 XP_001219456.1 

12.7 2142674 2165318 22645 hypothetical protein SMAC_09651  4E-90 XP_003342462.1 

12.7 2216640 2238710 22071 hypothetical protein SMAC_09651  2E-116 XP_003342462.1 

12.3 1252653 1274085 21433 hypothetical protein NEUTE1DRAFT_112574 1.00E-18 EGO54005.1 

12.1 9777606 9798700 21095 hypothetical protein SMAC_09594 3.00E-90 XP_003343904.1 

12.3 4074450 4095395 20946 hypothetical protein NCU10906 0.009 XP_001728026.1 

12.2* 1259337 1280022 20686 hypothetical protein CHGG_08393 2.00E-56 XP_001226320.1 

12.1 8227340 8247725 20386 hypothetical protein NCU04703 3.00E-36 EAA30998.3 

12.1 904503 924640 20138 hypothetical protein CHGG_08065 2.00E-99 XP_001225721.1 

12.3 4256738 4276599 19862 hypothetical protein NCU04703 6.00E-35 EAA30998.3 

12.7 1324187 1344028 19842 hypothetical protein CHGG_08065 7.00E-104 XP_001225721.1 

12.5 4452868 4472371 19504 hypothetical protein CHGG_10614 0 XP_001228541.1 

12.3 1702684 1722126 19443 hypothetical protein CHGG_10614 0 XP_001228541.1 

12.5 5897059 5916495 19437 hypothetical protein CHGG_10614 9.00E-169 XP_001228541.1 

12.1 9736539 9755560 19022 gag-pol polyprotein 1.00E-70 ACD86393.1 

12.1 4075895 4094838 18944 gag-pol polyprotein 2.00E-57 ACD86393.1 

12.2 3904890 3923740 18851 hypothetical protein SMAC_00575 1.00E-41 XP_003352028.1 

12.7 3678160 3696954 18795 hypothetical protein NEUTE2DRAFT_169926 4.00E-51 EGZ68151.1 

12.1 6299389 6318162 18774 hypothetical protein NEUTE1DRAFT_98304 1.00E-41 EGO61164.1 

12.4 4641201 4659543 18343 hypothetical protein NEUTE1DRAFT_112574  3.00E-47 EGO54005.1 
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Table 6.  Top BLAST Results for Data Set SRR751454.   

The top BLAST result from the 35 longest quiescent regions in the N. crassa 

genome according to data set SRR751454. 
Contig Start End Length Top BLAST Result E Value Accession Number 

12.7 1117525 1120940 3416 hypothetical protein NC02593 0.00008 EAA35760.2 

12.1 4187715 4190235 2521 hypothetical protein CHGG_08065  5E-11 XP_001225721.1 

12.7 1271256 1273678 2423 No significant similarity found 

  12.7 906720 909056 2337 hypothetical protein NCU16630 2E-16 ESA43159.1 

12.5 192452 194581 2130 No significant similarity found 

  12.1 7424339 7426439 2101 No significant similarity found 

  12.1 922438 924505 2068 No significant similarity found 

  12.1 3698085 3700141 2057 hypothetical protein NCU05738 0.0002 XP_962894.1 

12.4 1929397 1931453 2057 No significant similarity found 
  12.3 2290744 2292755 2012 hypothetical protein CHGG_04034 4E-25 XP_001223248.1 

12.1 8285026 8286976 1951 hypothetical protein CHGG_04032 0.0006 XP_001223246.1 

12.3 1703106 1704988 1883 No significant similarity found 

  12.4 2026841 2028719 1879 Uncharacterized protein FFUJ 02954 3E-31 CCT65963.1 

12.3 434434 436308 1875 No significant similarity found 

  12.5 5709814 5711657 1844 Uncharacterized protein FFUJ 02954 5E-28 CCT65963.1 

12.7 1281123 1282924 1802 No significant similarity found 
  12.4 440594 442369 1776 No significant similarity found 

  12.5 178415 180140 1726 No significant similarity found 

  12.1 3482653 3484370 1718 hypothetical protein CHGG_10614 1E-12 XP_001228541.1 

12.2 2906890 2908598 1709 polymerase 1E-32 AAK01619.1 

12.6 3532761 3534463 1703 No significant similarity found 

  12.1 5539518 5541219 1702 No significant similarity found 

  12.7 3678401 3680101 1701 No significant similarity found 

  12.4 4253084 4254763 1680 No significant similarity found 
  12.5 2622180 2623859 1680 No significant similarity found 

  12.6 1988691 1990317 1627 predicted protein 1E-25 XP_001219297.1 

12.5 4245440 4247060 1621 No significant similarity found 

  12.6 3238617 3240230 1614 hypothetical protein CHGG 00074 0.0004 XP 001219295.1 

12.1 5956005 5957600 1596 hypothetical protein FOXB_12797 1E-15 EGU76692.1 

12.5 5234556 5236150 1595 No significant similarity found 

  12.6 2385076 2386660 1585 hypothetical protein FOC4 g10013526 5E-11 EMT63306.1 

12.7 1335604 1337177 1574 hypothetical protein CHGG 10614 7E-16 XP 001228541.1 

12.1 3747988 3749553 1566 hypothetical protein FOXB_04429 3E-12 EGU85056.1 

12.1 890965 892523 1559 hypothetical protein CHGG_08065  8E-16 XP_001225721.1 

12.1 3063531 3065087 1557 hypothetical protein FOC4_g10004840 2E-19 EMT68755.1 
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Table 7.  Top BLAST Results for Data Set SRR755946.   

The top BLAST result from the 35 longest quiescent regions in the N. crassa genome 

according to data set SRR755946 
Contig Start End Length Top BLAST Result E Value Accession Number 

12.5 192381 194584 2204 No significant similarity found 
  12.1 3698115 3700139 2025 hypothetical protein NCU05738 2.00E-04 XP_962894.1 

12.5 2204995 2206976 1982 hypothetical protein FOXB_16638 0.14 EGU72852.1 

12.4 446096 447980 1885 No significant similarity found 

  12.5 6109704 6111539 1836 hypothetical protein PDIG_52550 0.031 EKV11112.1 

12.5 5232425 5234253 1829 hypothetical protein CHGG_10614 9.00E-10 XP_001228541.1 

12.7 1271893 1273679 1787 No significant similarity found 

  12.7 2153900 2155628 1729 retrovirus polyprotein, putative 1E-16 XP_002145610.1 

12.7 2204108 2205827 1720 No significant similarity found 
  12.1 5395490 5397196 1707 predicted protein 4.00E-42 XP_001219297.1 

12.7 3700796 3702409 1614 No significant similarity found 

  12.7 1119373 1120954 1582 No significant similarity found 

  12.4 4482424 4483910 1487 No significant similarity found 

  12.1 2384366 2385775 1410 No significant similarity found 

  12.6 2827499 2828904 1406 No significant similarity found 

  12.3 2882047 2883438 1392 hypothetical protein CHGG_03501 4.00E-08 XP_001230017.1 

12.6 1905196 1906586 1391 hypothetical protein CHGG_00074 7.00E-07 XP_001219295.1 

12.4 4277774 4279158 1385 No significant similarity found 

  12.7 1269731 1271115 1385 No significant similarity found 

  12.1 72579 73956 1378 No significant similarity found 

  12.7 1017788 1019158 1371 hypothetical protein SMAC_09594 4.00E-67 XP_003343904.1 

12.7 3679627 3680991 1365 No significant similarity found 

  12.4 1910907 1912268 1362 No significant similarity found 

  12.7 1281654 1283003 1350 No significant similarity found 
  12.5 178860 180191 1332 No significant similarity found 

  12.5 2618058 2619383 1326 No significant similarity found 

  12.4 4769367 4770677 1311 hypothetical protein CHGG_00074 3.00E-11 XP_001219295.1 

12.5 587701 589008 1308 No significant similarity found 

  12.4 4254496 4255797 1302 No significant similarity found 

  12.1 5956094 5957394 1301 hypothetical protein FOXB_12797 6.00E-16 EGU76692.1 

12.3 1703527 1704821 1295 No significant similarity found 

  12.6 3411349 3412589 1241 hypothetical protein NEUTE2DRAFT_114192 2.00E-27 EGZ70959.1 

12.2 391164 392399 1236 No significant similarity found 

  12.6 2819151 2820382 1232 hypothetical protein NCU04255 0.26 XP_961246.1 

12.4 451143 452369 1227 No significant similarity found 
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3.3: Quiescent Region Summary Statistics 

 Summary statistics (see Table 8) about the size of the quiescent regions for each 

of the data sets were obtained using R.  75% of the quiescent region lengths fall below 

130 given by the third quartile.  Hence, most of the quiescent regions are very small, so 

the data on the size of the quiescent regions is highly right skewed.  A similar situation is 

true for the small RNA data sets. 

Table 8.  Summary Statistics: Size of Quiescent Regions. 

Summary 

Statistics 

Data Set 

1005 F201 SRR751454 SRR755946 

Min 1 1 1 1 

Q1 20 20 10 8 

Median 52 53 25 21 

Q3 131 135 55 46 

Max 70110 46520 3416 2204 

Mean 366.1 344.4 46.24 37.91 

SD 1959.793 1589.285 72.590 57.800 

     

 A population proportion test was performed to check if there are differences in 

GC content in the quiescent regions (p1)  is significantly different than what is observed 

in the whole genome (p).  Once the locations of the quiescent regions were determined, a 

Perl script was written to calculate the A/T/G/C proportions.  This test can be done using 

a single population proportion test with the following null and alternative hypotheses:  

H0: p1 = p 

HA: p1 ≠ p 
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with test statistic, 

𝑧 =  
𝑝1 − 𝑝

 𝑝(1 − 𝑝)
𝑛

 

 Four tests were performed at significance level α = 0.05.  For all four tests, we 

found a significant test statistic to reject the null hypothesis that the quiescent regions 

have the same GC content as the whole genome (P < 0.0001 for all tests).  Results for 

these tests are summarized in Table 9. 

Table 9.  Summary of Results from Hypothesis Test for Differences in GC Content.   

This table compares GC and AT content in all quiescent regions from each data set 

to the whole genome proportions.  The resulting p-values make it clear that all data 

sets had significantly different proportions of AT and GC than the whole genome.  

Significance level used for these tests was α = 0.05. 

Summary Statistics 

Data Sets 

Whole 

Genome (p) 

1005 

(𝑝 1) 

F201 

(𝑝 1) 

SRR751454 

(𝑝 1) 

SRR755946 

(𝑝 1) 

% GC 48.25% 33.12% 33.13% 45.19% 44.67% 

% AT 51.75% 66.88% 66.87% 54.81% 55.33% 

p-Value for GC 

Differences  
<.0001 <.0001 <.0001 <.0001 

p-Value for AT 

Differences  
<.0001 <.0001 <.0001 <.0001 

Critical Values, z.025  
±1.96 ±1.96 ±1.96 ±1.96 

      

3.4: Analysis of Algorithms 

 Two scripts for determining the locations of the quiescent regions were written. 

One was designed to be memory efficient, since we are dealing with whole genome sized 

data, while the other one was designed to be simpler to understand and more time 

efficient. 
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 Both of the scripts were profiled to reveal exactly where their strengths and 

weakness were.  Two memory tests were performed, one with a medium sized data set 

and another with a small data set.  The first test used chromosome 7 from data set 1005, 

which contained approximately 18 million lines.  During this test, the memory efficient 

algorithm used 9,962 K of memory, whereas the speed efficient algorithm used almost 

15X that (152,980 K).  The second test used a much smaller data set from contig 9 of data 

set SRR751454, which contained approximately one million lines.  The memory efficient 

algorithm peaked at 6,652 K executing 920,262,957 statements, whereas the speed 

efficient algorithm peaked at 10,628 K and only executed 9,990,142 statements.  We can 

see that as the size of the file gets smaller the difference between the memory required 

decreases. 

 We also found that this memory efficiency came with a high cost of speed. Speed 

efficiency was determined using a Perl profiling module called NYTProf.  This module 

gives the total time it takes for a Perl script to run, and it also breaks down the time spent 

in each subroutine of the code.  Profiling with the data from chromosome 7 did not finish 

due to hard drive limitations. This module stores information about the algorithm's profile 

on a per-line basis, which requires a lot of space. 

Table 10.  Memory Efficient Algorithm Times 

by Subroutine. 

Calls Exclusive Time Subroutine 

1383871 633s findIndex 

1383873 1.93s readline  

5844 1310ms insertNewLine 

10150 78.0ms checkOverlap 

1 15.6ms writeOutput 
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 Using the smaller data set (contig 9 from data set SRR751454) the memory 

efficient program took 30.26 minutes to run, whereas the speed efficient algorithm only 

took 50.5 seconds.  This time difference increases as the data size set gets larger.  In the 

speed efficient algorithm, almost all of the time was accounted for in reading in and 

writing out lines.  This was not case in the memory efficient algorithm.  Table 10 shows a 

breakdown of each of the subroutine calls and the amount of time spent in each one for 

the smaller data set (contig 9 from data set SRR751454).  Now, we can see that finding 

the index for each of the reads is what slowed the algorithm down.  Also, when we had to 

insert a new line, each of the indices for the currently stored set needed to all be adjusted 

accordingly to make sure the arrays stayed in sorted order. 

Table 11.  Time and Memory Efficiency of Algorithms.   

Description of time and memory efficiency in big O notation of the algorithms that 

were written to determine quiescent regions.  

Algorithm Time Memory 

Memory Efficient 
O(sizeArray * 

numAdjustments) = O(n^3) 

O(min(numRanges to represent 

non-QRegions)) 

Time Efficient 
O(numReads * sizeRead) = 

O(n^2) 
O(lengthContig) 

 The time and memory efficiency of both algorithms is described in Table 11.  

Both algorithms were polynomial in terms of time.  However, the time efficient algorithm 

is more efficient since O(n^2) < O(n^3).  The memory efficient algorithm is more 

memory efficient since min(numRanges to represent non-QRegions) << lengthContig.
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CHAPTER IV 

DISCUSSION 

4.1:  Hypotheses About Transcriptional Quiescence 

 This section is intended to discuss possible hypotheses about why these regions 

are transcriptionally quiescent. 

4.1.1:  Evolutionary Origins of the Quiescent Regions 

 In general, many of the largest quiescent regions contained transposable elements 

or relics of transposable elements many times within their top BLAST results.  This trend  

has been observed in several other works (Lewis et al. 2009, Selker et al. 2003, Rountree 

2010).  In N. crassa, RIP acts as a genomic defense mechanism by identifying duplicated 

sequences and introducing mutations within them.  Locations where mutations have 

occurred are highly susceptible to silencing via methylation.  Therefore, it is not 

surprising that we see mutated transposable elements within the quiescent regions of the 

genome (Galagan and Selker 2004). 

 Centromeric regions, like other transcriptionally quiescent regions, have been 

found to be largely comprised of duplicated transposable elements that have been heavily 

mutated by RIP (Smith et al. 2011).  Additionally, some of these centromeric regions 

may contain predicted genes (Smith  et al. 2011).  This would explain why we do not see 
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quiescent regions the entire size of the centromeres, and in some cases (chromosomes 

four and seven) they do not even show up as one of the largest regions.  

4.1.2: GC/AT Content  

 A process called RIP (repeat induced point mutation) acts on duplicated 

sequences within DNA, such as transposable elements that insert themselves in the 

genome at multiple locations, by inducing C-to-T and G-to-A mutations (Kelly & 

Aramayo 2007, Freitag et al 2002, Hood 2005).  Such mutations make these sequences 

highly susceptible to methylation, which causes silencing (Galagan and Selker 2004). 

This process protects the native genome against foreign invaders (Singer et al. 1995).  

 One hypothesis is that these regions are quiescent because RIP changes GC/AT 

content.  We tested this hypothesis statistically to see if GC (or AT) content in the 

quiescent regions (p1) is significantly different than what is observed in the whole 

genome (p).  We performed this test at significance level α = 0.05 for each of the data 

sets.  There was a significant test statistic to reject the null hypothesis that the quiescent 

regions have the same GC content as the whole genome (P < 0.0001 for all tests).   

 Therefore, since the quiescent regions have statistically significant differences in 

GC/AT content than the whole genome, it is reasonable to hypothesize that the quiescent 

regions are highly mutated by RIP in N. crassa.  This suggests that these regions are 

relics of transposable elements that have been heavily mutated by RIP and are now 

inactive. 
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4.2:  Memory Efficiency vs. Speed Efficiency 

 Two algorithms were written to determine which regions of the N. crassa genome 

are quiescent.  There are pros and cons to each one.  The first one was written strictly to 

be memory efficient, which I had assumed would be a major issue given that we are 

dealing with genome sized data.  Unfortunately, the memory efficiency came at the cost 

of speed.  Running this script for all four data sets took two computers almost two weeks 

to complete the analysis.  Such time requirements would decrease the burden of repeating 

the analysis with additional data sets.  This time inefficiency was found to be caused by a 

few different things.  Most notably, for each read in the input file the algorithm had to 

search for the index where that read belonged so that it could always remain in sorted 

order.  Additionally, each time an element was added or subtracted from the array all of 

the indices following it needed to be adjusted.   

 A simpler algorithm was written to solve the time requirement issue.  This that 

was less memory efficient, but faster and less prone to logic errors in writing the scripts.  

This algorithm was so time efficient that most of the total time was spent reading in and 

writing out lines, as opposed to processing the information.  While this algorithm had a 

larger memory footprint, it was not so large as to prevent the program from running.  

 Therefore, when deciding which algorithm to use it is really only important to 

consider the hardware being used.  I would recommend using the memory efficient 

algorithm when memory is an issue.  Consider that the Neurospora genome contains 40 

million bases.  To run the whole genome at once would require approximately 5.35 GB 

of memory.  This is possible on a relatively modern computer.  However, this may not be 
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realistic with the human genome, which contains over 3 billion bases.  This translates to 

approximately 400 GB of memory.   

 One way to get around possible memory issues would be to split the genome into 

smaller pieces before performing the analysis.  A logical way to do this would be to 

divide the data set into each of the contigs.  This would make using a typical computer 

more plausible if we could decrease the memory footprint sufficiently.  Another 

possibility would be to alter the memory efficient algorithm improve its speed. As it is 

now, there are several places where this could happen.  For instance, simply changing 

how it checks for overlapping data could reduce its speed down to O(n^2). 
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CHAPTER V 

CONCLUSIONS 

5.1:  Final Thoughts 

 Identifying the quiescent regions of the genome is the first step towards being 

able to distinguish theoretical aRNA from other RNA molecules.  Since there are no 

other RNA transcripts present in these regions, if we see RNA molecules when we unpair 

them for MSUD, it's likely that they will in fact be aRNA.  This is important for the study 

of MSUD proteins and possibly those proteins involved in meiosis that are required for 

identifying chromosomes as homologous pairs.  

 Based on an analysis of the quiescent regions, we can speculate that these regions 

appear to be relics of transposable elements that are highly mutated by RIP.  We also 

found that there was a higher AT than GC content in the quiescent regions than what was 

present in the whole genome.  This also suggests that RIP is at work since it causes C-to-

T and G-to-A mutations.  

5.2:  Future Research 

 Based on results obtained from the current work, a natural extension of this is to 

ask how similar the quiescent regions are in terms of structure and methylation patterns.  

Preliminary work by Jamieson et al. (2013) on histone H3 lysine methylation 
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(H3K27me3) shows that H3K27me3 covers 6.8% of the Neurospora genome.  All of 

these regions were found to be transcriptionally silent (Jamieson et al. 2013).  Since we 

have found all of the transcriptionally quiescent regions, it would be appropriate to see if 

they all follow a similar pattern.  

 Additionally, theoretically the two large RNA data sets differ by only one single 

point mutation that causes the process of RIP to be active.  It would be interesting to 

compare gene expression levels throughout the genome.  Regions that differ most may be 

involved in 'ripping' duplicated regions of the genome.  
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APPENDIX 

 

PERL SCRIPTS  

 

Convert CIGAR Scores to Lengths 
 

#!/perl/bin/perl 

 

use strict; 

 

# CONVERT CIGAR SCORES 

my $lines = ''; 

my @columns = ''; 

 

open(IN, '1005_to_combo_9MAY13_a_with_after_local_a.sam') or die "Could 

not open file\n"; 

open(OUT, 

">1005_to_combo_9MAY13_a_with_after_local_a_convertedScores.sam"); 

 

while($lines = <IN>) { 

    chomp $lines; 

    if ( $lines !~ m\^@\){ 

        @columns = split(/\t/, $lines); 

        if ( $columns[3] !~ m\^0$\){ 

            my $cigar = "$columns[5]"; 

            my @nums = ''; 

            my @chars = ''; 

 

            # parse $cigar 

            my @nums = $cigar =~ /(\d+)/g; #extract integers 

            my @chars = $cigar =~ /(\D+)/g; #extract non-digit chars 

 

            # find indices for each cigar operation 

            my @M = grep { $chars[$_] =~ /M/ } 0..$#chars;  

  #locate index of M in array @chars 

            my @I = grep { $chars[$_] =~ /I/ } 0..$#chars; 

            my @D = grep { $chars[$_] =~ /D/ } 0..$#chars; 

            my @N = grep { $chars[$_] =~ /N/ } 0..$#chars; 

            my @S = grep { $chars[$_] =~ /S/ } 0..$#chars; 

            my @H = grep { $chars[$_] =~ /H/ } 0..$#chars; 

            my @P = grep { $chars[$_] =~ /P/ } 0..$#chars; 

            my @X = grep { $chars[$_] =~ /X/ } 0..$#chars; 

 

 

            # get length for each cigar operation 

 

            my $M_length = 0; 

            my $I_length = 0;
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            my $D_length = 0; 

            my $N_length = 0; 

            my $S_length = 0; 

            my $H_length = 0; 

            my $P_length = 0; 

            my $X_length = 0; 

 

            for (@M) { 

                $M_length += $nums[$_] 

            } 

 

            for (@I) { 

                $I_length += $nums[$_] 

            } 

 

            for (@D) { 

                $D_length += $nums[$_] 

            } 

 

            for (@N) { 

                $N_length += $nums[$_] 

            } 

 

            for (@S) { 

                $S_length += $nums[$_] 

            } 

 

            for (@H) { 

                $H_length += $nums[$_] 

            } 

 

            for (@P) { 

                $P_length += $nums[$_] 

            } 

 

            for (@X) { 

                $X_length += $nums[$_] 

            } 

 

            # determine total length 

            my $ref_len; 

            my $end_pos; 

            my $start_pos; 

 

            $start_pos = $columns[3]; 

            $ref_len = $M_length 

                      + 0*$I_length  

    # I is an insertion into the ref seq. 

                      + $D_length 

                      + $N_length 

                      + 0*$S_length  

    # dont include soft clipping 

                      + 0*$H_length  

    # dont include hard clipping. 
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    #There shouldn't be any anyway. 

                      + $P_length 

                      + $X_length; 

                       

            $end_pos = $start_pos + $ref_len - 1; 

            print OUT "$columns[2]\t$start_pos\t$end_pos\n"; 

        } 

    } 

} 

 

close IN; 

close OUT; 

 

Sort By Contig 

 
#!/perl/bin/perl 

 

use strict; 

 

my $lines; 

my @columns; 

 

for(my $i = 1; $i < 21; $i = $i + 1) { 

 

    open(IN, '1005_to_combo_9MAY13_a_with_after_local_a_convertedScores 

    .sam') or die "Could not open file\n"; 

    open(OUT, ">Sorted\\1005_to_combo_sorted_contig$i.txt"); 

     

    while($lines = <IN>) { 

        chomp $lines; 

        @columns = split(/\t/, $lines); 

        if ($columns[0] =~ m/Supercontig_12.$i$/) { 

            print OUT "$columns[0]\t$columns[1]\t$columns[2]\n"; 

        } 

    } 

} 

 

Speed Efficient Algorithm 
#!/perl/bin/perl 

 

use strict; 

 

my @bases; 

my $contig; 

my $dataSetName = "1005"; 

 

# ========================================================= 

# -==================  Main Method   =====================- 

# ========================================================= 

my @files = <input/*>; #get all the items in the directory 

foreach my $file (@files) { 

 

    # only pay attention to files 

    if (-f $file) { 

         



49 

        # initialize variables 

        open(IN, $file) or die "Could not open file\n"; 

        my $lineNum = 0; 

        print "\n\nProcessing file: $file\n"; 

         

        # for each line in the file 

        while (my $line = <IN>) { 

            $lineNum++; 

     

            chomp $line; 

            my @columns = split(/\t/, $line); 

             

            # cache the contig name for later 

            if ($lineNum == 1) { 

                $contig = $columns[0]; 

            } 

             

            my $start = $columns[1]; 

            my $end = $columns[2]; 

             

            for (my $i = $start; $i <= $end; $i++) { 

                 

                # count expression 

                $bases[$i] = ($bases[$i]) ? $bases[$i] + 1 : 1; 

                 

            } 

        } 

         

        close IN; 

         

        # Write results 

        print "\nWriting Output... \n"; 

        $bases[0] = 1;  

   # set index 0 as true so we don't  

   # pick it up as a Q-region in the output 

        outputQuiescentRegions(); 

        print "\nDone.\n"; 

         

        # Reset 

        @bases = (); 

    } 

} 

 

# ========================================================= 

# -==================  SubRoutines   =====================- 

# ========================================================= 

sub outputQuiescentRegions() { 

     

    open(OUT, ">qRegions/$dataSetName"."_to_combo_quiescent_regions_ 

    $contig.txt"); 

     

    # Identify Quiescent Regions 

    my %contig_lengths = ("Supercontig_12.1", 9798893, 

                          "Supercontig_12.2", 4478683, 

                          "Supercontig_12.3", 5274802, 
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                          "Supercontig_12.4", 6000761, 

                          "Supercontig_12.5", 6436246, 

                          "Supercontig_12.6", 4218384, 

                          "Supercontig_12.7", 4255303, 

                          "Supercontig_12.8", 192308, 

                          "Supercontig_12.9", 142473, 

                          "Supercontig_12.10", 125404, 

                          "Supercontig_12.11", 31696, 

                          "Supercontig_12.12", 19714, 

                          "Supercontig_12.13", 13515, 

                          "Supercontig_12.14", 11565, 

                          "Supercontig_12.15", 9397, 

                          "Supercontig_12.16", 8983, 

                          "Supercontig_12.17", 6701, 

                          "Supercontig_12.18", 6309, 

                          "Supercontig_12.19", 4755, 

                          "Supercontig_12.20", 1646); 

 

    my $start = -1; 

    my $end = -1; 

         

    # ===================================================== 

    # loop through all but the last index to find Q-regions 

    # ===================================================== 

    for (my $i = 0; $i <= $#bases - 1; $i++) { 

         

        #check to see if we're in a Q-region or not 

        if ($start != -1) { 

            # check for end of Q-region 

            if ($bases[$i]) { 

             

                # print the region 

                $end = $i - 1; 

                #print "print region: ($start, $end)\n"; 

                print OUT "$contig\t$start\t$end\n"; 

                 

                #reset 

                $start = -1; 

                $end = -1; 

            } 

             

            next; 

        } 

     

        # check for the start of a Q-region 

        if (!$bases[$i]) { 

            $start = $i; 

        } 

    } 

         

    # ===================================================== 

    # Handle last index  

    # ===================================================== 

    if ($start == -1) { # we're not in a Q-region already 
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        if ($bases[$#bases]) { 

 

        } 

        else { 

            # we have the start of a Q-region at the last index  

  # SHOULDN'T HAPPEN 

            print "!!! Suspicious start of Qregion at end of \@bases:  

  ($start, $end)\n"; 

            print OUT "$contig\t$#bases\t$contig_lengths{$contig}\n"; 

        } 

    } 

    else { # We are in a Q-region. 

      # Determine if we need to include the last index. 

     

        if ($bases[$#bases]) { 

         

            # print the current region 

            $end = $#bases - 1; 

             

            print OUT "$contig\t$start\t$end\n"; 

             

            #check to see if we are not at the end 

            if ($#bases + 1 != $contig_lengths{$contig}) { 

                # print the trailing region 

                $start = $#bases + 1; 

                print OUT  

           "$contig\t$start\t$contig_lengths{$contig}\n"; 

            } 

        } 

        else { 

            # we have a region at the end of our array 

  # SHOULDN'T HAPPEN 

            $end = $contig_lengths{$contig}; 

            print "Suspicious region at end of \@bases:  

  ($start, $end)\n"; 

            print OUT "$contig\t$start\t$end\n"; 

            next; 

        } 

    } 

     

    close OUT; 

} 

 

sub outputExpressionCounts() { 

     

    open(OUT, ">exprCounts/$dataSetName"."_expression_counts_$contig 

    .txt"); 

         

    for (my $i = 1; $i <= $#bases; $i++) { 

        my $count = $bases[$i]; 

        print OUT "$contig\t$i\t$count\n"; 

    } 

     

    close OUT; 

}  
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Memory Efficient Algorithm 

#!/perl/bin/perl 

 

use strict; 

 

my $start; 

my $end; 

my @start_array = ''; 

my @end_array = ''; 

my $index; 

my $contig; 

 

 

# ========================================================= 

# -==================  Main Method   =====================- 

# ========================================================= 

my @files = <input/*>; # get all the items in the directory 

foreach my $file (@files) { 

 

    # only pay attention to files 

    if (-f $file) { 

         

        # initialize variables 

        open(IN, $file) or die "Could not open file\n"; 

        my $lineNum = 0; 

        @start_array = ''; 

        @end_array = ''; 

        print "\n\nProcessing file: $file\n"; 

         

        # for each line in the file 

        while (my $line = <IN>) { 

            $lineNum++; 

            print "\rLine: $lineNum"; 

     

            chomp $line; 

            my @columns = split(/\t/, $line); 

            $contig = $columns[0]; 

            $start = $columns[1]; 

            $end = $columns[2]; 

             

            if ($lineNum == 1) { 

                push (@start_array, $start); 

                push (@end_array, $end); 

                next; 

            } 

             

            $index = findIndex(); 

            if ($start >= $start_array[$index - 1] && $end <=   

  $end_array[$index-1]) { 

                next; 

            } 

            elsif ($start <= $end_array[$index - 1] && $end >  

  $end_array[$index-1]) { 

                rightMerge(); 
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                checkOverlap1(); 

            } 

            elsif ($start < $start_array[$index] && $end >=  

  $start_array[$index] && $end <= $end_array[$index]) { 

                leftMerge(); 

                checkOverlap2(); 

            } 

 

            elsif ($start < $start_array[$index] && $end >  

  $end_array[$index]) { 

                largerInterval(); 

                checkOverlap2(); 

            } 

            elsif (($start > $start_array[$index - 1] && $start <  

  $start_array[$index] && $end > $end_array[$index - 1] &&  

  $end < $end_array[$index]) || $index == @start_array) { 

                @start_array = insertNewLineStart(); 

                @end_array = insertNewLineEnd(); 

            } 

            else { 

                print "Error - this shouldn't ever fire"; 

                last; 

            } 

        } 

         

        # combine regions that are next to each other 

        my $j = @start_array; 

        while ($j != 0) { 

            my $new_end = $end_array[$j] + 1; 

            if ($new_end == $start_array[$j + 1]) { 

                #put them together 

                $end_array[$j] = $end_array[$j + 1]; 

                splice (@start_array, $j + 1, 1); 

                splice (@end_array, $j + 1, 1); 

            } 

            else { 

                #do nothing 

                $j--; 

            } 

        } 

         

        close IN; 

         

        print "\nWriting Output... "; 

        writeOutput(); 

        print "Done.\n"; 

    } 

} 

 

# ========================================================= 

# -==================  SubRoutines   =====================- 

# ========================================================= 

sub writeOutput() { 

 

    open(OUT, ">1005_to_combo_quiescent_regions_$contig.txt"); 
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    # Identify Quiescent Regions 

    my %contig_lengths = ("Supercontig_12.1", 9798893, 

                          "Supercontig_12.2", 4478683, 

                          "Supercontig_12.3", 5274802, 

                          "Supercontig_12.4", 6000761, 

                          "Supercontig_12.5", 6436246, 

                          "Supercontig_12.6", 4218384, 

                          "Supercontig_12.7", 4255303, 

                          "Supercontig_12.8", 192308, 

                          "Supercontig_12.9", 142473, 

                          "Supercontig_12.10", 125404, 

                          "Supercontig_12.11", 31696, 

                          "Supercontig_12.12", 19714, 

                          "Supercontig_12.13", 13515, 

                          "Supercontig_12.14", 11565, 

                          "Supercontig_12.15", 9397, 

                          "Supercontig_12.16", 8983, 

                          "Supercontig_12.17", 6701, 

                          "Supercontig_12.18", 6309, 

                          "Supercontig_12.19", 4755, 

                          "Supercontig_12.20", 1646); 

 

    # deal with first element 

    if ($start_array[1] != 1) { 

        my $first_end = $start_array[1] - 1; 

        print OUT "$contig\t1\t$first_end\n";  

    } 

 

    for (my $i = 1; $i < @start_array - 1; $i++) { 

        my $start_qui_reg = $end_array[$i] + 1; 

        my $end_qui_reg = $start_array[$i + 1] - 1; 

        print OUT "$contig\t$start_qui_reg\t$end_qui_reg\n"; 

    } 

 

    # deal with last element 

    if ($end_array[$#end_array] != $contig_lengths{$contig}) {  

        my $last_start = $end_array[$#start_array] + 1; 

        print OUT "$contig\t$last_start\t$contig_lengths{$contig}";  

    } 

         

    close OUT; 

} 

 

sub findIndex { 

    my $len = @start_array; 

    if ($start >= $start_array[$len - 1]) { 

        $index = $len; 

        return $index; 

    } 

    else { 

        for (my $i = 0; $i <= $len; $i++) { 

            if ($start < $start_array[$i]) { 

                $index = $i; 

                return $index; 
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            } 

        } 

    } 

} 

 

sub insertNewLineStart { 

    splice @start_array, $index, 0, $start; 

} 

 

sub insertNewLineEnd { 

    splice @end_array, $index, 0, $end; 

} 

 

sub leftMerge() { 

    $start_array[$index] = $start; 

} 

 

sub rightMerge () { 

    $end_array[$index - 1] = $end; 

} 

 

sub largerInterval() { 

    $start_array[$index] = $start; 

    $end_array[$index] = $end; 

} 

 

sub checkOverlap1 () { 

    my $length = @start_array; 

     

    for (my $i = 0; $i < $length; $i++) { 

        if ($end_array[$index - 1] > $end_array[$index]){ 

            splice (@start_array, $index, 1); 

            splice (@end_array, $index, 1); 

            $length--; 

        } 

        elsif ($end_array[$index - 1] >= $start_array[$index] &&  

   $end_array[$index - 1] <= $end_array[$index]) { 

            $end_array[$index - 1] = $end_array[$index]; 

            splice (@start_array, $index, 1); 

            splice (@end_array, $index, 1); 

            $length--; 

        } 

        elsif ($end_array[$index - 1] < $start_array[$index]) { 

            $length--; 

        } 

    } 

} 

 

sub checkOverlap2 () { 

    my $length = @start_array; 

     

    for (my $i = 0; $i < $length; $i++) { 

        if ($end_array[$index] > $end_array[$index + 1]){ 

            splice (@start_array, $index + 1, 1); 

            splice (@end_array, $index + 1, 1); 
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            $length--; 

        } 

        elsif ($end_array[$index] >= $start_array[$index + 1] &&  

   $end_array[$index] <= $end_array[$index + 1]) { 

            $end_array[$index] = $end_array[$index + 1]; 

            splice (@start_array, $index + 1, 1); 

            splice (@end_array, $index + 1, 1); 

            $length--; 

        } 

        elsif ($end_array[$index] < $start_array[$index + 1]) { 

            $length--; 

        } 

    }    

} 

 

Find the 35 Largest Quiescent Regions 

#!/perl/bin/perl 

 

use strict; 

 

# define local variables 

my @contig_array; 

my @start_array; 

my @end_array; 

my @length_array; 

my $topN = 35; 

my $logLevel = 2; # 0=none, 1=minimum, 2=detailed, 3=excessive 

 

# ========================================================= 

# -==================  Main Method   =====================- 

# ========================================================= 

# foreach file in the directory 

my @files = <qRegions/*>; # get all the items in the directory 

foreach my $file (@files) { 

 

    Log("\nProcessing file $file...", 1); 

     

    # only pay attention to files 

    if (-f $file) { 

         

        open my $data, $file or die "Could not open $file: $!"; 

        my $lineNum = 0; 

         

        # for each line in the file 

        while (my $line = <$data>) { 

         

            SortTopN(); # LIST MUST BE SORTED! 

             

            $lineNum++; 

             

            chomp $line; 

            my @columns = split(/\t/, $line); 

            my $contig = $columns[0]; 
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            my $start = $columns[1]; 

            my $end = $columns[2]; 

             

            my $contigLength = GetLength($start, $end); 

            Log("\nProcessing length [$start, $end] ($contigLength)...  

  ", 3); 

             

            # Check if the list is full yet, add the values if not 

            if (@length_array < $topN) {  

                my $index = @length_array; 

                $contig_array[$index] = $contig; 

                $start_array[$index] = $start; 

                $end_array[$index] = $end; 

                $length_array[$index] = $contigLength; 

                 

                Log("\nAdded [$start, $end] ($contigLength) at index  

      $index.", 2); 

 

                next; # done with this contig 

            } 

             

            # Check if there is a shorter value and replace 

            my $ignored = 1; 

            for (my $j = 0; $j < @length_array; $j++) { 

                 

                my $val = $length_array[$j]; 

                 

                if ($val == $contigLength) { 

                    next; 

                } 

                 

                if ($val < $contigLength) { 

                     

                    # do the insert 

                    Log("\nInsert [$start, $end] ($contigLength) at  

     index $j.", 2); 

                    $ignored = 0; # mark as not ignored for later 

                    splice(@contig_array, $j, 0, $contig, ); 

                    splice(@start_array, $j, 0, $start, ); 

                    splice(@end_array, $j, 0, $end, ); 

                    splice(@length_array, $j, 0, $contigLength, ); 

                     

                    # remove the last element  

     # as it's now not in the topN 

                    pop @contig_array; 

                    pop @start_array; 

                    pop @end_array; 

                    pop @length_array; 

                     

                    last; 

                } 

            } 

             

            if ($ignored) { 

                Log("Ignored.", 3); 
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            } 

        } 

    } 

} 

     

SortTopN(); 

WriteOutput(); 

 

 

 

# ========================================================= 

# -==================  SubRoutines   =====================- 

# ========================================================= 

sub GetLength() { 

    my($a, $b);        

    ($a, $b) = @_;     

     

    return $b - $a + 1; 

} 

 

sub SortTopN() { 

 

    # http://stackoverflow.com/questions/3382264/how-do-you-sort- 

    parallel-arrays-in-perl 

     

    my @permutation = sort { $length_array[$b] <=> $length_array[$a] }  

    0..$#length_array; 

     

    @contig_array = @contig_array[@permutation]; 

    @start_array = @start_array[@permutation]; 

    @end_array = @end_array[@permutation]; 

    @length_array = @length_array[@permutation]; 

} 

 

sub WriteOutput() { 

    my $output = ">top" . $topN . "_output.txt"; 

     

    Log("\n\nWriting output to $output...", 1); 

    open(OUT, $output); 

     

    for (my $i = 0; $i < @length_array; $i++) { 

        print OUT "$contig_array[$i]\t$start_array[$i]\t 

   $end_array[$i]\t$length_array[$i]\n"; 

    } 

     

    close OUT; 

    Log(" done.", 1); 

} 

 

sub Log() { 

    my($msg, $option);        

    ($msg, $option) = @_;     

     

    if ($logLevel >= $option) { 

        print $msg; 
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    } 

} 

 

Determine A/T/G/C Content in Whole Genome 

#!/perl/bin/perl 

 

use strict; 

 

# Each line of neurosporaContigs.txt contains the sequence information 

for each contig 

open(IN, "neurosporaContigs.txt") or die "Could not open file \n"; 

my $count = 0; 

my $DNA; 

 

my $a; 

my $c; 

my $g; 

my $t; 

my $at; 

my $gc; 

 

my $Total; 

my $aTotal; 

my $cTotal; 

my $gTotal; 

my $tTotal; 

my $gcTotal; 

my $atTotal; 

my $baseTotal; 

 

while (<IN>) { 

    $count = $count + 1; 

    $DNA = $_; 

    chomp $DNA; 

    print "Count is: $count\n"; 

     

    countATGC (); 

    addToTotal (); 

} 

 

calcPercent (); 

 

# ========================================================= 

# -==================  SubRoutines   =====================- 

# ========================================================= 

 

sub countATGC { 

 

    #length of Quiescent region 

    my $length = length ($DNA); 

 

    $a = ($DNA =~ tr/A//); 

    $c = ($DNA =~ tr/C//); 
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    $g = ($DNA =~ tr/G//); 

    $t = ($DNA =~ tr/T//); 

    $at = ($DNA =~ s/AT/AT/g); 

    $gc = ($DNA =~ s/GC/GC/g); 

 

    $Total = $a + $c + $g + $t; 

} 

 

sub addToTotal { 

 

    $aTotal = $aTotal + $a; 

    $cTotal = $cTotal + $c; 

    $gTotal = $gTotal + $g; 

    $tTotal = $tTotal + $t; 

    $gcTotal = $gcTotal + $gc; 

    $atTotal = $atTotal + $at; 

    $baseTotal = $baseTotal + $Total; 

} 

 

sub calcPercent { 

 

    open(OUT, ">whole_genome_ATCG_content.txt"); 

 

    my $gcBases = 2*$gcTotal; 

    my $atBases = 2*$atTotal;    

     

    my $aPercent = $aTotal/$baseTotal; 

    my $cPercent = $cTotal/$baseTotal; 

    my $gPercent = $gTotal/$baseTotal; 

    my $tPercent = $tTotal/$baseTotal; 

    my $gcPercent = $gcBases/$baseTotal; 

    my $atPercent = $atBases/$baseTotal; 

     

    print OUT "Percentage of A's = $aPercent\n"; 

    print OUT "Percentage of C's = $cPercent\n"; 

    print OUT "Percentage of G's = $gPercent\n"; 

    print OUT "Percentage of T's = $tPercent\n"; 

    print OUT "Percentage of GC dinucleotide bases = $gcPercent\n"; 

    print OUT "Percentage of AT dinucleotide bases = $atPercent\n"; 

     

} 

 

Determine A/T/G/C Content in all Quiescent Regions 

#!/perl/bin/perl 

 

use strict; 

 

# Each line of neurosporaContigs.txt contains the sequence information 

for each contig 

open(IN1, "neurosporaContigs.txt") or die "Could not open file \n"; 

my $count = 0; 

my $DNA; 
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my $contig; 

my $start; 

my $end; 

 

my $qreg; 

 

my $a; 

my $c; 

my $g; 

my $t; 

my $at; 

my $gc; 

 

my $Total; 

my $aTotal; 

my $cTotal; 

my $gTotal; 

my $tTotal; 

my $gcTotal; 

my $atTotal; 

my $baseTotal; 

 

while (<IN1>) { 

    $count = $count + 1; 

    $DNA = $_; 

    chomp $DNA; 

    print "Count is: $count\n"; 

    open(IN2, "1005_to_combo_quiescent_regions_Supercontig_12." .  

    "$count" . ".txt") or die "Could not open file contig\n"; 

     

        while (my $line = <IN2>) { 

 

            chomp $line; 

            my @columns = split(/\t/, $line); 

            $contig = $columns[0]; 

            $start = $columns[1]; 

            $end = $columns[2]; 

            print "\n$start $end\n"; 

 

            $qreg = findQReg (); 

            countATGC (); 

            addToTotal (); 

        } 

} 

 

calcPercent (); 

 

sub findQReg { 

    $start = $start - 1; 

    $end = $end - 1; 

    my $len = $end - $start + 1; 

    my $qreg = substr $DNA, $start, $len; 

    return $qreg; 

} 
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sub countATGC { 

 

    #length of Quiescent region 

    my $length = length ($qreg); 

 

    print "the length of DNA $length\n"; 

 

    $a = ($qreg =~ tr/A//); 

    $c = ($qreg =~ tr/C//); 

    $g = ($qreg =~ tr/G//); 

    $t = ($qreg =~ tr/T//); 

    $at = ($qreg =~ s/AT/AT/g); 

    $gc = ($qreg =~ s/GC/GC/g); 

 

    $Total = $a + $c + $g + $t; 

} 

 

sub addToTotal { 

 

    $aTotal = $aTotal + $a; 

    $cTotal = $cTotal + $c; 

    $gTotal = $gTotal + $g; 

    $tTotal = $tTotal + $t; 

    $gcTotal = $gcTotal + $gc; 

    $atTotal = $atTotal + $at; 

    $baseTotal = $baseTotal + $Total; 

     

} 

 

sub calcPercent { 

 

    my $gcBases = 2*$gcTotal; 

    my $atBases = 2*$atTotal;    

     

    my $aPercent = $aTotal/$baseTotal; 

    my $cPercent = $cTotal/$baseTotal; 

    my $gPercent = $gTotal/$baseTotal; 

    my $tPercent = $tTotal/$baseTotal; 

    my $gcPercent = $gcBases/$baseTotal; 

    my $atPercent = $atBases/$baseTotal; 

     

    print "Percentage of A's = $aPercent\n"; 

    print "Percentage of C's = $cPercent\n"; 

    print "Percentage of G's = $gPercent\n"; 

    print "Percentage of T's = $tPercent\n"; 

    print "Percentage of GC dinucleotide bases = $gcPercent\n"; 

    print "Percentage of AT dinucleotide bases = $atPercent\n"; 

} 
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