Illinois State University

ISU ReD: Research and eData

Theses and Dissertations

2014

The Effects of Opedix < Sup > Tm < / Sup > Knee Support System

Philip Mathew Illinois State University, pmathew@ilstu.edu

Follow this and additional works at: https://ir.library.illinoisstate.edu/etd

Part of the Biomechanics Commons

Recommended Citation

Mathew, Philip, "The Effects of Opedix < Sup > Tm < / Sup > Knee Support System" (2014). *Theses and Dissertations*. 224. https://ir.library.illinoisstate.edu/etd/224

This Thesis-Open Access is brought to you for free and open access by ISU ReD: Research and eData. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ISU ReD: Research and eData. For more information, please contact ISUReD@ilstu.edu.

THE EFFECTS OF OPEDIX ™ KNEE SUPPORT SYSTEM ON LOWER EXTREMITY BIOMECHANICS DURING WALKING AND JOGGING

Philip Mathew

49 Pages

August 2014

INTRODUCTION: Knee supports are often employed to decrease adductor angle and/or adductor moment and thus medial knee joint loading in persons with medial knee osteoarthritis. It is compelling that these gait alterations would also be considered beneficial in healthy individuals from a prophylactic application. While the Opedix product was designed specifically as a knee support system, in the present study lower extremity kinematic chain with emphasis on hip and knee were investigated.

PURPOSE: The purpose of this study was to test Opedix garments and describe the changes in sagittal (X), frontal (Y), and transverse (Z) planes for both kinematic and kinetic data at the ankle, knee, and hip during walking and jogging.

METHODS: Fifteen healthy subjects between the ages of $18-28 (20 \pm 1.3)$ performed ten walking and ten jogging trials with (W) and without (WO) the knee support garment system. Subjects walked at a self-selected pace, which was then controlled by step length demarcations along the collection runway and was kept constant for all trials. Ankle, knee, and hip angles, joint reaction forces, joint reaction force integrals, and joint

moment were all calculated in the sagittal (X), frontal (Y), and transverse (Z) planes of motion. Forces were displayed in 2 fashions, peak forces and force integrals – making this a novel study. Changes in these dependent variables were assessed while wearing and without wearing the garment in walking and jogging, independently utilizing paired t-tests.

RESULTS: While walking the following decrease occurred from without the garment to with the garment: Hip Angle-Z decreased 31.6%, Hip Force-X decreased 19.3%, Hip Force-Y decreased 34.4%, Hip-X moment decreased 13.7%, and Hip-Y moment decreased 15.4%. While jogging, the following decrease occurred from without the garment to with the garment: Hip Angle-X decreased 6.5%, Hip Angle-Y decreased 15.7%, Hip Angle-Z decreased 42.3%, Hip Force-X decreased 27.6%, Hip Force-Z decreased 3.6%, and Hip Moment-X was decreased 28.3%.

CONCLUSIONS: The garment had some kinematic and kinetic effect on joints tested, but consistencies did not exist at each plane. Based on the interpretation of joint reaction forces at the hip, this product can be used to slow the progression of OA.

THE EFFECTS OF OPEDIX ™ KNEE SUPPORT SYSTEM ON LOWER EXTREMITY BIOMECHANICS DURING WALKING AND JOGGING

PHILIP MATHEW

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

School of Kinesiology and Recreation

ILLINOIS STATE UNIVERSITY

2014

© 2014 Philip Mathew

THE EFFECTS OF OPEDIX ™ KNEE SUPPORT SYSTEM ON LOWER EXTREMITY BIOMECHANICS DURING WALKING AND JOGGING

PHILIP MATHEW

COMMITTEE MEMBERS:

Michael R. Torry, Chair

Kelly R. Laurson

CONTENTS

CONTENTS		i
TABLES		iii
FIGURES		iv
CHAPTE	R	
I.	INTRODUCTION	1
II.	REVIEW OF RELATED LITERATURE	4
III.	Phases of Gait Relevant Motion at Each Joint Gait Speed Joints of Concern Joint Reaction Force at the Hip Available Research on Compression Garments Osteoarthritis Research Question METHODOLOGY	4 6 8 9 10 10 12 14
111.	Instrumentation Participants Procedures Data Processing Data Extraction Statistical Analysis	15 16 17 18 19 20
IV.	RESULTS AND DISCUSSION	21
	Results Discussion Limitations	21 23 24

V.	CONCLUSION	26
VI.	ACKNOWLEDGMENTS AND DISCLOSURES	27
REFEREN	ICES	44

TABLES

Table		Page
1.	Subject Profiles	28
2.	Walking Data (Kinematics & Forces) – Page 1	29
3.	Walking Data (Forces & Moments) – Page 2	30
4.	Jogging Data (Kinematics & Forces) – Page 1	31
5.	Jogging Data (Forces & Moments) – Page 2	32
6.	Statistical Results of Walking Dependent Variables	33
7.	Statistical Results of Jogging Dependent Variables	34

FIGURES

Figure		Page
1.	Marker Placement Used For Plug-In Gait Marker Set (Vicon, Oxford, UK)	35
2.	Representative Graph of Walking With & Without Tights: Ground Reaction Force (GRF)	36
3.	Representative Graph of Walking With & Without Tights: Hip Range of Motion (ROM)	37
4.	Representative Graph of Walking With & Without Tights: Hip Forces	38
5.	Representative Graph of Walking With & Without Tights: Hip Moments	39
6.	Representative Graph of Jogging With & Without Tights: Ground Reaction Force (GRF)	40
7.	Representative Graph of Jogging With & Without Tights: Hip Range of Motion (ROM)	41
8.	Representative Graph of Jogging With & Without Tights: Hip Forces	42
9.	Representative Graph of Jogging With & Without Tights: Hip Moments	43

CHAPTER I

INTRODUCTION

Knee supports (rigid unloader braces and neoprene sleeves) are often employed to decrease adductor angle and/or adductor moment and thus medial knee joint loading in persons with medial knee osteoarthritis. It is compelling that these gait alterations would also be considered beneficial in healthy individuals from a prophylactic application. Yet, the comfort of rigid braces and neoprene sleeves in a young active population may pose wear-compliance issues. Retail apparel with 'built-in knee support systems' are being advocated to increase compliance for such purposes.

The Opedix product tested does not identify with either compression garments or tights, but rather as a knee support system. Regardless, compression garments, tights, and knee support systems are relatively new to market. Published research has only started to become available in the 1990s. Since then, what has been studied are the physiological effects (specifically during recovery) and subject performance. While the Opedix product was a knee support system, the hip was reviewed to determine if any changes occurred within the lower extremity kinematic chain.

The study design included both self-selected walking and jogging trials. Walking was defined as one foot remaining on the ground at all times, whereas jogging consisted

of an airborne phase in which both feet were off the ground at a cadence faster than that of walking.

Osteoarthritis (OA) can be described as a result of repetitive mechanical loading, or repeated wear on a joint from forces over an extended period of time [1]. Osteoarthritis was reviewed as it was believed to be related to joint reaction forces. If an intervention could be made to reduce the loads, it is believed that the progression of OA may be slowed.

This study reviewed three joints of the lower extremity: the ankle, knee, and placed the greatest emphasis on the hip. During normal walking, forces comparable to that of 4 to 5 times body weight occur at the hip; which over time may lead to deterioration of the hip [2]. While the forces at any joint are often reported as peaks, what is novel within this manuscript is the additional presentation of joint forces as integrals. The integral of joint reaction forces was calculated as it is believed to provide a better depiction of the force exposure, including duration and magnitude, rather than instantaneous peaks.

The experimental protocol required the completion of ten walking and ten jogging trials with and without Opedix garments, totaling four conditions. These conditions were randomized in order, from subject to subject, to reduce the possibility of order bias. The experimental set-up consisted of 10 Vicon cameras and a force plate.

The purpose of this study was to test Opedix garments and describe the changes in sagittal (X: flexion (+) and extension (-)), frontal (Y: varus (+) and valgus (-)), and transverse (Z: internal (+) and external (-)) planes for both kinematic and kinetic data at the ankle, knee, and hip during walking and jogging. The investigators of this study

hypothesized that the use of tights would change kinematics and kinetics of the lower extremity (during walking or jogging), due to the interrelationship of the kinematic chain. It was also the goal of this study to discuss the similarities of mechanical forces that contribute to osteoarthritis to the changes (if seen) between wearing Opdeix garments and not wearing them.

CHAPTER II

REVIEW OF RELATED LITERATURE

Phases of Gait

The gait cycle is complex and can be broken into subcategories. A gait cycle consists of alternating and successive strides and steps. A stride can be defined as the distance from a single limb to the subsequent ipsilateral limb contact with the floor. A step is defined as the distance between contralateral limbs. Multiple strides thus contribute to the creation of a gait cycle.

When taking a step, it is necessary to lift a foot off the ground. The term stance is designated as the period in which the foot is in contact with the floor whereas the term swing is classified as the time a foot is not in contact with the floor [3]. A general approximation is that an individual spends 60% of time in stance and 40% in swing [4]; there is an inverse relationship between walking speed and the duration of swing/stance periods [3].

Whether standing stationary or moving dynamically, stability is essential to prevent individuals from falling. Standing stability is dependent on functional balance, which is the alignment between the body and muscle activity at each joint [3]. Standing stability is put into challenge by a top-heavy distribution of mass, multi-segmented supporting limbs, and the geometry of lower extremity joints [3]. Internal forces acting on joints that effect stability are body weight, ligament tension, and muscle activity [3] [5].

When transitioning from a stationary position to one of motion, the distribution of one's mass shifts. Various muscles are called to action as the region of support changes from heel, to flat foot, to forefoot [3] [5]. It is important to remember that muscles alter bone positions, which alter joint kinematics. For this reason the activated muscles during gait will be highlighted. Earlier the gait cycle was broken into two phases: stance and swing. Now the gait cycle will be elaborated further to include active muscles. In an EMG and kinetic study, Jacqueline Perry hypothesized the roles of individual muscles as follows (all of which are from reference [3]):

Initial Contact: Quadricep, Hamstring, and Pretibial Muscles Loading Response: Gluteus Maximus and Quadricep Muscles Mid Stance: Gastrocnemius and Soleus Muscles Terminal Stance: Gastrocnemius and Soleus Muscle Pre-Swing: Adductor and Rectus Femoris Initial Swing: Illiacus, Bicep Femoris, and Pretibial Muscles Mid-Swing: Hip Flexors and Ankle Dorsiflexor Muscles Terminal Swing: Hamstrings, Quadriceps, and Pretibial Muscles

In 2002, Anderson and Pandy quantified the contributions of individual muscles during normal gait through a three-dimensional muscle-actuated model of the body and a dynamic optimization solution for normal gait over one stride period [5]. From Heel Strike (0% of the gait cycle) to Foot Flat (~9%), the ankle dorsiflexors were the primary supporters [5]. From Foot Flat (~9%) to Contralateral Toe Off (15%), the most significantly contributing muscles were the Gluteus Maximus, Vasti Muscles, Posterior Gluteus Medius, and Posterior Gluteus Minimus [5]. Midstance is a result of both Anterior/Posterior Gluteus Medius and Gluteus Minimus [5]. While approaching Contralateral Heel Strike (50%), also known as late stance, the majority of support is contributed by the Soleus and Gastrocnemius [5]. Between Metatarsal Off (58%) and Toe Off (65%), all support was a result of the ligaments crossing the metatarsal joints [5].

Relevant Motion at Each Joint

When comparing data, it was important to have a known and accepted dataset. This study used normative curve graphs dating back as early as Perry et al's 1992 study. Some may discount this data due to outdated collection methods and technology. Despite the advancements in technology, variations in data can result from variations in a lab's ability to consistently place markers between subjects, calibration of equipment, and calculations of joint centers. In 2004, Al-Obaidi et al tested young adults aged 20 to 29 from two countries, Kuwait and Sweden [6]. While studying both spatial and temporal gait parameters, significant differences were found between the two subject groups [6]. In 2008, Chester et al studied two populations, children aged 3 to 13 years and adults [7] [8]. The study found differences between the two age groups. The researcher stressed the importance of utilizing age-matched normative data [7] [8]. These two studies accounted for variations in comparing data between studies. Therefore, it can be concluded that the most accurate control for age, gender, and geographic location is the use of subjects serving as their own control. For reference purposes, three data sets served as a general outline for accepted values of motion for the hip, knee, and ankle.

6

The first data set reviewed within this study was by Perry et al (1992). This dataset was chosen as it had the greatest number of joints for which lower extremity ranges of motion were present while walking. In a normal stride, there are two arcs of motion that occur in the sagittal plane of motion, for a total range of motion ranging from 40° to 48° at the hip [9] [10] [3]. From 0% to 50% of the gait cycle, the hip is in extension [3]. From 50% to 100% of the gait cycle, the hip is in flexion [3]. The coronal plane accounts for 10° of adduction and abduction [3]. From 0% to 45% of the gait cycle, there is a first curve of 5° resulting in both adduction and abduction [11]. From 45% to 100% there is a second curve of 5° including both adduction and abduction [11]. The knee was described as the articulation of the femur and tibia. During gait, motion occurs in all three planes. The sagittal plane allows for the greatest movement with 60° of motion, and is responsible for forward progression [3]. The first curve spans from 0% of the gait cycle to 45% of the gait cycle with 20° of motion [3]. The second curve is from 45% to 100% of the gait cycle and ranges in 60° of motion [3]. It is important to recognize that the degree of motion is dependent on the walking cadence. The coronal plane is responsible for vertical balance over a limb [3]. There is roughly 11° of coronal movement while walking [3] [12] [13]. From 0% to 60% of the gait cycle, there is minor movement. From 60% to 75% there is one curve of both adduction and abduction and a second curve of both movements from 75% to 100% [11]. The ankle was described as the joint between the leg (tibia) and the foot (talus); it is also referred to as the tibiotalar joint [3]. Motion at the ankle can be broken into dorsiflexion and plantar flexion, which are responsible for four arcs of motion [3]. Ankle range of motion during walking, in the sagittal plane, range between 20° to 40° [14]. From 0% to 10% of the gait cycle, there is a 5° curve

consisting of both flexion and extension [11]. From 10% to 60% there is a second curve ranging in 25° [11]. The curve ends with 15° of flexion from 60% to 100% [11].

In a 2012 study by Park et al, fifteen healthy female subjects, aged 21 through 24 years old, participated in a gait study [15]. The excluding criteria consisted of injury or neurologic deficits of the hip and lower extremity within the past three months [15]. Participants were required to complete three walking trials with tight pants and without the tight pants [15]. While not wearing the tight pants (control), the hip had $44.4^{\circ}\pm11.0^{\circ}$ of motion in the sagittal plane, $16.8^{\circ}\pm3.7^{\circ}$ of motion in the frontal plane, and $34.4^{\circ}\pm11.8^{\circ}$ of motion in the horizontal plane [15]. All data was collected with eight Vicon infrared cameras; sampling at a rate of 100Hz [15].

In a 2012 study by Pietraszewski et al, seventeen male subjects, aged 21 through 23 years old, participated in a study to establish a reference data for human gait pattern of men [16]. No participants had suffered a lower extremity injury and all were in healthy condition [16]. The subjects were instructed to walk 10 meters at three self selected speeds; high, preferred, and low [16]. All data was collected with a BTS Smart-E motion analysis system [16]. While 8 repetitions occurred at each speed, the first and last gait cycle was excluded from each condition [16]. During preferred speeds the hip had 45.5° of motion in the sagittal plane, 11° of motion in the frontal plane, and 15.1° of motion in the horizontal plane [16]. In the sagittal plane, the knee had 57.8° of motion and the ankle had 27.4° of motion [16].

Gait Speed

The current study design included both self-selected walking and jogging trials. Walking was defined as one foot remaining on the ground at all times, whereas jogging consisted of an airborne phase in which both feet were off the ground at a cadence faster than that of walking. Based on the study by Keller et al, impact forces increased as subjects adopted a higher and less fixed center of gravity [17]. For this reason, the rationale for testing at varied velocities was to observe the response of tights as Ground Reaction Forces increased.

It was the goal of investigators to refrain from having highly variable cadence conditions. Therefore, subjects were instructed to select a self selected walking/jogging pace. Once the subject was able to maintain a speed, steps were marked leading towards the force plate. This ensured that step length was consistent during each trial. Since step length was maintained by researchers, speed was indirectly controlled. Regardless, gait was still variable. Averages of each condition were calculated providing a single value to represent a subject's condition.

Joints of Concern

This study reviewed three joints of the lower extremity: the ankle, knee, and placed the greatest emphasis on the hip. Individuals suffering from hip OA can achieve pain relief and increased hip function by undergoing a total hip arthroplasty (THA) [18]. Typically, a high neck-shaft angle is present in hip prostheses, which reduces the femoral offset, potentially altering the mechanical axes [19]. Shakoor et al revealed that following a unilateral THA, the medial compartment load on the contralateral knee was significantly higher [20]. Following a 10-year follow up study, Umeda et al concluded that the mechanical axes passed through a more medial point of the knee contralateral to the THA side, which most likely led to a faster progression of medial tibiofemoral OA [18]. Therefore, a THA does not guarantee relief from pain in the lower extremity as discomfort may begin to develop at the knee.

It was important to recognize that a disturbance in the kinematic chain would affect joints throughout the system [21] [22]. Therefore, with the onset of OA at the hip or knee, one must be aware of the likelihood of OA occurring at other joints [23].

Joint Reaction Force at the Hip

During normal walking, forces comparable to that of 4 to 5 times body weight occur at the hip; which over time may lead to deterioration of the hip [2]. In a study by Correa et al, hip contact forces during gait were reviewed. Based on a dynamic optimization solution for walking, muscle contributions to the hip contact force were calculated [24]. The forces reported were those acting on the acetabulum, calculated from the model [25]. The total contributions to peak hip contact force (force/BW) were Anterior: 1.06 N/kg, Superior: 3.94 N/kg, and Medial: 1.48 N/kg [25]. One body weight was reported to be 697N [24]. The contributions to hip contact impulse [(force/BW)*time] were Anterior 34.72 seconds, Superior, 160.38 seconds, and Medial 57.15 seconds [25].

Available Research on Compression Garments

Within this study compression garments and tights were viewed as the same, despite a variance in nomenclature. The Opedix garments tested in this study does not identify with either compression garments or tights, but rather as a knee support system. Regardless, compression garments, tights, and knee support systems are relatively new to market. Published research has only started to become available in the 1990s. Since then, what has been studied are the physiological effects (specifically during recovery) and subject performance. It is the goal of this study to focus on the varying biomechanics while wearing Opedix knee support system.

In a study by Kraemer et al (1998), compression shorts were examined to review total work capacity and force production capabilities in repetitive, high intensity, open and closed kinetic chain exercise movements in the lower body [26]. The activities ranged from squat exercises to isokinetic knee extensions and isokinetic knee flexions. Through all three test conditions, no significant differences were noted between the compression shorts and control [26]. It is important to recognize that the compression shorts tested were not intended to act as high pressure garments, which would be classified as a super bench shirt [26]. In conclusion, the shorts tested did not promote a performance enhancement strategy nor did they have a negative effect on performance [26].

Bringard et al (2005) focused on physiological responses, specifically oxygen cost and sensation responses during submaximal running exercises while wearing compression gear. Compression tights, compression stockings, and a control of nonconforming shorts were compared. A noticeable difference in aerobic energy cost was seen between both the elastic and compression tights when compared to standard shorts, in speeds 10 km/h to 14 km/h [27]. Based on this study, it can be concluded that lower extremity compression garments reduce muscle fatigue and energy consumption by applying pressure in ways in which active muscles are supported [27].

In a study by Bernhardt et al (2005), compression shorts (Coreshorts) were reviewed to measure active range of motion, balance, agility, proprioception, endurance, and power. Statistical differences were noted between braced and non-braced conditions during hip flexion. However, there was no significant difference between hyperextension and abduction of the thigh [28]. The compression shorts may not be advantageous to preventing injury during functional movements [28]. The study primarily focused on healthy populations before testing on injured individuals.

Doan et al (2011) focused on the performance results based off of wearing compression shorts. The study confirmed that there was a reduction in muscle oscillation and an increase during the jump-power test [29]. Of importance to this study, the kinematics showed a decrease in the hip joint range of motion while sprinting [29]. While the same speed was achieved, there was no loss in ROM [29]. Mechanical testing revealed that torque was generated by the garment at the hip [29]. This torque may be advantageous during the gait cycle (during the end of swing phase), specifically when slowing the leg at the end of hip flexion in running; if not, muscle tears can occur [29].

Koldenhoven et al completed a study using Opedix gear [30]. After testing nine females through walking trials, the results of this study suggested that sagittal and frontal knee kinematics were influenced by the garment, but did not alter kinetics [30]. The garment caused an average of 5.7° increase in sagittal plane knee flexion angle (p=0.02) and an average of 1.5° reduction in frontal plane knee adductor angle (p=0.04) at the time of the peak adductor moment. [30] The current study will expand on the sample size, look at additional lower extremity joints, and increase the load on the garment.

Osteoarthritis

For individuals aged 65 years and older, the leading chronic medical condition of disability is arthritis [31]. The term arthritis is encompassing, covering over 100 various types of inflammatory or degenerative diseases at joints [32]. Osteoarthritis (OA) can be

described as a result of repetitive mechanical loading, or repeated wear on a joint from forces over an extended period of time [1]. Exercise intensity levels, occupation, Body Mass Index (BMI), obesity, and multiple factors of activity (including sports participation) can affect the risk of OA [33]. Ultimately with OA, articular cartilage deteriorates and its contact area is reduced. Loading cannot be completely eliminated as joints require loading and compression in order for an exchange of nutrients and waste to occur [34].

OA can be explained as the degenerative changes in biological, mechanical, and structural components of articular cartilage [35]. The integrity of cartilage is dependent on the body's ability to balance the degeneration of cartilage and the elements that maintain cartilage [35]. While the root cause of OA is still unknown, it is also unclear why there is a variance of rate in the progression of OA between patients [36]. Through the research of F. Guilak et al, animal and clinical studies have suggested altered and abnormal joint loading can lead to changes in metabolism, structure, mechanical properties, and composition of both joint tissue and articular cartilage, which is believed to collectively contribute to OA [37].

A paradox exists between clinical and laboratory reports (of the knee) when reviewing the mechanical factors on the progression of OA [35]. Clinical studies suggest that subjects with existing OA and increased loads have a higher rate of cartilage breakdown compared to patients with decreased loads [38]. Laboratory studies suggest that loading can enhance the mechanical properties of articular cartilage as a result of an adaptive response [39].

13

It has been reported that static and dynamic loading patterns have an effect on the regulation of catabolic (break down of molecules) and anabolic (synthesis of molecules) activities of cartilage [33]. During static compression, decreased metabolic activities occur at cartilage, which is dependent on the amount of stress [37].

One hypothesis for the cause of hip osteoarthritis is believed to be a result of abnormal contact stresses [40]. Harris et al reviewed cartilage contact stresses at the hip during walking, stair climbing, and descending stairs within a healthy population [40]. While performing tasks, the loading direction of the cartilage changed as the contact locations moved [40]. Despite the contact location changing between activities, the contact area remained the same with no significant differences [40]. The distribution of cartilage contact stress was non-uniform, suggesting that even within a healthy population the mechanics of contact are specific to the individual [40]. As joint reaction forces increased with activity, the peak stresses at the cartilage also increased [40].

Research Question

The purpose of this study was to test Opedix garments and describe the changes in the three-dimensional kinematic and kinetic data at the ankle, knee, and hip during walking and jogging.

CHAPTER III

METHODOLOGY

Instrumentation

The experiment set-up consisted of 10 Vicon cameras. Sampling rates were set to 200 Hz during data trial capture. For kinematic analysis, thirty-nine reflective markers of varying diameters were attached to specific anatomical landmarks (Figure 1) (Plug-In Gait Marker Set, Vicon Peak, Oxford, UK) on each subject. Figure 1 is a representation of where markers were applied on a subject. Markers varied in size from 14 millimeters to 37 millimeters (mm). The 37 mm markers were placed on the left (L) and right (R) shoulder, L and R ASIS, and the L and R PSIS. The 25 mm markers were placed on the L and R thigh, L and R upper arm, L and R elbow, C7, T10, clavicle, Sternum, R scapula, L and R thigh, L and R knee, and L and R heel. The 19 mm markers were placed on the L and R forearm, L and R ankle, and L and R toe. The 14mm markers were placed on the L and R anterior wrist, L and R finger, and 4 head markers.

Vicon Nexus software (Nexus 1.8.5, Vicon, Oxford, UK) allowed for the reconstruction of all thirty-nine markers in a three-dimensional coordinate system. Joint center positions were calculated based on the three-dimensional model, "Plug-In Gait Model" (Vicon Peak, Oxford, UK). This model divided the body into upper and lower models [41]. The upper body model included the head, thorax, the left and right humerus, radius, and hand [42]. The lower body model consisted of rigid bodies including the pelvis, the left and right femur, tibia, and foot [43]. Joint centers were calculated based on subject specific anthropometric values measured on each subject and consisted of height, weight, shoulder offset, elbow width, wrist width, hand thickness, leg length, knee width, and ankle width.

The angular conventions defined in the data collection system's coordinate system were represented by flexion (+) and extension (-) in the sagittal (X) plane, varu (+) and valgus (-) in the frontal (Y) plane, and internal (+) and external (-) rotation in the transverse (Z) plane.

One AMTI OR6 series force plate, set to collect at 1,000 Hz, was used to collect force data. While the kinetic data was being collected at a sampling rate five times the kinematic data, additional data points were stored but not utilized when calculating joint kinematics.

Participants

Fifteen participants volunteered in this study. Exclusion criteria included individuals who had suffered lower extremity injuries within the last two months and/or had a history of dizziness, vestibular, neurologic, visual, or unstable medical problems that may have restricted their ability to participate in recreational activities. Inclusion criteria consisted of male and female participants aged 18-28 who were recreationally active. Each participant was informed of the experimental risks of the study and was required to sign an informed consent form as approved by the Institutional Review Board (IRB Number 2013-0419) prior to data collection. The study's participant design was modeled off a study by P. Devita et al. where healthy subjects were deliberately used as an initial test of the hypothesis to eliminate any potential adaptive mechanisms found in ACL-injured individuals, which may have altered the study's outcome [44]. For this study, healthy subjects rather than osteoarthritic subjects were tested.

Procedures

Each participant was brought into the laboratory on two occasions. The first day consisted of completing an IRB consent form and collecting anthropometric values. At this time any concerns by the subjects, regarding the study, were addressed. During the second day, subjects arrived in self selected athletic gear. A warm-up consisted of the subject stretching, walking, and jogging down the 17.0 meter collection runway. There was a 9.0 meter acceleration region prior to the 0.5 meter force platform where subjects could achieve a consistent speed of gait followed by a 7.5 meter deceleration region following the force platform. Coordinating an appropriate starting point for both walking and jogging collections was determined such that full foot contact was made within the force plate. The speeds for both walking and jogging activities were self-selected, but once consistent foot placement was achieved on the force place, this speed was set and controlled by the investigators. Walking was defined as one foot remaining on the ground at all times, whereas jogging consisted of an airborne phase in which both feet were off the ground at a cadence faster than that of walking. All subjects supplied their own athletic footwear.

Cameras were calibrated and sampling rates were set to 200 Hz during data trial capture. The force plate was manually and digitally set to zero to ensure that no force was

registered when no mass was present; the force plate was set to collect at 1,000Hz. Ultimately, force data was interpolated down to 200Hz to temporally align the camera data and force data for each trial.

Markers were secured on the subjects using both athletic tape and rubber bands. Marker placement and sizes remained consistent between trials and subjects. A static calibration of the subject was then taken with markers attached. The static calibration was needed to calculate segment lengths as well as the mass of segments.

The experimental protocol required the completion of ten walking and ten jogging trials with and without Opedix garments, totaling four conditions. These conditions were randomized in order, from subject to subject, to reduce the possibility of order bias. Appropriate sizing of the tights were based on manufacturer guidelines. Trials were initiated by audio cues. A trial was considered to be successful if full contact was made, from heel to toe, within the force plate. Following data collections of all four conditions, subjects were required to complete a cool down which consisted of five minutes of walking.

Data Processing

Prior to analyzing any data, the first step required was to ensure that full contact was made from the foot onto the force plate during collections. Upon playback of a trial, it was imperative to note that no markers of interest were missing. If markers were missing and not accounted for, finding joint angles would be impossible. Therefore if markers were missing, a gap filling method was used to fill in missing markers. Gap fill utilized a marker's known trajectory before and after the missing time period to best predict the anticipated trajectory with a cubic spline function. Once all markers were accounted for, it was essential to recheck that all markers were correctly labeled, as the auto labeling of markers occasionally inverted left and right limbs. Both XYZ trajectories and force data were smoothed using a 4th order Butterworth cut off set to a frequency of 20Hz.

The hip, knee, and ankle joints were analyzed in three planes during this study, creating nine points of data per variable. The three planes were represented as X (Sagittal), Y (Frontal), and the Z (Transverse). There were four variables measured: angles, force, the integral of force, and moments. With four variables, each with nine data points, there were a total of thirty-six dependent variables.

The integral of joint reaction forces was taken as it is believed to provide a better depiction of the force exposure, including duration and magnitude, rather than instantaneous peaks.

Data Extraction

Following fifteen subjects, each with forty trials, a total of six hundred trials were present. In order to consistently compare the data, a reliable time frame was needed. It was determined that the time frame would be the stance phase, which was represented by the presence of a vertical ground reaction force (GRF). A representative graph of this curve is presented in Figure 2 for walking and Figure 6 for jogging.

A custom program was created to minimize human error and consistently extract the intended dependent variables. The dependent variables were graphed similar to the representative curves for angular (Figure 3 & 7), force (Figure 4 & 8), and moment curves (Figure 5 & 9). The maximum and minimum values of the thirty six dependent variables, within the time frame established by the vertical GRF, were obtained. The differences between the two values were then compiled into a meaningful data set. One subject was eliminated from the study as a result of data recording failure for one condition; thus leaving fourteen subjects for analysis (Table 1).

Statistical Analysis

A paired sample t-test is similar to a Repeated Measures Analysis of Variance test (RM-ANOVA) when only two conditions are present. Both can be used to compare groups in varying conditions. The two tests differentiate on how many independent variables can be compared. A paired t-test is used when the independent variable has two levels. An RM-ANOVA is used when more than two levels are present. The kinematics and kinetics of walking and jogging are known to be different from numerous previous studies and these differences are well understood. Our study was not interested in identifying these inherent differences nor did we wish to adjust reduce our post-hoc power if the larger, an RM-ANOVA was executed. Thus, a paired samples t-test were conducted on walking and data and then on jogging data independently.

Differences between conditions were examined utilizing a paired samples t-test in IBM SPSS 16.0 with a p-value = 0.05.

CHAPTER IV

RESULTS AND DISCUSSION

Results

To remain consistent with the tables presented the three planes of motion were as follows: X represented the sagittal plane where + indicated flexion and – indicated extension, Y represented the frontal plane where + indicated varus and – indicated valgus, and Z represented the transverse plan where + indicated internal rotation and – indicated external rotation.

Table 2 and Table 3 contain the averaged ranges of walking dependent variable differences for all 14 subjects. Table 6 depicts the statistical results between variables during walking with and without the Opedix garment. Walking had 4 significant differences out of a possible 9 dependent variables. They consisted of the Hip Angle-Z decreasing 31.6% from without to with the garment ($6.38^{\circ} \pm 10.26$), Knee Angle-Z decreasing 15.6% from without to with the garment ($2.64^{\circ} \pm 3.67$), Ankle Angle-Y decreasing 42.8% from without to with the garment ($2.44^{\circ} \pm 2.40$), and Ankle Angle-Z decreasing 24.3% from without to with the garment ($5.4^{\circ} \pm 5.22$). When reviewing the kinetics of the lower extremity, there were no significant differences seen at the ankle. Hip Force-X decreased 19.3% from without to with the garment ($1.01N \pm 2.52$), Hip Force-Y decreased 34.4% from without to with the garment ($1.01N \pm 1.07$), and Knee

Force-Y decreased 25% from without to with the garment $(0.50N \pm 0.81)$; all of which were significantly different. The moments of the lower extremity were significant at Hip-X decreasing 13.7% from without to with the garment (457.41mm*N±599.45), Hip-Y decreasing 15.4% from without to with the garment (227.81mm*N±308.59), and Knee-X decreasing 15.4% from without to with the garment (215.13mm*N±275.02).

Table 4 and Table 5 contain the averaged ranges of jogging dependent variable differences for all 14 subjects. Table 7 depicts the statistical results between variables during jogging conditions. Jogging had 7 significantly different values. They consisted of Hip Angle-X decreasing 6.5% from without to with the garment $(3.53^{\circ} \pm 4.95)$, Hip Angle-Y decreasing 15.7% from without to with the garment $(2.31^{\circ} \pm 3.59)$, Hip Angle-Z decreasing 42.3% from without to with the garment ($6.83^{\circ} \pm 9.53$), Knee Angle-X decreasing 8.6% from without to with the garment $(2.97^{\circ} \pm 2.78)$, Knee Angle-Y decreasing 31.2% from without to with the garment $(3.44^{\circ} \pm 5.54)$, Ankle Angle-X decreasing 8.41% from without to with the garment $(4.46^{\circ} \pm 5.72)$, and Ankle Angle-Y decreasing 30% from without to with the garment $(2.11^{\circ} \pm 2.93)$. When reviewing the kinetics of the lower extremity, there were significant differences of forces seen at all three joints. Hip Force-X decreased 27.6% from without to with the garment $(3.37N \pm$ 2.99), Hip Force-Z decreased 3.6% from without to with the garment $(0.82N \pm 0.61)$, Knee Force-Z decreased 1.9% from without to with the garment ($0.43N \pm 0.75$), and Ankle Force-X decreased 2.5% from without to with the garment (0.61N \pm 0.97); all of which were significant. The only significant joint reaction force integral was Ankle Force-Y, which increased 25% from without to with the garment ($0.04N\pm0.07$). The Hip

Moment-X was significant decreasing 28.3% from without to with the garment (1027.34mm*N±967.99).

Several abbreviations were utilized when presenting data. The following abbreviations were used in tables 2-5: R = right, $\Delta = delta$ (change in values), Mom = moments, S _ = subject _ , and XYZ = plane of motion measured. In addition to the previous abbreviations, tables 6 and 7 also used the following: wo = without tights, with = tights, diff = difference in values, and integ = integral.

Discussion

The hypothesis of the study was that the use of tights would change kinematics and kinetics of the lower extremity (during walking or jogging), due to the interrelationship of the kinematic chain.

Kinematic changes were seen in all joints while walking and jogging, but did not consistently occur at each plane. For example: if there was a statistical difference at the ankle in the x-plane, it did not necessarily mean there was a difference at the knee or hip in the x-plane. The kinematic changes are of importance as any change in kinematics is clinically different. However, the concern is if we can accurately detect these changes within our methods.

Joint reaction forces were reported in two fashions. The differences between the maximum and minimum force were reported, as well as the integral of joint reaction force curves. It is atypical to see integral curves, but it can provide an alternative interpretation to data. Joint reaction force integrals took into consideration the duration and magnitude of a given force. When looking at the 18 variables of force integrals between walking and jogging, only 1 variable had a significant joint reaction force

integral difference. This is of particular interest as this confirms that there was minimal change in the exposure (duration and magnitude) of a joint to a force, suggesting that the exposure of force did not change whether participants were wearing or not wearing the garments. While two clinical interpretations can be made from the 2 presentations of the joint reaction force data, it is up to the reader to interpret the data as they see fit.

The researchers of this study hoped to draw a link between a reduction in forces from wearing Opedix tights to slowing the progression of OA based on the idea that OA can be described as a result of repetitive mechanical loading, or repeated wear on a joint from forces over an extended period of time [1].Based on the force integrals, with the exception of the Ankle-Y, there were no changes within a specific task. However (based on the moments) if an individual is developing signs of OA at the hip, Opedix garments may slow the progression at the hip, as hip joint reaction force peaks were reduced. This statement was made with the knowledge that a moment is a result of the moment arm and joint reaction force.

Limitations

One limitation of this study was the use of surface markers to estimate the position of joints. Joint centers were estimated based on the subject specific anthropometric values, placement of the markers on the surface of the skin, and did not account for any movement of markers while activities were completed. The lab's ability to consistently place markers is also a concern. Within the same lab conditions, the investigator of this study had a marker placement which fell within the 99% confidence interval [45]. This equated to roughly 3° of error. While some values may appear significant, it is possible that it was a result of marker placement error. A solution to this

dilemma is the utilization of a biplane fluoroscopy system. Biplane Fluroscopy systems directly depict bones, eliminating the surface marker motion artifacts in estimating joint positions.

A second limitation of this study was the lack of a normative dataset of accepted ranges of motion in all three planes during a single collection. Cappozoo et al only reviewed the sagittal plane of motion during his research, stating that other planes were associated with higher measurement error [46]. It would be beneficial to present and create datasets that also included frontal and transverse planes of motion.

A third limitation was fit size of the garment. While garment size was determined by the manufacturer's waist sizing chart, it did not account for height. Two subjects may have had the same waist size but could greatly differ in height, which would create different garment coverage at the hip and ankle. In addition, the typical varus position for males and the typical valgus position for females should also be taken into consideration. For ideal sizing, each garment should also take into consideration the individual's height.

While the current study was an evaluation of the acute effects of the garment, it may be of interest for future research to observe the adaptations (if any) that occur during chronic exposure to wearing the garment. During a longitudinal study, it would also be of interest to note any changes in the integrity of the Opedix tights as there would be an increased exposure to sweat and laundry detergent; both of which deteriorate fabrics.

CHAPTER V

CONCLUSION

We hypothesized that the use of tights would change kinematics and kinetics of the lower extremity (during walking or jogging), due to the interrelationship of the kinematic chain.

Kinematic changes were seen in all joints while walking and jogging, but did not consistently occur at each plane. Range of motion was decreased while wearing the Opedix garment. Joint reaction forces had reduced peaks when wearing Opedix garments, but the joint reaction force integrals remained constant. The investigators of this study used force peaks to determine that joint reaction forces were reduced at the hip when wearing the Opedix knee support system. Therefore, the progression of OA at the hip can be slowed when wearing this product.

CHAPTER VI

ACKNOWLEDGMENTS AND DISCLOSURES

Opedix Inc is acknowledged for providing the support garments to conduct this study. The Gustafson Family Foundation is also acknowledged for their monetary donation to the ISU biomechanics lab to support the "teaching through research" educational endeavors of the lab. Neither Opedix Inc nor the Gustafson Family Foundation participated in the planning or conduct of this study. Dr. Michael Torry acknowledges he has the financial disclosures of consulting (on an as needed basis) for Opedix Inc and has a non-realized stock ownership in the Opedix Inc.

TABLE 1. Subject Profiles

Subject	Gender	Height (mm)	Weight (kg)	Age
S3	М	1524.0	88.4	20.0
S7	М	1095.0	86.1	21.0
S10	М	1676.4	71.2	21.0
S15	М	1778.0	87.5	20.0
Male	Avg:	1518.4	83.3	20.5
S1	F	1562.1	47.2	23.0
S4	F	1498.6	52.2	20.0
S5	F	1651.0	57.6	23.0
S6	F	1600.0	52.2	20.0
S 8	F	1625.6	54.4	21.0
S9	F	1651.0	59.0	20.0
S11	F	1574.8	55.7	18.0
S12	F	1727.2	62.1	18.0
S13	F	1714.5	58.9	22.0
S14	F	1663.7	58.5	21.0
Femal	e Avg:	1626.9	55.8	20.6
Total	Avg:	1595.85	63.64	20.6

3	Walk - Sheet	2																	
	RHip	RHip	RHip	RKnee	RKnee	RKnee	RAnk	RAnk	RAnk	RHip	ip	RHip		RHip		RKnee	ee	RKnee	e
	Angle -	- Angle -	Angle -	Angle -	Angle -	Angle -	Angle -	Angle -	Angle -	Force	- e	Force -	-	Force -		Force .	- ə	Force -	-
	X (deg)) Y (deg)	Z (deg)	X (deg)	Y (deg)	Z (deg)	X (deg)	Y (deg)	Z (deg)	(N) X	N)	Y (N)	(Z (N)		(N) X	N)	Y(N))
	د.	۰.	ہ.	ہ.		ح.	د.	ح.	ć.	۔ خ	Integral	? Int	Integral	? Ini	Integral	ب ۲	Integral	u S	Integral
er	Walk Withou	ıt																	
	S3 42.130	0 18.259	14.908	43.702		13.819 14.908	26.037	2.747	13.693	16.381	0.100	2.504 -0	-0.232 11	11.937 -3			1.074	1.870 -	-0.321
	<mark>S7</mark> 52.625	9.005	10.675	40.892	4.715	16.957	29.754	2.186	20.481	7.475	0.004	2.083 -0		13.695 -3	-3.612		1.056	1.602 -	-0.056
	S10 49.350	18.968	14.577	43.226	4.314	28.780	28.014	3.811	15.532	9.341	0.632	1.955 -(-0.298 12	12.035 -3	-3.827	6.108	0.814	1.829 -	-0.352
M S	S15 49.885	5 14.806	15.827	44.043	8.971	15.565	25.789	4.449	19.199	7.486	0.870	1.454 -(-0.167 12	12.159 -4	-4.227	5.942	0.791	2.269 -	-0.608
M - Avg.	48.497	7 15.260	13.997	42.966	7.955	19.053	27.399	3.298	17.226	10.171	0.402	1.999 -0	-0.287 12	12.457 -3	-3.823	5.903	0.934	1.893 -	-0.334
M - STD	4.481	4.549	2.277	1.423	4.441	6.541	1.860	1.021	3.154	4.232	0.417	0.432 0	0.122 0	0.831 0	0.287	0.216	0.152 (0.277 (0.226
г	<mark>S1</mark> 33.681	1 8.456	46.539	32.296	19.254	15.791	31.492	8.775	37.558	3.435	0.279	1.907 0	0.290 10	10.737 -4	-4.232	3.641	1.021	3.157 -	-1.139
н S	<mark>54</mark> 51.438	3 13.945	24.494	32.291	7.302	10.047	25.338	5.764	23.407	12.737	0.406	3.663 -(-0.480 11	11.622 -3	-3.052	6.342	1.040	1.807 -	-0.294
г	S5 47.182	2 11.708	22.596	31.370	18.052	19.779	28.420	4.786	18.937		0.278	3.710 -0		13.252 -3	-3.336	6.682	0.872	3.749 -	-0.755
г	<mark>S6</mark> 42.233	3 15.636	15.472	32.622	23.393		45.781	8.868	23.952				0.099 13				1.209	3.171 (0.306
н S			_	42.159			23.351		27.719				_						-0.329
ч	<mark>S9</mark> 46.640		_	29.109			42.201	9.471	22.938				-		-3.442			3.070 (0.076
				47.279		19.288	37.273	4.459	30.848				_						-0.264
н S		7 15.247		37.823	9.971	19.844	32.404	5.451	22.628	10.104	0.480	3.655 0	0.313 12	12.244 -3	-3.718	6.796	0.837	2.624 -	-0.148
F S1	<mark>S13</mark> 48.000	12.968	-	34.223	12.930	15.754	37.947	4.636	18.485	12.989	0.091	4.829 0	0.074 15	15.350 -3	-3.632	6.432	0.965	3.220 (0.327
	<mark>S14</mark> 55.442	2 16.289	24.987	30.022	5.884	14.826	27.107	5.206	16.785	11.425	0.568	2.269 -0	-0.255 12		-3.425	5.598	0.296	1.700 -	-0.474
F- Avg.	47.882	32 13.392	22.764	34.919	14.103	15.845	33.131	6.656	24.326	9.736	0.303 3.347		-0.122 12.600		-3.645	5.686	0.927 2.609	2.609	-0.269
F - STD	6.286	86 2.300		5.807	6.257		7.459	2.115	6.280	2.770	0.199 0.990		0.339 1	1.292	N	0.983	0.250 0.768	0.768	0.454
Total Avg.	48.058		20.259	37.218	12.346		31.493	5.697	22.297			2.962 -(-0.170 12	12.559 -3	-3.696	5.748	0.929	2.404 -	-0.288
Total STD	5.663	3.034	10.598	6.168	6.322	4.582	6.822	2.412	6.378	3.080	0.264	1.059 0	0.299 1	1.149 0	0.336	0.831	0.221 (0.734 (0.395
er	$\overline{\mathbf{x}}$																		
			11.996	43.545		_	26.152		16.224						-				-0.636
	_	_	_	41.217		19.097	25.139	_	17.370										0.352
E S	S10 49.409	9 13.249	9.316	42.494	3.179	21.055	26.045	2.512	13.671	7.695 F 070	0.468	1.062 -0	-0.059 11	11.701	-3.824	5.805	1.022	1.911 -	-0.460
		_	1.004	44.303		TOTICT	20.00		17.77	_			_		-				0.200
M - Avg.	47.045	· · ·	208.8 777 C	42.450	7 1 50	1/.22/	202.02 000 C		16.76U	2/6./	0.429)- C/UI	21 612.0-	- 061.21	-3.859	5.547	0.989	- 1.844 -	-0.414
			110.7	CCC-0	DCT./	C7C.C	2.22U	102.T	000.00								-		101.
<u>л</u> ц	51 43.5//	/ 13.302	73 F07	35.04/	787.1	11.042	40.L91	4.993	23.309 10.14F	1.0/4	0.250	1.505 - COC.L	LI 622.0-	11.42/ -4	-4.339	5.520	1.058 aro	- CN 1	-0.060
		_	_	2/1-00	7 01A	10 71 J	170.22	2.245 2.00C C	10 21C				_		_				707.0-
		_	_	38,130	14.803	9.461	33,119	3.314	16.282			_							-0.316
		-	_	35,345	5.264	14.125	18.331	4.184	21.150						-			_	-0.642
		_	_	34.584			25.893		13.851					_			1		-0.479
		_	_	45.251	_		39.767		16.639							_	1		-0.390
F S1	S12 46.423	3 13.427	17.565	39.078	3.908	16.123	24.619	2.485	13.531	9.033	0.645	1.734 0	0.068 12	12.071 -3	-3.645		0.601		-0.529
F S1	S13 47.843	_	-	36.616	13.421	16.647	33.515	-	19.163	10.174	0.312	2.656 -0	-0.090 16			7.435	0.782	1.875 -	-0.078
F S1	S14 47.547	7 11.294	19.026	31.954	12.480	13.408	28.990	4.498	14.692	7.994	0.202	1.790 0	0.041 11	11.868 -3	-3.207	5.239	1.053	2.182 -	-0.391
F- Avg.	45.849	9 12.124	15.868	36.584	8.894	12.871	29.897	3.378	16.908	7.898	0.411 1.941		-0.147 12.507		-3.652	5.696	0.961 1.920	1.920	-0.339
F - STD	2.529	9 1.963	6.244	4.132	4.677	2.288	7.140	0.997	3.540	1.388	0.186	0.374	0.227 1	1.731	0.350	0.879	0.311	0.244	0.187
Total Avg.	46.191			38.262	8.565		29.031	3.253	16.866		0.416		-0.168 12				0.969		-0.360
Total STD	3.106	2.759	6.241	4.428	5.218	3.265	6.201	1.033	3.188	1.574	0.162 0.609		0.202 1.502		0.340	0.761	0.267 (0.280 (0.182

TABLE 2. Walking Data (Kinematics & Forces) – Page 1

	Walk - Sheet 2	et 2															
	В	RKnee	RA	RAnk	RAnk	k	RAnk		RHip	RHip	RHip	RKnee	RKnee	RKnee	Rank	Rank	Rank
	ш	Force -	For	Force -	Force -		Force -		Mom -	Mom -	Mom -	- mom	Mom -	Mom -	Mom-	Mom-	Mom-
		Z (N)	X(X (N)	Y (N)	1)	Z (N)		X(mm.N)	Y(mm.N)	Z(mm.N)	X (mm.N)	Y (mm.N)	Z (mm.N)	X(mm.N)	Y(mm.N)	Z(mm.N)
	<u>م</u> .	Integral	۰.	Integral	->	Integral	? Inte	Integral	ر .	ر .	۰.	۰.	ۍ.	۰.	~.	ج.	۰.
Gender	Walk With																
Σ	S3 11.832		11.515	2.357					4586.737 1458.400	1458.400		1375.745	705.798	188.182	1610.420		206.938
Σ	S7 13.023		13.087			-0.202 4.			3098.324	1613.997	446.598	1637.552	696.564	193.899	1820.492	191.866	203.098
Σ	S10 11.483	3 -4.476	11.380			-0.288 4.	4.005 0.	0.354	3225.361	1432.522	298.880	804.415	714.225	234.722	1774.277	150.281	273.181
Σ	S15 11.580	0 -4.985	11.971	2.709	2.303 -	-0.039 4.	4.038 0.	0.354	3129.968	1184.214		1065.173	876.116	235.342	2019.653	157.964	187.452
M - Avg.	11.979	9 -4.461	11.988	2.424	1.698 -	-0.197 4.	4.218 0.	0.379	3510.097	1422.283	337.563	1220.721	748.175	213.036	1806.210	165.608	217.667
M - STD	0.711	L 0.377	0.775	0.199	0.410	0.111 0.	0.242 0.	0.091	719.788	177.802	73.205	362.990	85.598	25.507	168.439	18.199	37.957
ш	S1 10.698	8 -4.661	10.793	2.606	1.441 -	-0.307 3.	3.906 0.	0.385	1536.756	973.649	135.140	957.775	712.089	293.069	1572.824	128.756	253.191
ш	S4 11.823	3 -3.533	12.162	2.041	1.626 -	-0.313 3.	3.778 0.	0.237	3504.768	1626.947	486.109	1183.859	655.532	338.133	1843.475	146.716	335.035
ш	S5 12.530	0 -3.787	13.021	2.129	2.140 -	-0.072 4.	4.928 0.	0.266	3448.433	2365.752	274.584	1483.089	946.244	236.309	1908.406	133.211	269.122
ш	S6 12.292	2 -4.565	12.431	2.513		-0.386 2.	2.997 0.	0.071	3034.834	1376.479	405.565	1540.552	608.225	309.870	1710.699	166.647	309.806
ц	S8 11.851		11.678						3530.817	1470.237	490.534	1776.608	666.393	213.624	1884.371		225.436
ш	S9 12.380	0 -3.980	11.996	2.191		-0.581 3.	3.953 0.	0.113		1725.968	484.016	1528.739	877.321	343.323	1838.505	243.528	502.472
ш	S11 12.659		12.354				3.593 0.	0.262	2842.305	1318.881	415.202	1281.900	867.403	205.163	1649.159		228.709
Ŀ	S12 12.315	5 -4.343	12.162				5.109 0.		4118.035 1354.795	1354.795	289.387	1765.919	711.161	281.402	2057.188		438.441
ш	S13 15.648		14.278	2.301			4.948 0.	0.273	3871.246	1395.247	344.451	2100.298	683.070	242.654	2282.794		420.650
ш	S14 11.752	2 -4.143	11.601	2.300	1.298 -	-0.223 3.	3.372 -0	-0.005	3911.359	1388.967	406.370	1049.137	849.094	304.458	1764.815	214.686	250.138
F- Avg.	12.395		12.248	2.368 2.030	2.030	-0.314 4.005		0.204	3266.436	3266.436 1499.692	373.136	1466.787	757.653	276.800	1851.224	185.158	323.300
F - STD	1.274	4 0.360	0.925	0.221 0.709	0.709	0.150 0.738		0.131	749.265	363.178	113.997	356.543	116.036	49.733	205.160	62.486	98.254
Total Avg.	12.276	6 -4.273	12.174	2.384 1.935		-0.281 4.066			3336.054 1477.575	1477.575		1396.483	754.945	258.582	1838.363	179.572	293.119
Total STD	1.130	0.371	0.864	0.209	0.641	0.146 0.	0.633 0.	0.143	721.990	316.111	102.526	362.936	105.034	52.498	190.085	53.513	97.305
Gender	Walk With			÷		-											
Σ			10.785	2.327	1.581 -		425 0.	0.480	3636.891 1634.135	1634.135		925.553	873.327	254.978	1627.847	1627.847 179.586	261.030
Σ	S7 13.361		13.681	2.378					2657.911 1436.497	1436.497	449.057	1184.046	802.578	232.659	2015.972		220.103
Σ	S10 11.322	2 -4.408	11.549	2.382	1.551 -	-0.281 3.	3.712 0.	0.294	2985.098	942.381	295.353	838.280	643.619	269.784	1929.430	151.577	289.990
Σ	S15 11.395	5 -4.964	11.865	2.762	1.434 -	-0.301 3.	3.361 0.	0.300	2408.626 1209.701	1209.701	322.129	1089.158	661.007	247.223	1923.997	129.108	242.298
M - Avg.	11.859		11.970			-0.277 3.	3.761 0.			1305.678	344.748	1009.259	745.132	251.161	1874.312	177.042	253.355
M - STD	1.002	2 0.338	1.228	0.201	0.065	0.057 0.	0.465 0.	0.126	531.773	297.878	70.415	156.178	111.229	15.483	169.626	51.553	29.603
ш			11.395	2.769		-0.311 3.		0.275	2270.195	1094.505	233.427	1233.277	527.786	190.896	1360.642		175.700
ш	S4 11.252		11.584			-0.314 3.	3.946 0.	0.353	2400.403	1183.469	352.153	1088.721	522.923	285.032	1791.912		287.984
ш	S5 13.069		13.299	2.359			4.716 0.	0.405	3076.327	1343.447	283.229	1379.576	626.995	217.840	1854.268		247.941
ш	S6 12.158	8 -4.357	12.460	2.367	1.796 -	-0.345 3.	3.404 0.	0.139	3052.299	1408.698	386.035	1268.509	770.432	317.480	1758.938	153.793	322.362
ш	S8 10.453	3 -4.400	10.424	2.696				-0.027	1876.449	1179.127	456.626	1156.090	760.416	252.487	1925.511	172.814	248.706
ш	S9 11.822	2 -4.147	11.635	2.298	1.938 -	-0.383 4.	4.383 0.	0.320	2593.174	1371.824	357.734	1054.204	908.657	302.644	1858.053	198.690	312.257
ш	S11 12.569	9 -4.470	12.368	2.530	2.139 -	-0.291 4.	4.518 0.	0.313	2722.428	1078.063	333.818	1236.225	857.171	239.332	1574.672	195.594	276.872
ш	S12 12.458	8 -4.288	12.289	2.313	1.948 -	-0.342 4.	4.976 0.	0.379	4128.690	1064.438	267.881	1364.886	782.380	249.984	2084.817	235.817	264.782
ш	S13 16.782	2 -4.330	16.181	2.421	1.694 -	-0.262 5.	5.120 0.	0.319	3657.528	1387.989	333.876	1580.547	883.251	231.692	2445.318	277.022	271.928
ш	S14 11.274	4 -3.704	11.380	2.146		-0.353 2.	0		2834.894	1162.441	375.334	1139.812	∞	337.121	1711.644	179.364	322.071
F- Avg.	12.312		12.302	2.397 1.782	1.782	-0.304 4.020		0.251	2861.239	2861.239 1227.400	338.011	1250.185	744.448	262.451	1836.577	190.198	273.060
F - STD	1.752	2 0.361	1.572	0.220 0.279	0.279	0.057 0.887		0.149	662.203	136.619	64.334	158.244	139.332	46.637	290.519	45.534	43.943
Total Avg.	12.183	3 -4.278	12.207	2.416 1.709		-0.296 3.946		0.269	2878.636 1249.765	1249.765	339.936	1181.349	744.644	259.225	1847.359	186.439	267.430
Total STD	1.550	0.365	1.443	0.209 0.263		0.056 0.780		0.141	607.995	607.995 186.400	63.400	189.003	127.653	39.863	255.704	45.681	40.304

TABLE 3. Walking Data (Forces & Moments) - Page 2

9	log - Sheet 1																		
	RHip	RHip	RHip	RKnee	RKnee	RKnee	RAnk	RAnk	RAnk	RF	RHip	RHip	ip	RHip	d	RKnee	ee	RKnee	e
	Angle -			Angle -	Angle -	Angle -	Angle -		Angle -	Force	- əo	Force -		Force -	e -	Force	e'	Force -	-
	X (deg)	g) Y (deg)	Z (deg)	X (deg)	Y (deg)	Z (deg)	X (deg)	Y (deg)	Z (deg)	(N) X	(z	Y (N)	(N	Z (N)	1)	(N) X	(N	Y(N)	(
	~.	۰.	۰.	.		د.	<u>م</u>	<i></i>		م	Integral	= ~·	Integral	= ~	Integral	- -	Integral	<u>ہ</u>	Integral
er	ğ																		
				26.946		18.744	46.310	_	28.238	11.642	-0.355			19.851	-2.675		-		-0.379
	S7 45.068	8 8.403	10.111	37.621	7.850	21.865	47.402	-	34.042	16.024					-2.753		1.431		-0.285
	<mark>S10</mark> 46.431	1 12.046	11.820	40.412	11.171	32.794	55.715	-	31.377		-0.515		-0.131		-3.026		1.425	8.250	-0.840
M S1	15 46.932	2 15.151	15.283	32.342	7.910	17.783	43.377	5.921	25.273	9.702	-0.254	2.918	-0.024 2	21.125	-3.285	9.300	1.210	7.145	-0.933
M - Avg.	45.708	8 13.495	11.663	34.330	8.398	22.797	48.201	5.833	29.733	11.906	-0.464	3.675	-0.159 2	22.809	-2.935	12.256	1.295	5.840	-0.609
M - STD	1.174	4.267	2.614	5.953	1.936	6.889	5.290	1.825	3.803	2.864	0.208	1.539	0.155	2.735	0.278	2.936	0.157	2.211	0.325
ц	S1 35.323	3 8.061	44.594	38.431	11.732	43.250	61.631	9.868	38.944	6.910	-0.249	1.951	0.116 1	18.840	-2.810	10.879	1.278	7.128	-0.895
г	<mark>S4</mark> 44.698	8 19.352	17.045	28.833	12.252	16.868	38.135	6.373	26.457	12.506	-0.190	5.374	-0.487	19.072	-2.344	11.568	1.267	3.840	-0.352
г	<mark>S5</mark> 45.239	9 15.080	14.287	33.050	15.410	31.265	47.482	7.195	24.100	18.672	-0.418	4.436	-0.148	23.682	-2.860	11.037	1.199	11.787	-1.130
г S	<mark>S6</mark> 35.836	6 17.914	13.475	26.279	12.634	14.519	60.634	8.521	27.634	8.911	-0.322	5.365	-0.433	17.918	-3.111	9.356	1.404	2.832	0.406
г	<mark>58</mark> 52.281	13.090	24.440	37.040	18.067	39.923	51.917	12.896	38.570	15.120	-0.566	8.057	-0.733	20.957	-2.747	12.969	1.543	8.372	-0.715
г	<mark>S9</mark> 45.974	4 20.398	7.391	30.697	16.722	15.293	59.931	7.358	23.784	10.094	-0.163	6.559	-0.427		-2.768	12.453	1.395	2.816	0.209
F S1	<mark>S11</mark> 45.739	-		36.005	11.665	32.317	66.510	-	37.663						-2.856	13.360	_		-0.356
F S1			14.538	40.252	7.506	26.007	48.937	5.907	24.070				0.099		-2.855	12.786	1.228	3.356	-0.201
F S1	S13 56.670		_	39.473	12.283	29.421	56.981		19.293	16.391			-0.133		-2.822	16.387	1.435		0.087
Е S1	14 49.924	4 19.101	18.345	37.307	5.263	27.633	48.341	7.672	24.336	10.462	-0.187	3.298	-0.215 2	20.231	-2.602	9.631	0.868	4.867	-0.460
F- Avg.	45.764	4 15.102	18.196	34.737	12.353	27.650	54.050	7.553	28.485	12.549	-0.327	4.462 -	-0.249 2	21.376	-2.778	12.043	1.284	5.375	-0.341
F - STD	5.456	5 3.235	4.437	4.602	3.878	8.222	8.136	2.370	6.168	2.991	0.139	1.702	0.237	2.266	0.198	2.009	0.184	2.848	0.448
Total Avg.	45.748	8 14.643	16.329	34.621	11.223	26.263	52.379		28.842	12.365	-0.366				-2.822	12.104	1.288		-0.417
Total STD	4.571	1 3.449	4.145	4.279	3.716	7.570	7.525	2.265	5.570 #	2.892	0.166	1.658	0.216	2.291	0.223	2.160	0.163	2.566	0.436
		_																	
er	Ň		-																
	_	-		25.982		20.858	46.261	-	30.052						-2.826		-	_	-0.680
	_	_	_	35.069	5.204	20.903	39.175	_	31.067	8.023					-2.906	12.471	+		-0.559
		-	_	38.812	8.662	26.490	51.774	_	29.418	9.025					-3.096		-		-0.896
_	S15 36.451	-	_	30.191	6.708	18.944	50.607	_	27.397	9.408			-0.324		-3.329	_	_	_	-0.468
M - Avg.	40.846	-	_	32.514	8.089	21.799	46.954	-	29.483	9.545					-3.039	_			-0.651
ρ		-	2.394	3.694	1.544	3.201	5.685	_	1.504	0.687			0.127		0.177		-		0.184
		-	_	30.994	5.957	19.288	60.469	-	34.915	_					-2.817		-		-0.076
		_		25.733	12.319	18.727	39.769	-	20.388						-2.363		_		-0.263
		_	_	29.874	4.487	18.791	43.653	-	20.963	10.526				23.943	-2.692		-		-0.302
		-	_	28.146	8.456	15.159	49.809	-	27.042	_			-0.440		-3.169		_		-0.189
г		-	_	35.450	5.215	20.394	43.962	-	20.791	9.597	-0.504				-2.739	9.229	1.055	7.049	-0.870
щ	S9 41.821	-		28.264	-	18.531	47.076		15.952						-2.863	10.741	1.282		-0.475
F S1	S11 43.635	5 6.504	4.285	35.449	4.058	24.150	61.304	-	18.723	_	-0.302			22.810	-2.838	12.717	1.358	5.993	-0.564
F S1		4 6.878	9.573	36.927	4.554	23.848	40.551	4.223	21.907			2.736	0.073 2		-2.918	10.419	1.032	5.321	-0.565
F S1				30.712	9.156	27.343	46.692		24.855		-0.358		-0.239		-2.987	12.795		4.244	-0.330
	S14 45.318	8 14.949	4.997	31.379	12.938	33.352	49.676	9.472	31.206	7.136	-0.404	3.407	-0.232	19.407	-2.643	11.535	1.308	4.778	-0.486
F - Avg.	42.761	1 12.418	8.884	31.293	7.648	21.958	48.296	4.854	23.674	8.767	-0.265	3.842	-0.278 2	20.667	-2.803	11.342	1.284	4.183	-0.412
F - STD	3.123	3 3.352	3.346	3.631	3.226	5.243	6.107	1.922	4.353	1.047	0.159	0.715	0.173	2.274	0.216	1.460	0.129	1.523	0.196
Total Avg.	42.214	4 12.331	9.496	31.642	7.774	21.913	47.913	4.950	25.334	8.989	-0.306	3.670	-0.245 2	20.959	-2.870	11.443	1.301	4.696	-0.480
Total STD	3.328	3 2.969	3.136	3.745	2.802	4.626	5.769	1.759	4.876	0.935	0.177	0.705	0.160	2.207	0.241	1.479	0.175	1.705	0.207

TABLE 4. Jogging Data (Kinematics & Forces) – Page 1

	Jog - Sheet 2	rt 2															
	_	RKnee	RA	RAnk	RAnk	¥	RAnk	k	RHip	RHip	RHip	RKnee	RKnee	RKnee	Rank	Rank	Rank
	_	Force - Z (N)	Pō Y	Force - X (N)	Force - Y (N)	- - -	Force - Z (N)		Mom - X(mm.N)	Mom - Y(mm.N)	- Mom - Z(mm.N)	X (mm.N)	Mom - Y (mm.N)	Z (mm.N)	Mom- X(mm.N)	Mom- Y(mm.N)	Mom- Z(mm.N)
	د.	Integral	ć	Integral	5 In	Integral	ul i	Integral	ć	ć.	ć.	ۍ.	ć.	ć.	ć	ج	ۍ
Gender	Without																
Σ	S3 20.068	58 -2.859	22.204	1.700	2.318	-0.164	5.759 (0.204	3507.584	3507.584 2444.997	479.477	2720.866	1124.363	221.546	2879.322	117.188	251.261
Σ	S7 24.358	58 -2.980	27.006					0.492				4242.658		169.460	3354.577	272.434	195.329
Σ	<mark>S10</mark> 23.518		26.088				8.275 0	0.478				2823.911		348.378	2975.088	324.931	410.600
Σ	<mark>S15</mark> 19.288	38 -3.448	21.379	2.174	3.711 -	-0.240	6.561 (0.306			352.947	1909.473	1887.915	425.544	2872.764		499.765
M - Avg.	21.808	-3.099	24.169	1.842	2.823 -	-0.139 7	7.451 (0.370	3452.176	2573.619	593.351	2924.227	1625.395	291.232	3020.438	234.885	339.239
M - STD	2.503	3 0.254	2.791	0.223	0.784		1.573 0	0.139	1131.884		245.416	969.434	593.032	116.890	227.616	88.447	140.607
Ŀ	S1 17.636	36 -2.825	21.170	1.756	3.511 -	-0.183	5.532 (0.267	2359.730	755.944	98.861	2129.795	1272.479	130.736	2602.124	251.193	435.783
ш	S4 17.110	10 -2.455	19.413	1.554	2.004 -	-0.159	6.202 (0.274	3458.578	2122.531		2294.159	875.372	337.201	2475.131	158.698	327.383
Ŀ	S5 21.662	52 -2.877	25.093	1.812	4.919 -		9.003 0	0.416	5049.445	2995.582		2241.130	2219.499	272.338	3058.962		663.915
ш	S6 17.954	54 -3.270	20.040	1.982		-0.029	4.680 (0.126			475.518	2779.927	835.751	152.421	2176.743	123.623	234.031
ш	<mark>58</mark> 20.058	58 -2.879	24.527	1.887	4.106 -	-0.183 6	6.048 (0.158	4553.787	2983.856	1100.424	3701.388	2649.255	207.557	2870.013	187.031	343.384
ш	S9 19.673	73 -2.884	23.270			-0.113 6		0.100	3084.914	2469.689		3167.864	444.665	424.902	2826.650		366.782
ш	S11 21.468	58 -3.054	23.964	1.870	5.476 -	-0.307 €	6.201 (0.117	3604.596	3604.596 2444.289	626.820	3146.795	2136.184	555.685	2684.598	276.945	495.620
Ľ	<mark>S12</mark> 21.556		24.266	1.798				0.212	3444.033	3444.033 1784.225		3566.401	1418.302	409.821	2790.053	159.732	437.846
ш	<mark>S13</mark> 23.234	34 -2.969	26.411	1.880	2.885 -	-0.080	6.511 (0.161	5161.810	5161.810 1753.806	367.774	4449.842	1057.262	357.341	3178.772		273.706
ш	<mark>S14</mark> 19.926	26 -2.886	21.845	1.757	2.000 -	-0.154	5.695 (0.026	3306.012	2054.447	461.141	2530.061	1622.783	223.674	2372.265	227.836	223.837
F- Avg.	20.028	28 -2.916	23.000	1.810	3.348 -	-0.174 6	6.226 (0.186	3691.035	3691.035 2118.280	511.046	3000.736	1453.155	307.168	2703.531	209.388	380.229
F - STD	1.818	8 0.207	2.201	0.112	1.437	0.099 1	1.078 (0.107	806.877	459.649	223.807	685.627	699.205	119.499	305.739	51.429	132.629
Total Avg.	20.536	36 -2.968	23.334	1.819	3.198 -	-0.164 6.576		0.238	3622.790 2248.377	2248.377	534.562	2978.876	1502.367	302.615	2794.076	216.673	368.517
Total STD	2.074	4 0.226	2.293	0.138	1.256	0.093	1.284 (0.148 #	882.499	507.128	219.984	735.621	642.373	112.382	316.968	55.427	126.633
Gender	Jog With																
Σ	S3 19.768	58 -3.025	21.109	1.709 3.173		-0.238 7.079		0.379	3610.563	3610.563 2470.512 311.359	311.359	1872.302		377.161	2882.434 164.431	164.431	440.269
Σ	S7 23.911	11 -3.096	26.973	1.826	1.627 -	-0.100	6.198 (0.254	1754.480	2571.395	567.459	2867.786	1392.007	108.304	3562.831		194.998
	S10 21.543	43 -3.047	25.350	1.816		-0.252 8		0.478	2502.426	1939.821		3086.096		301.076	3224.386		521.540
Σ	S15 19.124	24 -3.472	21.809	2.150	3.019 -	-0.268	5.968 (0.281	2154.349	2114.502	574.656	2528.323	1415.310	368.610	2965.199		372.816
M - Avg.	21.087	37 -3.160	23.810	1.875	3.210 -	-0.215 6	6.872 0	0.348	2505.454	2274.057	475.866	2588.627	1614.368	288.787	3158.712	267.668	382.406
M - STD	1.967	7 0.191	2.202	0.158	1.393	0.076 1	1.024 (0.100	356.806	268.287	63.384	258.690	341.071	111.272	248.991	112.062	133.834
ш	S1 16.742		20.391	1.897		-0.052	5.711 0	0.254	2221.204	2059.807		2843.387	454.679	106.775	2544.156	113.150	154.812
ц			19.256	1.558			6.368 (0.328	2385.368	1711.292		2193.856	733.754	322.420	2487.865		307.895
ц	S5 22.942		25.830	1.692				0.373				3076.599	859.327	178.536	3026.598		237.783
ш	S6 17.885	35 -3.317	20.102	2.009		-0.118	4.999 (0.193	2133.827	1632.990	474.310	2471.197		147.871	2250.744		188.095
ц	S8 19.275		21.457	1.858			5.522 (0.052				2278.446		258.596	2792.319		586.684
ш	S9 19.104	24 -2.980	21.971	1.822	3.039 -	-0.200	6.838 (0.264	2575.210	2220.318	453.626	2420.754	1324.936	383.749	2737.712	234.667	390.114
Ŀ	S11 21.016	16 -2.919	24.257	1.807	5.841 -	-0.361	5.404 (0.210	2720.968	1698.301	383.432	3129.979	2156.449	534.256	2535.121	178.290	482.083
ш	S12 21.543	43 -3.119	23.203	1.769			6.847 (0.290	2808.544	1446.746	218.667	3028.032	1822.353	392.431	2700.649	205.121	435.232
ш	S13 22.947		24.949	1.927				0.295	2825.197	2149.286		2939.525	1639.217	375.381	3360.782	373.990	384.346
ш	S14 18.489	89 -2.744	21.403	1.747	3.046 -	-0.248	5.484 (0.049	2907.457	1483.908	425.683	3184.401	1611.481	300.754	2554.028	180.058	338.143
F - Avg.	19.708	38 -2.931	22.282	1.809	3.054 -	-0.207 €	6.373 (0.231	2631.440	2631.440 1873.534	448.650	2756.618	1297.162	300.077	2698.997	211.876	350.519
F - STD	2.030	0 0.241	2.096	0.124	1.651	0.100	1.156 (0.108	258.216	305.422	128.766	375.762	541.875	111.785	306.680	71.727	115.567
Total Avg.	20.102	32 -2.996	22.719	1.828	3.098 -	-0.209 6.516		0.264	2595.444	2595.444 1987.969	456.426	2708.620	1387.792	296.851	2830.344	227.817	359.629
Total STD	2.045	5 0.250	2.248	0.139	1.528	0.091	1.095 (0.115	344.567	333.593	117.455	336.572	494.450	110.086	370.577	87.124	115.675

TABLE 5. Jogging Data (Forces & Moments) – Page 2

	Walking			Pair Diff	ferences
	Pair	Condition	Sig.	Mean (\bar{x})	Std. Dev.
	1 all	Condition	(2-tailed)	Mean (x)	(σ)
	Pair 1	RHipAngXwo - RHipAngXwith	0.127	1.868	4.291
	Pair 2	RHipAngYwo - RHipAngYwith	0.17	1.205	3.101
s	Pair 3	RHipAngZwo - RHipAngZwith	0.037 *	6.381	10.267
atic	Pair 4	RKneeAngXwo - RKneeAngXwith	0.312	-1.043	3.707
Kinematics	Pair 5	RKneeAngYwo - RKneeAngYwith	0.053	3.781	6.661
ζin	Pair 6	RKneeAngZwo - RKneeAngZwith	0.018 *	2.646	3.673
H	Pair 7	RAnkAngXwo - RAnkAngXwith	0.196	2.463	6.757
	Pair 8	RAnkAngYwo - RAnkAngYwith	0.002 *	2.444	2.408
	Pair 9	RAnkAngZwo - RAnkAngZwith	0.002 *	5.432	5.229
	Pair 10	RHipForceXDiffwo - RHipForceXDiffwith	0.013 *	1.940	2.525
	Pair 11	RHipForceXIntegwo - RHipForceXIntegwith	0.18	-0.085	0.225
	Pair 12	RHipForceYDiffwo - RHipForceYDiffwith	0.004 *	1.011	1.078
	Pair 13	RHipForceYIntegwo - RHipForceYIntegwith	0.978	-0.002	0.241
	Pair 14	RHipForceZDiffwo - RHipForceZDiffwith	0.43	0.140	0.645
	Pair 15	RHipForceZIntegwo - RHipForceZIntegwith	0.665	0.015	0.125
	Pair 16	RKneeForceXDiffwo - RKneeForceXDiffwith	0.706	0.094	0.915
	Pair 17	RKneeForceXIntegwo - RKneeForceXIntegwith	0.688	-0.040	0.366
	Pair 18	RKneeForceYDiffwo - RKneeForceYDiffwith	0.036 *	0.506	0.810
	Pair 19	RKneeForceYIntegwo - RKneeForceYIntegwith	0.574	0.072	0.469
	Pair 20	RKneeForceZDiffwo - RKneeForceZDiffwith	0.585	0.093	0.624
	Pair 21	RKneeForceZIntegwo - RKneeForceZIntegwith	0.907	0.005	0.171
s	Pair 22	RAnkForceXdiffwo - RAnkForceXdiffwith	0.869	-0.033	0.738
Kinetics	Pair 23	RAnkForceXIntegwo - RAnkForceXIntegwith	0.307	-0.032	0.111
	Pair 24	RAnkForceYdiffwo - RankForceYdiffwith	0.194	0.226	0.619
	Pair 25	RAnkForceYIntegwo - RAnkForceYIntegwith	0.64	0.015	0.121
	Pair 26	RAnkForceZdiffwo - RAnkForceZdiffwith	0.422	0.120	0.541
	Pair 27	RAnkForceZIntegwo - RAnkForceZIntegwith	0.695	-0.015	0.141
	Pair 28	RHipMomXDiffwo - RHipMomXDiffwith	0.014 *	457.417	599.457
	Pair 29	RHipMomYDiffwo - RHipMomYDiffwith	0.016 *	227.810	308.591
	Pair 30	RHipMomZDiffwo - RHipMomZDiffwith	0.175	23.036	60.012
	Pair 31	RKneeMomXDiffwo - RKneeMomXDiffwith	0.012 *	215.134	275.022
	Pair 32	RKneeMomYDiffwo - RKneeMomYDiffwith	0.811	10.302	158.338
	Pair 33	RKneeMomZDiffwo - RKneeMomZDiffwith	0.959	-0.643	45.988
	Pair 34	RAnkMomXDiffwo - RAnkMomXDiffwith	0.767	-8.996	111.345
	Pair 35	RAnkMomYDiffwo - RAnkMomYDiffwith	0.564	-6.867	43.393
	Pair 36	RAnkMomZDiffwo - RAnkMomZDiffwith	0.299	25.689	88.832
		* denotes a statistical difference			

TABLE 6. Statistical Results of Walking Dependent Variables

	Jogging			Pair Diff	ferences
	Pair	Condition	Sig.	Mean (\overline{x})	Std. Dev.
	1 411	Condition	(2-tailed)	Wiedii (X)	(σ)
	Pair 1	RHipAngXwo - RHipAngXwith	0.019 *	3.534	4.950
	Pair 2	RHipAngYwo - RHipAngYwith	0.032 *	2.312	3.591
s	Pair 3	RHipAngZwo - RHipAngZwith	0.019 *	6.833	9.531
atic	Pair 4	RKneeAngXwo - RKneeAngXwith	0.001 *	2.979	2.782
em:	Pair 5	RKneeAngYwo - RKneeAngYwith	0.037 *	3.449	5.543
Kinematics	Pair 6	RKneeAngZwo - RKneeAngZwith	0.088	4.350	8.838
H	Pair 7	RAnkAngXwo - RAnkAngXwith	0.012 *	4.466	5.723
	Pair 8	RAnkAngYwo - RAnkAngYwith	0.018 *	2.112	2.930
	Pair 9	RAnkAngZwo - RAnkAngZwith	0.104	3.508	7.496
	Pair 10	RHipForceXDiffwo - RHipForceXDiffwith	0.001 *	3.376	2.998
	Pair 11	RHipForceXIntegwo - RHipForceXIntegwith	0.192	-0.059	0.162
	Pair 12	RHipForceYDiffwo - RHipForceYDiffwith	0.295	0.567	1.947
	Pair 13	RHipForceYIntegwo - RHipForceYIntegwith	0.673	0.022	0.193
	Pair 14	RHipForceZDiffwo - RHipForceZDiffwith	0 *	0.826	0.619
	Pair 15	RHipForceZIntegwo - RHipForceZIntegwith	0.056	0.048	0.086
	Pair 16	RKneeForceXDiffwo - RKneeForceXDiffwith	0.288	0.661	2.233
	Pair 17	RKneeForceXIntegwo - RKneeForceXIntegwith	0.856	-0.013	0.272
	Pair 18	RKneeForceYDiffwo - RKneeForceYDiffwith	0.31	0.812	2.878
	Pair 19	RKneeForceYIntegwo - RKneeForceYIntegwith	0.627	0.063	0.472
	Pair 20	RKneeForceZDiffwo - RKneeForceZDiffwith	0.049 *	0.434	0.750
	Pair 21	RKneeForceZIntegwo - RKneeForceZIntegwith	0.332	0.028	0.105
s	Pair 22	RAnkForceXdiffwo - RAnkForceXdiffwith	0.035 *	0.615	0.979
Kinetics	Pair 23	RAnkForceXIntegwo - RAnkForceXIntegwith	0.652	-0.008	0.066
	Pair 24	RAnkForceYdiffwo - RankForceYdiffwith	0.788	0.100	1.359
	Pair 25	RAnkForceYIntegwo - RAnkForceYIntegwith	0.042 *	0.045	0.075
	Pair 26	RAnkForceZdiffwo - RAnkForceZdiffwith	0.844	0.060	1.120
	Pair 27	RAnkForceZIntegwo - RAnkForceZIntegwith	0.397	-0.026	0.111
	Pair 28	RHipMomXDiffwo - RHipMomXDiffwith	0.002 *	1027.345	967.994
	Pair 29	RHipMomYDiffwo - RHipMomYDiffwith	0.136	260.408	613.318
	Pair 30	RHipMomZDiffwo - RHipMomZDiffwith	0.211	78.136	222.008
	Pair 31	RKneeMomXDiffwo - RKneeMomXDiffwith	0.244	270.256	829.012
	Pair 32	RKneeMomYDiffwo - RKneeMomYDiffwith	0.495	114.575	609.962
	Pair 33	RKneeMomZDiffwo - RKneeMomZDiffwith	0.743	5.763	64.396
	Pair 34	RAnkMomXDiffwo - RAnkMomXDiffwith	0.312	-36.269	128.946
	Pair 35	RAnkMomYDiffwo - RAnkMomYDiffwith	0.652	-11.143	90.274
	Pair 36	RAnkMomZDiffwo - RAnkMomZDiffwith	0.855	8.888	177.872
		* denotes a statistical difference			

TABLE 7. Statistical Results of Jogging Dependent Variables

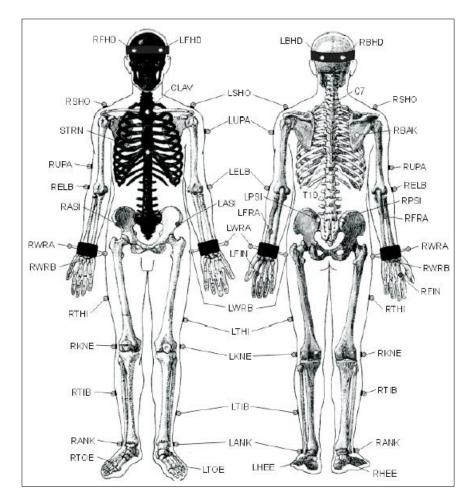
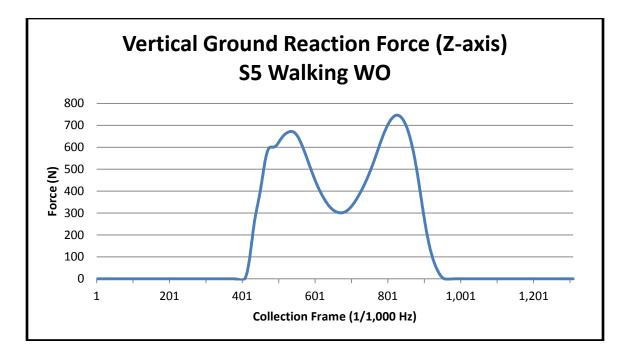



FIGURE 1. Marker Placement Used For Plug-In Gait Marker Set (Vicon, Oxford, UK)

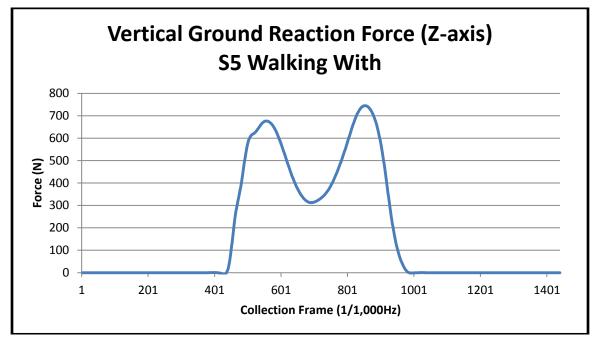
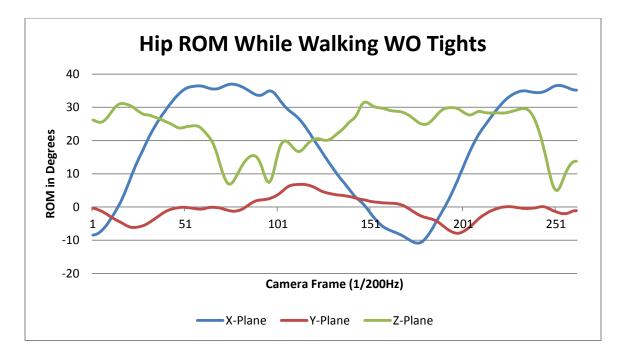



FIGURE 2. Representative Graph of Walking With & Without Tights: Ground Reaction Force (GRF)

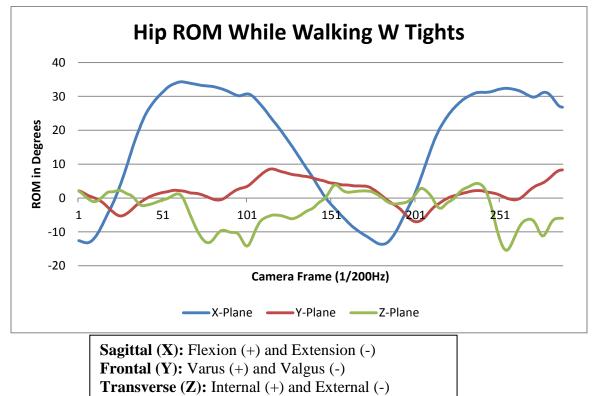
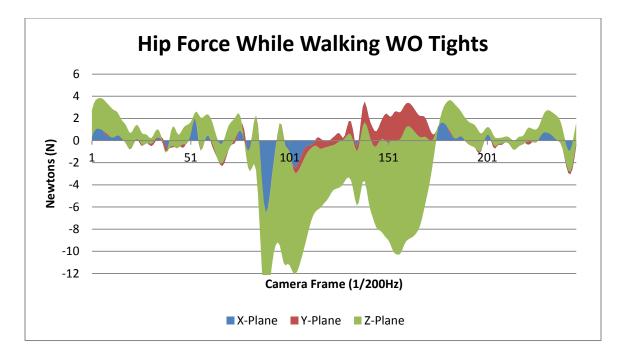



FIGURE 3. Representative Graph of Walking With & Without Tights: Hip Range of Motion (ROM)

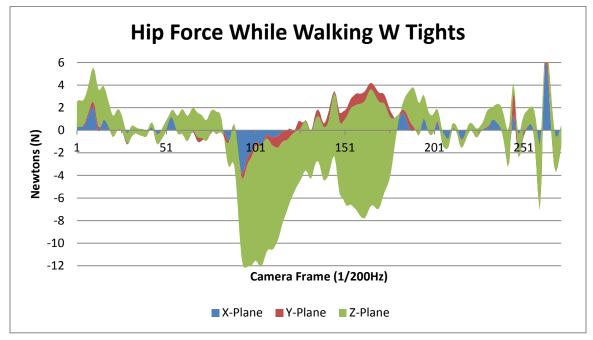
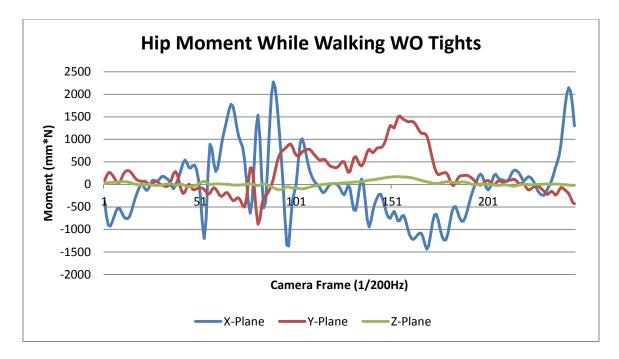



FIGURE 4. Representative Graph of Walking With & Without Tights: Hip Forces

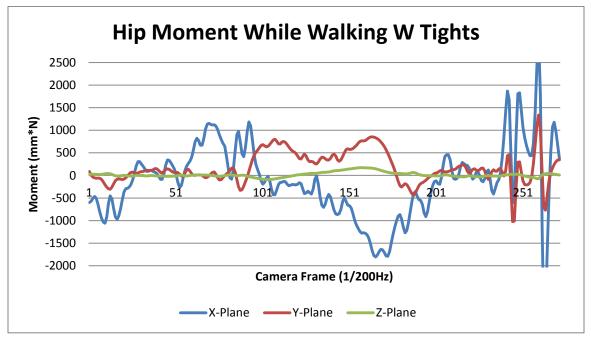
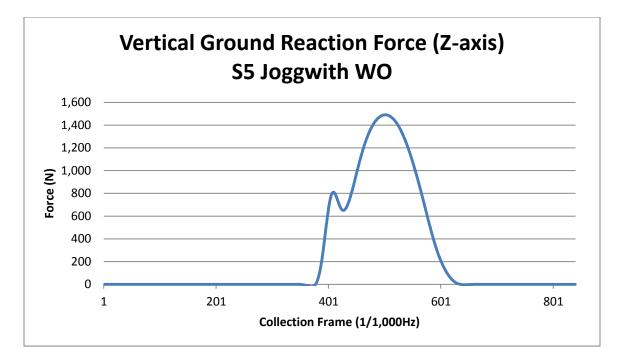
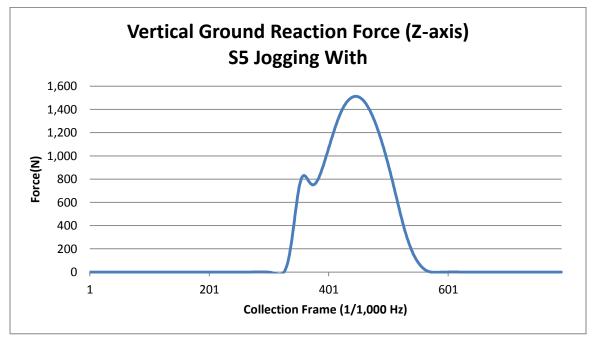
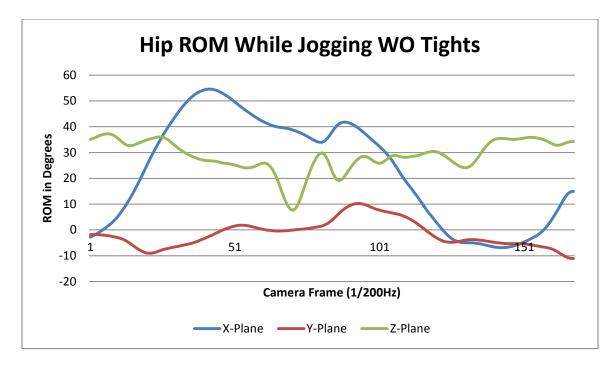
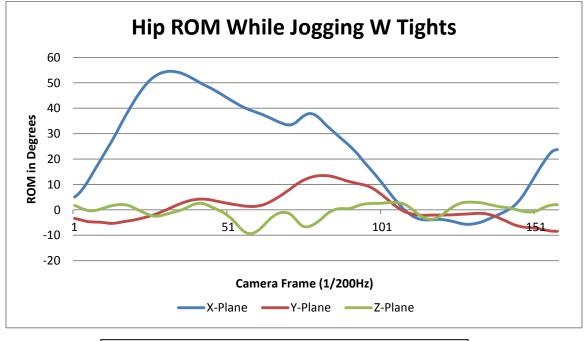
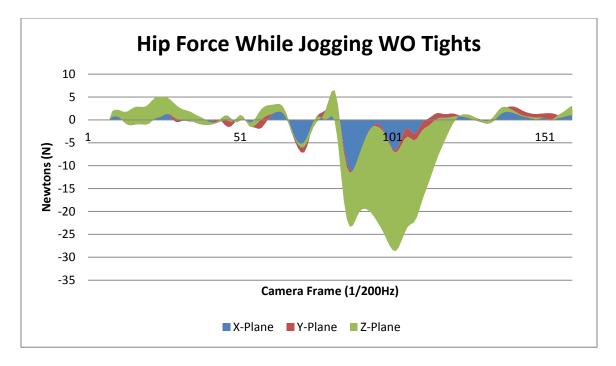



FIGURE 5. Representative Graph of Walking With & Without Tights: Hip Moments


FIGURE 6. Representative Graph of Jogging With & Without Tights: Ground Reaction Force (GRF)

Sagittal (X): Flexion (+) and Extension (-) Frontal (Y): Varus (+) and Valgus (-) Transverse (Z): Internal (+) and External (-)

FIGURE 7. Representative Graph of Jogging With & Without Tights: Hip Range of Motion (ROM)

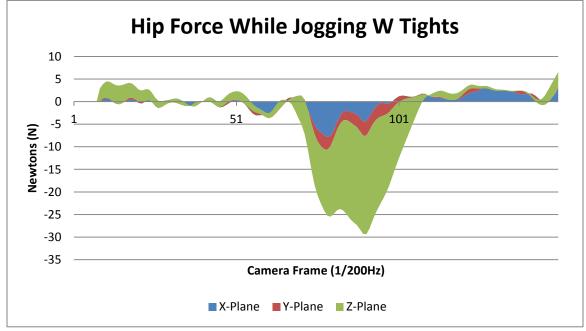
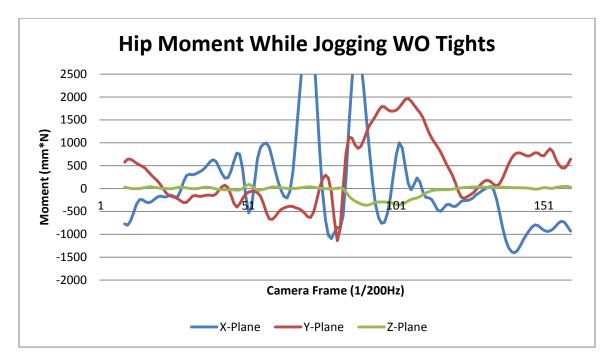



FIGURE 8. Representative Graph of Jogging With & Without Tights: Hip Forces

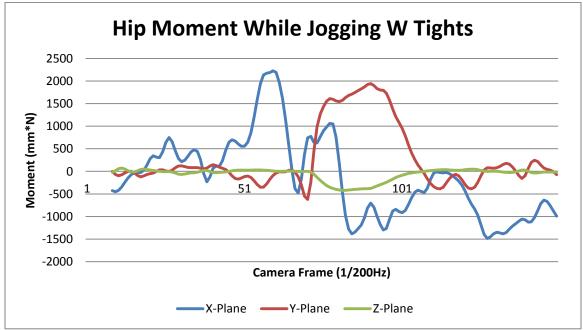


FIGURE 9. Representative Graph of Jogging With & Without Tights: Hip Moments

REFERENCES

- [1] J. Hamill and K. M. Knutzen, "Biomechanical Basis of Human Movement Third Edition," Lippincot Williams & Wilkins, 2009, pp. 53-55.
- [2] G. Bergmann, F. Graichen and A. Rohlmann, "Hip joint loading during walking and running, measured in two patients.," *Journal of Biomechanics*, vol. 26, pp. 969-990, 1993.
- [3] J. Perry, "Gait Analysis Normal and Pathological Function," Thorofare, NJ, SLACK Incorporated, 1992, pp. 3-158.
- [4] M. P. Murray, A. B. Drought and R. C. Kory, "Walking patterns of normal men," J Bone Joint Surg, vol. 2, no. 46A, pp. 335-360, 1964.
- [5] F. C. Anderson and M. G. Pandy, "Individual muscle contributions to support in normal walking," *Gait and Posture*, vol. 17, no. 2, pp. 159-169, 2003.
- [6] S. Al-Obaidi, J. C. Wall, A. Al-Yaqoub and M. Al-Ghanim, "Basic gait parameters: a comparison of reference data for normal subjects 20 to 29 years of age from Kuwait and Scandinavia," J. Rehab. Res. & Develop., vol. 40, no. 4, pp. 361-366, 2004.
- [7] V. L. Chester and A. T. Wrigley, "The identification of age-related differences in kinetic gait parameters using principal component analysis," *Clin. Biomech.*, vol. 23, no. 2, pp. 212-220, 2008.
- [8] V. L. Chester, M. Tingley and E. N. Biden, "A comparison of kinetic gait parameters for 3-13 year olds," *Clin. Biomech*, vol. 21, no. 7, pp. 726-32, 2006.
- [9] M. A. Dettmann, "Relationships among walking performance, postural stability and assessments of the hemiplegic patient.," *American Journal of Physical Medicine*, vol. 66, no. 2, pp. 77-90, 1987.
- [10] D. R. Gore, "Walking Patterns of men with unilateral surgical hip fusion.," *J Bone Joint Surg*, vol. 57A, no. 6, pp. 759-765, 1975.

- [11] M. Nordin and V. H. Frankel, "Basic Biomechanics of the Musculoskeletal System -Third Edition," Lippincott Williams & Wilkins, 2001, pp. 438 - 457.
- [12] E. Y. Chao, R. K. Laughman, E. Schneider and R. N. Stauffer, "Normative data of knee joint motion and ground reaction forces in adult level walking.," J *Biomech*, vol. 16, no. 3, pp. 219-233, 1983.
- [13] V. T. Inman, H. J. Ralston and F. Todd, Human Walking, Baldtimore, MD: Williams and Wilkins Company, 1981.
- [14] k. Cerny, J. Perry and J. M. Walker, "Effect of an unrestricted knee-ankle-foot orthosis on the stance phase of gait in healthy persons.," *Orthopedics*, vol. 13, no. 10, pp. 1121-1127, 1990.
- [15] S.-Y. Park and W.-G. Yoo, "Effect of Wearing Tight Pants on the Pelvic and Hip Kinematics of Women's Gait," *J. Phys. Ther. Sci*, vol. 25, pp. 467-468, 2013.
- [16] B. Pietraszewski, S. Winiarski and S. Jaroszczuk, "Three-dimensional human gait pattern - reference data for normal men," *Acta of Bioengineering and Biomechanics*, vol. 14, no. 3, 2012.
- [17] T. S. Keller, A. M. Weisberger, J. L. Ray, S. S. Hasan, R. G. Shiavi and D. M. Spengler, "Relationship between vertical ground reaction force and speed during walking, slow jogging, and running," *Clinical Biomechanics*, vol. 11, no. 5, pp. 253-259, 1996.
- [18] N. Umeda, H. Miki, T. Nishii, H. Yoshikawa and N. Sugano, "Progression of osteoarthritis of the knee after unilateral total hip arthroplasty: minimum 10year follow-up study," *Arch Orthop Trauma Surg*, vol. 129, no. 2, pp. 149-154, 2009.
- [19] R. B. Bourne, C. H. Rorabeck, J. J. Patterson and J. Guerin, "Tapered titanium cementless total hip replacements: a 10- to 13-year follow up study," *Clin Orthop*, vol. 393, pp. 112-120, 2001.
- [20] N. Shakoor, D. E. Hurwitz, J. A. Block, S. Shott and J. Case, "Asymmetric knee loading in advanced unilateral hip osteoarthritis," *Arthritis Rheum*, vol. 48, pp. 1556-1561, 2003.
- [21] H. Miki, N. Sugano, K. Hagio, T. Nishii, H. Kawakami, A. Kakimoto, N. Nakamura and H. Yoshikawa, "Recovery of walking speed and symmetrical movement of the pelvis and lower extremity joints after unilateral THA," *J Biomech*,

vol. 37, pp. 443-455, 2004.

- [22] J. Weidow, I. Mars and J. Karrholm, "Medial and lateral osteoarthritis of the knee is related to variations of hip and pelvice anatomy," *Osteoarthritis Cartil*, vol. 13, pp. 471-477, 2005.
- [23] G. Hassett, D. J. Hart, D. Doyle, L. March and T. D. Spector, "The relationship of progressive osteoarthritis of the knee and long-term progression of osteoarthritis of the hand, hip and lumbar spine.," *Ann Rheum Dis*, vol. 65, pp. 623-628, 2006.
- [24] F. C. Anderson and M. G. Pandy, "Dynamoic Optimization of human walking.," *Journal of Biomechanical Engineering*, no. 123, pp. 381-390, 2001.
- [25] T. A. Correa, K. M. Crossley, H. J. Kim and M. G. Pandy, "Contributions of individual muscles to hip joint contact force in normal walking," *Journal of Biomechanics*, vol. 43, pp. 1618-1622, 2010.
- [26] W. J. Kraemer, J. A. Bush, T. N. Triplett-McBride, P. L. Koziris, L. C. Mangino, A. C. Fry, J. M. McBride, J. Johnson, J. S. Volek and C. A. Young,
 "Compression Garments: Influence on Muscle Fatigue," *Journal of Strength and Conditioning Research*, vol. 12, no. 4, pp. 211-215, 1998.
- [27] A. Bringard, S. Perrey and N. Belluye, "Aerobic Energy Cost and Sensation Responses During Submaximal Running Exercise - Positive Effects of Wearing Compression Tights," *Int J Sports Med*, vol. 27, pp. 373-378, 2006.
- [28] T. Bernhardt and G. S. Anderson, "Influence of Moderate Prophylactic Compression on Sport Performance," *Journal of Strength and Conditioning Research*, vol. 19, no. 2, pp. 292-297, 2005.
- [29] B. Doan, Y.-H. Kwon, R. Newton, J. Shim, E. Popper, R. Rogers, L. Bolt, M. Robertson and W. Kraemer, "Evaluation of a lower-body compression garment," *Journal of Sports Sciences*, vol. 21, pp. 601-610, 2003.
- [30] R. Koldenhoven, P. Mathew, A. Humble-Guither, A. Luman, J. Jones and M. R. Torry, "Immediate Effects of a Prophylactic Knee Support on Frontal Plane Knee Mechanics During Walking," in *Proceedings of 61st American College* of Sports Medicine Annual Meeting, Orlando, Florida, 2014.
- [31] G. S. Beaupre, S. S. Stevens and D. R. Carter, "Mechanobiology in the development, maintenance, and degeneration of articular cartilage," *Journal of Rehabilitation Research and Development*, vol. 37, no. 2, pp. 145-151, 2000.

- [32] E. N. Marieb and K. Hoehn, "Human Anatomy & Physiology Ninth Edition," Pearson, 2013, pp. 270-271, 319-383.
- [33] T. M. Griffin and F. Guilak, "The role of mechanical loading in the onset and progression of osteoarthritis," *Exercise and Sport Science Review*, vol. 33, no. 4, pp. 195-200, 2005.
- [34] A. H. Navarro and J. D. Sutton, "Osteoarthritis. IX: Biomechanical factors, prevention, and nonpharmacologic management.," *Maryland Medical Journal*, vol. 34, no. 6, pp. 591-594, 1985.
- [35] T. P. Andriacchi, A. Mundermann, R. L. Smith, E. J. Alexander, C. O. Dyrby and S. Koo, "A Framework for the in Vivo Pathomechanics of Osteoarthritis at the Knee," *Annals of Biomedical Engineering*, vol. 32, no. 3, pp. 447-457, 2004.
- [36] D. Felson, "The course of osteoarthritis and factors that affect it.," *Rheum. Dis. Clin. North Am.*, vol. 19, pp. 607-615, 1993.
- [37] F. Guilak, "Biomechanical factors in osteoarthritis," *Best Practice & Research Clinical Rheumatology*, vol. 25, no. 6, pp. 815-823, 2011.
- [38] T. Miyazaki, M. Wada, H. Kawahara, M. Sato, H. Baba and S. Shimada, "Dynamic load at baseline can predict radiographic disease progression in medial compartment knee osteoarthritis," *Ann. Rheum. Dis.*, vol. 61, pp. 617-622, 2002.
- [39] D. R. Carter and M. Wong, "Modeling cartilage mechanobiology," *Phil. Trans R. Soc. Lond.*, vol. 358, pp. 1461-1471, 2003.
- [40] M. D. Harris, A. E. Anderson, C. R. Henak, B. J. Ellis, C. L. Peters and J. A. Weiss, "Finite Element Predictoin of Cartilage Contact Stresses in Normal Human Hips," J. Orthop. Res., vol. 30, no. 7, pp. 1133-1139, 2012.
- [41] R. B. Davis, S. Ounpuu, D. Tyburski and J. R. Gage, "A gait analysis data collection and reduction technique.," *Human Movement Science*, vol. 10, pp. 575-587, 1991.
- [42] G. Rab, K. Petuskey and A. Bagley, "A method for determination of upper extremity kinematics.," *Gait and Posture*, vol. 15, pp. 113-119, 2002.
- [43] M. P. Kadaba, H. K. Ramakrishnan and M. E. Wooten, "Measurement of lower extremity kinematics during level walking," *Journal of Orthopaedic Research*, vol. 8, pp. 383-392, 1990.

- [44] P. DeVita, M. Torry, K. L. Glover and D. L. Speroni, "A Functional Knee Brace Alters Joint Torque And Power Patterns During Walking And Running," J. *Biomechanics*, vol. 29, no. 5, pp. 583-588, 1996.
- [45] K. Sanderson, P. Mathew and J. Jones, "Differences in Ankle and Knee," in *American College of Sports Medicine*, Orlando, 2013.
- [46] A. Cappozzo, F. Catani, A. Leardini, M. G. Benedetti and U. Della Croce, "Position and orientation in space of bones during movement: experimental artefacts," *Clin Biomech*, vol. 11, pp. 90-100, 1996.
- [47] R. Bartlett, "Introduction to Sports Biomechanics. Analysing Human Movement Patterns," New York, Routledge, 2007, pp. 201-204.
- [48] C. L. Vaughan, B. L. Davis and J. C. O'Connor, "Dynamics of Human Gait," Western Cape, Kiboho, 1999, pp. 39-43.
- [49] D. B. Kettelkamp, R. J. Johnson, G. L. Smidt, E. Y. Chao and M. Walker, "An electrogoniometric study of knee motion in normal gait.," *J Bone Joint Surg*, vol. 52A, no. 4, pp. 775-790, 1970.
- [50] A. S. Levens, V. T. Inman and J. A. Blosser, "Transverse rotation of the segments of the lower extremity in locomotion.," *J Bone Joint Surg*, vol. 30A, no. 4, pp. 859-872, 1948.
- [51] T. S. Keller, A. M. Weisberger, J. L. Ray, S. Hasan, R. G. Shiavi and D. M. Spengler, "Relationship between vertical ground reaction force and speed during walking, slow jogging, and running," *Clinical Biomechanics*, vol. 11, no. 5, pp. 253-259, 1996.
- [52] K. M. Ostrosky, J. M. VanSwearingen, R. G. Burdett and Z. Gee, "A comparison of gait characteristics in young and old subjects," *Journal of the American Physical Therapy Association*, vol. 74, no. 7, pp. 637-644, 1994.
- [53] S. P. Messier, "Osteoarthritis of the knee and associated factors of age and obesity: effects on gait," *Med Sci Sports Exerc.*, vol. 26, pp. 1446-1452, 1994.
- [54] U. N. Das, "Is Obesity an inflammatory condition?," *Nutrition*, vol. 17, pp. 953-966, 2001.
- [55] M. Visser, L. M. Bouter, G. M. McQuillan, M. H. Wener and T. B. Harris, "Elevated C-reactive protein levels in overweight and obese adults," *JAMA*, vol. 282, pp. 2131-2135, 1999.

- [56] L. J. Bonassar, A. J. Grodzinsky, A. Srinivasan, S. G. Davila and S. B. Trippel, "Mechanical and physicochemical regulation of the action of insulin-like growth facto-I on articular cartilage," *Archives of Biochemistry & Biophysics*, vol. 379, pp. 57-63, 2000.
- [57] F. Guilak, B. C. Meyer, A. Ratcliffe and V. C. Mow, "The effects of matrix compression on proteoglycan metabolism in articular cartilage explants.," *Osteoarthritis & Cartilage*, vol. 2, pp. 91-101, 1994.
- [58] R. L. Sah, Y. J. Kim, J. Y. Doong, A. J. Grodzinsky, A. H. Plaas and J. D. Sandy, "Biosynthetic response of cartilage explants to dynamic compression," *Journal of Orthopaedic Research*, vol. 7, pp. 619-636, 1989.
- [59] P. A. Torzilli and R. Grigiene, "Continuous cyclic load reduces proteoglycan release from articular cartilage," *Osteoarthritis & Cartilage*, vol. 6, pp. 260-268, 1998.
- [60] M. L. Gray, A. M. Pizzanelli, A. J. Grozinsky and R. C. Lee, "Mechanical and physiochemical determinants of the chondrocyte biosynthetic response.," *Journal of Orthopaedic Research*, vol. 6, pp. 777-792, 1988.
- [61] S. T. McCaw, J. Gardner, L. Barlow and M. Torry, "Filtering ground reaction force data affects the calculation and interpretation of joint kinetics and energetics during drop landings.," *Journal Of Applied Biomechanics*, vol. 29, no. 6, pp. 804-809, 2013.