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NITRATE UPTAKE IN CENTRAL ILLINOIS STREAMS: 

A COMPARISON ALONG A TRANSIENT 

STORAGE GRADIENT 

 

Kristen L. Theesfeld 

108 Pages December 2014 

 Transient storage can be influenced by channel morphology. Anthropogenic activities 

can alter stream morphology by straightening channels, lining channels, or even restoration of 

previously altered channels. This study focused on whether relative transient storage (RTS) was 

related to stream type – modified lined, modified unlined, or natural. The study further sought 

to determine if a greater RTS is correlated to a decrease in percent nitrate-N. 

Eight (8) sites, encompassing three (3) different stream types - modified lines, modified 

unlined, and natural – were studied. Chloride and nitrate tracers were added to streams, and 

samples were analyzed for tracer concentrations and specific conductance. Simulated break 

through curves from a One Dimensional Transport with Inflow and Storage (OTIS) model were 

best-fit to observed data to estimate stream RTS. Solute recovery was calculated using a mass 

balance equation. The influence of RTS on nutrient processing was then assessed by comparing 

RTS to change in percent of nitrate-N. 

Contrary to predictions, RTS was highest in modified unlined streams (0.361) and lowest 

in modified lined streams (0.131). This discrepancy was attributed to elimination of sinuosity in 

natural streams, which further supports the importance of sinuosity in creating transient 



  

storage. Abundant vegetation in modified unlined streams and differential sampling following 

recharge events also contributed to these results. Change in percent nitrate-N was predicted to 

decrease with increasing RTS. Change in percent nitrate-N decreased with increasing RTS as 

predicted, supporting the importance of transient storage in nitrate uptake. However, results 

were not statistically significant (r2 = 0.09, p < 0.05), and a larger sample size with less variation 

in streams could further research.
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CHAPTER I 

INTRODUCTION 

 
Stream System Modification 

            It is estimated that over 70% of all streams in the United States have been modified 

(Kauffman et al., 1997) while up to 100% of all first-order streams within the state of Illinois 

have been modified (Mattingly et al., 1993). Modification can include stream diversion, stream 

bank stabilization, and stream channelization. According to the USEPA Clean Water Act (2005), 

stream channelization is defined as “…any activity that moves, straightens, shortens, cuts off, 

diverts, or fills a stream channel, whether natural or previously altered…that alters the amount 

and speed of the water flowing through the channel.” Two main catchments in McLean County, 

IL are the Mackinaw and Sangamon River Basins. Within the Mackinaw River basin, 1.6% of 

stream length attributed to 6th-order streams is modified, while 73.2% of stream length in 2nd-

order streams has been modified (Mattingly et al., 1993). The Sangamon River has had 11.7% of 

6th-order stream length modified while 100% of all 1st-order streams have been modified 

(Mattingly et al., 1993).  

 One form of modification widely practiced in agriculture areas is the use of tile drains 

(USEPA, 2012). Over 90 percent of land in Central Illinois is used for agriculture, and a large 

portion is tile drained (Lemke et al., 2011). Tile drains are desirable because they improve crop 

production by removing excess water from agriculture areas (USEPA, 2012). Additionally, 

streams surrounding agriculture are often straightened to aid in water transport away from 
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fields. Another common modification is the introduction of impervious surface cover (ISC), 

which inhibits the ability of water to infiltrate (NHEP, 2007). Roadways, parking lots, driveways, 

etc. are all forms of ISC (NHEP, 2007). In highly urbanized areas, ISC can constitute up to 60% of 

land cover (Nowak and Greenfield, 2012). Urban streams are often lined with ISC to control 

erosion, further lowering the ability of water to infiltrate (USEPA, 2005). 

Effects of Modification 

 Straightening of streams and tile drains improve crop production by removing excess 

water from agriculture areas (USEPA, 2012). Water runoff from drains may, however, contain 

increased concentrations of nitrate from fertilizers used on crops. Nitrate-N concentrations in 

tile drain runoff may reach levels as high as 40 mg/L, four times the USEPA’s 10-mg/L guideline 

(Brouder et al., 2005; USEPA, 2012). While Vidon et al. (2012) found that nitrate concentrations 

were an average of 28% lower in-stream than in tile drain runoff, streams particularly 

susceptible to tile drainage influences, such as those in Central Illinois, may exhibit degraded 

water quality. Implementation of best management practices have decreased the occurrence of 

such high concentrations, however, tile drains still input elevated concentrations of nitrate-N to 

streams (Brouder et al., 2005; Kladivko, 2001).  

 ISC decreases the ability of water to infiltrate soils, leading to increased surface runoff 

and elevated nutrient levels compared to natural lands (Cunningham et al., 2009). Nutrients in 

surface runoff can accumulate because of nitrate in lawn fertilizer and industrial wastewater 

inputs (Mayer et al., 2002; Moorman et al., 2002). To a lesser extent, nitrification of ammonium 

from septic systems can also increase nitrate loads (Moorman et al., 2002). Urban streams in 

Baltimore were shown to have, on average, more than 20 times nitrate concentrations than 

unmodified forest streams (Kaushal et al., 2008).   
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Transient Storage 

            Transient storage implies the temporary detainment, or storage, of water as it moves 

between the main channel and storage zones, resulting in inhibited flow compared to main 

channel flow velocity. Backwater areas and pools, and the hyporheic zone, these define what we 

consider transient storage zone (Baker et al., 2011; Bencala and Walters, 1983; Briggs et al., 

2009; Zarnetske et al., 2007). During low flows, water moves slower in pools than other parts of 

the stream (Harman and Jennings, 1999). The hyporheic zone is the interface where surface 

water and groundwater mix (Orghidan, 1955). Increased residence time of water allows for 

chemical and microbial interactions within transient storage zones (Bencala and Walters, 1983). 

Prolonged microbial interaction results in a greater nutrient uptake potential, particularly within 

the hyporheic zone. Low-oxygen environments within the hyporheic zone are conducive to 

anaerobic microbial activity encouraging denitrification (Boulton et al., 1998).  

 By definition, the process of stream modification decreases sinuosity within a stream 

(USEPA, 2005). By removing meanders, the hyporheic zone under meander necks is eliminated. 

Meander necks are thought to be crucial in the processing of chemicals such as nitrate (Peterson 

and Benning, 2013; Peterson and Sickbert, 2006; and Van der Hoven et al., 2008). Straightening 

increases stream discharge and flow velocity (USEPA, 2005). This promotes streambed scouring, 

discourages sedimentation, and eliminates zones of transient storage in pools and backwater 

areas (Harman and Jennings, 1999). 

 Modification removes irregularities in streambeds and regulates water flow 

(Bukaveckas, 2012), and decreases overall stream complexity (USEPA, 2005). Complexity can 

include surface water-substrate connection, backwater areas, in-stream pools, and sediment 

composition (USEPA, 2005). Transient storage decreases when complexity decreases, because 
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crucial sources of nutrient uptake are being removed from the nutrient cycle (Bukaveckas, 

2012). D’Angelo et al. (1993) found transient storage zones to be insignificant in constructed 

(channelized) streams. Transient storage was greatest in natural, first-order streams, where the 

ratio of transient storage area to stream area averaged 1.2 (D’Angelo et al. 1993). Decreased 

transient storage means decreased interaction of surface water with the hyporheic zone, and 

decreased potential for denitrification (O’Donnell and Galat, 2007).   

 Transient storage is not solely responsible for nutrient uptake; however, it is an 

influencing factor. Other factors including temperature and nutrient saturation affect the ability 

of a stream to take up nutrients (Bernot et al., 2006; Claessens et al., 2009; Hall et al., 2002). In 

summer, a strong, positive relationship between nutrient uptake and transient storage exists 

(Claessens et al., 2009; Hall et al., 2002). Hall et al. (2002) showed a relationship between 

relative transient storage and nutrient uptake with an r2=0.35. In winter, the relationship is less 

strong, with r2=0.14 (Hall et al., 2002). Bernot et al., 2006 showed a relationship between 

nutrient concentration in streams and nutrient uptake.  

Restoration 

 Stability of chemical composition or reaching a level of equilibrium can improve water 

quality and biotic livelihood. Increasing nutrient levels may be mitigated through different ways. 

Urban developments may opt to use low impact designs (LIDs) to control nutrient 

concentrations in surface waters (Bedan and Clausen, 2009). LIDs allow for greater infiltration, 

and therefore retention, of water (Bedan and Clausen, 2009). Stream restoration aims to return 

these qualities by either returning streams to pre-altered conditions or reducing the effect of 

stressors (USEPA, 2005; Tullos et al., 2009; Violin et al., 2011). Passive restoration halts activities 
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that degrade stream water quality while active measures, such as stream channel 

redevelopment, try to repair damage done (Kauffman et al., 1997).  

 Morphologic restoration projects are a common form of stream restoration. Restoration 

may create backwater areas where Bukaveckas (2007) has shown nitrate uptake rates to be as 

much as thirty and three times greater respectively than uptake rates measured in unrestored, 

channelized streams. Reintroduction of meanders and construction of riffle pools are two key 

features of stream restoration that encourage nutrient uptake (Kauffman et al., 1997). 

Meanders promote nutrient uptake by increasing residence time. Peterson and Benning (2013), 

Peterson and Sickbert (2006), and Van der Hoven et al. (2008) demonstrated that stream 

meanders foster hyporheic processes such as nitrate loss. Constructed riffle units, another form 

of restoration, create a significant increased connectivity to the streambed (Fanelli and Lautz, 

2008). Riffles not only reconnect stream to substrate, sediment fill allows a location for 

anaerobic microbial activities such as denitrification.  

 A study conducted by Bukaveckas (2007) compared nutrient uptake and transient 

storage in pre- and post-restoration stream reaches. Areas were historically agricultural, and 

restoration had occurred over several decades. Transient storage was found to be slightly higher 

in restored reaches than channelized reaches, primarily due to the creation of backwater areas. 

Nutrient uptake was also found to be higher in restored reaches than unrestored, mostly due to 

restricted flow. Following modification, a stream’s potential for denitrification increases with 

recovery time. Likewise, Sergeant (2012) has shown restored streams have higher 

sedimentation rates than altered streams, increasing streambed complexity, and likelihood of 

nutrient uptake. Harris (2008) compared denitrification between streams 4, 7, and 30+ years 

post-modification. The study found the 4 and 7-year post-modification streams to have a 0.5 
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mg/L difference between stream and hyporheic nitrate concentrations in water. A greater 

recovery time, in the 30+ year post-modification stream, contributed up to 3.0 mg/L difference 

between stream and hyporheic nitrate concentrations.  

Broader Implications 

            Stream modification not only has the potential to lower water quality for human 

consumption, it lowers the ability for diverse biological communities to thrive (Vitousek et al., 

1997). In relation to stream community complications, nitrate can cause areas of low or no 

oxygen (Robertson and Vitousek, 2009). When excess nutrients are introduced it can lead to 

algal blooms and increased phytoplankton (O’Donnell and Galat, 2007). When the algae and 

plankton die, microbes use oxygen in the water to decompose algal matter. This creates hypoxic 

and anoxic conditions (Robertson and Vitousek, 2009). 

 Over 500 sites around the world have been identified as eutrophic zones (WRI, 2011). In 

the United States, eutrophication in the Gulf of Mexico is the result of nutrient loading upstream 

within the Mississippi River Basin (MRB) (O’Donnell and Galat, 2007).  The upper Midwest 

contributes 56% of nitrate in the MRB, of which 74% comes from crop fertilizer application 

(Rabalais et al., 2002). Within the Mississippi River Basin, predevelopment nitrate levels are 

estimated between 0.1-1.24 mg/L. (Goolsby and Battaglin, 2001). Current nitrate-N 

concentrations in McLean County, Illinois have been measured in agriculture output at over 6 

mg/L and urban water at over 5 mg/L (Smiciklas et al., 2008). In another study of streams in the 

Midwest, Bernot et al. (2006) found nitrate-N concentrations can range from 0.2-5.1 mg/L. In a 

national study, approximately 2% of urban streams and 30% of agriculture streams exceeded 

the USEPA maximum contaminant limit of 10 mg-N/L (Dubrovsky and Hamilton, 2010). To 

preserve water integrity, it is necessary to decrease the output of nitrate in streams. 
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Hypotheses 

1.  I hypothesize that natural streams will have the greatest average transient storage, modified 

(unlined) streams will have an intermediate amount of transient storage, and modified (lined) 

streams will have the least transient storage (Figure 1). Determining if a relationship exists 

between stream type and transient storage could potentially allow for a rapid characterization 

of streams’ potential for transient storage. Efficiency of nutrient removal could be increased if 

certain stream types can be targeted in restoration efforts to produce the greatest benefit from 

reintroduction of transient storage. 

Figure 1. Hypothesized RTS Based on Stream 

Type. 

 

2.  Additionally, I hypothesize that streams with greater transient storage will experience greater 

negative change in nitrate-N mass (Figure 2). Change in nitrate-N is anticipated become more 

negative as relative transient storage (RTS) increases. Analyzing nutrient uptake compared to 

transient storage could help make basic assumptions about streams in the Midwest and their 

ability to remove nutrients as they progress downstream to the Mississippi River. 
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Figure 2. Anticipated Relationship Between Percent Change in 

Nitrate-N and RTS.   

Site Geology 

General Site History 

 Study sites were chosen within McLean County, IL for its variety of modified lined, 

modified unlined, natural, and restored low-order streams (Figure 3). Sampled watersheds are 

highlighted in blue and individual sites are denoted by markers (ISGS, 2007). All streams chosen 

for study sites are headwater or low-order streams. Central Illinois consists primarily of glacial 

deposits. Deposits present as well as unit thicknesses vary between locations in the study area, 

and may include the Wedron Formation, the Henry Formation, or the Cahokia Alluvium. The 

Wedron and Henry Formations are part of the Wisconsinan Stage of glaciation in Illinois. Layers 

of glacial till and moraine deposits characterize the Wedron Formation. The Henry Formation is 

primarily composed of outwash plain sand and gravel deposits. The Cahokia Alluvium is a flood 

deposit composed of sands, silts, and clays. All deposits vary in thickness throughout the study 

range (Kempton et al., 1982; Soller et al., 1999). 
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Figure 3. Nutrient Tracer Site Map (ISGS, 2007). 
 

Site Classification 

 A brief summary of site classification is found in Table 1. Three sites--1900N, Crooked 

Creek, and Frog Alley--are located within the Mackinaw River Basin. Land use in the Crooked 

Creek watershed is primarily agriculture (IDNR, 1997). Crooked Creek is a 3rd-order stream that 

has not undergone human modification (Harris, 2008). It is classified as a natural stream. The 

stream has occasional meanders coupled with relatively straight portions of stream. Cutbanks in 

Crooked Creek expose areas of clayey silt. The streambed is primarily sandy silt. Sand and gravel 

with clasts up to 2cm, and few pieces 2cm+, are found mainly along point bars and longitudinal 

bars. There is vegetation near the banks, minimal vegetation in-stream, and biofilm found on 

most rocks. Undercutting beneath tree roots has created areas of low flow within the stream. 
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 1900N and Frog Alley are also within a primarily agriculture influence watershed (IDNR, 

1997). They have both been previously modified for agriculture use, straightening the streams 

(IDNR, 1997). 1900N was last modified 10 years ago and Frog Alley 13 years prior (Harris, 2008; 

Seargent, 2012). 1900N is a 2nd-order incised, straight channel that is experiencing undercutting 

on its banks. The streambed is comprised of sandy silt, with few gravel clasts. There is plentiful 

vegetation in-stream, and bars often have dense grass growth, which impedes water flow. Frog 

Alley is a relatively straight, 2nd-order stream with heavy vegetation on banks and in-stream. 

Banks are beginning to show signs of undercutting. The streambed is mainly sandy silt with few 

gravel clasts.  

The remaining sites—Little Kickapoo Creek and Sugar Creek are found within the 

Sangamon River Basin. Little Kickapoo Creek is divided into three separate sites. The first site, 

identified as Little Kickapoo Creek – Lined, Apartments, is a modified lined, 1st-order stream. 

Input is derived entirely from urban sources (IDNR, 2000). Little Kickapoo Creek – Lined, 

Apartments has a straight channel made of jointed concrete lining. Sedimentation of sand and 

silt particles is occurring along the bottom of the channel. There is also vegetation growing along 

the banks, in joints, and in streambed sediment. The second site, Little Kickapoo Creek - Lined is 

also a modified lined, 1st-order stream of similar construction and land use (IDNR, 2000). What 

little sedimentation has occurred along the bottom of the stream is made up of sandy silt. 

Between the two sampling periods, Little Kickapoo Creek - Lined went from having large 

amounts of algae in the reach in addition to other vegetation, to being cleaned of all plant 

matter. The last site on Little Kickapoo Creek is a natural, unmodified reach of a 3rd-order stream 

(Peterson and Sickbert, 2006). Agriculture and urban land use make up the majority of the 

watershed (IDNR, 2000). Little Kickapoo Creek - Natural has a variable streambed composition; it 
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contains mainly rounded gravel along the bed, with sandy silt in parts. Little Kickapoo Creek - 

Natural contains a few meanders, point bars, and longitudinal bars. There is little undercutting 

of banks, and vegetation is typically limited to stream banks. 

 Sugar Creek was divided into two sites, one modified lined and the other modified 

unlined are both 1st-order. Sugar Creek – Lined is a straightened, concrete lined stream reach 

that receives input from urban sources (IDNR, 2000). There is little sedimentation along the 

bottom of the reach. Vegetation within the reach is limited to small amounts of algae along 

concrete lining. Sugar Creek - Unlined is located immediately upstream of Sugar Creek - Lined 

and immediately downstream of a constructed waterfall. The streambed of Sugar Creek - 

Unlined is made of sandy gravel. Stream banks are made of sandy silt, and are undercut along 

the entire reach. There is little vegetation in stream, and it is mostly restricted to the banks.
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CHAPTER II 

METHODS 

 
Tracer Injection and Sampling 

 Ten (10) sets of data were collected from eight different sites (Table 1) from July-

November 2013. All data were collected a minimum of 24 hours after storm events to minimize 

stream flow variability. These sites encompass three (3) separate stream classifications: 

modified lined (L), modified unlined (U), and natural (N). Physical attributes of the stream 

including reach length (RCHLEN), discharge (Q), cross-sectional area (A), and chemical properties 

of the waters incorporating background specific conductance (SpC) and nitrate concentrations 

were collected in the field prior to each test. Additional parameters, including background levels 

of SpC and ion concentrations, were measured by sampling at the downstream probe location.  
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Stream reach length was chosen to minimize the influence of sinuosity while still 

allowing sufficient length for potential transient storage. Reach length was defined as the 

distance between the upstream and downstream probes, and was predetermined to be set at 

100m (Figure 4). Data input for OTIS were collected from the upstream probe location, and data 

were collected from the downstream probe for comparison to modeled OTIOS outputs. The 

upstream probe was located 20m downstream of the injection point to promote thorough 

mixing of solute. Wetted width measurements were taken from 10 locations and discharge was 

measured from one (1) to two (2) locations using the area-velocity method (Figure 5). Flow 

velocity was measured at 0.6 depth, representing the average velocity, using a Marsh-McBirney 

Flo-Mate 2000® electromagnetic velocity meter. 

 

Figure 4. Field Testing Setup. 

 

  



 15 

 

Figure 5. Measurements Taken for Cross-Sectional Area and Discharge 

Calculations. 

Total cross-sectional area, and subsequently discharge, was estimated by 

segmenting each stream injection site into cross-sections. Cross-sectional area 

was calculated by multiplying width (w) by depth (d). Flow velocity was measured 

at 0.6d. Discharge for each segment was calculated by multiplying segment cross-

sectional areas and multiplying by flow velocity of the segment. 

 

Data Collection and Analysis 

 Background SpC, chloride, and nitrate levels were determined by collecting samples of 

stream water prior to tracer injection. A conservative sodium chloride (NaCl) tracer was injected 

at all sites to model the relative transient storage of each stream. Six of the sites were also 

injected with a non-conservative sodium nitrate (NaNO3) tracer to calculate percent nitrate loss. 

Quantity of solute injected was based upon estimated stream discharge and background levels, 

determined from prior studies, with the purpose of raising levels measurably higher than 

background concentrations (Table 2).  

 Upstream and downstream specific conductance values were logged using YSI-556MPS 

and YSI-ProPlus probes at 1 to 30 second intervals dependent upon stream flow velocity. As 
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shown in Appendix E, SpC is a suitable proxy for chloride concentration because SpC exhibits a 

linear relationship with chloride (Granato and Smith, 1999; Schalk and Stasulis, 2012; Windsor 

and Mooney, 2008). Water samples were taken at the downstream probe location throughout 

the test, while the upstream probe was monitored regularly until it reached background SpC, or 

until SpC stabilized. Twenty (20) to 30 samples were collected at each site to characterize the 

rising and falling limbs of the breakthrough curves. Samples were run on a Dionex ICS-1100 Ion 

Chromatograph to measure anion concentrations, including chloride (Cl-), nitrate as nitrogen 

(NO3-N), and sulfate (SO4
-2).  Resulting concentrations were used to calculate nutrient loss within 

the stream system by integrating the breakthrough curve.  

OTIS Modeling 

 Each site was represented as a one-dimensional system, with solute concentration 

changing along the stream flow path, as well as a transient system where concentration profile 

changes with time. OTIS is a one-dimensional transient storage model that simulates resultant 

nutrient concentrations from an upstream injection point (Runkel, 1998). Within the streams it 

is assumed there is negligible vertical and horizontal dispersion of solute, eliminating both 

components and allowing for one-dimensional modeling to be used. OTIS additionally accounts 

for hydrologic parameters (Figure 6) including reach length (RCHLEN), main channel cross-

sectional area (AREA), discharge (Q), dispersion (DISP), lateral inflow (QLATIN), lateral outflow 

(QLATOUT), inflow solute concentration (CLATIN), transient storage zone area (AREA2), and 

storage zone exchange coefficients (α) (Runkel, 1998). During modeling OTIS creates 

homogenous conditions within each reach. In an effort to minimize variations between streams, 

while still establishing heterogeneous conditions, the number of reaches per site was set to two. 

Upstream boundary type (USBOUND) was set to a continuous concentration profile, using 

conservative tracer (chloride) probe data. Downstream boundary conditions (DSBOUND) were 
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set to reflect a dispersive flux of zero to reflect no change in concentration between the last 

modeled segment and any following segment. Boundary conditions began at the time of tracer 

injection and, once background conditions were reached or no further change was seen, 

extrapolated past the desired output time. Upstream probe SpC was verified for changes to 

background SpC if initial background levels were not reached. Simulation start and end time 

used for each stream model was based upon the time required for the break through curve to 

pass through the downstream location. Print step and integration time steps were set to reflect 

the time step used with recorded probe data. 
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Figure 6. OTIS Conceptual Model Adapted Courtesy of USGS (Runkel, 1998). 

Note that AREA2 is a combination of surface and hyporheic transient storage. 

 Main channel cross-sectional area (AREA) and discharge (Q) inputs were from data 

collected on site. Plausible minimum/maximum area and discharge values were set taking into 

account minimum/maximum depths, wetted widths, and flow velocities for each stream. This 

process was used to keep values as close to measured, realistic values as possible. Additional 

processes including lateral inflow (QLATIN) and outflow (QLATOUT), ion concentration of inflow 

(CLATIN), transient storage zone area (As), storage zone exchange coefficient (ALPHA), and 

dispersion (DISP) were estimated within the model. Dispersion and exchange rates were 

compared to prior studies (USEPA, 2013) to stay within plausible limits. 
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 Each parameter was calibrated to minimize root-mean-square error (RMSE). Root-

Mean-Squared Error (RMSE) was calculated as: 

𝑅𝑀𝑆𝐸 = ∑ √
(𝑥𝑚𝑒𝑎𝑠,𝑖−𝑥𝑚𝑜𝑑,𝑖)

2

𝑥𝑚𝑒𝑎𝑠,𝑖
2𝑛

𝑛
𝑖=1       (1) 

where n is the number of values, xmeas,i is the measured SpC at time i, and xmod,I is the modeled 

SpC at time i. A sensitivity analysis for each model was run to determine which parameters were 

primarily controlling the OTIS model. Parameters were varied ± 5%, ± 10%, and ± 15% of final 

calibrated model best-fit values. Greater change in RMSE indicates a greater sensitivity to a 

specific parameter; likewise, less change in RMSE indicates lower sensitivity to a parameter. 

Initial sensitivity models were used to expedite the modeling process by allowing consistently 

more sensitive parameters to be changed immediately, reaching a minimum RMSE more 

quickly. Sensitivity analyses were performed for following models to verify parameter controls. 

 Relative transient storage (RTS) was calculated as: 

𝑅𝑇𝑆 =
𝐴𝑅𝐸𝐴2

𝐴𝑅𝐸𝐴
     (2) 

 where AREA2 is the modeled transient storage cross-sectional area and AREA is the modeled 

main channel cross-sectional area. RTS was plotted against percent nitrate change, which was 

calculated from solute mass recovery. Solute mass recovered (mf) was calculated using sample 

concentration (Ci), background concentration (C0), time between samples (∆t), and measured 

discharge (Q) where: 

𝑚𝑓 = 𝑄 × ∑ (𝐶𝑖 − 𝐶0)∆𝑡
𝑡𝑓
𝑖=𝑡0

     (3). 
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Percent change in solute was calculated, for streams where samples were collected and 

analyzed on the IC, as: 

%∆Solute =
(𝑚𝑓−𝑚0)

𝑚0
× 100     (4) 

where mf is the final mass of solute recovered and m0 is the initial mass of solute injected. A 

best-fit line was used to determine if relative transient storage and percent nitrate change were 

correlated.
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CHAPTER III 

RESULTS 

 
Sampling Population 

 Eight (8) separate sites (Table 1), consisting of three (3) modified lined, three (3) 

modified unlined, and two (2) natural stream reaches, were sampled. Of the eight (8) sampling 

locations, two (2) sites were sampled on two (2) separate occasions. A third site, Sugar Creek – 

Lined, had one additional trial which is not reported in these results. Precipitation conditions 

leading up to the Sugar Creek – Lined, Trial 1 test were more variable than conditions prior to 

the other tests. As such, Sugar Creek – Lined, Trial 1 was considered incomparable to the other 

tests. The final sampling population was composed of 10 tests including Cl- only tracers, as well 

as Cl- and NO3
- injections (Table 2). Masses of ions of interest (IOI) were calculated for 

comparison against recovered mass of each ion. 
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Site Morphology Trial Solute 
m of nutrient 

analyzed 

-- -- -- -- (g) 

1900N 
Modified 
unlined 

-- 
NaCl 1281.30 ± 0.03 

NaNO3 34.67 ± 0.03 

Crooked Creek Natural -- NaCl 7153 ± 16 

Frog Alley 
Modified 
unlined -- NaCl 5365 ± 12 

Little Kickapoo 
Creek 

Modified lined 

1 NaCl 1788 ± 4 

2 
NaCl 448.72 ± 0.01 

NaNO3 14.82 ± 0.01 

Modified lined Apartments 
NaCl 483.23 ± 0.01 

NaNO3 11.89 ± 0.01 

Natural -- 
NaCl 2577.35 ± 0.03 

NaNO3 58.65 ± 0.03 

Sugar Creek 

Modified 
unlined 

2 
NaCl 1780.27 ± 0.02 

NaNO3 224.52 ± 0.02 

Modified 
unlined 

1 NaCl 5365 ± 12 

2 
NaCl 2561.59 ± 0.03 

NaNO3 72.38 ± 0.03 

Table 2. Specific Quantities of Solute Introduced at each Location.  
 
 Data sets from Frog Alley and Little Kickapoo Creek – Lined, Apartments were unable to 

be successfully modeled in OTIS. Probe measurements were not continuous for USBOUND at 

Frog Alley due to unforeseen probe issues. Without adequate USBOUND measurements, an 

OTIS model could not be generated for Frog Alley. An OTIS model was not generated for Little 

Kickapoo Creek – Lined, Apartments either due to a noticeable influx of water during the tracer 

test. While OTIS is capable of modeling transient discharge conditions, for the purposes of this 

study, steady-state calculations were implemented. Frog Alley and Little Kickapoo Creek – Lined, 

Apartments were, however, able to be used when calculating solute mass balance, as 

downstream data was sufficient. 
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Tracer Test and Field Data 

 A minimum of 21 and maximum of 30 samples were collected at the downstream probe 

location (Appendix B). Variations in sampling populations were due primarily to more or less 

rapid movement of tracer downstream than preliminary tests predicted. SpC of samples was 

compared to probe recorded SpC (Appendix C) for sample/breakthrough curve verification 

(Figure 7). Curves were set to an initial background concentration equal to zero (mg/L or uS/cm 

respectively). Little Kickapoo Creek – Lined, Apartments experienced a noticeable increase in 

water depth and flow velocity over the course of sampling from what is assumed to be less 

conductive water, resulting in an ending SpC value that is negative relative to the starting SpC. 

Chloride (Cl-) and Nitrate-N (NO3
--N) were measured on the Dionex ICS-1100 (Appendix D) were 

recorded for tracer analysis. NO3
--N values were not analyzed at Crooked Creek - Natural, Frog 

Alley, and Sugar Creek – Unlined, Trial 1 since they did not involve a nitrate tracer addition. 

Ambient chloride concentrations were highest in Little Kickapoo Creek – Lined, Apartments 

(317.87 mg/L) and the lowest were in 1900N (11.12 mg/L), a modified lined and modified 

unlined stream respectively. NO3
--N background concentration was highest in a modified 

unlined stream (1900N, 3.97 mg/L) and lowest in modified lined stream (Sugar Creek – Lined, 

Trial 2, 0.32 mg/L).  
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Figure 7. Downstream Break Through Curves for (A) Cl-, (B) NO3
--N, and (C) SpC. 
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Figure 7. Cont’d 

 Field measurements were collected upstream and downstream prior to tracer tests. 

Average wetted width, AREA, and QSTART were collected along the length of each stream reach 

(Table 3). Modified lined stream reaches showed the least variation in wetted width and cross-

sectional area measurements, followed by modified unlined and natural. Little Kickapoo Creek – 

Lined, Trial 2  had the smallest average wetted width of 1.056 ± 0.149 m while Sugar Creek – 

Unlined, Trial 2 had the largest average wetted with of 5.716 ± 0.908 m.  Little Kickapoo Creek – 

Lined, Trial 2  also had the smallest cross-sectional area (0. 033 ± 0.004 m2) and Frog Alley had 

the largest (1.528 ± 0.004 m2). Modified lined streams showed, on average, the lowest discharge 
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followed by natural, then modified unlined streams. However, both the lowest and highest 

discharges were from modified lined streams (Little Kickapoo Creek – Lined, Trial 1 - 0.001 ± 

0.007 m3/s  and Sugar Creek – Lined, Trial 2- 0.103 ± 0.007 m3/s).  

Site Morphology Trial 

Average 
Wetted 
Width 

Average 
AREA 

Average 
QSTART 

-- -- -- m m2 m3 

1900N Modified unlined -- 3.250 0.650 0.036 

Crooked Creek Natural -- 4.583 0.569 0.021 

Frog Alley Modified unlined -- 3.948 1.528 0.025 

Little Kickapoo 
Creek 

Modified lined 
1 1.444 0.070 0.001 

2 1.056 0.033 0.002 

Modified lined Apartments 4.157 0.122 0.006 

Natural -- 4.057 0.639 0.033 

Sugar Creek 

Modified lined 2 3.884 0.186 0.103 

Modified unlined 
1 5.418 0.781 0.016 

2 5.716 0.802 0.040 

Table 3. Parameters Calculated from Field Measurements. 

OTIS Modeling and Calibration 

 General modeling began by using field measurements as input values and calibrating 

until a more accurate fit resulted (Appendix E). The better the fit, the more closely times and 

specific conductances generated by a model will match measured values. A perfect fit would 

exactly reproduce measured values. The majority of initial inputs produced poorly fitted models; 

for example, see Figure 8. Initial models generated large sources of error because of a perceived 

time delay between modeled and measured peak SpC. Final calibrations resulted in models that 

more closely mirrored measured values (Figure 9), and output provided data for RTS 

calculations. Average model NRMSE was lowest in modified unlined streams, followed by 

natural, and highest in modified lined streams (Figure 10). Values were 0.012, 0.028, and 0.068 

respectively.  
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Figure 8. Initial OTIS Output. 

The starting OTIS model (blue line) compared to measured values 

(red line) do not follow similar break-through-curve patterns as 

measured data, indicating the potential for a better fit. 
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Figure 9. Final OTIS Output for Sites. 

Measured, red, and corresponding OTIS modeled, blue, breakthrough curves for 1900N, 

Crooked Creek (CC), Little Kickapoo Creek – Lined, Trial 1 (LKC-L(1)), Little Kickapoo Creek – 

Lined, Trial 2 (LKC-L(2)), Little Kickapoo Creek – Natural (LKC-N), Sugar Creek – Lined, Trial 2 (SC-

L(2)) and Sugar Creek – Lined, Trial 1 (SC-U (2)). 
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Figure 10. NRMSE Based on Stream Type. 

Modified lined (L), modified unlined (U), or natural (N). 

 Measured versus final modeled parameter values for QSTART and AREA were compared 

(Figure 11). A line with slope (m)=1 represents where the modeled value is equal to the 

measured value. Points falling above this line have a modeled value greater than the measured 

value and points below this line have a modeled value less than measured value. Overall, there 

is a trend of measured QSTART being less than modeled QSTART (m<1). QSTART values lie more 

closely to the m=1 line.  Little Kickapoo Creek – Lined, Trial 1 has the greatest difference 

between QSTART measured and QSTART modeled. Measured AREA has a trend of greater values 

than modeled AREA (m>1). AREA also shows a greater variation in measured values to modeled 

values, which is consistent with intra-stream variation of cross-sectional areas, than QSTART. 

Modified unlined and natural streams--1900N, Crooked Creek, Little Kickapoo Creek – Natural, 

and Sugar Creek – Unlined, Trial 2--show the greatest overall differences in AREA measured to 

AREA modeled.  
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Figure 11. Measured v. Modeled Cross-Sectional Area and Discharge. 
Comparisons of measured to modeled cross-sectional area (A) and discharge (B). Dashed line 
indicates slope=1, or an exact match between measured and modeled values. 
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a slightly larger range between 0.085 and 0.190. The largest variation in RTS, 0.086 to 0.636, 

occurred in modified unlined streams. 

 

Figure 12. Average RTS Based on Stream Type. 

Modified lined (L), modified unlined (U), or natural (N). 

Sensitivity Analysis 

 Sensitivity analyses were used to determine model response to changes in parameters 

(±5%, ±10%, and ±15%), and verify calibration results. A best-fit corresponds to a minimum 

NRMSE at a 0% parameter change. Figure 13 shows sensitivity analyses to parameter changes 

for each site. All sites except 1900N exhibited primary sensitivities to QSTART and AREA. 1900N 

was most sensitive to CLATIN. Models are consistently more sensitive to QSTART at higher 

values and AREA at lower values. The only exception is Little Kickapoo Creek – Natural, which is 

more sensitive to AREA at higher values and QSTART at lower values. DISP sensitivity was only 

seen in Little Kickapoo Creek – Lined, Trial 1 at low DISP values. None of the models displayed 

high sensitivity to AREA2 or ALPHA transient storage parameters.  
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Figure 13. Sensitivity Analyses of OTIS Models. 

Parameters for all sites are represented as seen in 1900N key: ALPHA = blue circle, AREA = red 

circle, AREA2 = green triangle, CLATIN = purple “x”, DISP = blue star, QSTART = orange circle, 

QLATIN = orange diamond, QLATOUT = purple diamond. 
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Figure 13. Cont’d 
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Figure 13. Cont’d 
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Solute Mass Balance 

 Average measurements of percent change in solute were calculated using both 

measured and modeled discharge values (Figure 14). Individual stream nutrient data are found 

in Table 4. A multivariate analysis was then run using Spearman’s correlation coefficient. 

Measured Δ% Cl- and modeled Δ% Cl- have a strong, statistically significant correlation (r = 

0.9429, p<0.005). Measured Δ% NO3
--N and modeled Δ% NO3

--N have a strong correlation, 

however, it is not statistically significant (r=0.7000, p>0.05). Measured change in Cl- ranged from 

-93.34% in Crooked Creek to +247.43% in Sugar Creek – Lined, Trial 2 while change in NO3
--N 

ranged from -64.81% in Little Kickapoo Creek – Natural to +254.84% in Sugar Creek – Lined, Trial 

2. Modeled change in Cl- ranged from -64.46% in Crooked Creek to +680.52% in Sugar Creek – 

Lined, Trial 2 while change in NO3
--N ranged from -48.98% in Little Kickapoo Creek – Natural to 

+606.20% in Sugar Creek – Lined, Trial 2.  

 

Figure 14. Solute Recovery by Stream Type. 

Average percent (A) chloride and (B) nitrate as N change for measured and modeled discharges 

by stream type: modified lined (L), modified unlined (U), and natural (N). 
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Site Morphology Trial 
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-- -- -- --   % % % % 

1900N 
Modified 
unlined -- 

0.086 0.007 -39.977 -39.977 -16.166 -16.166 

Crooked 
Creek 

Natural 
-- 

0.190 0.037 -93.337 -64.463 -- -- 

Frog 
Alley 

Modified 
unlined -- 

-- -- -0.382 -- -- -- 

Little 
Kickapoo 

Creek 

Modified 
lined 

1 0.167 0.084 -- -- -- -- 

2 0.147 0.047 -29.141 73.283 -63.189 -9.979 

Modified 
lined Apartments 

-- -- -- -- -- -- 

Natural -- 0.085 0.020 -14.238 24.355 -64.810 -48.975 

Sugar 
Creek 

Modified 
lined 2 

0.080 0.073 247.431 680.519 254.839 606.200 

Modified 
unlined 

1 -- -- 0.237 -- -- -- 

2 0.636 0.016 -37.121 -37.121 -44.587 -44.587 

Table 4. Summary of Site RTS, NRMSE, and Solute Recovery. 

 Change in NO3
--N/Cl- throughout the sampling period is found in Figure 15. An 

unchanging ratio is indicative of nitrate acting as a conservative tracer, while an increasing or 

decreasing ratio indicates chemical changes. Substantially increasing ratios were seen at 1900N 

and Little Kickapoo Creek – Lined, Trial 2. While there is an overall increase in the NO3
--N/Cl- at 

1900N, there is an initial decreasing trend in the data followed by a jump and subsequent 

increase in values. A noticeable decrease in NO3
--N/Cl- was seen at Sugar Creek – Lined, Trial 2. 

The remaining sites maintained a relatively stable tracer ratio.  
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Figure 15. Nitrate-N to Chloride Ratios of Samples. 

A consistent ratio is indicative of NO3
--N acting as a conservative solute. 
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 Solute recovery data were plotted against RTS (Figure 16). Streams show a decreasing 

trend in change in Cl- with increasing RTS for measured (r2=0.081, p > 0.05) and modeled 

(r2=0.108, p > 0.05) values. A decreasing trend in NO3
--N change was seen with increasing RTS 

for measured values (r2=0.081, p > 0.05). Change in NO3
--N for modeled values also displayed a 

decreasing trend with increasing RTS (r2=0.095, p > 0.05). Overall, the relationship between RTS 

and Cl- or NO3
--N was not statistically significant. 
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Figure 16.  RTS v. Solute Recovered. 

Changes in Cl- (A) and NO3
--N (B) as compared to RTS of each site. Blue indicates use of 

measured QSTART to calculate recovered percent and red indicates use of final modeled 

QSTART value in the calculation.
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CHAPTER IV 

DISCUSSION 

 
Relative Transient Storage 

 RTS was predicted to be highest in natural streams, followed by modified unlined, and 

modified lined. Initial results do not support the hypothesized RTS of each stream type.  Highest 

RTS was found in modified unlined streams, not natural as predicted. Modified lined streams 

supported the hypothesis that they would have the lowest RTS.  Differences in stream sinuosity, 

vegetation, substrate, special variability, and temporal variability could all be contributing to the 

unpredicted RTS pattern. 

 Elimination of sinuosity variation in stream reaches potentially skewed results against 

natural stream having the highest RTS and NO3
- loss. Reaches were controlled in an attempt to 

create more uniform conditions between sampling sites for comparison. As a result, stream RTS 

may have been skewed against natural streams. Research conducted by Peterson and Benning 

(2013) and Peterson and Sickbert (2006) emphasize the importance of stream meanders in 

creating additional hyporheic zone under bends and along banks. While meanders are not 

typical of modified lined streams, they are prevalent, and potentially more important, to the 

establishment of hyporheic zones in natural streams (Peterson and Sickbert, 2006). The 

hyporheic zone in sinuous reaches may also be more constant in its presence, further 

emphasizing the importance (Cardenas, 2009). Results
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from this study postulate that if a more representatively sinuous reach of natural stream were 

to be studied, RTS would be highest in natural streams, further supporting the criticality of 

meander reintroduction during stream restoration. 

  RTS may also be influenced by in-stream vegetation seen at sites. The importance of in-

stream vegetation is two-fold; foliage density may itself retard the flow of water, or vegetative 

debris may accumulate and create pools where water is temporarily stored (Ensign and Doyle, 

2005; Salehin et al., 2003). During a visual inspection of streams in this study, modified unlined 

streams were found to have a greater amount of vegetation growing in-stream and along banks. 

Natural sites, however, were fairly foliage free. In addition to differences seen between 

modified unlined and natural streams, tracer test Little Kickapoo Creek – Lined, Trial 1 was 

performed approximately two weeks prior to test Little Kickapoo Creek – Lined, Trial 2. As seen 

in Table 4, Little Kickapoo Creek – Lined, Trial 1 had an RTS of 0.167 while Little Kickapoo Creek – 

Lined, Trial 2 had an RTS of 0.147. Stream reach was the same, however, between the two 

testing periods a large quantity of algae was removed from within the reach. As a result, flow 

velocity and thereby discharge was increased (from 0.0008m3/s (1) to 0.0021m3/s). The 

discrepancy seen between Little Kickapoo Creek – Lined, Trial 1 and Little Kickapoo Creek – 

Lined, Trial 2  is consistent with findings by Salehin et al. (2003) showing in-stream vegetation 

impedes the flow of water. These results are consistent as well with a study by Ensign and Doyle 

(2005) where vegetation created a significant portion of the transient storage seen in-stream.  

This highlights the importance of reintroducing vegetation to create areas of transient storage. 

 Recharge and timing of sampling may have influenced outcome of RTS in stream 

reaches as well. Most sites experienced recharge between two (2) to five (5) days prior to 

sampling events. Recharge limits depth of interaction with the hyporheic zone and decrease 

hyporheic exchange rates (Harvey et al., 1996; Jones et al., 1995). Surface exchange rates 
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increase during periods of high flow, further decreasing potential RTS by eliminating areas of 

surface storage. Wroblicky et al. (1998) showed lateral hyporheic zone to decrease by over half 

in Rio Calaveras and Aspen Creek following periods of recharge, in this case snowmelt 

introduction. Decreased RTS seen in this study further supports work by Hayden (2012) which 

saw decreased hyporheic zone depth during summer months compared to fall, when 

precipitation levels are greater. 

Solute Recovery 

 A strong, significant correlation between measured Δ% Cl- and modeled Δ% Cl- was 

anticipated. Models were created using a proxy for chloride concentration, specifically because 

of the conservative nature of chloride. Any loss or gain of chloride could be approximated by the 

model using lateral inflow and outflow. While there was a strong correlation, no statistical 

significance was found between measured Δ% NO3
--N and modeled Δ% NO3

--N. This indicates 

that the model does not allow for an accurate prediction of nitrate recovery, since Δ% NO3
—N is 

not occurring in a linear fashion. Differences in model sensitivities to inflow, outflow, or 

concentrations could be controlling this aspect. The analysis also indicated due to the small 

sample size, results are suspect. If a larger sample size could be analyzed, a stronger claim could 

be made regarding the relationship. 

Nitrate conservation or loss was predicted to occur within transient storage zones, 

which would manifest as a steady N/Cl or decreasing N/Cl. The majority of sites followed this 

trend. Nitrate gain, increasing N/Cl, was not anticipated, but was seen in 1900N and Little 

Kickapoo Creek – Lined, Trial 2. There are several potential reasons for these unanticipated N/Cl 

results. Inflow or outflow can influence nitrate retention, even on a small scale (Bean, 2012). 

Short reaches experiencing inflow of groundwater controlled by nitrification processes, rather 

than denitrification processes due to anoxic conditions, can have an overall increase in N/Cl 
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(Bean, 2012; Duff et al., 2008). Either can dictate whether a stream has the capacity to retain 

nutrients in streambed sediments, or if groundwater occupying interstitial spaces it may 

increase nitrate loads (Duff et al., 2008).  

 Overall, natural and modified unlined streams experienced similar steady N/Cl during 

this study. While unexpected, similarities between the ability of natural or modified unlined 

streams to remove nitrate has been seen in a study by Herrman et al. (2008) where sites had 

similarly elevated nitrate concentrations. Most often the inability of a stream to process nitrate 

as effectively is attributed to the stream being at the saturation point (Bernot et al., 2006; 

Claessens et al., 2010; Covino et al, 2010; Kemp and Dodds, 2002). Nitrate saturation may be 

occurring at both natural and modified lined sites in this study, as both are located within 

agricultural watersheds. 

 Stream reach may also not have been of sufficient length to properly assess stream 

denitrification. In this study, reaches were limited to 100m, with an additional 20m allotted for 

mixing between the injection point and upstream probe location for a total reach length of 

120m. While some studies used stream reaches comparable to those in this study to conduct 

transient storage modeling (Gooseff et al., 2005), others analyzed reach lengths in the 100s of 

meter and greater (Covino et al., 2010; Gooseff et al., 2013). Uptake was shown to decrease 

downstream, suggesting reaches of varying lengths may display different solute losses (Covino 

et al., 2010). Longer reaches were also shown to process solutes differently than short (Gooseff 

et al., 2013), likely due to long and short flow paths through the hyporheic zone (Poole et al., 

2008).   
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RTS v. NO3
- -N 

 Previous studies have shown no correlation between RTS and NO3
--N (Hall et al., 2002) 

as well as change in nitrate being controlled by RTS (Herrman et al., 2008). This study 

hypothesized that percent change in NO3
--N would decreased (less nitrification occurring or 

denitrification occurring) as RTS increased. The data support an overall decreasing change in 

nitrate-N with increasing RTS, however, the results are not statistically significant. Differing 

states of microbial activity could be affecting the outcome of this analysis, as well as differences 

in background concentrations of NO3
—N.  

 The addition of NO3
--N rather than loss was seen in this study, which could have been 

the result of aerobic conditions rather than anaerobic. Aerobic conditions would cause the 

hyporheic zone to transition from denitrifying conditions to nitrifying conditions (Argerich et al., 

2011; Haggard et al., 2001). This would cause the hyporheic zone to become a source, rather 

than sink, for nitrate. Other studies have also experienced increases in NO3
--N rather than 

anticipated decreases (Argerich et al., 2011; Haggard et al., 2001). 
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CHAPTER V 

CONCLUSION 

 
 Contrary to the hypothesis, RTS was highest in modified unlined streams. RTS was, 

however, lowest in modified lined streams as predicted. This discrepancy could be explained by 

the elimination of sinuosity, important characteristic of natural streams. It is expected that 

natural stream reaches allowing for sinuosity would display a larger RTS than modified unlined 

streams. Flow retardation due to vegetation could also account for inconsistencies in RTS. 

Elimination of vegetation in modified unlined streams, or additional vegetation in modified lined 

streams, is expected to increase the RTS in natural streams relative to modified unlined. 

 Change in percent of NO3
--N decreased as RTS increased. While these results support 

the hypothesis, they were not statistically significant. Differences among individual stream 

features, as well as spatial and temporal variation in sampling may be influencing the outcome. 

Stream may also include alternating segments of nitrification and denitrification. Increasing the 

site sample size, and allowing for a longer study reach may provide further insight into these 

discrepancies.
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APPENDIX A 

FIELD DATA  

 
1900N – UNLINED  Background 

Ambient Up YSI ProPlus 
     T DO 

 
SpC C pH mmHg sal 

 °C % mg/L uS/cm uS/cm     ppt 
 9.7 88.2 10.01 628.8 446.3 8.38 742.2 n.a. 
 

         Ambient Down YSI 556 MPS 
     T DO 

 
SpC C pH mmHg sal 

 °C % mg/L uS/cm uS/cm     ppt 
 9.74 n.a. n.a. 573 406 n.a. 757.2 n.a. 
  

Wetted Widths 
  

       Measure Width 
       # ft m 

      1 6.562 2.000 
      2 9.705 2.958 
      3 8.537 2.602 
      4 9.442 2.878 
      5 8.012 2.442 
      6 14.232 4.338 
      7 9.888 3.014 
      8 16.155 4.924 
      9 10.348 3.154 
      10 13.753 4.192 
      

  
3.250 

      

  

AVG 
Width 
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1900N – UNLINED  Cont’d - Cross Sections 
   

Width 
 

Depth 
 

Flow 
Velocity 

 

Averaged 
Width Area Discharge 

ft m ft m ft/s m/s m m^2 m^3/s 

0.000 0.000 0.000 0.000 0.00 0.00 0.125 0.000 0.0000 

0.820 0.250 0.102 0.031 0.00 0.00 0.250 0.008 0.0000 

1.640 0.500 0.302 0.092 0.12 0.04 0.250 0.023 0.0008 

2.461 0.750 0.525 0.160 0.29 0.09 0.250 0.040 0.0035 

3.281 1.000 0.623 0.190 1.40 0.43 0.250 0.048 0.0203 

4.101 1.250 0.486 0.148 0.30 0.09 0.250 0.037 0.0034 

4.921 1.500 0.328 0.100 0.08 0.02 0.250 0.025 0.0006 

5.741 1.750 0.220 0.067 0.01 0.00 0.250 0.017 0.0001 

6.562 2.000 0.000 0.000 0.00 0.00 0.125 0.000 0.0000 

     
0.07 

 
0.197 0.0287 

     

AVG 
Flow 
Velocity 

 

TOT 
Area 

TOT 
Discharge 

 

     
Width 

 
Depth 

 

Flow 
Velocity 

 

Averaged 
Width Area Discharge 

ft m ft m ft/s m/s m m^2 m^3/s 

0.000 0.000 0.000 0.000 0.00 0.00 0.125 0.000 0.0000 

0.820 0.250 0.630 0.192 0.04 0.01 0.250 0.048 0.0006 

1.640 0.500 0.991 0.302 0.03 0.01 0.250 0.076 0.0007 

2.461 0.750 1.070 0.326 -0.03 -0.01 0.250 0.082 -0.0007 

3.281 1.000 1.194 0.364 -0.02 -0.01 0.250 0.091 -0.0006 

4.101 1.250 1.319 0.402 -0.02 -0.01 0.250 0.101 -0.0006 

4.921 1.500 1.470 0.448 0.09 0.03 0.250 0.112 0.0031 

5.741 1.750 1.378 0.420 0.27 0.08 0.250 0.105 0.0086 

6.562 2.000 1.312 0.400 0.00 0.00 0.250 0.100 0.0000 

7.382 2.250 1.339 0.408 0.00 0.00 0.250 0.102 0.0000 

8.202 2.500 1.227 0.374 0.00 0.00 0.250 0.094 0.0000 

9.022 2.750 0.991 0.302 0.00 0.00 0.250 0.076 0.0000 

9.843 3.000 0.899 0.274 0.00 0.00 0.250 0.069 0.0000 

10.663 3.250 0.833 0.254 0.00 0.00 0.250 0.064 0.0000 

11.483 3.500 0.774 0.236 0.00 0.00 0.250 0.059 0.0000 

12.303 3.750 0.459 0.140 0.00 0.00 0.250 0.035 0.0000 

13.123 4.000 0.341 0.104 0.00 0.00 0.221 0.023 0.0000 

13.753 4.192 0.000 0.000 0.00 0.00 0.096 0.000 0.0000 

     
0.01 

 
1.233 0.0111 

     

AVG 
Flow 
Velocity 

 

TOT 
Area 

TOT 
Discharge 

       
0.715 0.0199 

       

Avg. 
AREA 

Avg. 
QSTART 
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CROOKED CREEK – NATURAL  Background 
Ambient Up YSI ProPlus 

     T DO 
 

SpC C pH mmHg sal 
 °C % mg/L uS/cm uS/cm     ppt 
 18.6 81.3 7.53 608 534 8.49 746.8 0.3 
 

         Ambient Down YSI 556 MPS 
     T DO 

 
SpC C pH mmHg sal 

 °C % mg/L uS/cm uS/cm     ppt 
 18.64 31.4 2.9 558 491 8.8 763.6 n.a. 
 

         Wetted Widths 
   Measure Width 

       # ft m 
      1 11.400 3.47472 
      2 14.500 4.4196 
      3 18.070 5.50774 
      4 19.050 5.80644 
      5 18.650 5.68452 
      6 11.900 3.62712 
      7 17.900 5.45592 
      8 15.600 4.75488 
      9 12.150 3.70332 
      10 11.150 3.39852 
      

  
4.58328 

      

  
AVG Width 
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CROOKED CREEK – NATURAL  Cont’d - 
Cross Sections 

    

Width 
 

Depth 
 

Flow 
Velocity 

 

Averaged 
Width Area Discharge 

ft m ft m ft/s m/s m m^2 m^3/s 

0.000 0.000 0.000 0.000 0.00 0.00 0.152 0.000 0.0000 

1.000 0.305 0.150 0.046 0.00 0.00 0.305 0.014 0.0000 

2.000 0.610 0.245 0.075 0.02 0.01 0.305 0.023 0.0001 

3.000 0.914 0.320 0.098 0.10 0.03 0.229 0.022 0.0007 

3.500 1.067 0.300 0.091 0.12 0.04 0.152 0.014 0.0005 

4.000 1.219 0.315 0.096 0.14 0.04 0.152 0.015 0.0006 

4.500 1.372 0.380 0.116 0.16 0.05 0.152 0.018 0.0009 

5.000 1.524 0.475 0.145 0.15 0.05 0.152 0.022 0.0010 

5.500 1.676 0.590 0.180 0.16 0.05 0.152 0.027 0.0013 

6.000 1.829 0.560 0.171 0.15 0.05 0.152 0.026 0.0012 

6.500 1.981 0.620 0.189 0.15 0.05 0.152 0.029 0.0013 

7.000 2.134 0.740 0.226 0.13 0.04 0.152 0.034 0.0014 

7.500 2.286 0.875 0.267 0.12 0.04 0.152 0.041 0.0015 

8.000 2.438 0.875 0.267 0.13 0.04 0.152 0.041 0.0016 

8.500 2.591 0.990 0.302 0.12 0.04 0.152 0.046 0.0017 

9.000 2.743 1.200 0.366 0.14 0.04 0.229 0.084 0.0036 

10.000 3.048 1.105 0.337 0.13 0.04 0.229 0.077 0.0031 

10.500 3.200 0.800 0.244 0.08 0.02 0.152 0.037 0.0009 

11.000 3.353 0.000 0.000 0.00 0.00 0.076 0.000 0.0000 

     
0.03 

 
0.569 0.0213 

     

AVG 
Flow 
Velocity 

 

TOT 
Area 

TOT 
Discharge 
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FROG ALLEY – UNLINED  Background 
Ambient Up YSI ProPlus 

     T DO 
 

SpC C pH mmHg sal 
 °C % mg/L uS/cm uS/cm     ppt 
 19.6 85.6 7.84 654 586 8.07 742 0.32 
 

         Ambient Down YSI 556 MPS 
     T DO 

 
SpC C pH mmHg sal 

 °C % mg/L uS/cm uS/cm     ppt 
 19.86 38.6 3.51 598 539 n.a. 760.3 n.a. 
 

         Wetted Widths 
      Measure Width 

       # ft m 
      1 6.810 2.07569 
      2 5.250 1.6002 
      3 14.625 4.4577 
      4 16.890 5.14807 
      5 15.880 4.84022 
      6 11.505 3.50672 
      7 14.690 4.47751 
      8 15.075 4.59486 
      9 14.220 4.33426 
      10 14.590 4.44703 
      

  
3.94823 

      

  

AVG 
Width 
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FROG ALLEY - UNLINED Cont’d - Cross 
Sections 

    

Width 
 

Depth 
 

Flow 
Velocity 

 

Averaged 
Width Area Discharge 

ft m ft m ft/s m/s m m^2 m^3/s 

0.000 0.000 0.000 0.000 0.00 0.00 0.152 0.000 0.0000 

1.000 0.305 0.675 0.206 0.01 0.00 0.305 0.063 0.0002 

2.000 0.610 1.340 0.408 0.04 0.01 0.305 0.124 0.0015 

3.000 0.914 1.535 0.468 0.06 0.02 0.305 0.143 0.0026 

4.000 1.219 1.580 0.482 0.10 0.03 0.229 0.110 0.0034 

4.500 1.372 1.470 0.448 0.09 0.03 0.152 0.068 0.0019 

5.000 1.524 1.470 0.448 0.07 0.02 0.152 0.068 0.0015 

5.500 1.676 1.520 0.463 0.07 0.02 0.152 0.071 0.0015 

6.000 1.829 1.580 0.482 0.07 0.02 0.152 0.073 0.0016 

6.500 1.981 1.700 0.518 0.08 0.02 0.152 0.079 0.0019 

7.000 2.134 1.540 0.469 0.10 0.03 0.152 0.072 0.0022 

7.500 2.286 1.470 0.448 0.10 0.03 0.152 0.068 0.0021 

8.000 2.438 1.510 0.460 0.07 0.02 0.152 0.070 0.0015 

8.500 2.591 1.440 0.439 0.04 0.01 0.152 0.067 0.0008 

9.000 2.743 1.335 0.407 0.04 0.01 0.152 0.062 0.0008 

9.500 2.896 1.350 0.411 0.05 0.02 0.152 0.063 0.0010 

10.000 3.048 1.230 0.375 0.05 0.02 0.152 0.057 0.0009 

10.500 3.200 1.265 0.386 0.01 0.00 0.152 0.059 0.0002 

11.000 3.353 1.110 0.338 0.01 0.00 0.152 0.052 0.0002 

11.500 3.505 1.050 0.320 -0.01 0.00 0.229 0.073 -0.0002 

12.500 3.810 0.700 0.213 0.00 0.00 0.305 0.065 0.0000 

13.500 4.115 0.225 0.069 0.00 0.00 0.305 0.021 0.0000 

14.500 4.420 0.000 0.000 0.00 0.00 0.152 0.000 0.0000 

     
0.01 

 
1.528 0.0253 

     

AVG 
Flow 
Velocity 

 

TOT 
Area 

TOT 
Discharge 
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LITTLE KICKAPOO CREEK – LINED, TRIAL 1  Wetted 
Widths 

   Measure Width 
       # ft m 

      1 4.163 1.269 
      2 5.315 1.620 
      

  
1.445 

      

  

AVG 
Width 

      

         Cross Sections 
       

Width 
 

Depth 
 

Flow 
Velocity 

 

Averaged 
Width Area Discharge 

ft m ft m ft/s m/s m m^2 m^3/s 

0.000 0.000 0.000 0.000 0.00 0.00 0.200 0.000 0.0000 

1.312 0.400 0.085 0.026 0.00 0.00 0.275 0.007 0.0000 

1.804 0.550 0.138 0.042 0.22 0.07 0.200 0.008 0.0006 

2.625 0.800 0.059 0.018 0.00 0.00 0.250 0.005 0.0000 

3.445 1.050 0.131 0.040 0.04 0.01 0.200 0.008 0.0001 

3.937 1.200 0.128 0.039 0.03 0.01 0.110 0.004 0.0000 

4.163 1.269 0.000 0.000 0.00 0.00 0.035 0.000 0.0000 

     
0.01 

 
0.032 0.0007 

     

AVG 
Flow 
Velocity 

 

TOT 
Area 

TOT 
Discharge 
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LITTLE KICKAPOO CREEK – LINED, TRIAL 1 
Cont’d - Cross Sections 

    

Width 
 

Depth 
 

Flow 
Velocity 

 

Averaged 
Width Area Discharge 

ft m ft m ft/s m/s m m^2 m^3/s 

0.000 0.000 0.000 0.000 0.00 0.00 0.200 0.000 0.0000 

1.312 0.400 0.269 0.082 0.00 0.00 0.400 0.033 0.0000 

2.625 0.800 0.338 0.103 0.02 0.01 0.400 0.041 0.0003 

3.937 1.200 0.282 0.086 0.06 0.02 0.400 0.034 0.0006 

5.249 1.600 0.000 0.000 0.02 0.01 0.210 0.000 0.0000 

5.315 1.620 0.000 0.000 0.00 0.00 0.010 0.000 0.0000 

     
0.01 

 
0.108 0.0009 

     

AVG 
Flow 
Velocity 

 

TOT 
Area 

TOT 
Discharge 

         

       
0.070 0.0008 

       

Avg. 
AREA 

Avg. 
QSTART 



 60 

LITTLE KICKAPOO 
CREEK – LINED, 
TRIAL 2 Background 
Ambient Up YSI ProPlus 

     T DO 
 

SpC C pH mmHg sal 
 °C % mg/L uS/cm uS/cm     ppt 
 30.8 110.6 8.22 966 1083 8.96 737.8 0.4 
 

         Ambient Down YSI 556 MPS 
     T DO 

 
SpC C pH mmHg sal 

 °C % mg/L uS/cm uS/cm     ppt 
 31.99 223.5 16.31 768 877 n.a. 758.3 n.a. 
 

         Wetted Widths 
      Measure Width 

       # ft m 
      1 2.946 0.898 
      2 3.934 1.199 
      3 2.605 0.794 
      4 3.419 1.042 
      5 3.780 1.152 
      6 3.642 1.110 
      7 4.206 1.282 
      8 3.517 1.072 
      9 3.819 1.164 
      10 3.714 1.132 
      11 3.228 0.984 
      12 2.759 0.841 
      

  
1.056 

      

  

AVG 
Width 

      

         Cross Sections 
    

Width 
 

Depth 
 

Flow 
Velocity 

 

Averaged 
Width Area Discharge 

ft m ft m ft/s m/s m m^2 m^3/s 

0.000 0.000 0.000 0.000 0.00 0.00 0.050 0.000 0.0000 

0.328 0.100 0.046 0.014 0.00 0.00 0.100 0.001 0.0000 

0.656 0.200 0.098 0.030 0.00 0.00 0.100 0.003 0.0000 

0.984 0.300 0.144 0.044 0.24 0.07 0.100 0.004 0.0003 

1.312 0.400 0.148 0.045 0.26 0.08 0.100 0.005 0.0004 

1.640 0.500 0.200 0.061 0.18 0.05 0.100 0.006 0.0003 

1.969 0.600 0.184 0.056 1.27 0.39 0.100 0.006 0.0022 

2.297 0.700 0.059 0.018 0.00 0.00 0.100 0.002 0.0000 

2.625 0.800 0.052 0.016 0.00 0.00 0.099 0.002 0.0000 

2.946 0.898 0.000 0.000 0.00 0.00 0.049 0.000 0.0000 

     
0.06 

 
0.028 0.0032 

     

AVG 
Flow 
Velocity 

 

TOT 
Area 

TOT 
Discharge 
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LITTLE KICKAPOO CREEK – LINED, TRIAL 2 
Cont’d - Cross Section 

    

Width 
 

Depth 
 

Flow 
Velocity 

 

Averaged 
Width Area Discharge 

ft m ft m ft/s m/s m m^2 m^3/s 

0.000 0.000 0.000 0.000 0.00 0.00 0.050 0.000 0.0000 

0.328 0.100 0.039 0.012 0.00 0.00 0.100 0.001 0.0000 

0.656 0.200 0.066 0.020 0.00 0.00 0.100 0.002 0.0000 

0.984 0.300 0.112 0.034 0.26 0.08 0.100 0.003 0.0003 

1.312 0.400 0.131 0.040 0.36 0.11 0.100 0.004 0.0004 

1.640 0.500 0.164 0.050 0.17 0.05 0.100 0.005 0.0003 

1.969 0.600 0.171 0.052 0.05 0.02 0.100 0.005 0.0001 

2.297 0.700 0.151 0.046 0.04 0.01 0.100 0.005 0.0001 

2.625 0.800 0.131 0.040 0.00 0.00 0.100 0.004 0.0000 

2.953 0.900 0.125 0.038 0.00 0.00 0.100 0.004 0.0000 

3.281 1.000 0.085 0.026 0.00 0.00 0.100 0.003 0.0000 

3.609 1.100 0.052 0.016 0.00 0.00 0.100 0.002 0.0000 

3.934 1.199 0.000 0.000 0.00 0.00 0.050 0.000 0.0000 

     
0.02 

 
0.037 0.0011 

     

AVG Flow 
Velocity 

 
TOT Area 

TOT 
Discharge 

         

       
0.033 0.0021 

       

Avg. 
AREA 

Avg. 
QSTART 
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LITTLE KICKAPOO CREEK – LINED, APARTMENTS Background 
Ambient Up YSI ProPlus 

     T DO 
 

SpC C pH mmHg sal 
 °C % mg/L uS/cm uS/cm     ppt 
 20.3 117.6 10.58 2571 2339 8.54 741.4 1.33 
 

         Ambient Down YSI 556 MPS 
     T DO 

 
SpC C pH mmHg sal 

 °C % mg/L uS/cm uS/cm     ppt 
 21.38 148.4 13.05 2530 2355 n.a. 759.3 n.a. 
 

         Wetted Widths 
      Measure Width 

       # ft m 
      1 10.974 3.345 
      2 16.680 5.084 
      3 10.623 3.238 
      4 10.676 3.254 
      5 11.732 3.576 
      6 14.377 4.382 
      7 14.573 4.442 
      8 14.600 4.450 
      9 15.997 4.876 
      10 16.142 4.920 
      

  
4.157 

      

  

AVG 
Width 
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LITTLE KICKAPOO CREEK – LINED, 
APARTMENTS Cont’d - Cross Section 

    

Width 
 

Depth 
 

Flow 
Velocity 

 

Averaged 
Width Area Discharge 

ft m ft m ft/s m/s m m^2 m^3/s 

0.000 0.000 0.000 0.000 0.00 0.00 0.125 0.000 0.0000 

0.820 0.250 0.098 0.030 0.00 0.00 0.250 0.008 0.0000 

1.640 0.500 0.112 0.034 0.00 0.00 0.250 0.009 0.0000 

2.461 0.750 0.128 0.039 0.07 0.02 0.250 0.010 0.0002 

3.281 1.000 0.157 0.048 0.14 0.04 0.250 0.012 0.0005 

4.101 1.250 0.190 0.058 0.26 0.08 0.250 0.015 0.0011 

4.921 1.500 0.194 0.059 0.29 0.09 0.250 0.015 0.0013 

5.741 1.750 0.200 0.061 0.32 0.10 0.250 0.015 0.0015 

6.562 2.000 0.171 0.052 0.18 0.05 0.250 0.013 0.0007 

7.382 2.250 0.138 0.042 0.05 0.02 0.250 0.011 0.0002 

8.202 2.500 0.102 0.031 0.00 0.00 0.250 0.008 0.0000 

9.022 2.750 0.059 0.018 0.00 0.00 0.250 0.005 0.0000 

9.843 3.000 0.046 0.014 0.00 0.00 0.250 0.004 0.0000 

10.663 3.250 0.000 0.000 0.00 0.00 0.173 0.000 0.0000 

10.974 3.345 0.000 0.000 0.00 0.00 0.048 0.000 0.0000 

     
0.03 

 
0.122 0.0055 

     

AVG 
Flow 
Velocity 

 

TOT 
Area 

TOT 
Discharge 
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LITTLE KICKAPOO CREEK - NATURAL  Background 
Ambient Up YSI ProPlus 

     T DO 
 

SpC C pH mmHg sal 
 °C % mg/L uS/cm uS/cm     ppt 
 19 99.20 9.18 770 682 8.22 740.2 0.38 
 

         Ambient Down YSI 556 MPS 
     T DO 

 
SpC C pH mmHg sal 

 °C % mg/L uS/cm uS/cm     ppt 
 18.78 n.a. n.a. 684 603 n.a. 759.6 n.a. 
 

         Wetted Widths 
      Measure Width 

       # ft m 
      1 14.15 4.312 
      2 13.22 4.028 
      3 11.99 3.656 
      4 17.58 5.358 
      5 9.65 2.941 
      6 19.29 5.880 
      7 11.72 3.572 
      8 8.32 2.537 
      9 10.12 3.085 
      10 17.05 5.198 
      

  
4.057 

      

  

AVG 
Width 
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LITTLE KICKAPOO CREEK - NATURAL 
Cont’d - Cross Section 

    

Width 
 

Depth 
 

Flow 
Velocity 

 

Averaged 
Width Area Discharge 

ft m ft m ft/s m/s m m^2 m^3/s 

0.000 0.00 0.000 0.000 0.00 0.00 0.100 0.000 0.0000 

0.656 0.20 0.066 0.020 0.00 0.00 0.200 0.004 0.0000 

1.312 0.40 0.125 0.038 0.33 0.10 0.200 0.008 0.0008 

1.969 0.60 0.164 0.050 0.31 0.09 0.200 0.010 0.0009 

2.625 0.80 0.171 0.052 0.39 0.12 0.200 0.010 0.0012 

3.281 1.00 0.184 0.056 0.40 0.12 0.200 0.011 0.0014 

3.937 1.20 0.236 0.072 0.51 0.16 0.200 0.014 0.0022 

4.593 1.40 0.262 0.080 0.71 0.22 0.200 0.016 0.0035 

5.249 1.60 0.381 0.116 0.74 0.23 0.200 0.023 0.0052 

5.906 1.80 0.459 0.140 0.85 0.26 0.200 0.028 0.0073 

6.562 2.00 0.427 0.130 0.74 0.23 0.200 0.026 0.0059 

7.218 2.20 0.394 0.120 0.77 0.23 0.200 0.024 0.0056 

7.874 2.40 0.279 0.085 0.60 0.18 0.200 0.017 0.0031 

8.530 2.60 0.276 0.084 0.28 0.09 0.200 0.017 0.0014 

9.186 2.80 0.177 0.054 0.06 0.02 0.200 0.011 0.0002 

9.843 3.00 0.118 0.036 0.00 0.00 0.200 0.007 0.0000 

10.499 3.20 0.079 0.024 0.00 0.00 0.200 0.005 0.0000 

11.155 3.40 0.000 0.000 0.00 0.00 0.200 0.000 0.0000 

11.811 3.60 0.000 0.000 0.00 0.00 0.200 0.000 0.0000 

12.467 3.80 0.059 0.018 0.00 0.00 0.200 0.004 0.0000 

13.123 4.00 0.072 0.022 0.00 0.00 0.200 0.004 0.0000 

13.780 4.20 0.039 0.012 0.00 0.00 0.156 0.002 0.0000 

14.147 4.31 0.000 0.000 0.00 0.00 0.056 0.000 0.0000 

     
0.09 

 
0.241 0.0387 

     

AVG 
Flow 
Velocity 

 

TOT 
Area 

TOT 
Discharge 

           



 66 

LITTLE KICKAPOO CREEK - NATURAL 
Cont’d - Cross Section 

    

Width 
 

Depth 
 

Flow 
Velocity 

 

Averaged 
Width Area Discharge 

ft m ft m ft/s m/s m m^2 m^3/s 

0.000 0.00 0.000 0.000 0.00 0.00 0.100 0.000 0.0000 

0.656 0.20 0.118 0.036 0.00 0.00 0.200 0.007 0.0000 

1.312 0.40 0.157 0.048 0.04 0.01 0.200 0.010 0.0001 

1.969 0.60 0.262 0.080 0.04 0.01 0.200 0.016 0.0002 

2.625 0.80 0.407 0.124 0.08 0.02 0.200 0.025 0.0006 

3.281 1.00 0.505 0.154 0.09 0.03 0.200 0.031 0.0008 

3.937 1.20 0.682 0.208 0.10 0.03 0.200 0.042 0.0013 

4.593 1.40 0.745 0.227 0.10 0.03 0.200 0.045 0.0014 

5.249 1.60 0.879 0.268 0.10 0.03 0.200 0.054 0.0016 

5.906 1.80 0.968 0.295 0.11 0.03 0.200 0.059 0.0020 

6.562 2.00 1.043 0.318 0.12 0.04 0.200 0.064 0.0023 

7.218 2.20 1.148 0.350 0.15 0.05 0.200 0.070 0.0032 

7.874 2.40 1.129 0.344 0.11 0.03 0.200 0.069 0.0023 

8.530 2.60 1.312 0.400 0.15 0.05 0.200 0.080 0.0037 

9.186 2.80 1.306 0.398 0.07 0.02 0.200 0.080 0.0017 

9.843 3.00 1.325 0.404 0.08 0.02 0.200 0.081 0.0020 

10.499 3.20 1.142 0.348 0.05 0.02 0.200 0.070 0.0011 

11.155 3.40 1.204 0.367 0.07 0.02 0.200 0.073 0.0016 

11.811 3.60 1.319 0.402 0.03 0.01 0.200 0.080 0.0007 

12.467 3.80 0.997 0.304 0.00 0.00 0.200 0.061 0.0000 

13.123 4.00 0.650 0.198 -0.03 -0.01 0.114 0.023 -0.0002 

13.215 4.03 0.000 0.000 0.00 0.00 0.014 0.000 0.0000 

     
0.02 

 
1.038 0.0263 

     

AVG 
Flow 
Velocity 

 

TOT 
Area 

TOT 
Discharge 

         

       
0.639 0.0325 
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SUGAR CREEK – UNLINED, TRIAL 2 Background 
Ambient Up YSI ProPlus 

     T DO 
 

SpC C pH mmHg sal 
 °C % mg/L uS/cm uS/cm     ppt 
 23.2 113.6 9.72 556 536 8.31 741.9 0.27 
 

         Ambient Down YSI 556 MPS 
     T DO 

 
SpC C pH mmHg sal 

 °C % mg/L uS/cm uS/cm     ppt 
 23.1 59 5.03 508 490 n.a. 766.8 n.a. 
 

         Wetted Widths 
      Measure Width 

       # ft m 
      1 11.873 3.619 
      2 14.731 4.490 
      3 13.438 4.096 
      4 11.870 3.618 
      5 13.025 3.970 
      6 14.193 4.326 
      7 12.808 3.904 
      8 11.155 3.400 
      9 12.080 3.682 
      10 12.257 3.736 
      

  
3.884 

      

  

AVG 
Width 

      

         Cross Section 
       

Width 
 

Depth 
 

Flow 
Velocity 

 

Averaged 
Width Area Discharge 

ft m ft m ft/s m/s m m^2 m^3/s 

0.000 0.000 0.000 0.000 0.00 0.00 0.125 0.000 0.0000 

0.820 0.250 0.039 0.012 0.00 0.00 0.250 0.003 0.0000 

1.640 0.500 0.082 0.025 0.00 0.00 0.250 0.006 0.0000 

2.461 0.750 0.138 0.042 1.10 0.34 0.250 0.011 0.0035 

3.281 1.000 0.135 0.041 1.62 0.49 0.250 0.010 0.0051 

4.101 1.250 0.243 0.074 2.28 0.69 0.250 0.019 0.0129 

4.921 1.500 0.354 0.108 2.25 0.69 0.250 0.027 0.0185 

5.741 1.750 0.367 0.112 2.72 0.83 0.250 0.028 0.0232 

6.562 2.000 0.341 0.104 2.63 0.80 0.250 0.026 0.0208 

7.382 2.250 0.282 0.086 1.78 0.54 0.250 0.022 0.0117 

8.202 2.500 0.203 0.062 1.14 0.35 0.250 0.016 0.0054 

9.022 2.750 0.144 0.044 0.45 0.14 0.250 0.011 0.0015 

9.843 3.000 0.069 0.021 0.00 0.00 0.250 0.005 0.0000 

10.663 3.250 0.039 0.012 0.00 0.00 0.250 0.003 0.0000 

11.483 3.500 0.013 0.004 0.00 0.00 0.185 0.001 0.0000 

11.873 3.619 0.000 0.000 0.00 0.00 0.060 0.000 0.0000 

     
0.30 

 
0.186 0.1026 

     

AVG 
Flow 
Velocity 

 

TOT 
Area 

TOT 
Discharge 
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SUGAR CREEK – UNLINED, TRIAL 2 Background 
Ambient Up YSI ProPlus 

     T DO 
 

SpC C pH mmHg sal 
 °C % mg/L uS/cm uS/cm     ppt 
 24.6 102.4 8062 1071 1064 8.51 740.6 0.53 
 

         Ambient Down YSI 556 MPS 
     T DO 

 
SpC C pH mmHg sal 

 °C % mg/L uS/cm uS/cm     ppt 
 23.71 43.8 3.69 960 936 n.a. 762 n.a. 
 

         WETTED WIDTHS 
      Measure Width 

       # ft m 
      1 12.675 3.863 
      2 16.835 5.131 
      3 19.320 5.889 
      4 19.690 6.002 
      5 14.210 4.331 
      6 13.270 4.045 
      7 16.170 4.929 
      8 20.800 6.340 
      9 21.960 6.693 
      10 22.815 6.954 
      

  
5.418 

      

  

AVG 
Width 
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SUGAR CREEK – UNLINED, TRIAL 1 
Cont’d - Cross Section 

    

Width 
 

Depth 
 

Flow 
Velocit
y 

 

Averaged 
Width Area Discharge 

ft m ft m ft/s m/s m m^2 m^3/s 

0.000 0.000 0.000 0.000 0.00 0.00 0.076 0.000 0.0000 

0.500 0.152 0.835 0.255 0.04 0.01 0.152 0.039 0.0005 

1.000 0.305 1.110 0.338 0.06 0.02 0.152 0.052 0.0009 

1.500 0.457 0.855 0.261 0.08 0.02 0.152 0.040 0.0010 

2.000 0.610 0.970 0.296 0.10 0.03 0.152 0.045 0.0014 

2.500 0.762 0.980 0.299 0.09 0.03 0.152 0.046 0.0012 

3.000 0.914 0.885 0.270 0.10 0.03 0.152 0.041 0.0013 

3.500 1.067 0.790 0.241 0.08 0.02 0.152 0.037 0.0009 

4.000 1.219 0.625 0.191 0.09 0.03 0.152 0.029 0.0008 

4.500 1.372 0.760 0.232 0.11 0.03 0.152 0.035 0.0012 

5.000 1.524 0.800 0.244 0.12 0.04 0.152 0.037 0.0014 

5.500 1.676 0.800 0.244 0.09 0.03 0.152 0.037 0.0010 

6.000 1.829 0.885 0.270 0.10 0.03 0.152 0.041 0.0013 

6.500 1.981 0.810 0.247 0.08 0.02 0.152 0.038 0.0009 

7.000 2.134 0.820 0.250 0.04 0.01 0.152 0.038 0.0005 

7.500 2.286 0.610 0.186 0.03 0.01 0.152 0.028 0.0003 

8.000 2.438 0.590 0.180 0.01 0.00 0.152 0.027 0.0001 

8.500 2.591 0.595 0.181 0.01 0.00 0.152 0.028 0.0001 

9.000 2.743 0.605 0.184 0.02 0.01 0.152 0.028 0.0002 

9.500 2.896 0.540 0.165 0.04 0.01 0.152 0.025 0.0003 

10.000 3.048 0.555 0.169 0.04 0.01 0.152 0.026 0.0003 

10.500 3.200 0.510 0.155 0.02 0.01 0.152 0.024 0.0001 

11.000 3.353 0.435 0.133 0.02 0.01 0.152 0.020 0.0001 

11.500 3.505 0.360 0.110 0.02 0.01 0.152 0.017 0.0001 

12.000 3.658 0.075 0.023 0.00 0.00 0.152 0.003 0.0000 

12.500 3.810 0.005 0.002 0.00 0.00 0.076 0.000 0.0000 

     
0.02 

 
0.781 0.0157 

     

AVG 
Flow 
Velocity 

 

TOT 
Area 

TOT 
Discharge 
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SUGAR CREEK – UNLINED, TRIAL 2 Background 
Ambient Up YSI ProPlus 

     T DO 
 

SpC C pH mmHg sal 
 °C % mg/L uS/cm uS/cm     ppt 
 9.9 96.8 10.93 680 483.7 5.9 741.5 0.33 
 

         Ambient Down YSI 556 MPS 
     T DO 

 
SpC C pH mmHg sal 

 °C % mg/L uS/cm uS/cm     ppt 
 9.29 n.a. n.a. 620 434 n.a. 757.6 n.a. 
 

         WETTED WIDTHS 
       Measure Width 
       # ft m 

      1 14.045 4.281 
      2 16.667 5.080 
      3 16.778 5.114 
      4 19.068 5.812 
      5 20.669 6.300 
      6 15.292 4.661 
      7 19.547 5.958 
      8 20.407 6.220 
      9 21.526 6.561 
      10 23.517 7.168 
      

  
5.716 

      

  

AVG 
Width 
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SUGAR CREEK – UNLINED, TRIAL 2 
Cont’d - Cross Section 

    

Width 
 

Depth 
 

Flow 
Velocity 

 

Averaged 
Width Area Discharge 

ft m ft m ft/s m/s m m^2 m^3/s 

0.000 0.000 0.000 0.000 0.00 0.00 0.125 0.000 0.0000 

0.820 0.250 1.283 0.391 0.04 0.01 0.250 0.098 0.0012 

1.640 0.500 1.266 0.386 0.15 0.05 0.250 0.097 0.0044 

2.461 0.750 1.161 0.354 0.17 0.05 0.250 0.089 0.0046 

3.281 1.000 1.115 0.340 0.23 0.07 0.250 0.085 0.0060 

4.101 1.250 0.781 0.238 0.22 0.07 0.250 0.060 0.0040 

4.921 1.500 0.945 0.288 0.24 0.07 0.250 0.072 0.0053 

5.741 1.750 0.932 0.284 0.21 0.06 0.250 0.071 0.0045 

6.562 2.000 0.807 0.246 0.12 0.04 0.250 0.062 0.0022 

7.382 2.250 0.912 0.278 0.07 0.02 0.250 0.070 0.0015 

8.202 2.500 0.833 0.254 0.08 0.02 0.250 0.064 0.0015 

9.022 2.750 0.919 0.280 0.10 0.03 0.250 0.070 0.0021 

9.843 3.000 0.932 0.284 0.05 0.02 0.250 0.071 0.0011 

10.663 3.250 0.840 0.256 0.03 0.01 0.250 0.064 0.0006 

11.483 3.500 0.568 0.173 0.00 0.00 0.250 0.043 0.0000 

12.303 3.750 0.367 0.112 0.00 0.00 0.250 0.028 0.0000 

13.123 4.000 0.098 0.030 0.00 0.00 0.250 0.008 0.0000 

13.944 4.250 0.000 0.000 0.00 0.00 0.141 0.000 0.0000 

14.045 4.281 0.000 0.000 0.00 0.00 0.015 0.000 0.0000 

     
0.03 

 
1.049 0.0390 

     

AVG 
Flow 
Velocity 

 

TOT 
Area 

TOT 
Discharge 
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SUGAR CREEK – UNLINED, TRIAL 2 
Cont’d - Cross Section 

    

Width 
 

Depth 
 

Flow 
Velocity 

 

Averaged 
Width Area Discharge 

ft m ft m ft/s m/s m m^2 m^3/s 

0.000 0.000 0.000 0.000 0.00 0.00 0.250 0.000 0.0000 

1.640 0.500 0.400 0.122 0.16 0.05 0.500 0.061 0.0030 

3.281 1.000 0.289 0.088 0.33 0.10 0.500 0.044 0.0044 

4.921 1.500 0.243 0.074 0.26 0.08 0.500 0.037 0.0029 

6.562 2.000 0.236 0.072 0.16 0.05 0.500 0.036 0.0018 

8.202 2.500 0.262 0.080 0.21 0.06 0.500 0.040 0.0026 

9.843 3.000 0.266 0.081 0.23 0.07 0.500 0.041 0.0028 

11.483 3.500 0.190 0.058 0.10 0.03 0.500 0.029 0.0009 

13.123 4.000 0.282 0.086 0.33 0.10 0.500 0.043 0.0043 

14.764 4.500 0.295 0.090 0.25 0.08 0.500 0.045 0.0034 

16.404 5.000 0.328 0.100 0.06 0.02 0.500 0.050 0.0009 

18.045 5.500 0.295 0.090 0.35 0.11 0.500 0.045 0.0048 

19.685 6.000 0.262 0.080 0.37 0.11 0.500 0.040 0.0045 

21.325 6.500 0.230 0.070 0.47 0.14 0.500 0.035 0.0050 

22.966 7.000 0.079 0.024 0.00 0.00 0.463 0.011 0.0000 

24.364 7.426 0.000 0.000 0.00 0.00 0.213 0.000 0.0000 

     
0.06 

 
0.557 0.0414 

     

AVG 
Flow 
Velocity 

 

TOT 
Area 

TOT 
Discharge 

         

       
0.803 0.0402 

       

Avg. 
AREA 

Avg. 
QSTART 
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APPENDIX B 

SAMPLE TIMES AND SPECIFIC CONDUCTANCES 

 
1900N – UNLINED 
 

   
ProPlus 556MPS 

Injection Time 
    

SpC SpC 

Sample (#) hr min sec 
TOT sec 
elapsed 

TOT hr 
elapsed uS/cm uS/cm 

1 0 22 39.24 1359.24 0.37757 630 576 

2 0 24 40.76 1480.76 0.41132 627 587 

3 0 26 7.57 1567.57 0.43544 632 591 

4 0 28 4.13 1684.13 0.46781 641 599 

5 0 29 39.79 1779.79 0.49439 648 602 

6 0 31 30.38 1890.38 0.52511 644 608 

7 0 33 14.02 1994.02 0.55389 653 609 

8 0 34 57.19 2097.19 0.58255 652 609 

9 0 37 17.98 2237.98 0.62166 655 612 

10 0 41 7.79 2467.79 0.68550 662 619 

11 0 46 42.68 2802.68 0.77852 661 616 

12 0 49 51.62 2991.62 0.83101 654 611 

13 0 58 49.86 3529.86 0.98052 653 608 

14 1 5 10.28 3910.28 1.08619 650 603 

15 1 10 14.67 4214.67 1.17074 647 593 

16 1 17 45.28 4665.28 1.29591 641 591 

17 1 35 58.13 5758.13 1.59948 635 590 

18 1 46 48.72 6408.72 1.78020 636 588 

19 1 56 48.22 7008.22 1.94673 629 581 

20 2 8 0.57 7680.57 2.13349 637 585 

21 2 32 39.46 9159.46 2.54429 630 580 

22 3 9 39.14 11379.14 3.16087 n.a. n.a. 

                

Amb U 1           641 569 

Amb U 2           631 574 
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CROOKED CREEK – NATURAL 

      
ProPlus 556MPS 

Injection Time 
    

SpC SpC 

Sample (#) hr min sec 
TOT sec 
elapsed 

TOT hr 
elapsed uS/cm uS/cm 

1 0 53 0.38 3180.38 0.88344 618 575 

2 0 54 27.04 3267.04 0.90751 621 574 

3 0 55 54.65 3354.65 0.93185 617 570 

4 0 57 23.71 3443.71 0.95659 626 579 

5 0 58 52.01 3532.01 0.98111 633 586 

6 1 0 21.14 3621.14 1.00587 647 597 

7 1 0 40.82 3640.82 1.01134 659 608 

8 1 1 29.38 3689.38 1.02483 662 613 

9 1 2 41.26 3761.26 1.04479 706 650 

10 1 3 40.28 3820.28 1.06119 694 641 

11 1 4 41.03 3881.03 1.07806 759 699 

12 1 6 7.71 3967.71 1.10214 782 723 

13 1 8 23.81 4103.81 1.13995 773 714 

14 1 11 40.04 4300.04 1.19446 793 736 

15 1 15 30.39 4530.39 1.25844 846 785 

16 1 17 32.17 4652.17 1.29227 836 770 

17 1 20 3.44 4803.44 1.33429 853 787 

18 1 23 58.69 5038.69 1.39964 857 790 

19 1 30 16.27 5416.27 1.50452 817 755 

20 1 37 42.65 5862.65 1.62851 750 693 

21 1 47 45.29 6465.29 1.79591 721 668 

22 2 1 19.65 7279.65 2.02213 678 627 

23 2 29 15.95 8955.95 2.48776 621 575 

24 2 55 41.18 10541.18 2.92811 610 563 

25 3 6 20.75 11180.75 3.10576 602 558 

26 3 20 18.77 12018.77 3.33855 590 550 

                

Amb U 1           607 561 

Amb U 2           603 560 

Amb U 3           609 559 

Amb D 1           612 567 

Amb D 2           611 566 

Amb D 3           609 564 

Slug Dil.           71 66 
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FROG ALLEY – UNLINED 

      
ProPlus 556MPS 

      
SpC SpC 

Sample (#) hr min sec 
TOT sec 
elapsed 

TOT hr 
elapsed uS/cm uS/cm 

1 0 47 22.91 2842.91 0.78970 649 599 

2 0 53 32.63 3212.63 0.89240 659 609 

3 0 57 33.30 3453.30 0.95925 672 620 

4 1 0 38.77 3638.77 1.01077 687 633 

5 1 3 3.71 3783.71 1.05103 697 646 

6 1 5 30.04 3930.04 1.09168 711 656 

7 1 7 59.45 4079.45 1.13318 725 668 

8 1 10 52.04 4252.04 1.18112 737 678 

9 1 14 38.75 4478.75 1.24410 753 693 

10 1 18 27.06 4707.06 1.30752 757 699 

11 1 21 56.04 4916.04 1.36557 762 701 

12 1 24 15.77 5055.77 1.40438 761 701 

13 1 28 35.60 5315.60 1.47656 n.a. n.a. 

14 1 32 10.40 5530.40 1.53622 751 693 

15 1 41 52.13 6112.13 1.69781 736 677 

16 1 51 47.83 6707.83 1.86329 721 664 

17 1 57 31.68 7051.68 1.95880 708 654 

18 2 13 11.85 7991.85 2.21996 693 643 

19 2 21 27.92 8487.92 2.35776 689 636 

20 2 30 58.75 9058.75 2.51632 687 625 

21 2 47 16.83 10036.83 2.78801 675 622 

22 3 0 12.50 10812.50 3.00347 668 617 

23 3 10 51.33 11451.33 3.18093 665 613 

24 3 38 31.66 13111.66 3.64213 663 608 

25 4 42 30.42 16950.42 4.70845 653 603 

26 6 22 13.68 22933.68 6.37047 631 584 

                

Amb U 1           631 565 

Amb U 2           653 597 

Amb U 3           655 599 

Amb D 1           648 584 

Amb D 2           649 593 

Amb D 3           647 596 

Slug Dil.           75 67 
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LITTLE KICKAPOO CREEK – LINED, TRIAL 2 

      
ProPlus 556MPS 

     
SpC SpC 

Sample (#) hr min sec 
TOT sec 
elapsed 

TOT hr 
elapsed uS/cm uS/cm 

1 0 13 43.73 823.73 0.22881 905 844 

2 0 13 47.21 827.21 0.22978 921 859 

3 0 13 54.29 834.29 0.23175 937 877 

4 0 14 8.35 848.35 0.23565 968 907 

5 0 14 17.62 857.62 0.23823 988 921 

6 0 14 26.86 866.86 0.24079 1019 951 

7 0 14 38.19 878.19 0.24394 1037 971 

8 0 14 52.40 892.40 0.24789 1080 1003 

9 0 15 7.66 907.66 0.25213 1138 1059 

10 0 15 18.32 918.32 0.25509 1151 1074 

11 0 15 35.74 935.74 0.25993 1220 1137 

12 0 15 49.70 949.70 0.26381 1271 1184 

13 0 16 8.85 968.85 0.26913 1318 1225 

14 0 16 26.82 986.82 0.27412 1392 1290 

15 0 16 49.06 1009.06 0.28029 1457 1354 

16 0 17 14.06 1034.06 0.28724 1539 1420 

17 0 17 56.06 1076.06 0.29891 1592 1474 

18 0 19 19.86 1159.86 0.32218 1673 1546 

19 0 20 35.83 1235.83 0.34329 1666 1541 

20 0 21 54.88 1314.88 0.36524 1591 1477 

21 0 23 38.32 1418.32 0.39398 1493 1388 

22 0 26 20.08 1580.08 0.43891 1356 1258 

23 0 29 46.25 1786.25 0.49618 1217 1121 

24 0 33 25.56 2005.56 0.55710 1103 1024 

25 0 38 25.81 2305.81 0.64050 1001 950 

26 0 39 59.61 2399.61 0.66656 983 930 

27 0 46 39.60 2799.60 0.77767 972 902 

28 0 57 4.59 3424.59 0.95128 916 824 

29 1 4 9.08 3849.08 1.06919 860 793 

30 1 10 32.23 4232.23 1.17562 842 784 

                

Amb U 1           845 791 

Amb U 2           890 828 

Amb U 3           898 822 

Slug Dil.           73 70 
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LITTLE KICKAPOO CREEK – LINED, APARTMENTS 

      
ProPlus 556MPS 

     
SpC SpC 

Sample (#) hr min sec 
TOT sec 
elapsed 

TOT hr 
elapsed uS/cm uS/cm 

1 0 32 56.34 1976.34 0.54898 2559 2348 

2 0 33 4.42 1984.42 0.55123 2669 2433 

3 0 33 21.66 2001.66 0.55602 2656 2427 

4 0 33 23.99 2003.99 0.55666 2698 2459 

5 0 33 29.52 2009.52 0.55820 2700 2477 

6 0 33 37.74 2017.74 0.56048 2751 2523 

7 0 34 2.15 2042.15 0.56726 2760 2534 

8 0 34 15.27 2055.27 0.57091 2816 2588 

9 0 34 40.00 2080.00 0.57778 2881 2649 

10 0 34 54.32 2094.32 0.58176 2833 2612 

11 0 35 15.63 2115.63 0.58768 2874 2627 

12 0 35 21.98 2121.98 0.58944 2863 2619 

13 0 35 33.37 2133.37 0.59260 2809 2574 

14 0 35 44.65 2144.65 0.59574 2847 2608 

15 0 36 0.54 2160.54 0.60015 2773 2540 

16 0 36 9.37 2169.37 0.60260 2720 2496 

17 0 36 32.61 2192.61 0.60906 2717 2495 

18 0 36 44.73 2204.73 0.61243 2664 2441 

19 0 36 58.23 2218.23 0.61618 2662 2439 

20 0 37 9.13 2229.13 0.61920 2638 2421 

21 0 37 19.37 2239.37 0.62205 2590 2370 

22 0 37 31.20 2251.20 0.62533 2587 2369 

23 0 37 42.40 2262.40 0.62844 2562 2349 

24 0 37 59.24 2279.24 0.63312 2554 2342 

25 0 38 11.04 2291.04 0.63640 2530 2326 

26 0 38 45.89 2325.89 0.64608 2524 2326 

                

Amb U 1           2383 2070 

Amb U 2           2461 2262 

Slug Dil.           79 71 
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LITTLE KICKAPOO CREEK – NATURAL 
 

     
ProPlus 556MPS 

     
SpC SpC 

Sample (#) hr min sec 
TOT sec 
elapsed 

TOT hr 
elapsed uS/cm uS/cm 

1 0.00 11.00 2.63 662.63 0.18406 771 697 

2 0.00 13.00 17.85 797.85 0.22163 776 698 

3 0.00 18.00 23.16 1103.16 0.30643 803 717 

4 0.00 19.00 6.52 1146.52 0.31848 808 722 

5 0.00 20.00 25.28 1225.28 0.34036 801 718 

6 0.00 20.00 58.91 1258.91 0.34970 865 776 

7 0.00 21.00 16.05 1276.05 0.35446 876 787 

8 0.00 21.00 32.35 1292.35 0.35899 864 775 

9 0.00 21.00 49.97 1309.97 0.36388 850 764 

10 0.00 22.00 22.13 1342.13 0.37281 889 793 

11 0.00 23.00 19.42 1399.42 0.38873 891 797 

12 0.00 24.00 6.93 1446.93 0.40193 876 781 

13 0.00 26.00 29.59 1589.59 0.44155 927 824 

14 0.00 28.00 23.80 1703.80 0.47328 935 838 

15 0.00 30.00 53.33 1853.33 0.51481 910 811 

16 0.00 32.00 43.61 1963.61 0.54545 910 812 

17 0.00 34.00 37.44 2077.44 0.57707 902 799 

18 0.00 39.00 22.94 2362.94 0.65637 890 791 

19 0.00 43.00 17.24 2597.24 0.72146 869 775 

20 0.00 45.00 39.61 2739.61 0.76100 857 765 

21 0.00 48.00 36.01 2916.01 0.81000 831 744 

22 0.00 57.00 12.03 3432.03 0.95334 820 736 

23 1.00 6.00 5.10 3965.10 1.10142 816 728 

24 1.00 13.00 6.56 4386.56 1.21849 804 723 

25 1.00 26.00 53.05 5213.05 1.44807 801 719 

26 1.00 47.00 34.66 6454.66 1.79296 800 716 

                

Amb U 1           745 624 

Amb U 2           770 693 

Amb U 3           777 697 

Slug Dil.           67 57 
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SUGAR CREEK – LINED, TRIAL 2 

      
ProPlus 556MPS 

Injection Time 
    

SpC SpC 

Sample (#) hr min sec 
TOT sec 
elapsed 

TOT hr 
elapsed uS/cm uS/cm 

1 0 2 51.51 171.51 0.04764 5234 4887 

2 0 2 55.44 175.44 0.04873 5123 4717 

3 0 2 57.37 177.37 0.04927 3708 3413 

4 0 2 59.60 179.60 0.04989 2518 2303 

5 0 3 3.60 183.60 0.05100 1699 1574 

6 0 3 8.96 188.96 0.05249 1094 991 

7 0 3 12.60 192.60 0.05350 784 719 

8 0 3 16.60 196.60 0.05461 726 671 

9 0 3 20.71 200.71 0.05575 608 555 

10 0 3 25.04 205.04 0.05696 589 539 

11 0 3 29.37 209.37 0.05816 566 523 

12 0 3 33.66 213.66 0.05935 566 518 

13 0 3 41.58 221.58 0.06155 561 512 

14 0 3 45.85 225.85 0.06274 559 513 

15 0 3 50.18 230.18 0.06394 558 512 

16 0 3 54.59 234.59 0.06516 558 510 

17 0 4 0.42 240.42 0.06678 557 512 

18 0 4 6.71 246.71 0.06853 556 511 

19 0 4 11.06 251.06 0.06974 555 511 

20 0 4 13.94 253.94 0.07054 555 511 

21 0 4 18.79 258.79 0.07189 556 510 

22 0 4 24.51 264.51 0.07348 559 512 

23 0 4 33.26 273.26 0.07591 550 510 

24 0 5 13.16 313.16 0.08699 547 511 

25 0 5 26.35 326.35 0.09065 559 515 

26 0 5 59.98 359.98 0.09999 545 498 

                

Amb U 1           561 510 

Amb U 2           548 503 

Amb U 3           540 501 

Amb D 1           551 506 

Amb D 2           544 495 

Amb D 3           547 500 

Slug Dil.           75 65 
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SUGAR CREEK – UNLINED, TRIAL 1 

      
ProPlus 556MPS 

 
    

SpC SpC 

Sample (#) hr min sec 
TOT sec 
elapsed 

TOT hr 
elapsed uS/cm uS/cm 

1 1 16 12.28 4572.28 1.27008 1067 994 

2 1 20 1.51 4801.51 1.33375 1092 1004 

3 1 21 53.45 4913.45 1.36485 1101 1024 

4 1 24 16.27 5056.27 1.40452 1124 1032 

5 1 27 29.50 5249.50 1.45819 1161 1067 

6 1 30 26.51 5426.51 1.50736 1217 1120 

7 1 32 34.90 5554.90 1.54303 1218 1122 

8 1 34 44.01 5684.01 1.57889 1283 1185 

9 1 37 28.81 5848.81 1.62467 1319 1214 

10 1 40 3.23 6003.23 1.66756 1337 1234 

11 1 42 38.99 6158.99 1.71083 1339 1237 

12 1 45 28.38 6328.38 1.75788 1337 1235 

13 1 49 24.31 6564.31 1.82342 1316 1222 

14 1 52 53.39 6773.39 1.88150 1313 1204 

15 1 55 59.31 6959.31 1.93314 1292 1183 

16 1 59 25.09 7165.09 1.99030 1278 1173 

17 2 4 16.37 7456.37 2.07121 1255 1155 

18 2 9 18.93 7758.93 2.15526 1234 1136 

19 2 17 0.78 8220.78 2.28355 1208 1049 

20 2 24 25.63 8665.63 2.40712 1186 1092 

21 2 30 45.73 9045.73 2.51270 1166 1070 

22 2 39 18.05 9558.05 2.65501 1155 1051 

23 2 46 59.23 10019.23 2.78312 1123 1035 

24 3 0 4.68 10804.68 3.00130 1103 1015 

25 3 35 52.49 12952.49 3.59791 1076 995 

26 5 42 15.65 20535.65 5.70435 1070 1003 

            
 

  

Amb U 1           1048 960 

Amb U 2           1058 964 

Amb U 3           1049 965 

Amb D 1           1064 973 

Amb D 2           1061 971 

Amb D 3           1062 963 

Slug Dil.           68 60 
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SUGAR CREEK – UNLINED, TRIAL 2 

      
ProPlus 556MPS 

 
    

SpC SpC 

Sample (#) hr min sec 
TOT sec 
elapsed 

TOT hr 
elapsed uS/cm uS/cm 

1 0 40 57.69 2457.69 0.68269 732 669 

2 0 41 5.31 2465.31 0.68481 729 670 

3 0 41 14.66 2474.66 0.68741 727 668 

4 0 41 30.40 2490.40 0.69178 735 673 

5 0 41 41.22 2501.22 0.69478 738 676 

6 0 41 54.87 2514.87 0.69858 742 679 

7 0 42 4.30 2524.30 0.70119 745 688 

8 0 42 23.44 2543.44 0.70651 745 694 

9 0 42 48.28 2568.28 0.71341 762 709 

10 0 43 19.62 2599.62 0.72212 764 713 

11 0 43 49.00 2629.00 0.73028 769 712 

12 0 44 51.74 2691.74 0.74771 783 721 

13 0 46 28.70 2788.70 0.77464 793 731 

14 0 49 7.57 2947.57 0.81877 782 718 

15 0 0 0.00 0.00 0.00000 n.a. n.a. 

16 0 51 17.38 3077.38 0.85483 770 715 

17 0 54 44.09 3284.09 0.91225 743 676 

18 0 56 32.51 3392.51 0.94236 728 670 

19 0 59 13.41 3553.41 0.98706 715 664 

20 1 3 19.94 3799.94 1.05554 704 647 

21 1 7 30.64 4050.64 1.12518 691 637 

22 1 13 5.95 4385.95 1.21832 684 630 

23 1 15 45.35 4545.35 1.26260 682 625 

24 1 25 27.56 5127.56 1.42432 681 625 

25 1 39 10.15 5950.15 1.65282 684 628 

26 1 54 11.22 6851.22 1.90312 683 623 

                

Amb 1           667 614 

Amb 2           675 618 

Amb 3           669 612 
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APPENDIX C 

PROBE DATA 

 
1900N – UNLINED 
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CROOKED CREEK – NATURAL 
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FROG ALLEY – UNLINED 
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LITTLE KICKAPOO CREEK – LINED, TRIAL 2 
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LITTLE KICKAPOO CREEK – LINED TRIAL 2 
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LITTLE KICKAPOO CREEK – LINED, APARTMENTS 
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LITTLE KICKAPOO CREEK - NATURAL 
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SUGAR CREEK – LINED, TRIAL 2 
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SUGAR CREEK – UNLINED, TRIAL 1 
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SUGAR CREEK – UNLINED, TRIAL 2 
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APPENDIX D 

NUTRIENT CONCENTRATIONS OF SAMPLES 

 
1900N - UNLINED 

Sample Cl- (mg/L) NO3--N (mg/L) 

1 16.57 3.94 

2 18.76 3.95 

3 19.02 4.02 

4 20.55 4.05 

5 22.60 4.10 

6 23.84 4.13 

7 16.08 4.10 

8 16.82 4.13 

9 17.24 4.15 

10 17.59 4.13 

11 17.31 4.13 

12 17.09 4.15 

13 15.76 4.12 

14 15.04 4.11 

15 16.90 4.06 

16 13.79 4.11 

17 12.26 4.03 

18 11.69 4.01 

19 11.50 4.02 

20 11.66 4.07 

21 10.96 4.01 

Ambient 1 11.12 3.97 

Ambient 2 13.80 3.95 

 

 



 93 

CROOKED CREEK - NATURAL 

Sample Cl- (mg/L) NO3--N (mg/L) 

1 27.85 n.a. 

2 27.94 n.a. 

3 25.43 n.a. 

4 29.59 n.a. 

5 30.41 n.a. 

6 35.15 n.a. 

7 38.30 n.a. 

8 40.06 n.a. 

9 53.55 n.a. 

10 49.02 n.a. 

11 70.28 n.a. 

12 77.02 n.a. 

13 72.01 n.a. 

14 80.52 n.a. 

15 99.40 n.a. 

16 93.01 n.a. 

17 98.90 n.a. 

18 101.73 n.a. 

19 89.77 n.a. 

20 68.65 n.a. 

21 59.00 n.a. 

22 45.92 n.a. 

23 28.24 n.a. 

24 24.80 n.a. 

25 23.03 n.a. 

26 23.25 n.a. 

Ambient 1 22.34 n.a. 

Ambient 2 21.80 n.a. 

Ambient 3 23.06 n.a. 

Ambient 4 21.86 n.a. 

Ambient 5 21.90 n.a. 

Ambient 6 22.10 n.a. 
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FROG ALLEY - UNLINED 

Sample Cl- (mg/L) NO3--N (mg/L) 

1 24.85 n.a. 

2 27.44 n.a. 

3 31.62 n.a. 

4 36.25 n.a. 

5 39.33 n.a. 

6 43.35 n.a. 

7 47.59 n.a. 

8 50.15 n.a. 

9 55.57 n.a. 

10 57.80 n.a. 

11 57.78 n.a. 

12 58.38 n.a. 

13 54.78 n.a. 

14 49.49 n.a. 

15 45.19 n.a. 

16 n.a. n.a. 

17 43.18 n.a. 

18 38.57 n.a. 

19 36.35 n.a. 

20 34.98 n.a. 

21 32.33 n.a. 

22 30.67 n.a. 

23 29.47 n.a. 

24 28.28 n.a. 

25 26.05 n.a. 

26 24.73 n.a. 

Ambient 1 26.17 n.a. 

Ambient 2 24.37 n.a. 

Ambient 3 24.31 n.a. 

Ambient 4 23.51 n.a. 

Ambient 5 23.67 n.a. 

Ambient 6 23.46 n.a. 

 

  



 95 

LITTLE KICKAPOO CREEK – LINED, TRIAL 2 

Sample Cl- (mg/L) NO3--N (mg/L) 

1 146.70 3.02 

2 151.24 3.14 

3 156.74 3.25 

4 167.02 3.45 

5 174.46 3.62 

6 184.27 3.82 

7 193.36 3.99 

8 207.10 4.29 

9 225.88 4.70 

10 229.86 4.78 

11 255.39 5.34 

12 271.64 5.69 

13 289.40 6.10 

14 314.34 6.66 

15 335.99 7.16 

16 357.67 7.62 

17 379.04 8.17 

18 403.93 8.77 

19 404.44 8.81 

20 381.26 8.25 

21 347.03 7.50 

22 297.73 6.39 

23 248.95 5.33 

24 207.81 4.50 

25 171.92 3.79 

26 162.18 3.61 

27 138.22 3.21 

28 123.25 3.00 

29 118.00 2.97 

30 114.50 2.95 

Ambient 1 133.54 2.80 

Ambient 2 136.68 2.84 

Ambient 3 127.77 2.76 
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LITTLE KICKAPOO CREEK – LINED, APARTMENTS 

Sample Cl- (mg/L) NO3--N (mg/L) 

1 331.56 2.51 

2 318.72 2.41 

3 351.41 2.46 

4 362.03 2.58 

5 331.73 2.50 

6 366.53 2.77 

7 259.76 2.35 

8 332.56 2.76 

9 384.17 3.11 

10 365.33 2.90 

11 379.91 3.02 

12 383.55 3.02 

13 370.83 3.05 

14 375.27 3.11 

15 364.88 2.90 

16 355.88 2.81 

17 334.96 2.64 

18 336.30 2.63 

19 311.74 2.54 

20 345.43 2.59 

21 328.67 2.43 

22 311.86 2.41 

23 333.61 2.30 

24 331.13 2.38 

25 328.44 2.38 

26 323.28 2.29 

Ambient 1 308.56 2.29 

Ambient 2 317.87 2.31 
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LITTLE KICKAPOO CREEK - NATURAL 

Sample Cl- (mg/L) NO3--N (mg/L) 

1 139.07 2.01 

2 139.67 2.00 

3 144.54 2.06 

4 149.19 2.12 

5 147.58 2.09 

6 172.00 2.41 

7 173.96 2.43 

8 169.52 2.39 

9 166.55 2.34 

10 178.49 2.49 

11 179.01 2.49 

12 172.90 2.41 

13 192.46 2.66 

14 193.59 2.67 

15 186.10 2.57 

16 186.47 2.56 

17 183.57 2.52 

18 179.01 2.45 

19 172.47 2.37 

20 166.84 2.28 

21 162.32 2.22 

22 158.21 2.17 

23 156.56 2.14 

24 153.32 2.09 

25 151.47 2.05 

26 149.72 2.03 

Ambient 1 142.42 2.01 

Ambient 2 143.22 2.00 

Ambient 3 144.31 2.00 
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SUGAR CREEK – LINED, TRIAL 2 

Sample Cl- (mg/L) NO3--N (mg/L) 

1 1289.97 33.82 

2 1252.69 32.45 

3 836.50 21.22 

4 463.33 11.46 

5 463.20 10.12 

6 124.65 2.47 

7 162.29 2.31 

8 132.87 1.72 

9 84.66 0.80 

10 98.72 0.73 

11 174.72 0.86 

12 95.79 0.62 

13 148.45 0.65 

14 195.02 0.72 

15 187.93 0.70 

16 96.67 0.70 

17 95.57 0.35 

18 89.82 0.33 

19 95.68 0.34 

20 95.83 0.33 

21 79.29 0.31 

22 88.37 0.33 

23 89.84 0.34 

24 94.33 0.35 

25 72.63 0.33 

26 97.14 0.39 

Ambient 1 80.66 0.34 

Ambient 2 92.48 0.35 

Ambient 3 92.60 0.34 

Ambient 4 92.27 0.34 

Ambient 5 72.88 0.32 

Ambient 6 93.08 0.35 

 

  



 99 

SUGAR CREEK – UNLINED, TRIAL 1 

Sample Cl- (mg/L) NO3--N (mg/L) 

1 233.43 n.a. 

2 241.00 n.a. 

3 245.99 n.a. 

4 252.80 n.a. 

5 264.43 n.a. 

6 282.54 n.a. 

7 284.54 n.a. 

8 309.03 n.a. 

9 320.90 n.a. 

10 325.60 n.a. 

11 327.75 n.a. 

12 326.66 n.a. 

13 322.50 n.a. 

14 317.21 n.a. 

15 310.80 n.a. 

16 306.17 n.a. 

17 299.74 n.a. 

18 292.47 n.a. 

19 285.02 n.a. 

20 278.03 n.a. 

21 270.69 n.a. 

22 262.67 n.a. 

23 257.25 n.a. 

24 250.11 n.a. 

25 242.44 n.a. 

26 232.20 n.a. 

Ambient 1 225.97 n.a. 

Ambient 2 225.37 n.a. 

Ambient 3 219.39 n.a. 

Ambient 4 230.56 n.a. 

Ambient 5 233.62 n.a. 

Ambient 6 232.45 n.a. 
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SUGAR CREEK – UNLINED, TRIAL 2 

Sample Cl- (mg/L) NO3--N (mg/L) 

1 110.35 3.21 

2 119.99 3.25 

3 126.08 3.30 

4 126.48 3.37 

5 129.42 3.38 

6 128.94 3.34 

7 131.29 3.52 

8 n.a. n.a. 

9 135.10 3.54 

10 137.36 3.54 

11 132.94 3.63 

12 136.22 3.62 

13 143.23 3.71 

14 139.95 3.70 

15 n.a. n.a. 

16 135.94 3.67 

17 128.54 3.36 

18 124.07 3.33 

19 122.86 3.34 

20 116.70 3.14 

21 116.75 3.11 

22 111.13 3.01 

23 111.25 2.99 

24 111.44 3.01 

25 108.82 3.00 

26 112.65 2.98 

Ambient 1 107.54 3.14 

Ambient 2 108.79 3.16 

Ambient 3 107.10 3.14 
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APPENDIX E 

PROXY RELATIONSHIP 

 
*Note: For all sites, relationship is displayed as SpC v. Cl- (mg/L). 

1900N – UNLINED 
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CROOKED CREEK – NATURAL 

 

 

FROG ALLEY – UNLINED 
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LITTLE KICKAPOO CREEK – LINED, TRIAL 2 

 

 

LITTLE KICKAPOO CREEK – NATURAL 
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LITTLE KICKAPOO CREEK – LINED, APARTMENTS 

 

 

SUGAR CREEK – LINED, TRIAL 2 
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SUGAR CREEK – UNLINED, TRIAL 1 

 

 

SUGAR CREEK – UNLINED, TRIAL 2 
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APPENDIX F 

OTIS PARAMETER VALUES 

 
1900N – UNLINED 

Site Parameter Initial Value Final Value 

1900N 

DISP 0.1 0.43 

AREA2 0.02 0.07 

ALPHA 0 0.003 

QSTART 0.0287 0.0287 

QLATIN 0 2.E-04 

QLATOUT 0 2.E-04 

AREA 0.197 0.81 

CLATIN 583 566 

 
 
CROOKED CREEK – NATURAL 

Site Parameter Initial Value Final Value 

CC 

DISP 0.1 0.12 

AREA2 0.06 0.18 

ALPHA 0 2.E-05 

QSTART 0.0213 0.0213 

QLATIN 0 2.E-05 

QLATOUT 0 4.E-05 

AREA 0.569 0.949 

CLATIN 558 410 
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LITTLE KICKAPOO CREEK – LINED, TRIAL 1 

Site Parameter Initial Value Final Value 

LKC-L(1) 

DISP 0.01 0.16 

AREA2 0.001 0.01 

ALPHA 0 9.E-06 

QSTART 0.00088 0.0015 

QLATIN 0 8.E-07 

QLATOUT 0 3.E-06 

AREA 0.108 0.06 

CLATIN 1100 1090 

 
 
LITTLE KICKAPOO CREEK – LINED, TRIAL 2 

Site Parameter Initial Value Final Value 

LKC-L(2) 

DISP 0.01 0.13 

AREA2 0.00374 0.0047 

ALPHA 0 6.E-04 

QSTART 0.00318 0.00269 

QLATIN 0 3.E-06 

QLATOUT 0 4.E-06 

AREA 0.0374 0.032 

CLATIN 768 0 

 
 
LITTLE KICKAPOO CREEK - NATURAL 

Site Parameter Initial Value Final Value 

LKC-N 

DISP 0.1 0.25 

AREA2 0.1 0.051 

ALPHA 0 1.E-04 

QSTART 0.0263 0.0261 

QLATIN 0 0 

QLATOUT 0 5.E-05 

AREA 1.038 0.6 

CLATIN 689 689 
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SUGAR CREEK – LINED, TRIAL 2 

Site Parameter Initial Value Final Value 

SC-L(2) 

DISP 0.1 0.66 

AREA2 0.0186 0.0118 

ALPHA 0 0.0057 

QSTART 0.103 0.203 

QLATIN 0 0 

QLATOUT 0 2.E-04 

AREA 0.186 0.147 

CLATIN 508 508 

 
 
SUGAR CREEK – UNLINED, TRIAL 2 

Site Parameter Initial Value Final Value 

SC-U(2) 

DISP 0.1 0.19 

AREA2 0.1 0.35 

ALPHA 0 1.E-04 

QSTART 0.039 0.039 

QLATIN 0 9.E-06 

QLATOUT 0 4.E-05 

AREA 1.048 0.550 

CLATIN 630 180 
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