A Multi-Level Machine Learning Approach to the Management of American Chestnut Populations

Marty Allen¹, Quentin Goehrig¹, Tyler Timm¹, Jake Wolfe¹, Kelsey Lieberman², Rebecca Rouleau³, Anita Baines⁴*, Andy Jarosz⁵

¹Department of Computer Science, University of Wisconsin - La Crosse, La Crosse, WI 54601
²Department of Mathematics, Truman State University, Kirksville, MO 63501
³Department of Mathematics, St. Michael’s College, Colchester, VT 05439
⁴Department of Biology, University of Wisconsin - La Crosse, La Crosse, WI 54601
⁵Department of Plant Biology, Michigan State University, East Lansing, MI 48824

Machine learning is used to investigate strategies for managing populations of fungus-blighted American Chestnut. An empirically derived simulation of forest development under infection by C. parasitica, is used to train a set of neural net classifiers that make (imperfect) predictions about tree outcomes based upon current status of each tree and its proximal neighbors. These classifiers are then used as inputs to a reinforcement learning (RL) algorithm, generating policies of action for improving forest health. Details of the models and the policy outcomes of the RL stage will be presented.