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FORMATION, CHARACTERIZATION, AND OPTIMIZATION OF ANTIBODY-GOLD 

NANOPARTICLE CONJUGATES  

 

 

Seth L. Filbrun  

75 Pages 

Protein modified gold nanoparticle based immunoassays are the basis of many novel 

detection techniques. There are many groups working on novel immunoassays but there is still 

much to understand about how many proteins are attached onto each nanoparticle and much to 

improve on immobilization methods. This thesis work is devoted to improving techniques for the 

quantification of protein immobilized on the gold nanoparticle and development of a novel 

approach to immobilize protein independent of pH.   

The ability to evaluate antibody immobilization onto gold nanoparticles is critical for 

assessing coupling chemistry and optimizing the sensitivity of nanoparticle-enabled biosensors. 

Herein, we developed a fluorescence-based method for directly quantifying antibodies bound 

onto gold nanoparticles. Antibody-modified gold nanoparticles were treated with KI/I2 etchant to 

dissolve the gold nanoparticles. A desalting spin column was used to recover the antibody 

released from the nanoparticles, and NanoOrange, a fluorescent dye, was used to quantify the 

antibody. We determined 309 ± 93 antibodies adsorb onto each 60 nm gold nanoparticle (2.6 × 

1010 NP/mL), which is consistent with a fully adsorbed monolayer based on the footprint of an 

IgG molecule. Moreover, the increase in hydrodynamic diameter of the conjugated nanoparticle 

(76 nm) compared to that of the unconjugated nanoparticle (62 nm) confirmed that multilayers 

did not form. A more conventional method of indirectly quantifying the adsorbed antibody by 



analysis of the supernatant overestimated the antibody surface coverage (660 ± 87 antibodies per 

nanoparticle); thus, we propose the method described herein as a more accurate alternative to the 

conventional approach. 

The immobilization of antibody onto gold nanoparticles is important for many novel 

nanoparticle based immunoassays. Current methods of immobilization are limited by the 

inability to immobilize antibody onto gold nanoparticles over a range of pH values. Direct 

adsorption requires the pH to be slightly higher than the isoelectric point of the antibody and 

covalent attachment via bifunctional crosslinking chemistry molecules requires a specific pH as 

well. This is an issue when working with multiple antibodies at once for multiplex detection. In 

this thesis, we present a new method of immobilization by which the antibody is modified via a 

molecule with a N-hydroxysuccinimidyl ester group, then adsorbed onto a gold nanoparticle. We 

demonstrate that modification of antibodies allows for adsorption onto gold nanoparticles 

independent of pH. Furthermore, we show that this modification method is applicable to multiple 

antibodies. Finally, we show that these modified antibodies are active and comparable to 

conventional assays.    

 

KEYWORDS: Antibody Conjugation, Antibody-Gold Nanoparticle Interactions, Protein 

Quantitation, Homogeneous Immunoassay, Fluorescence, DLS, NTA, Nanoparticle Aggregation  
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CHAPTER I 

INTRODUCTION 

Gold Nanoparticles (AuNP) for In-Vitro Diagnostics  

Gold nanoparticles (AuNPs) conjugated to various biomolecules utilized for diagnostic 

purposes have been a large area of interest in recent years. AuNPs are useful because they have 

unique physical and chemical properties that can be exploited for many enhanced chemical and 

biological detection techniques.1-3 The surface chemistry of gold nanoparticles is readily tuned; 

thus, detection platforms utilize a variety of biomolecules that can be conjugated to AuNPs such 

as proteins, nucleic acids, and polysaccharides to facilitate the detection of a variety of 

analytes.2,3 Several detection platforms capitalize on the unique optical properties of gold 

nanoparticles for signal transduction. Endo and co-workers used localized surface plasmon 

resonance (LSPR) to develop a nanoparticle-based chip capable of detecting multiple antibodies 

at once at a 100 pg/mL detection limit.4 Elghanian et al. took advantage of nucleotide modified 

gold nanoparticles and developed a sensitive colorimetric platform for detection of 

polynucleotides with ~10 femtomolar detection limits.5 Many groups have used dynamic light 

scattering (DLS), including the Driskell lab for the detection of influenza and the Huo group for 

the detection of cancer biomarkers, as a simple, one-step, and high throughput technique.6-9 

Surface enhanced Raman spectroscopy (SERS) is a widely known technique in which modified 

gold nanoparticles are used for the detection of many analytess at once.10-13 Many diagnostic 

techniques employing metallic nanoparticles for the detection of specific biomarkers entail 

proteins to be adsorbed onto the surface of the nanoparticle due to the high specificity and 

selectivity of proteins. Antibody-antigen interactions are highly exploited in many of these 

detection techniques.11 Consequently, conjugation is fundamental to the stability, functionality, 
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and overall success of AuNP based detection platforms. Similarly, efficiency of the conjugation 

chemistry, i.e., the number of adsorbed proteins, is imperative to the optimization of novel 

immunosensors.  

Anatomy of Immunoglobin G (IgG)  

It is vital to know the structure and function of the protein when developing an assay. The 

normal function of IgG antibodies is to bind to a specific target (antigen). IgGs are in the body to 

recognize many foreign objects such as proteins, bacteria, and viruses that are introduced into the 

body, and IgG is produced by b-cells as a secondary immune response to these foreign objects.14  

IgG is a protein dimer made up of two main portions: the heavy chain and the light chain. 

The heavy chain is made up of three domains in the constant region CH1, CH2, and CH3 and one 

variable region VH; each of these domains are approximately 110 amino acids in length.14 The 

light chain is made up of two domains, a constant portion denoted as CL and a variable portion 

VL; these domains are approximately 110 amino acids in length as well.14 These can be further 

broken down into the Fc portion that consists of the CH2 and CH3 subunits and the Fab portion 

that consist of the  CH1, VH, CL, and VL subunits.14 The differences in the CH domains typically 

affect the flexibility and affinity with antigens.15 Figure 1 is a cartoon depiction of a typical IgG 

molecule.  

 

 

 



3 

 

Figure 1. General structure of an IgG with the heavy chain colored in blue and the light 

chain colored in green. The darker colors indicate the variable regions of the light and heavy 

chains where the binding sites are located. 

 

The Fc and Fab regions are held together by disulfide bonds; this is very important to the 

structure of the IgG protein.15 In IgG, each subunit has at least one interchain disulfide bond and 

one holding the Fab heavy and light chains together. Also there are two disulfide bonds 

connecting the Fc portion to the Fab portion.14  

The binding sites are located in the variable regions (VH and VL) on the Fab portion of 

the antibody with two identical binding sites per IgG molecule. On the Fc portion of the antibody 

there are a few N-linked glycans bonded via N-C bond on each of the CH2 domains; these 
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carbohydrates help with affinity toward binding to Fc receptors on the surface of cells such as T-

cells.14 While the function is largely unknown, it has been experimentally shown that without 

these glycans the Fc receptors do not bind with the same affinity.14  

Immobilization of Protein onto AuNPs 

There are a variety of methods to immobilize protein onto AuNPs; however, they can be 

classified into two types of immobilization, non-covalent and covalent. Non-covalent attachment 

is simply the direct adsorption of protein onto gold nanoparticles. This attachment occurs 

through electrostatic and hydrophobic interactions between the protein and AuNP.16,17 Direct 

adsorption has limitations due to the attachment requiring the pH of the solution to be specific 

for each protein. It has been shown that for optimal binding the solution pH must be slightly 

higher than the isoelectric point (pI) of the antibody.18 Further limitations of direct adsorption 

include nonspecific adsorption and random orientation of the protein onto the surface of the gold 

nanoparticle.  

In an effort to overcome the limitations of direct adsorption, several methods have been 

developed by which proteins can be covalently attached onto the surface of gold nanoparticles. 

Carbohydrates, if present on the protein, can be used for immobilization; however, this is a labor-

intensive method which requires several steps and is time consuming.19 One of the most common 

covalent immobilization strategies is the use of N-hydroxysuccinimidyl ester molecules for 

cross-linking proteins onto the surface of a gold nanoparticle.20 This is performed by first 

covalently adding an N-hydroxysuccimidyl ester molecule onto the surface of the gold 

nanoparticle, followed by the addition of the desired protein. The linking process has been 

thought to be performed by creating an amide bond through a terminal amine group presented by 

a lysine; however, recently it has been shown that hydrolysis of the ester groups occurs faster 
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than aminolysis of the amine to form an amide bond.21 Proteins A and G can also be used to 

immobilize antibody onto the gold nanoparticle for directed immobilization.22 These binding 

proteins have an affinity to the Fc region of IgG making them an ideal method of non-covalent 

conjugation; however, this binding occurs reversibly. Also, proteins A and G do not have the 

same affinity for all antibodies; thus, they cannot be applied as universal immobilization 

strategies. For example, protein A strongly binds human IgG but weakly binds to goat IgG.23  

Characterization of AuNP-Protein Conjugates  

Coagulation Test for AuNP-Protein Stability  

When developing a new nanosensor based on proteins conjugated onto gold nanoparticles 

it is important to confirm that the protein of interest attaches onto the nanoparticle. Additionally, 

it is necessary to establish that the protein-gold nanoparticle conjugate is stable under saline 

conditions. The necessity of a saline environment is important for the protein to function 

properly due to native physiological conditions of the protein. These two conditions can be 

evaluated with a simple coagulation study of the gold nanoparticle-protein conjugate of 

interest.24 A coagulation test is the addition of NaCl into the solution of a gold nanoparticle-

protein conjugate. Typically gold nanoparticles are citrate reduced; thus, the negatively charged 

citrate surrounds the positively charged gold nanoparticle forming an electrical double layer to 

stabilize AuNPs in solution.25 Since NaCl is highly soluble in water, the Na+ and Cl- ions will 

disrupt the electric double layer and cause AuNPs to aggregate. If a protein adsorbs onto the gold 

nanoparticles surface it will displace the citrate group leaving a stable conjugate (i.e. new 

electrical double layer); however, in the absence of full protein coverage this electrical double 

layer collapses causing aggregation. This aggregation, if significant, can be detected by the 
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naked eye. The native color of a 60 nm gold nanoparticle solution is red, but after aggregation it 

changes to blue-purple and even colorless if the aggregates are large enough to sediment.   

Light Scattering Techniques for AuNP-Protein Conjugation and Aggregate Detection 

Dynamic Light Scattering 

Dynamic light scattering (DLS) is a technique that is capable measuring the 

hydrodynamic diameter (DH) of gold nanoparticles and AuNP-protein conjugates. This allows 

for the detection of aggregates that cannot be seen by the naked eye and allows for the 

monitoring of protein conjugation onto AuNPs. DLS is measured using a 532 nm laser and 

illuminating the sample. The sample (particle) scatters the light which is then detected. Because 

the particle has Brownian motion, over time the intensity of the scattered light fluctuates which is 

measured by the detector (Figure 2). This size measurement is obtained from the detection of 

light intensity fluctuations.     

 

Figure 2. Schematic of how intensity fluctuations are related to the Brownian motion of a 

particle in DLS. A) Intensity fluctuations of a large particle. B) Intensity fluctuations of a small 

particle. Figure adapted from https://en.wikipedia.org/wiki/File:DLS.svg.26 
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If the particle is large, it will move slower thus the fluctuations in intensity over time will 

be broad as illustrated in Figure 2A. If the particle analyzed is small, it will be moving faster 

through solutions giving more fluctuation over time shown in Figure 2B. These fluctuations are 

fit to the auto correlation function to calculate D, which can be correlated to DH via the Stokes-

Einstein equation (Equation 1)  

𝐷𝐻 =
𝑘𝑇

3𝜋𝜂𝐷
  (1) 

where DH is the hydrodynamic diameter, k is the Boltzmann constant, T is temperature in Kelvin, 

η is the viscosity of the solution, and D is the translational diffusion coefficient.27 DLS is a high 

throughput technique that is valuable for monitoring protein-AuNP interactions. 

Nanoparticle Tracking Analysis 

 Another method of aggregate detection and protein conjugation onto AuNPs is 

nanoparticle tracking analysis (NTA). While NTA also measures the DH of a gold nanoparticle-

protein conjugate through the detection of scattering, it performs this by illuminating the sample 

with a 532 nm laser and measuring the scattered light by capturing a video via microscope 

focusing shown in Figure 3.28  
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Figure 3. A schematic of the NTA sample stage. Adapted from (B. Carr et al.) 28 

 

The captured video is then analyzed with NanoSight software that correlates the particles’ 

Brownian motion to the DH utilizing the Stokes-Einstein equation (Equation 1). NTA calculates 

the DH by tracking individual particles in the NanoSight software; this allows it to calculate the 

absolute number of particles analyzed giving rise to the concentration of particles in solution. 

Similar to DLS, NTA is a useful technique for the detection of antibody binding onto gold 

nanoparticles by measuring a shift in the hydrodynamic diameter of the nanoparticles before and 

after antibody conjugation.  

Protein Quantitation Methods for Protein-Conjugated AuNPs 

When developing an immunosensor by immobilizing protein onto AuNPs, a method for 

the accurate quantitation of protein surface coverage is critical for the optimization of assay 

performance. Direct quantitative methods of measuring protein immobilized on the surface of 

AuNPs is challenging, regardless of this being fundamental to the development of novel AuNP 

based assays. Supernatant analysis of the excess protein after incubation with AuNPs by 
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modified Bradford or BCA total protein assays are the most common methods of approaching 

this problem.29,30 For example Vertegel et al. determined there are 120 lysozyme molecules on a 

20 nm silica nanoparticle using supernatant analysis with a BCA total protein assay.30 These 

methods, however, are used to infer the amount of protein adsorbed onto AuNPs and are not a 

direct measurement. Pollitt et al. measured shifts in surface plasmon resonance due to protein 

adsorption as a tool to quantify the amount of antibody directly adsorbed onto a gold 

nanoparticle corresponding to 80 antibody molecules per 50 nm particle.31 This is a direct 

method of analysis; however, it requires accurate knowledge of the refractive index at the gold 

nanoparticle surface. This is challenging since the refractive index is dependent on coverage, 

orientation, and water content, all of which are variable.31-33 Other techniques such as dynamic 

light scattering (DLS)32,34,35 and nanoparticle tracking analysis (NTA)7,32 are used to monitor 

protein adsorption as a function of increasing protein-AuNP diameter, but they measure the 

surface coverage of protein and do not directly quantify the protein. 

Immunoassays Utilized in the Driskell Lab 

Currently in the Driskell lab group we employ two methods for simple, fast, and specific 

detection of proteins: dynamic light scattering (DLS) and surface enhanced Raman spectroscopy 

(SERS). 

The first method of detection used in our lab for immunoassays is a dynamic light 

scattering (DLS) assay. DLS measures the hydrodynamic diameter of a nanoparticle based on the 

Brownian motion of the nanoparticle.27 This assay is a simple one-step method that is fast, 

sensitive, and accurate. In this method, antibody is immobilized onto a gold nanoparticle. When 

the antibody-modified gold nanoparticles are introduced to antigen they bind around it forming 

large aggregates as illustrated in Figure 4A.  
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Figure 4. A) Schematic of antibody modified AuNPs before and after aggregation. B) Typical 

histogram observed with DLS on a negative control (PBS) and an antigen sample (5 ng/mL) with 

relative abundance vs hydrodynamic diameter (nm). 

 

Prior to the addition of antigen, or in the case of a negative sample, a uniform narrow 

peak is observed indicating that the conjugates are not aggregated (Figure 4B). Upon mixing 

with antigen, the antibody modified gold nanoparticles aggregate and a large size increase is 

observed in the DLS histogram (Figure 4). Our group has previously demonstrated this DLS 

assay can be performed in 1 hour and provides a better detection limit than traditional ELISAs 

which require 24 hours to complete.6     

 Surface-enhanced Raman spectroscopy is a two-step immunoassay with gold 

nanoparticles that are co-functionalized with an antibody and a Raman reporter. These 

functionalized gold nanoparticles are commonly referred to as extrinsic Raman labels (ERLs) 

(Figure 5A). Similar to the DLS assay described above, this assay takes advantage of the high 

specificity of antibody-antigen interactions, and ERLs form large aggregates when antigen is 

introduced. These aggregates are captured on a 0.2 µm polycarbonate tract etch (PCTE) filter 

Antigen  
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while the remaining unaggregated ERLs flow through the filter to waste (Figure 5B).11 SERS is 

measured on the filter surface to determine the quantity of analyte. This method is fast, simple, 

and has the capability for the simultaneous detection of multiple analytes. In a multiplexed SERS 

assay, multiple ERLs are prepared, each with a different antibody and Raman reporter that has a 

unique spectrum for easy and fast identification. 

 

 

Figure 5. Schematic of ERL preparation and a SERS immunoassay. A) ERL preparation and 

aggregation. B) Typical SERS assay with the aggregates sticking on the filter while non-

aggregated ERLs flow through the filter to waste.11 

 

Central to both detection platforms, protein is immobilized onto the surface of gold 

nanoparticles. The previous work in the Driskell lab has established proof of principle for these 

two novel assays;6,11 however, better characterization techniques of these conjugates are needed. 

For example, a long standing question is the absolute number of antibody adsorbed onto each 

nanoparticle. Moreover, greater efforts on conjugate chemistry are needed, particularly for the 

development of multiplexed assays. We have found that each antibody requires unique solution 

A

) 

B

) 
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conditions to remain stable.6 Thus, the development of a synthetic approach to yield stable 

conjugates, independent of antibody, that can co-exist in a single solution is needed. 

Thesis Objective  

Based on previous work done in the Driskell Lab as well as literature research, the focus 

of this thesis is to develop a method for the direct quantitation of protein adsorbed onto gold 

nanoparticles and to develop a technique to stabilize multiple unique Ab-AuNP conjugates in the 

same suspension.  

Research Overview  

A fundamental aspect of preparing protein conjugated AuNPs for immunoassays is the 

ability to quantify the amount of antibody on the surface of the gold nanoparticle. This is a key 

element for the determination of the quality of the assay and for assay optimization. While there 

are methods of quantifying antibody such as supernatant analysis which can be used to infer the 

amount of protein adsorbed via modified Bradford assays or BCA total protein assays,29,30 these 

methods are indirect and do not measure the exact amount of protein adsorbed onto the AuNP.  

Therefore, we developed and evaluated a novel scheme (Figure 6) to isolate and detect the 

antibodies adsorbed onto the AuNP as an improved method to accurately and quantitatively 

determine the number of antibodies per AuNP.  



13 

 

Figure 6. An overview of the protein quantification process. 

 

Protein modification of gold nanoparticles is essential for many novel nanoparticle based 

immunosensors including those currently under development in the Driskell lab. Procedures can 

have many steps or be as simple as directly adsorbing protein onto AuNPs; however, most 

procedures have one common drawback, the inability of the immobilization process to produce 

stable AuNP-protein conjugates under a range of pH values. This is problematic because all 

proteins have a specific pH at which they can be immobilized which is slightly more basic than 

the isoelectric point of the protein.18  

Conventional methods of immobilization are performed by direct adsorption presented in 

Figure 7A or with a bifunctional crosslinking molecule such as 3, 3’-dithiobis(sulfosuccinimidyl 

propionate) (DTSSP) shown in Figure 7B. 
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Figure 7. An illustration of the immobilization methods. A) Direct adsorption. B) 

Immobilization utilizing DTSSP as a bifunctional crosslinking molecule. C) Method of 

immobilization by attaching DTSSP to the antibody before adsorbing onto the AuNPs. D) 

Method of immobilization by attaching to acrylic acid (NHS) onto the antibody before adsorbing 

onto the AuNPs.  

 

Recent studies suggest that hydrolysis occurs faster than aminolysis; thus, conventional 

methods of immobilization using a bifunctional crosslinking molecule do not produce stable 

antibody-AuNP conjugates over a range of pH values. If bifunctional crosslinking is attempted 

via the addition of DTSSP on the nanoparticle surface then it requires the antibody to diffuse 

through the solution to come into contact with the DTSSP before hydrolysis occurs of the 

terminal ester group on the DTSSP molecule (Figure 7B). In this work, we used the bifunctional 

crosslinking molecule (DTSSP) that is conventionally used; however, we modified the antibody 

before the introduction of AuNPs (Figure 7C). This modification allowed for the concentration 

and diffusion rate of the DTSSP molecule to facilitate aminolysis with the terminal amine of 

lysine before hydrolysis of the hydroxysuccimidyl ester group on DTSSP. Finally we used 

acrylic acid (NHS) (Figure 7D) to determine if the terminal sulfur group facilitates binding to 

AuNPs.  
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CHAPTER II 

A FLUORESCENCE-BASED METHOD TO DIRECTLY QUANTIFY ANTIBODY 

IMMOBILIZED ON GOLD NANOPARTICLES 

This Study has been published in the journal Analyst as Seth L. Filbrun and Jeremy D. Driskell. 

A fluorescence-Based Method to Directly Quantify Antibodies Immobilized on Gold 

Nanoparticles. Analyst. 2016, 141, 3851-3857. 36 

Introduction 

Protein-modified gold nanoparticles are central to many novel and emerging biosensing 

technologies.37-40 The sensitivity of these nanoparticle-based methods is often governed by the 

coupling chemistry between the nanoparticle and protein; an interaction which controls the 

surface coverage and protein orientation.3,41-43 In order to optimize the surface coupling 

chemistry and increase assay performance, a method for the accurate quantitation of surface 

coverage is critical. Such a method will enable conditions for maximum protein coverage to be 

identified, and facilitate proper assessment of novel coupling chemistry by ensuring enhanced 

assay performance is due to improved orientation rather than surface coverage. In addition, an 

accurate method to quantify surface coverage is needed to assess the reproducibility of 

nanoparticle preparations which can influence assay quality control.43 

Direct quantitative methods to measure surface coverage of proteins conjugated onto gold 

nanoparticles remains challenging, despite this being of fundamental importance to nanoparticle-

based applications. Most commonly, analysis of excess protein in the supernatant after 

incubation with the nanoparticle suspension is used to infer the quantity of adsorbed protein. 

Protein concentrations are often low; but, modified Bradford and BCA total protein assays are 

typically capable of detecting these low concentrations.30,44 Alternatively, fluorescently labelled 
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proteins can be used and low concentrations of excess proteins in solution can be measured with 

fluorescence.45,46 This requires modification of the protein by fluorophore functionalization, 

which can interfere with the coupling chemistry or affect the protein adsorption characteristics. 

These approaches are indirect measurements of the adsorbed protein and assume no loss of 

protein due to adsorption to container walls, e.g., centrifuge tube. Nevertheless, this approach 

results in a measure of the absolute number of immobilized antibodies per nanoparticle. 

More recently, antibody adsorption has been quantified by measuring shifts in the surface 

plasmon resonances due to changes in the local refractive index caused by protein adsorption.31 

While this is a more direct analysis of the adsorbed proteins, it requires accurate knowledge of 

the refractive index at the nanoparticle surface. This is quite challenging considering the 

refractive index depends on coverage, orientation, and water content, none of which are 

constant.47-49 

A number of additional techniques have been evaluated to measure the surface 

concentration relative to saturation, but do not give an absolute quantitation of adsorbed protein. 

Dynamic light scattering (DLS)7,47,50,51 and nanoparticle tracking analysis (NTA)7,47 measure an 

increase in hydrodynamic diameter upon protein adsorption. The increase in diameter is 

correlated with relative surface coverage. Similarly, zeta potential,52,53 analytical 

ultracentrifugation,54 and electrospray differential mobility analysis55 have all been used to 

measure relative surface coverage.  

In this chapter we present a fluorescence-based method for directly quantifying the 

absolute number of antibodies adsorbed onto gold nanoparticles. The detection of adsorbed 

antibodies is accomplished by dissolving the gold nanoparticle and using a fluorescent dye, 

NanoOrange,56,57 to quantify the protein previously adsorbed onto the nanoparticles. A 
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fluorescent dye, such as NanoOrange, was selected to quantify the protein because fluorescence 

typically provides a lower detection limit and larger dynamic range than absorbance based 

protein quantification strategies. NanoOrange was specifically selected as the fluorescent dye as 

it has previously been demonstrated to broadly react with many proteins and has been well-

characterized with respect to the effects of contaminants on assay performance.56 We 

demonstrate that this novel method is more accurate than the commonly used indirect method 

based on mass difference in the added and excess antibody remaining in solution. To further 

demonstrate the utility of the method, we compare the surface coverage of antibody using two 

methods of immobilization, direct adsorption and DTSSP coupling chemistry.  

Experimental  

Materials and Reagents 

Gold nanoparticles (AuNPs; 60 nm) were purchased from Ted Pella Inc. (Redding, CA). 

Iodine (99.8%, ACS reagent) and potassium iodide were purchased from Fisher Scientific 

(Waltham, MA). Borate buffer, goat anti-mouse IgG polyclonal antibody, 3,3’–

dithiobis[sulfosuccinimidylpropionate] (DTSSP), NanoOrange protein quantitation kit, and Zeba 

spin desalting columns (7K MWCO, 0.5 mL) were obtained from Thermo Scientific (Rockford, 

IL). Gold(III) chloride hydrate (99.999% trace metals basis) was acquired from Sigma Aldrich 

(St. Louis, MO). Bio-Rad protein assay dye reagent concentrate was attained from Bio-Rad 

Laboratories, Inc. (Hercules, CA). All aqueous solutions were prepared in NANOpure deionized 

water (18 MΩ) from a Barnstead water purification system (Thermo Scientific, Rockford, IL). 

Antibody-Conjugated Gold Nanoparticles 

To directly adsorb antibody onto AuNPs, 1 mL of 60 nm AuNPs was placed into a 

microcentrifuge tube, then 40 µL of 50 mM borate buffer (pH 8.5) was added to adjust the pH of 
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the solution to 8.5. Then 30 µg of goat anti-mouse IgG was added, and the solution was 

incubated at room temperature for > 2 hrs. After incubation the functionalized AuNPs were 

centrifuged at 12,500g for 5 min, the supernatant was decanted, and the pelleted nanoparticles 

were resuspended in 2 mM borate buffer. The centrifugation/resuspension process was repeated 

twice to thoroughly remove excess antibody.   

Antibody was also immobilized onto AuNPs via DTSSP, a bifunctional coupling reagent. 

To this end, 1 mL of 60 nm AuNPs was placed into a microcentrifuge tube, then 40 µL of 50 

mM borate buffer (pH 8.5) was added to adjust the pH of the solution to 8.5, and 10 µL of 5 mM 

DTSSP was added to the solution. After incubation at room temperature for 15 min the solution 

was centrifuged at 5,000g  for 5 min. The supernatant was removed and the pelleted AuNPs were 

resuspended in 2 mM borate buffer (pH 8.5). The centrifugation/resuspension steps were 

repeated twice to ensure complete removal of excess DTSSP. To the DTSSP-modified AuNP, 30 

µg of goat anti-mouse IgG was added and allowed to incubate at room temperature for > 4 hrs. 

The functionalized AuNPs were then centrifuged at 12,500g for 5 min and the pelleted AuNP 

resuspended in 2 mM borate buffer three times.  

Dissolution of Gold Nanoparticles 

AuNPs (1 mL) were dissolved by adding 50 µL of a KI/I2 solution consisting of 333 mM 

KI and 50 mM I2. This mixture was allowed to react for 15 min to ensure full dissolution of the 

AuNPs. Flame atomic absorption spectrophotometry was used to confirm the AuNPs were 

completely dissolved. 

Direct Determination of Antibody Surface Concentration  

NanoOrange reagent was prepared according to the manufacturer’s protocol. Antibody 

functionalized AuNPs were centrifuged at 12,500g for 5 min, the supernatant was discarded and 



19 

50 µL of KI/I2 solution was added according to the above procedure to dissolve the AuNPs. 

Standard solutions of goat anti-mouse IgG were prepared with appropriate steps to match the 

matrix of the samples. To prepare the standard solutions, 1 mL 60 nm AuNPs were centrifuged at 

12,500g for 5 min, the supernatant was discarded, KI/I2 was added to the sedimented AuNP 

pellet, and the appropriate amount of antibody was then added to each standard. Desalting 

columns were used to remove the KI/I2 solution before using the NanoOrange reagent. The 

volume of antibody recovered from the desalting column was measured and NanoOrange reagent 

was added to each solution to bring the total volume to 1.5 mL. The samples were incubated for 

20 min at 90o C in a water bath and cooled to room temperature in the dark. Fluorescence of the 

protein-bound NanoOrange dye was measured and correlated with antibody concentration.  

Indirect Determination of Antibody Surface Concentration 

Antibody functionalized AuNPs were centrifuged at 12,500g for 5 min and 500 µL of the 

supernatant was analyzed using a modified Bradford assay (Bio-Rad protein assay). The 

collected supernatant was diluted 1:1 with 2 mM borate buffer (pH 8.5) and 250 µL of the Bio-

Rad reagent was added. Standard solutions of antibody (1- 20 µg/mL) were prepared in 2 mM 

borate buffer (pH 8.5) and 250 µL of Bio-Rad reagent was added to 1 mL of each standard 

solution. The samples and standards were then incubated at room temperature for 15-20 min to 

allow the color to develop. Absorption was measured at 595 nm to quantify antibody in the 

supernatant. The absolute concentration of antibody adsorbed onto the AuNP was inferred to be 

the mass difference between the antibody added to the AuNP and the antibody remaining in the 

supernatant. 
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Instrumentation 

Nanoparticle Tracking Analysis (NTA) 

The hydrodynamic diameter of the functionalized AuNPs was measured using a 

NanoSight LM10, furnished with a temperature controlled LM14G sample viewing cell 

configured with a 532 nm laser (Malvern Instruments Ltd Worcestershire, UK). Tracking of the 

AuNPs was performed using a high sensitivity sCMOS camera (Hamamatsu Photonics). Samples 

were diluted 100-fold to ~108 NP/mL and then injected with a 1 mL syringe (Becton Dickinson, 

NJ) utilizing a Harvard Apparatus Pump 11 Elite single injection syringe pump (Harvard 

Bioscience Inc. Holliston, MA). Flow injection rate was set to 15 µL/min. Sample analysis was 

performed using NanoSight 2.3 software. The software was set to live mode with the camera 

level set to 6 and the detection threshold at 5. The samples were analyzed until greater than 

10,000 completed tracks were acquired, and hydrodynamic diameter was calculated using the 

NanoSight 2.3 software.  

Flame Atomic Absorption Spectroscopy  

The concentration of Au in the dissolved AuNPs was measured using an AAnalyst 200 

Atomic Absorption Spectrometer furnished with an Au-Ag hollow cathode lamp (PerkinElmer 

Inc. Waltham, MA). Air was used as the oxidant at a flow rate of 12 L/min while acetylene was 

used as the fuel with a flow rate of 1.9 L/min. The Au absorption line at 242.80 nm was 

measured with a slit set to 2.7 mm x 1.35 mm. Samples were prepared by dissolving 1 mL of 60 

nm AuNPs with 50 µL of KI/I2 solution and diluting to 10 mL with nanopure H2O.     
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UV-Visible Absorption  

UV-Visible absorption was performed using an Agilent 8453 spectrophotometer 

equipped with a photodiode array providing a spectral range of 190-1100 nm (Agilent 

Technologies Santa Clara, CA). Sample absorption was measured at 595 nm using 2 mM borate 

buffer (pH 8.5) as the blank.  

Fluorescence  

Fluorescence spectra were acquired with a PerkinElmer LS 55 Luminescence 

Spectrometer (PerkinElmer Inc. Waltham, MA). Samples were excited at 485 nm and emission 

was measured at 590 nm, as recommended by the manufacturer’s protocol for NanoOrange. 

Spectra were collected with 5 s integrations and the excitation/emission slit widths were 

maximized (15 nm/20 nm) to maximize the signal-to-noise ratio. 

Results and Discussion 

Indirect Quantitation of Immobilized Antibody  

It is well-established that antibodies self-assemble onto the surface of AuNPs. Protein 

adsorption arises from a combination of electrostatic and hydrophobic interactions and is 

influenced by many parameters, including pH, ionic strength, and antibody pI.58-60 Based on 

previously optimized conjugation conditions, antibody-modified gold nanoparticles were 

prepared by adding 30 µg of goat anti-mouse IgG antibody to AuNPs.7 NTA was performed on 

the unconjugated and antibody-modified AuNPs in order to confirm adsorption of antibody onto 

the AuNPs and the size distributions are shown in Figure 8. From the representative histograms 

in Figure 8, the unconjugated AuNPs had a mean hydrodynamic diameter of 62 nm while the 

modified AuNPs had a mean hydrodynamic diameter of 78 nm.  The histograms shown in Figure 

8 illustrate uniform size distributions of the NPs consistent with a monodisperse population. 
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Figure 8.  Size distribution of AuNP and antibody-modified AuNP measured with NTA. 

Greater than 10,000 particles were tracked to create each of the histograms. 

 

NTA analysis of four additional preparations of unconjugated and antibody-modified 

AuNP produced similar histograms with a standard deviation of ±0.6 nm in the mean diameter. 

The 16 nm shift in the mean diameter of the AuNPs upon conjugation of the antibody is 

consistent with other reports for nanoparticles fully saturated with protein.7,47,50,51 The size of an 

IgG molecule has been previously reported as 4-10 nm depending on orientation;7,49,61,62 and the 

16 nm shift in the mean diameter of the AuNPs upon conjugation of the antibody is consistent 

with a monomolecular layer of adsorbed protein, although the possibility of a bilayer exists 

depending on antibody orientation. Recent work has demonstrated that protein monolayers form 

on nanoparticles,50,63,64 although the possibility for additional proteins to adsorb do exist when 

excessively high solution concentrations of protein are used50 or when the pH is near the protein 

isoelectric point.65 Based on these previous works and our experimental conditions, we speculate 

that a protein monolayer is more likely than a bilayer.  
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The quantity of adsorbed protein was indirectly determined by analysis of excess 

antibody in the modified AuNP supernatant. A Bio-Rad protein assay was calibrated using 

standard solutions of goat anti-mouse IgG antibody (Figure. 9).  

 

Figure 9.  Bio-Rad protein assay calibration curve for determining antibody concentration in 

AuNP supernatant.  

 

We determined that 25.7 ± 0.6 µg of antibody remained in the supernatant based on the analysis 

of supernatant from nine independent preparations of antibody-modified AuNP. It is inferred that 

4.3 ± 0.6 µg of antibody adsorbed onto the AuNPs from the mass difference relative to the 30 µg 

of antibody added to the AuNPs. This mass corresponds to the adsorption of 660 ± 87 antibodies 

per AuNP. A conservative estimate of theoretical monolayer surface coverage is calculated to be 

314 antibodies per AuNP based on the total surface area of the AuNPs (2.6 x 1010 NP/mL at 62 

nm) and assuming a 7 nm circle as the projected footprint of an antibody. Therefore, this method 

of quantifying antibody loading suggests multilayers of protein adsorbed onto the AuNP. This 

result, however, contradicts the speculation that a monolayer forms based on the NTA results 

(Figure 8) and previous works7,47,50,51 as discussed above.  
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We hypothesized that loss of antibody due to adsorption to the centrifuge tube during 

AuNP modification would decrease the concentration of antibody in the supernatant and result in 

an overestimation of antibody adsorbed onto the AuNP. To test this hypothesis, 30 µg of 

antibody was added to 1 mL of 2 mM borate buffer (pH 8.5) in a microcentrifuge tube. The 

solution was incubated for 2 hours at room temperature and centrifuged, the same conditions 

used for AuNP modification. The protein solution was then analysed with the Bio-Rad protein 

assay and 27.5 ± 0.3 µg of protein were recovered, based on three independent analyses, which 

suggested that 2.5 ± 0.3 µg were adsorbed onto the surface of the centrifuge tube. Accounting for 

the loss of antibody adsorbed onto the centrifuge tube, we can estimate that only 1.8 µg of the 

4.3 µg mass difference determined above was due to adsorption onto AuNP. This adsorbed mass 

corresponds to a surface coverage of 280 antibodies per AuNP, which further supports our claim 

of monolayer coverage.  

These studies established that the common method of quantifying antibody adsorbed onto 

AuNPs by mass difference leads to an overestimation of the surface coverage. While we show it 

may be possible to understand the source of and correct for this systematic bias, these corrective 

procedures will increase the uncertainty in the measured values. It is clear that an improved 

analytical method that directly measures the adsorbed antibodies is needed.                

Dissolution of gold nanoparticles 

The dissolution of AuNPs is central for the direct analysis of antibodies adsorbed to the 

surface of the AuNP. To this end AuNPs were dissolved by adding a well-established iodine- 

iodide etchant solution to dissolve 1 mL of 60 nm AuNPs. The Au is dissolved by the oxidant  

(I3
-) which is formed through the reaction of I2 and I-.66  
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Flame atomic adsorption spectroscopy was used to confirm that the AuNPs were fully 

dissolved by the KI/I2 etchant solution. A calibration curve for the quantitation of Au was 

constructed using standard solutions prepared from gold (III) chloride (Figure 10). 

  

Figure 10. Flame atomic absorption spectroscopy calibration curve for determining gold 

concentration. 

 

A 1 mL sample of AuNPs was centrifuged and the supernatant was analysed for Au. Figure 11 

shows that no gold was detected in the supernatant which confirms that all of the AuNPs were 

pelleted upon centrifugation and that the gold ions used to synthesize the AuNPs were fully 

reduced during preparation. The pelleted AuNPs were then dissolved with the addition of 50 µL 

of KI/I2, and 51.1 ± 0.4 µg of gold were measured in this sample with flame AA (Figure 11).  
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Figure 11.  Concentration of gold in 1 mL samples measured with flame atomic 

absorption spectroscopy. The concentrations are calculated from the average of three 

measurements and the error bars represent the standard deviation. (N. D. = not detected). 

 

The theoretical value of Au in 1 mL of AuNPs is 51 µg calculated using the concentration 

provided by the manufacture (2.6 × 1010 NP/mL) and the hydrodynamic diameter of the 

unconjugated AuNPs measured by NTA (Figure 8). The statistically equivalent values for the 

experimental and theoretical amounts of gold suggest that the AuNPs were fully dissolved. To 

further verify complete dissolution of the AuNP, the KI/I2 treated AuNPs, i.e., dissolved AuNPs, 

were centrifuged to form a pellet of any remaining AuNPs on the bottom of the centrifuge tube. 

Although no pellet was visible, the “supernatant” was analysed and determined to contain 50.2 ± 

0.8 µg of gold (Figure 11). Given that the amount of gold did not significantly decrease as a 

result of centrifugation after KI/I2 treatment, it was concluded that the AuNPs were fully 

dissolved.  
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Direct Quantitation of Immobilized Antibody   

The AuNP core of the antibody-modified AuNP was fully dissolved as described above 

for the direct analysis of adsorbed antibodies, and a fluorescent dye, NanoOrange, was used to 

label the free protein for quantitation. However, when used in the solution that contains KI/I2 

there is interference with the fluorophore resulting in no detectable fluorescence. To circumvent 

this issue, a spin desalting column was used to remove excess KI/I2. After desalting, the isolated 

antibody was labelled with the fluorescent dye for quantitation.  

In order to build an accurate calibration curve, the standard solutions were prepared in the 

same matrix as the sample and passed through a desalting column. These standards were 

prepared by centrifuging 1 mL of 60 nm AuNPs and dissolving the pellet with the KI/I2 solution 

identical to the samples. Varying amounts of antibody were added to each solution and then the 

solution was passed through a desalting column to remove any salts that interfere with the 

interaction between NanoOrange and the antibody. The calibration curve for the NanoOrange-

based assay is shown in Figure 12.  

 

Figure 12.  Calibration curve for the NanoOrange-based fluorescence detection of antibody. The 

samples were excited at 485 nm and the emission was measured at 590 nm. R2 = 0.9925. 
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Direct analysis of antibody isolated, i.e., dissolved with KI/I2 and desalted, from 

antibody-modified AuNP with the fluorescence assay measured a surface coverage of 309 ± 93 

antibodies per AuNP based on nine independent sample preparations (Figure 13). This is in 

contrast to the indirect method based on mass difference between added and excess antibody 

described above, which estimated 660 ± 87 antibodies per AuNP (Figure 13).  

 

Figure 13.  The absolute surface coverage of antibodies adsorbed onto a 60 nm AuNP 

measured with the fluorescence-based NanoOrange assay of the antibodies isolated from the 

AuNP (direct quantitation) and the Bio-Rad-based assay of excess unbound antibodies in the 

AuNP supernatant (indirect quantitation). Each bar represents the average surface coverage 

determined from nine independent preparations of modified AuNP and the error bars represent 

the standard deviation. 

 

A t-test was performed to compare the direct and indirect methods of quantifying immobilized 

protein, and it was concluded with 99 % confidence that the surface coverages calculated with 

the two assays are significantly different. Notably, the surface coverage measured with this novel 
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fluorescence-based protocol is more consistent with both the NTA data that indicated a 

monolayer of adsorbed protein and the theoretical surface coverage of a protein monolayer. 

To further validate the capability of this method to directly quantify immobilized 

antibodies, AuNPs were incubated with varying amounts of antibody. NTA was performed to 

characterize the antibody adsorption isotherm (Figure 14, Figure 15).  

 

Figure 14. Nanoparticle size distribution curves for AuNP modified with varying amounts of 

antibody measured with NTA.   

 

As is evident, the mean hydrodynamic diameter increased from 62 nm for the unconjugated 

AuNP to a maximum of 76 nm with increasing amounts of added antibody. Based on the NTA 

measured hydrodynamic diameter, the addition of antibody in excess of 10 µg did not result in 

increased surface coverage. 



30 

 

Figure 15.  Saturation curves for the adsorption of antibody onto AuNPs. A) Increase in 

hydrodynamic diameter measured with NTA. B) Increase in absolute antibody surface coverage 

measured with the fluorescence-based method. Two independent analyses were performed to 

generate the fluorescence-based data and the average of the two runs was fit to Equation 2. 

 

The antibody adsorption isotherm was also constructed using the absolute quantity of 

adsorbed antibody measured with the fluorescence method (Figure 15B). The analysis was 

performed twice and the average surface coverage was best fit to a ligand binding model 

(Equation 2). 

𝑦 =
𝐵𝑚𝑎𝑥𝑥

𝐾𝑑+𝑥
                      (2) 
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Bmax is the maximum antibody surface coverage at saturation and Kd is the apparent 

dissociation constant. Based on the best fit curve, the surface coverage maximized at 323 

antibodies per AuNP. This surface coverage is consistent with the value measured for nine 

independent preparations with 30 µg antibody (Figure 13) and the theoretical value calculated 

from surface area (314 antibodies per AuNP). It is worth noting that the antibody surface 

concentration exceeds that of a monolayer for the two highest antibody concentrations for the 

second analysis (Figure 15B). While these measured values are not statistically different than 

monolayer coverage based on the precision of the fluorescence-based method, it is not possible 

to rule out the possibility of additional antibody molecules adsorbing to begin forming a 

multilayer when large concentrations of excess antibody are used.50 These results further validate 

the fluorescence-based method and demonstrate that the method can be used to quantify sub-

saturation coverages. 

Effect of Coupling Chemistry on Immobilized Antibody 

To explore the scope of this analytical method, we quantified antibody coupled to AuNPs 

through a bifunctional crosslinker, DTSSP.67,68 A self-assembled monolayer was first formed on 

the AuNP surface through cleavage of the disulphide bond and formation of a gold-thiolate bond. 

Antibody was then added and primary amines from lysine residues reacted with the terminal 

succinimidyl ester to covalently immobilize the antibody through the formation of an amide 

bond. A recently published study suggests that DTSSP coupling chemistry is inefficient.21 A 

detailed investigation of reaction kinetics determined that heterogeneous hydrolysis of the 

succinimidyl ester is three orders of magnitude greater than that of the heterogeneous aminolysis 

rate.21 Thus, it is important to determine the effect of DTSSP coupling chemistry on antibody 

loading. 
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The DTSSP/antibody functionalized AuNPs were dissolved in KI/I2 solution, desalted, 

and the isolated protein was quantified with NanoOrange. A total of 1.9 ± 0.3 µg were recovered 

from the surface of the functionalized AuNPs (N = 3 independent preparations), which 

corresponds to the coupling of 298 ± 46 antibodies per AuNP. Thus, the surface coverage of 

antibody immobilized via DTSSP did not significantly differ from the surface coverage obtained 

via direct adsorption of antibody to the AuNP (309 ± 94 antibodies per AuNP). Hydrolysis of the 

DTSSP-modified AuNP results in surface-bound carboxylates giving the AuNPs a negative 

surface charge similar to that of the unconjugated citrate-capped AuNPs. Consequently, it is 

likely that antibodies experience similar interactions with unconjugated and DTSSP-modified 

AuNPs which have hydrolyzed. Therefore, it is reasonable that both methods, direct adsorption 

and DTSSP coupling chemistry, resulted in similar antibody surface coverages.   

Conclusions  

We have developed a fluorescence-based method to directly quantify antibody adsorbed 

onto AuNPs. The method involves a three-step procedure, including dissolution of the AuNPs 

with KI/I2, isolation of adsorbed antibody via spin desalting columns, and protein quantification 

with NanoOrange, a fluorescent dye. Previous works to evaluate antibody adsorption onto AuNP 

are limited in that they indirectly infer the quantity of adsorbed antibody based on analysis of 

excess protein in solution or because they only provide a relative surface coverage. The novelty 

of this approach is that it directly analyses the antibodies adsorbed onto the AuNP and provides 

an absolute measurement of quantity.  

To validate the method, we have quantified goat anti-mouse IgG antibody directly 

adsorbed onto AuNPs. We determined an absolute surface coverage of 309 ± 94 antibodies per 

60 nm AuNP. Moreover, we demonstrate that this novel method is more accurate than estimates 
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of absolute surface coverage based on mass difference between the added antibody and excess 

antibody remaining in solution after modification. 

We anticipate that this method will be broadly applicable to enhancing applications 

utilizing protein-modified AuNP, and is not limited to antibody-modified AuNP. NanoOrange is 

sensitive to a range of targets, including large peptides, small proteins, and large proteins, such 

as IgG.56 The most significant impact of this work, however, may be on the evaluation and 

comparison of novel conjugation chemistries aimed at protein orientation. It is well-accepted that 

the performance of technologies based on protein-modified nanoparticle is dependent upon both 

protein loading and protein orientation to maximize bioactivity. Therefore, it is necessary to 

quantify immobilized protein in any novel conjugation chemistry to ensure that enhanced 

performance is due to orientation rather than an increase in protein surface coverages.  
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CHAPTER III 

CHEMICAL MODIFICATION OF ANTIBODY ENABLES PH INDEPENDENT 

FORMATION OF STABLE ANTIBODY-GOLD NANOPARTICLE CONJUGATES 

Introduction 

Protein modification of nanoparticles is essential to new and emerging biosensing 

technologies.1-3,69 Antibody-gold nanoparticle conjugates are commonly used for novel 

biosensors due to their high specificity and broad applicability.70-72 The sensitivity and stability 

of these biosensors is determined by the protein orientation and surface coverage on the gold 

nanoparticle, which are governed by the conjugation process of protein onto the gold 

nanoparticle surface.36,73,74 An ideal immobilization method would ensure antibody conjugation 

and reliability for assay reproducibility and performance. This method would also need to ensure 

stabilization of the protein-nanoparticle conjugate in a variety of conditions without hindering 

assay performance. While there are several techniques to attach proteins onto gold nanoparticles, 

most simple techniques are dependent on the pH of the antibody.6,11,73,74 This presents a 

challenge for the development of novel multiplexed assays in which multiple antibody-

nanoparticle conjugates must be prepared and coexist in a single reagent suspension. Additional 

considerations include reversible immobilization and protein orientation on the surface of the 

gold nanoparticle.74-77 

Immobilization of protein onto gold nanoparticles can occur through direct adsorption or 

use of a coupling agent for covalent attachment. Non-covalent direct adsorption is limited in that 

the attachment requires a unique and specific pH for each protein. It is well-established that for 

optimal adsorption the solution pH must be slightly higher than the isoelectric point (pI) of the 

protein.18,24,65 Moreover, direct adsorption does not allow control over orientation of the 



35 

immobilized protein which can adversely affect protein biofunctionality, and it has been argued 

that non-covalent attachment allows for desorption which can result in short shelf-life and 

unwanted protein exchange.18,74 However, it should be noted that we have not observed protein 

desorption or exchange from stable protein-gold nanoparticle conjugates that rely on direct 

adsorption for conjugate formation.78  

To circumvent the concerns and challenges of direct adsorption, numerous approaches 

have been explored to immobilize protein onto gold nanoparticles through covalent coupling 

chemistry.79-84 Carbohydrates if present on the protein can be used for attachment; however, 

along with being time intensive this method requires carbohydrates to be present on the protein 

and is labor intensive.19  

Covalent modification of gold nanoparticles using bifunctional crosslinking chemistry 

molecules such as DTSSP (3,3'-dithiobis(sulfosuccinimidyl propionate)) is one of the most 

widely used method of attachment.13,85-94 The attachment is said to occur by the sulfur binding to 

gold nanoparticles, leaving a terminal NHS (N-hydroxysuccinimide) ester group that attaches to 

the protein via the primary amine located on lysine.13,91,93 This method however, requires the 

solution pH to be high enough for the lysine groups on the protein to be deprotonated; 

furthermore, it has been recently proposed that the hydrolysis of NHS occurs faster than 

aminolysis onto the primary amine.21,36 This is because the reaction is limited to diffusion of the 

protein onto the NHS functionalized gold nanoparticle.21 While there are several methods of 

attaching protein onto nanoparticles, the exact chemistry behind these methods is still relatively 

unknown, and there is also still a need for a fast universal method of attachment that is stable 

under a range of conditions.   
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In this chapter, we describe a novel approach to attach protein onto gold nanoparticles 

that is fast, is compatible with many antibodies, and generates stable conjugates for a wide range 

of pH values. To achieve this, we first modified the lysine residues on the protein with NHS-

activated esters, DTSSP or NHS-acrylic acid, to alter the protein charge. The modified protein 

was then adsorbed onto the gold nanoparticles to form stable conjugates in high ionic strength 

suspensions independent of pH. We determined that this method can be utilized on a range of 

antibodies by forming stable conjugates with goat anti-mouse IgG, mouse anti-rabbit IgG, and 

rabbit anti-mouse IgG.  Furthermore, we demonstrated that the modified antibody maintains 

bioactivity towards it target antigen in a functional assay.  

Experimental 

Materials  

Gold nanoparticles (AuNPs; 60 nm) were purchased from Ted Pella Inc. (Redding, CA). 

Borate buffer, goat anti-mouse IgG polyclonal antibody, mouse anti-rabbit IgG polyclonal 

antibody, rabbit anti-mouse IgG polyclonal antibody, 3,3′-dithiobis[sulfosuccinimidylpropionate] 

(DTSSP), and Zeba spin desalting columns (7K MWCO, 0.5 mL) were acquired from Thermo 

Scientific (Rockford, IL). Acrylic acid N-hydroxysuccinimide ester (acrylic NHS), and Bovine 

serum albumin (BSA) were purchased from Sigma-Aldrich (St Louis, MO). K2HPO4 was 

purchased from Mallinckrodt Chemical Inc. (Paris, KT). KH2PO4 was purchased from Fisher 

Scientific (Waltham, MA). All aqueous solutions were prepared in NANOpure deionized water 

(18 MΩ) from a Barnstead water purification system (Thermo Scientific, Rockford, IL).  
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Antibody-NHS Modification   

Five µL of NHS linker molecule (Acrylic acid NHS) or DTSSP at the desired 

concentration were added to 30 µg of selected antibody and incubated for 2 hrs. Desalting 

columns were used to separate the excess linker molecule from the modified antibody. To empty 

the stacking buffer, the column was centrifuged at 3000g for 3 min, sample was loaded and 10 

µL of 2 mM borate buffer (pH 8.5) was added then the column was centrifuged at 3000g for 4 

min. The modified antibody concentration was measured using a NanoDrop 2000c 

spectrophotometer (Thermo Scientific, Rockford, IL).  

Protein Modified Gold Nanoparticles (pAuNPs) 

Direct  

One hundred µL of 60 nm AuNPs were placed into a microcentrifuge tube, then 4 µL of 

50 mM phosphate buffer solution (pH 6.0, 6.5, 7.0, or 7.5) or 50 mM borate buffer (pH 8.0 or 

8.5) were added to adjust the solution to the desired pH. Three µg of desired IgG protein (goat 

anti-mouse, mouse anti-rabbit, or rabbit anti-mouse) were then added to each solution and 

incubated for 20 min at room temperature. Next 10 µL of 10 % (wt/v) NaCl were added and 

dynamic light scattering was used to evaluate the stability of the pAuNPs.  

DTSSP-Au 

One hundred µL of 60 nm AuNPs were placed into a microcentrifuge tube, then 4 µL of 

of 50 mM phosphate buffer solution (pH 6.0, 6.5, 7.0, or 7.5) or 50 mM borate buffer (pH 8.0 or 

8.5) were added to adjust the solution to the chosen pH. One µL of 0.5 mM DTSSP was added 

and incubated for 1 hour at room temperature. The solution was then centrifuged at 5000g for 5 
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min, the pelleted AuNPs were resuspended in 100 µL of 2 mM buffer solution at the desired pH. 

The centrifugation/resuspension processes were repeated twice to thoroughly remove excess 

unbound DTSSP. Three µg of IgG protein (goat anti-mouse, mouse anti-rabbit, or rabbit anti-

mouse) were then added to the tube and incubated for 20 min, then 10 µL of 10 % (wt/v) NaCl 

were added, and dynamic light scattering was used to check the stability. 

NHS-Antibody  

One hundred µL AuNPs were placed into a mircocentrifuge tube, then 4 µL 5 of 50 mM 

phosphate buffer solution (pH 6.0, 6.5, 7.0, or 7.5) or 50 mM borate buffer (pH 8.0 or 8.5) were 

added to adjust the solution to the desired pH. Three µg of NHS modified IgG protein (goat anti-

mouse, mouse anti-rabbit, or rabbit anti-mouse) were then added to each solution and incubated 

for 20 min at room temperature. Next, 10 µL 10% (wt/v) NaCl were added and dynamic light 

scattering was used to check stability of the AuNPs. 

Protein Modified AuNP Immunoassay 

Direct 

One hundred µL of 60 nm AuNPs were placed into a microcentrifuge tube, then 4 µL of 

50 mM borate buffer (pH 8.5) was added to adjust the solution to the desired pH. Three µg of 

goat anti-mouse IgG were inserted, and the solution was incubated overnight. Following 

incubation, the functionalized AuNPs were centrifuged at 5000g for 5 min, the supernatant was 

removed, and the pelleted nanoparticles were resuspended in 100 µL of 2 mM borate buffer (pH 

8.5). The centrifugation/resuspension processes were repeated twice to thoroughly remove 

excess unbound antibody. After the final centrifugation the pelleted nanoparticles were 

resuspended into 100 µL of 1% (wt/v) BSA solution. Ten µL of 10% (wt/v) NaCl solution were 
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added to determine stability of the pAuNPs. Dynamic light scattering was collected to determine 

the hydrodynamic diameter of the modified nanoparticles.   

NHS-Antibody 

One hundred µL of 60nm AuNPs were placed into a microcentrifuge tube, then 4 µL of 

50 mM buffer solution (pH 6.0-8.5) was added to adjust the solution to the desired pH. Three µg 

of acrylic (NHS) modified goat anti-mouse IgG were added to the solution and incubated 

overnight. The solution was then centrifuged at 5000g for 5 min and resuspended in 100 µL of 2 

mM buffer solution at the desired pH. The centrifugation/resuspension process was repeated 

twice with the final resuspension being in 100 µL of 1% (wt/v) BSA solution. Ten µL of 10% 

(wt/v) NaCl were added to check stability of the pAuNPs, and dynamic light scattering was 

collected to determine hydrodynamic diameter of the particles.  

Instrumentation 

Dynamic Light Scattering  

A BI-90Plus (Brookhaven Instruments Corporation, NY) armed with a 658 nm laser and 

an avalanche photodiode detector was used. The collection angle of the backscattered light was 

90o. Each hydrodynamic diameter reported was the mean of three 30 s runs. The resultant data 

were analyzed using the MAS OPTION software.  

UV-Visible absorption  

A NanoDrop 2000c (Thermo Scientific, Rockford, IL), equipped with a xenon lamp was 

used for absorbance measurements. One µL of sample was added to the stage with an 
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illumination time of 5 s, the collection wavelength for quantification was set to 280 nm, and the 

concentration was calculated by the NanoDrop 2000/2000c software.  

Results and Discussion 

Immobilization Methods 

Immobilization of antibodies onto the surface of gold nanoparticles is commonly 

performed via direct adsorption or NHS coupling chemistry. It is well established that antibodies 

directly adsorb onto gold nanoparticles (Figure 16A). While the mechanism is not fully 

understood, it is known that direct adsorption requires the pH to be slightly basic of the 

isoelectric point (pI) of the protein, and occurs through a combination of hydrophobic and 

electrostatic interactions.18,24 To demonstrate this, goat anti-mouse IgG was incubated with 60 

nm AuNPs in a pH range of 6.0-8.5 in increments of 0.5 pH units. At pH 6.0-7.5, the 

nanoparticles aggregated upon addition of the antibody within 5 min as indicated by a color 

change of the suspensions observed with the naked eye (Figure 17A). 
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Figure 16. Schematic of the types of immobilization methods. A) Direct adsorption. B) DTSSP 

functionalized gold nanoparticles followed by antibody adsorption. C) DTSSP modified antibody 

followed by adsorption onto gold nanoparticles. D) Acrylic acid (NHS) modified antibody 

followed by adsorption onto gold nanoaprticles. 

 

This suggests that at the lower pH values, the protein was sufficiently protonated and carried 

sufficient positive charge that it caused the gold nanoparticles to aggregate rather than form a 

stable protein-gold nanoparticle conjugate. At pH ≥ 8.0, the AuNP remained red after the 

addition of antibody; however, this does not confirm that antibody adsorbed onto the AuNP.   
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Figure 17. Goat anti-mouse IgG functionalized gold nanoparticles by direct adsorption and by 

DTSSP functionalized gold nanoparticles before the addition of antibody. Both at a pH range of 

6.0-8.5 from left to right. A) Before the addition of NaCl. B) After the addition of NaCl to a final 

concentration of 1 % (wt/v).   

 

A coagulation test was used to assess adsorption of antibody onto the AuNP to form a stable 

conjugate.24 Sodium chloride was added to the antibody-AuNP suspension and dynamic light 

scattering (DLS) was used to measure the hydrodynamic diameter (DH) of the modified AuNPs. 

A stable conjugate has a DH of ~85-90 nm, consistent with the size of an IgG adlayer, while 

unconjugated AuNP will undergo aggregation to form larger assemblies in the presence of 

electrolyte.6 Direct adsorption of antibody onto AuNP at pH 8.0 and 8.5 form conjugates with a 

DH of 86.9 nm and 89.2 nm after the addition of NaCl, respectively, and are consistent with other 
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reported data for stable AuNP-antibody conjugates (Figure 18, Table 1). Goat anti-mouse IgG 

has a pI range of  6.5-9.5;95 thus, these data are consistent with other works demonstrating that 

the pI or charge of the protein plays a direct role in the adsorption of protein onto gold 

nanoparticles. 

Figure 18. DLS of antibody functionalized gold nanoparticles after the addition of NaCl. Goat 

anti-mouse IgG immobilized using direct adsorption, DTSSP functionalized AuNPs, DTSSP 

modified antibody, or acrylic acid (NHS) modified antibody.  

 

It has long been suggested that covalent coupling of antibody to AuNP with 

heterobifunctional cross-linker such as 3,3'-dithiobis(sulfosuccinimidyl propionate) (DTSSP) 

results in a more stable and robust conjugation that prevents desorption (Figure 16B).13 This 

chemistry requires basic conditions to deprotonate lysine residues thereby enabling aminolysis. 

A recent study demonstrated that hydrolysis of DTSSP on the AuNP surface occurs faster than 

aminolysis.21 Thus, the DTSSP-modified AuNP hydrolyzes to present a terminal carboxylate on 

the surface of the AuNP, yielding a similar surface charge as the original citrate capped AuNP. If 
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this is the case, immobilization of the antibody to DTSSP-modified AuNP should be similar to 

direct adsorption to citrate-capped AuNP and show the same pH dependence. To this end, 

DTSSP was attached to AuNPs prepared in buffers ranging from pH 6.0-8.5, excess DTSSP was 

removed via centrifugation of the DTSSP-AuNP conjugates, and goat anti-mouse IgG was added 

to each solution.  At pH 6.0-7.5, the nanoparticles aggregated upon addition of the antibody 

within 5 min as indicated by a color change of the suspensions observed with the naked eye 

(Figure S4A). At pH ≥ 8.0, the AuNP remained red after the addition of antibody, and a salt-

induced coagulation test was performed to confirm immobilization of the antibody onto the 

AuNP. DLS measured a DH of 119.3 nm and 119.6 nm at pH 8.0 and 8.5, respectively, indicating 

the formation of moderately stable conjugates. Collectively, similar pH dependent trends were 

observed for the immobilization of antibody onto citrate-capped and DTSSP-modified AuNP. 

These results suggest that the DTSSP adlayer hydrolyzed and the antibody is not covalently 

attached to the AuNP through DTSSP to form a conjugate, rather the antibody attached through a 

direct adsorption mechanism similar to that of the citrate capped AuNP.  

Table 1. Stability of goat anti-mouse IgG in 1 % (wt/v) NaCl solution using the varying 

conjugation techniques over a pH range of 6-8.5. pH vs hydrodynamic diameter measured with 

DLS.  

 

 

 Hydrodynamic Diameter (nm) 

pH Direct DTSSP-Au 
0.5 mM 
DTSSP 

1 mM 
DTSSP 

5 mM 
DTSSP 

0.5 mM 
Acrylic 

acid (NHS) 

5 mM 
Acrylic 

acid (NHS) 

6 617.9 663.7 82 79.5 153.8 83.2 74.9 

6.5 722.5 385.7 82 79 190.4 79.8 75.9 

7 664.5 412.9 78.6 78.1 254.6 77.8 73.5 

7.5 261.6 139.5 76.9 78.1 226.6 79.4 69.1 

8 86.9 119.3 76.7 77.6 597.2 77.2 71.4 

8.5 89.2 119.6 76.2 78.1 681.3 76.6 71.6 
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We hypothesized that addition of free DTSSP, i.e., not assembled on AuNP, directly to 

antibody would result in chemical coupling between the DTSSP and antibody. Free DTSSP is 

not limited to the surface of the AuNP and can be prepared at a higher concentration to drive 

aminolysis rather than hydrolysis of the DTSSP. The DTSSP modified antibody can then 

chemisorb onto the AuNP in a second step via self-assembly through the disulfide moiety to 

form a robust conjugate. Moreover, the DTSSP modification would eliminate the positive charge 

of protonated lysine that that is responsible for AuNP aggregation at pH values of 6.0-7.5 as 

demonstrated above. To test this hypothesis, 0.5 mM DTSSP was incubated with goat anti-

mouse IgG, and the excess DTSSP was removed via size exclusion desalting column. (Figure 

16C) The purified DTSSP-antibody conjugate was then added to 60 nm gold nanoparticles at 

various pH values (6.0-8.5). Notably, no visual aggregation was observed upon addition to the 

AuNP at any pH; this is in contrast to the aggregation induced by the addition of unmodified 

antibody to AuNP at low pH values detailed above (Figure 19A). This observation is strong 

evidence that DTSSP reacted with the antibody to alter its interaction with AuNP. 
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Figure 19. Goat anti-mouse IgG modified with 0.5 mM DTSSP conjugated onto 60 nm gold 

nanoparticles. Conjugated at pH values 6.0-8.5 from left to right followed by direct adsorption at 

pH 8.5. A) Before the addition of NaCl. B) After the addition of NaCl to a final concentration of 

1 % (wt/v).   

 

A coagulation test was conducted to assess immobilization of the DTSSP-modified antibody 

onto the AuNP to for a stable conjugate. Upon addition of NaCl to each suspension the 

hydrodynamic diameter was measured via DLS and ranged between 76.2 nm to 82.0 nm for the 

entire pH range (Figure 18, Table 1). These data confirm that DTSSP chemically modified the 

antibody and the modified antibody is immobilized onto the AuNP, independent of pH, to form a 

stable conjugate. Furthermore, it was inferred that the adsorption process of the DTSSP modified 

protein onto gold nanoparticles was driven by the disulfide functionality imparted by the DTSSP.   
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Acrylic Acid (NHS)  

In order to confirm that the sulfur from DTSSP was in fact driving the adsorption process 

onto gold nanoparticles as hypothesized, the antibody was modified with NHS-acrylic acid rather 

than DTSSP. Similar to DTSSP, the NHS-acrylic acid couples to the antibody by means of the 

N-hydroxysuccinimidyl ester group via aminolysis with lysine; however, unlike DTSSP, the 

acrylic acid does not provide any linking chemistry such as a disulfide for chemisorption to the 

AuNP. Therefore, it was anticipated that the formation of a stable conjugate with the NHS 

acrylic modified antibody would result from direct adsorption and demonstrate a pH dependence. 

To confirm this hypothesis, 0.5 mM acrylic acid (NHS) was incubated with goat anti-mouse IgG 

and the excess NHS acrylic acid was removed via size exclusion desalting column. The purified 

acrylic acid modified antibody was then added to 60 nm gold nanoparticles at various pH values 

(6.0-8.5) (Figure 16D). The AuNP remained stable upon addition of the modified antibody at all 

pH values tested, similar to the DTSSP modified antibody (Figure 20A), confirming that the 

lysine had been neutralized by the NHS-acrylic acid.  
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Figure 20. Goat anti-mouse IgG modified with 0.5 mM acrylic (NHS) (top) and by direct 

adsorption (bottom) conjugated onto 60 nm gold nanoparticles. Conjugated at pH values 6.0-8.5 

from left to right. A) Before the addition of NaCl. B) After the addition of NaCl to a final 

concentration of 1 % (wt/v).   

 

A salt-induced coagulation test was performed to evaluate the stability of the conjugates using 

DLS to measure the DH (Figure 18, Table 1). Interestingly, the measured DH was between 76.6 

nm and 83.2 nm, indicating the formation of stable conjugates at all pH values (6.0-8.5). These 

results contradict our hypothesis that the disulfide of DTSSP was responsible for forming stable 

conjugates at 6.0 ≤ pH ≥ 7.5. The stability of these conjugates reveals that the NHS acrylic acid 

modified antibody must be adsorbing onto AuNPs via direct adsorption, e.g., hydrophilic, 

hydrophobic, electrostatic, and native thiols of the cysteine residues. Moreover, these antibody 

modifications indicate that antibodies can be immobilized onto AuNP over a wide range of pH 

values without bifunctional coupling agents provided that the basic lysine residues are converted 

to a chemical moiety such that the charge is no longer pH dependent.  



49 

To establish broad applicability of this conjugation method, AuNP conjugates were 

synthesized with mouse anti-rabbit IgG (mIgG) or rabbit anti-mouse IgG (rIgG). For each 

antibody, conjugates were prepared using unmodified, DTSSP modified, and acrylic acid 

modified antibody at pH values ranging from 6.0 to 8.5. The AuNP were stable after the addition 

of unmodified, DTSSP modified, and acrylic acid modified mouse anti-rabbit IgG at all pH 

values. Surprisingly, all the prepared mouse anti-rabbit IgG conjugates (unmodified and 

modified) were stable upon addition of NaCl at each pH, with a DH ranging from 73 – 95 nm 

(Figure 21, Table 2). The stability of the conjugates prepared with unmodified antibody over the 

pH range shows that mouse anti-rabbit IgG is less pH dependent than other proteins tested. 

Figure 21. DLS of mouse anti-rabbit IgG functionalized gold nanoparticles after the addition of 

NaCl. Mouse anti-rabbit IgG immobilized using direct adsorption, DTSSP modified antibody, 

and acrylic acid (NHS) modified antibody. 
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Table 2. Stability of mouse anti-rabbit IgG in 1 % (wt/v) NaCl solution using the varying 

conjugation techniques at a pH range of 6-8.5. pH vs hydrodynamic diameter measured with 

DLS. 

  Hydrodynamic Diameter (nm)   

pH Direct 

0.5 mM 

DTSSP 

1 mM 

DTSSP 

5 mM 

DTSSP 

0.5 mM 

Acrylic 

acid 

(NHS) 

5 mM 

Acrylic 

acid 

(NHS) 

6 95 79.3 80.3 151.9 80.3 229.9 

6.5 84.3 79.6 79 144.4 80.8 227 

7 79.1 77.6 80.2 153.3 76.9 303.8 

7.5 79.3 75.4 80.8 281.3 75.3 256 

8 77.7 73.9 113.4 436.5 75.3 223.1 

8.5 76.7 75.7 120.7 525 77.5 357.5 

 

Conversely, the unmodified rIgG immediately caused the AuNPs to aggregate at all pH 

values prior to the addition of NaCl. Addition of the DTSSP and acrylic acid modified rabbit 

anti-mouse IgG did not cause the AuNP to aggregate; however only the DTSSP modified rabbit 

anti-mouse IgG at pH 8.0 and 8.5 resulted in a stable conjugate to resist salt induced aggregation 

(Figure 22, Table 3).  

To further investigate this modification effect, rabbit anti-mouse IgG was modified with 

NHS (0.5 mM DTSSP and 0.5 mM acrylic acid (NHS)), and unmodified in the same pH range 

(6.0-8.5). Upon the addition of NaCl, DLS was measured and the hydrodynamic diameter for all 

samples was well over 100 nm showing aggregation for the modified protein-AuNP conjugates, 

and unmodified protein-AuNP conjugates. (Table 3) In an effort to stabilize rabbit anti-mouse 

IgG conjugated onto gold nanoparticle, the NHS concentration was varied: 1 mM DTSSP, and 5 

mM DTSSP were used in the modification procedure. Upon the addition of NaCl and DLS 

measurement, the 1 mM DTSSP aggregated, while 5 mM DTSSP modified rabbit anti-mouse 
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IgG was stable in the entire pH range (6.0-8.5) (Figure 22, Table 3). This led us to test the acrylic 

acid (NHS) modification at a 5 mM concentration as well (Figure 22). Table 3 shows that the 

hydrodynamic diameter for these was also over 100 nm for each sample.  

Figure 22. DLS of rabbit anti-mouse IgG functionalized gold nanoparticles after the addition of 

NaCl. Rabbit anti-mouse IgG immobilized using direct adsorption, DTSSP modified antibody, 

and acrylic acid (NHS) modified antibody. 
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Table 3. Stability of rabbit anti-mouse IgG in 1 % (wt/v) NaCl solution using the varying 

conjugation techniques at a pH range of 6-8.5. pH vs hydrodynamic diameter measured with 

DLS. 

  Hydrodynamic Diameter (nm)   

pH Direct 

0.5 mM 

DTSSP 

1 mM 

DTSSP 

5 mM 

DTSSP 

0.5 mM 

Acrylic 

acid 

(NHS) 

5 mM 

Acrylic 

acid 

(NHS) 

6 688.1 510.2 266.9 95.5 352.9 103.8 

6.5 652.8 486.8 274.1 93.4 398.1 114.4 

7 584.7 478.1 261.3 84.6 421.4 129.7 

7.5 619.3 447.1 223.7 84.8 427.6 130.1 

8 502 457 204.7 70.5 454.3 118.4 

8.5 508.1 439.8 160.8 71.2 433.2 104.1 

 

Because it is known that the pI of an antibody is where it has a net neutral charge, and 

that the pH for optimal binding via direct adsorption is slightly higher than the pI of the antibody. 

We hypothesize that this stabilization at 5 mM DTSSP but instability at 5 mM acrylic acid is due 

to the charge on the protein. While both DTSSP and acrylic acid (NHS) react with lysine groups, 

DTSSP is changing the charge on the lysine from positive to negative, while acrylic acid (NHS) 

is changing it from a positive charge to neutral. The instability at the lower concentrations of 

NHS (0.5 mM) suggest that the antibody has not been neutralized enough for optimal binding 

onto gold nanoparticles.  

This motivated us to test multiple concentrations of DTSSP, and acrylic acid (NHS) for 

each antibody used to test our hypothesis. Table 1 shows our full analysis of goat anti-mouse IgG 

with multiple concentrations of DTSSP and acrylic acid (NHS). At a concentration of 5 mM, the 

DTSSP modification aggregated (well over 100 nm) at all pH values in the 6.0-8.5 range when 

introduced to a 1% (wt/v) NaCl solution, however the 5 mM acrylic acid (NHS) was stable 
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(between 75 nm and 85 nm) at all pH values in the same environment (Table 1). Upon 

performing the same experiment with mouse anti-rabbit IgG, both 5 mM DTSSP and 5 mM 

acrylic acid (NHS) modification were aggregated (well over 100 nm) in the entire pH range (6.0-

8.5) (Table 2). With rabbit anti-mouse IgG (Table 3) stability is only fully effective at a 5 mM 

concentration of DTSSP. When using 5 mM acrylic acid (NHS), the aggregates measured with 

DLS are smaller than that obtained from direct adsorption, but are not completely stable. All 

antibodies differ in the amount of lysine groups present, therefore it would be reasonable to 

assume that each would require a unique concentration of the NHS modification. When 

modifying an antibody with acrylic acid (NHS) the lysine group changes from a positive 

terminus, to a neutral charge; however, when modifying with DTSSP, it changes from the 

positive to a negative form. Because the stability of the AuNP-antibody conjugates does not 

depend on the sulfur group from DTSSP, the stability of these conjugates must be related to the 

charge on the surface of the antibody. Since all antibodies differ in the amount of lysine, it would 

make sense that each would require a unique concentration of the NHS modification. 

Amino Acid Analysis 

To further investigate this hypothesis, amino acid analysis was performed on each of the 

antibodies used in the experiment. The lysine:IgG ratio was different for each protein studied. 

Goat anti-mouse IgG had a ratio of 4.98, while mouse anti-rabbit had a ratio of 4.23, and rabbit 

anti-mouse had a ratio of 20.10. These ratios align with the concentration of NHS modification 

needed to stabilize the proteins onto AuNPs. Goat anti-mouse IgG (Table 1) having a lysine:IgG 

ratio of 4.98, only needed 0.5 mM NHS modification to neutralize the charge. Mouse anti-rabbit 

IgG (Table 2) lysine:IgG ratio of 4.23 was stable without modification of NHS and at 0.5 mM 

NHS modification. Both the goat (Table 1) and mouse (Table 2) antibodies were not stable at a 
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higher concentration of NHS (5.0 mM), this suggest that modifying all the lysine groups has an 

adverse effect to the binding ability onto a gold nanoparticle. Rabbit anti-mouse IgG (Table 3) 

has a larger lysine:IgG ratio of 20.10 causing it only to be stable when the lysine is changed to a 

negative charge with DTSSP at a concentration of 5 mM.  

Modified Antibody Functionality  

  It is reasonable to assume that there are lysine groups on both the Fc and Fab regions of 

the IgG molecule; thus, modifying lysine on the Fab region could induce an adverse effect on 

binding to the antigen. To determine the viability of the antibody-antigen binding after NHS 

modification, we performed an aggregation based assay utilizing DLS.6 Goat anti-mouse IgG 

was modified with acrylic acid (NHS), then incubated with 60 nm AuNPs over a pH range of 

6.0-8.5. This was compared to a direct adsorption assay with goat anti-mouse IgG on 60 nm 

AuNPs at pH 8.5. A typical DLS assay is performed with direct adsorption at pH 8.5, 

consequently direct adsorption at pH 8.5 was used to compare to the acrylic acid (NHS) modified 

antibody at pH 6.0- 8.5 at a sample concentration range of 0.5 ng/mL to 5000 ng/mL. Acrylic 

acid (NHS) was used instead of DTSSP for two reasons; it is cheaper, and it should not bind to 

AuNPs when free in solution like DTSSP; it is possible that the spin column step could be 

removed making it faster and cheaper. The modification of the antibody lysine groups with NHS 

did not stop the aggregation assay from performing as expected at the entire pH range (Figure 

23, Table 2), confirming that the antibody modification does not hinder the antibody-antigen 

binding.  
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Table 4. Hydrodynamic diameter (DH) increase of the DLS assay with acrylic acid (NHS) 

modified goat anti-mouse IgG at a pH range of 6.0-8.5, and direct adsorption at pH 8.5 

 

Figure 23. Calibration curve of the DLS immunoassay with goat anti-mouse IgG showing the DH 

increase with respect to concentration of IgG. Direct adsorption at pH 8.5 and acrylic acid (NHS) 

modified at pH 6.5 and 8.5, as shown the error bars represent the standard deviation of 3 

independent assays. The dashed lines represent the limit of detection for each immobilization 

method.  

 

 

 Average Hydrodynamic Diameter Increase (nm) 

        

 Acrylic acid (NHS) Direct 

Conc 

(ng/mL) pH 6.0 

 pH 

6.5 pH 7.0 pH 7.5 pH 8.0 pH 8.5 pH 8.5 

5000 18.7 14.4 12.8 13.5 11.6 11.3 18.2 

500 44.7 44.3 47.1 37.9 46.8 38.1 80.0 

50 97.3 94.9 83.4 81.1 71.9 64.4 143.4 

5 35.9 33.4 19.7 19.2 14.9 12.5 35.7 

0.5 5.9 4.5 3.8 2.3 0.5 2.2 3.2 

PBS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
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The data in Figure 23 and Table 4 show that when the acrylic acid (NHS) assay is performed at a 

lower pH it has larger aggregation. While pH 6.0 had the largest hydrodynamic diameter 

increase, pH 6.5 was used because it is close to physiological pH in addition to having large 

aggregation. Figure 23 illustrates the hooking effect in the extended calibration curve of the 

assay, we wanted to zoom onto the linear range of the assay to compare analytical figures of 

merit of the new assay to those of direct adsorption. Figure 24A shows the assay of direct 

adsorption and acrylic acid (NHS) modified antibody from 0.1 ng/mL to 50 ng/mL. This assay 

also reached a maximum at 10 ng/mL for direct adsorption and 25 ng/mL for acrylic acid (NHS) 

modified.  
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Figure 24. Calibration curve of goat anti-mouse IgG with direct adsorption at pH 8.5 and acrylic 

acid modified at pH 6.5. A) Lower range of the calibration curve, error bars are the standard 

deviation of 3 independent assays. B) Trendline of the linear portion of the graph. 

 

The linear portions of each calibration curve were used for linear regression and 

analytical figures of merit (Figure 24B). The acrylic acid (NHS) modified antibody DLS assay at 

pH 6.5 behaved similar to the direct adsorption DLS assay. Table 5 list the analytical figures of 
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merit for each assay demonstrating that the assay is not only viable, but its performance is 

comparable to the direct adsorption assay.  

Table 5. Figures of merit for the dynamic light scattering immunoassay with goat anti-mouse 

IgG comparing direct adsorption at pH 8.5 to acrylic acid (NHS) modified antibody at pH 6.5. 

Figures of Merit for Goat Anti-Mouse IgG 

 Direct pH 8.5 Acrylic (NHS) pH 6.5 

Min. det. Signal (nm) 2.16 1.90 

LOD (ng/mL) 0.59 0.38 

 

Once the best pH was determined, we wanted to explore the above hypothesis of 

modifying antibody with acrylic acid (NHS) and not using a spin column to remove the free 

acrylic acid (NHS). To this end goat anti-mouse IgG was incubated with acrylic acid (NHS), 

then added to gold nanoparticles without using a spin column to remove the excess acrylic acid 

(NHS). Acrylic acid (NHS) modified goat anti-mouse IgG with excess NHS removed via spin 

column was performed alongside to control the experiment.  As shown in Figure 25, the spin 

column is not needed for the assay to function properly and the values are well within error even 

when compared to the data in table 4.  
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Figure 25. Calibration curve of acrylic acid (NHS) modified goat anti-mouse IgG at pH 6.5 with 

and without filtering via a spin column. 

 

Conclusions 

 We have established that the modification of antibody with bifunctional crosslinking 

molecules reduces the overall positive charge of the antibody allowing for direct adsorption onto 

gold nanoparticles and stabilization over a range of pH values. We show this method is effective 

on multiple antibodies demonstrating broad applicability, which has implications for a broad 

impact on novel immunoassay development. When compared, unmodified vs modified antibody 

with our dynamic light scattering immunoassay both detection limits were essentially identical 

~1.0 ng/mL. This concludes that modification has not affected the active site of the antibody.  
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CHAPTER IV 

CONCLUSIONS AND FUTURE DIRECTIONS  

Research Summary 

The results from this investigation lead to several new insights on protein modified gold 

nanoparticle immunoassays. The first part of the work focused on the development of a novel 

fluorescence based detection method for the direct quantification of antibody immobilized onto 

gold nanoparticles. This method focused on dissolving the gold nanoparticle using a KI/I2 

etchant solution with the proteins adsorbed onto the surface of the nanoparticle. The gold ions 

were filtered out using a size exclusion spin column to obtain the purified antibody. The isolated 

antibody was then tagged with NanoOrange a fluorescent dye that is capable of detecting low 

concentrations of protein. From this assay we determined 309 ± 93 antibodies adsorb onto a 60 

nm gold nanoparticles which is consistent with a fully adsorbed monolayer based on the footprint 

of an IgG molecule. We confirmed that multilayers do not form on the surface of a gold 

nanoparticle by measuring a hydrodynamic diameter increase from 62 nm unconjugated to 76 

nm conjugated. Finally we used a more conventional method of antibody quantification by 

supernatant analysis which overestimated the surface coverage at 660 ± 87 antibodies per 

nanoparticle demonstrating that our fluorescence based method is a more accurate substitute to 

the typical approach.  

This fluorescence assay is not only able to detect large proteins such as IgG but also 

small proteins and large peptides. Perhaps the most impact this work will have is on the 

comparison of new conjugations chemistries towards protein orientations. The performance of 

protein modified nanoparticle based sensors is dependent on the number of immobilized proteins 

and the orientation to exploit the bioactivity of the protein. Thus, quantification of immobilized 

protein is imperative to the performance of new and emerging immobilization techniques based 
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on orientation to confirm that higher performance is from orientation not an increase in protein 

on the nanoparticle surface.  

The second part of this work was to find an immobilization method for antibody onto 

gold nanoparticles that is independent of pH. Conventional methods such as direct adsorption or 

bifunctional crosslinking chemistry rely on isoelectric point of the antibody of choice. This is 

limiting when working with multiple antibodies in the same solution conditions that are needed 

for novel gold nanoparticle based immunoassays capable of multiplex detection. To achieve 

stable antibody-gold nanoparticle conjugates independent of pH we first modified the antibody 

with DTSSP or acrylic acid (NHS); these molecules are known to form an amide bond between 

the carboxyl group from the molecules and at terminal amine from lysine. We tested this method 

via a coagulation test and performed dynamic light scattering to ensure stable conjugates. We 

show broad applicability of the method by testing it with three different antibodies: goat anti-

mouse IgG, rabbit anti-mouse IgG, and mouse anti-rabbit IgG. We found that by modifying the 

antibody with DTSSP the positively charged lysine is converted to a negative charge from the 

terminal carboxyl upon hydrolysis of the DTSSP molecule after modification. Similarly, when 

using acrylic acid (NHS) the lysine transformed from positive to neutral. This has significance 

because adsorption of the antibody to gold nanoparticles is based on the isoelectric point of the 

antibody and by changing the isoelectric point we can effectively manipulate the antibody to 

stabilize under conditions it previously had not been stable.  Finally, to ensure the antibody 

modification was not hindering the active site of the antibody a dynamic light scattering 

immunoassay was performed against the conventional direct adsorption method and it was found 

that the detection limit of both assays was ~1.0 ng/mL. This work significantly enhances the 

field by providing a novel method of immobilization that is independent of pH. For the 
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achievement of multiplex detection of protein based nanosensors, these sensors must have 

protein immobilized and stable under the same solution conditions.     

Outlook and Future Directions 

 In the field of nanoscience there are many protein modified gold nanoparticle assays and 

sensors. This work provides insights on the protein-gold nanoparticle interface which could be 

utilized for many novel nanoparticle based sensors. These nanosensors are important for new 

rapid screening techniques utilizing methods such as surface enhanced Raman spectroscopy 

(SERS). SERS has low detection limits and multiplexing capabilities which is something the 

Driskell lab is working toward. This work has applications in comparing the activity of an 

antibody on a surface to the number of antibodies immobilized for determining the number of 

active antibodies immobilized on the surface vs inactive, something that should be considered 

when developing a new detection method using nanosensors. 

 Future directions of this work would be the utilization of the immobilization method in 

new gold nanoparticle based immunoassays developed in the Driskell lab. A direction the lab is 

currently focusing is the use of Fab portions of the antibody. Immobilization with the Fab 

portions could lead to a higher density of active sites on the surface of the nanoparticle thus, an 

improved assay. Previously our lab used goat anti-mouse Fab fragments and was unable to form 

stable Fab-AuNP conjugates. While a 60 nm gold nanoparticle with Fab conjugated onto it 

should have a hydrodynamic diameter (DH) around 65-75 nm in a 1 % (wt/v) NaCl solution, 

previous efforts using direct adsorption were only able to obtain 147.9 nm DH indicating 

aggregation of the Fab-nanoparticle conjugates. Using acrylic acid (NHS) we were able to obtain 

stable conjugates with DH from 66.2 nm to 73.2 nm. We performed an assay with the acrylic Fab 
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and compared it with our whole acrylic acid (NHS) modified goat anti-mouse IgG assay as 

shown in Figure 26.  

 

Figure 26. DLS with mean DH increase vs IgG concentration comparing whole antibody vs Fab 

fragment.  

 

The Fab assay proved to have a much greater sensitivity that the whole antibody. This is 

promising evidence that this assay could lead to lower limits of detection and perform faster than 

previous assays we have developed. We could also co-functionalize the acrylic-Fab antibody 

onto AuNPs and possibly perform a solution SERS assay, something that has been a goal of the 

Driskell lab group.  
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