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EVALUATING LITHOLOGY AS AN EROSIONAL CONTROL ON A                  

FLUVIOKARST SYSTEM IN NORTHEASTERN KENTUCKY 

 

Andrew K. Francis 

43 Pages   

 Longitudinal stream profiles can be used to evaluate landscape evolution. Lithology as a 

control on a stream profile is especially of interests because fluviokarst systems are characterized 

by the contact of carbonate and non-carbonate rocks at the surface. Due to the difference in 

weathering processes between carbonates and non-carbonate rocks, it is likely that there is a 

difference in their rates of erosion. Cave Branch and its tributary Horn Hollow, are fluviokarst 

systems located in northeastern Kentucky. This area is primarily comprised of sandstone and 

limestone. The objectives of this study were to determine if variation in lithology was creating a 

state of disequilibrium in the Cave Branch and Horn Hollow watersheds, determine whether 

sandstone or limestone erode at a faster rate in this system, and to assess how erosional 

resistance is related to the overall development of the system. Stream profiles were compared by 

calculating stream power values using an integral approach in which chi plots were created. This 

method allows for the comparison of streams of different drainage areas because erosion is 

scaled with drainage area. It was determined that sandstone watersheds were generally in a 

greater degree of equilibrium than the limestone watersheds, but whether variation in lithology 

was creating a state of disequilibrium in the whole watersheds was inconclusive. Limestone 



streams were determined to have a greater steepness index, greater resistance, than sandstone 

streams. The greater degree of disequilibrium and observed greater resistance of the limestone is 

related to the soluble nature of limestone, and the glacial-fluvial development of this area.  

 

KEYWORDS: Karst, Fluviokarst, Geomorphology, Stream Profiles, Erosional Resistance, 

Stream Power 
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CHAPTER I 

INTRODUCTION AND BACKGROUND 

Stream Profiles 

 Many factors play a role in the development of a landscape. Overtime, the weathering 

and erosion of landscape will leave a record of environmental condition. One way to interpret 

past environmental conditions and to understand landscape evolution is to examine longitudinal 

stream profiles. A longitudinal stream profile plots the bed elevation against the length of the 

stream. The reason stream profiles are useful in the evaluation of a landscape is because they set 

the boundary for hillslope processes, which is responsible for the denudation of a landscape 

(Whipple and Tucker, 1999). As landscape denudation occurs, streams work to reach equilibrium 

conditions, where there is an equal amount of erosion and deposition. Equilibrium conditions 

result in a smooth concave-up profile (Mackin, 1948, Hack 1957, Goldrick and Bishop, 2007, 

Phillips and Lutz, 2008) (Figure 1). Additional factors can alter the rates of erosion and 

deposition causing a stream to deviate from equilibrium and lose its equilibrium profile. These 

factors include tectonics, climate, change in base level, and variation in erodibility and lithology 

(Phillips and Lutz, 2008). In bedrock streams, dominate erosional forces are closely related to 

lithology and structure of the underlying bedrock (Miller 1991, Wohl 1998, Wohl and Ikeda 

1998).  

 Stream power is a measure of the sediment-transport capacity for a stream as it is related 

to discharge and slope (Hack, 1973, Knighton, 1998, Anthony and Granger, 2007, Phillips and 
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Lutz, 2008). A stream's sediment-transport capacity is directly related to the shear stress. As 

shear stress increases, more erosion occurs, which effects the shape of a streams profile. Stream 

profiles can thus be quantified with the stream power equations. Stream power laws can predict 

the amount of erosion occurring along a stream’s profile; any significant deviation from this 

prediction represents a state of disequilibrium (Phillips and Lutz, 2008). A common stream 

power equation used to evaluate a stream profile is expressed in terms of drainage area and 

slope. Drainage area serves as a proxy for discharge. A common approach to modeling the 

evolution of a stream profile is to assume topographic steady-state (Perron and Royden, 2013). A 

stream power equation assuming topographic steady-state takes the following form.  

 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=  𝑈𝑈
𝐾𝐾

1/𝑛𝑛
× 𝐴𝐴(𝑥𝑥)𝑚𝑚/𝑛𝑛 

Equation 1. Stream power equation. 

 

Where z is elevation, x is horizontal distance, U is uplift, K is erodibility, A is drainage area, and 

m and n are exponents related to hydrologic conditions. Exponent’s m and n are a function of 

standard flow resistance and stream power relations (Sklar and Diertrich, 1998, Phillips and 

Lutz, 2008). The ratio of m/n represents the concavity index of a stream profile (Whipple and 

Tucker, 1999, Phillip and Lutz, 2008). This stream power model assumes a power-law 

relationship between drainage area and slope. 

(1) 
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Figure 1. Example stream profile in a state of equilibrium.  

 

Integral Method 

 Perron and Royden (2013) introduced a method of bedrock river profile analysis, derived 

from Equation (1), that calculates stream power by using elevation instead of slope as the 

dependent variable and the spatial integral of drainage area as the independent variable. The 

slope of the transformed profile, or chi plot, represents the steepness index (SI), which is equal to 

uplift over erodibility. The transformation of a stream profile is calculated from:  
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𝑧𝑧(𝑥𝑥) = 𝑧𝑧(𝑥𝑥𝑏𝑏) +  �
𝑈𝑈

𝐾𝐾𝐴𝐴0𝑚𝑚
�
1/𝑛𝑛

𝛸𝛸 

Equation 2. Stream power equation using the integral approach. 

Where 

 

𝛸𝛸 = ��
𝐴𝐴0
𝐴𝐴(𝑥𝑥)

 �
𝑑𝑑

𝑑𝑑𝑏𝑏

𝑚𝑚/𝑛𝑛

𝑑𝑑𝑥𝑥 

Equation 3. Chi, integral of drainage area. 

 

The variables in Equations 2 and 3 have been defined in Equations (1), with the addition of A0, 

which serves as a reference drainage area, and Χ or chi, which is the integral of drainage area. A 

plot of elevation against Χ is called a chi plot, and the slope of this plot represents the SI. The 

benefit to calculating stream power with this method is that erosion is scaled with drainage area, 

allowing for the comparison of main stems to tributaries. The integral method also removes noise 

that is a side effect of calculating slope from uncertain topographic data. 

 The integral method of stream power can indicate disequilibrium within a single stream 

or for an entire watershed. For a single stream, the chi plot should be linear, and any deviation 

from that suggests a state of disequilibrium. Because erosion is scaled with drainage area, the chi 

plot for an entire stream network should exhibit streams with similar slope, or SI. As previously 

discussed, disequilibrium in streams can be attributed to variations in erodibility. Understanding 

variations in erosion is especially of interest in a system that experiences different types of 

weathering. An example of this would be streams in a karst system. Karst, which is dominated 

by carbonate bedrock, is unique because it is subject to physical and chemical weathering. There 

(2) 

(3) 
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has not been much work on karst systems from the perspective of stream profile analysis (White 

and White, 1983).  

Karst 

 Karst describes a landscape that has distinct landforms and drainage that formed in rocks 

with greater than average solubility (Jennings, 1985). Karst forms in carbonate and evaporite 

rocks, but is most associated with limestone (Jakucs, 1977). Although an estimated 12.5% of 

Earth's surface is classified as karst, there is not a complete understanding how these systems 

evolve (Martin and White, 2008). The state of Kentucky is an example of an area that is 

predominantly underlain by karst limestone (Anthony and Granger, 2004). In a "traditional" karst 

system, limestone dissolution forms caves and conduits, creating a subsurface drainage system 

with a large variation of porosity and permeability. These variations and heterogeneity create a 

system that differs from a typical Darcian groundwater system (Ritter et al., 2011). An aspect of 

karst evolution is that much of the geomorphic alteration occurs underground and is not easily 

observed from the subsurface (Ritter et al., 2011).    

 Fluviokarst is a system with surface and subsurface drainage, consisting of fluvial and 

karst features. These systems typically occur at the contact of carbonate and non-carbonate rocks 

(Jakucs, 1977, Bocic, 2003). Lithology is a key component in the development of fluviokarst, 

and the difference in erosional resistance between lithologies will influence the landscape as a 

whole. Limestone is susceptible to both physical and chemical weathering. Dogwiler and Wicks 

(2004) found that physical weathering is more common in karst streams than had been 

previously reported. With respect to chemical weathering of limestone, streams in limestone 

bedrock can have unique features due to the flow being diverted into the subsurface and 

reemerging downstream due to dissolution. Anomalous bumps can develop in the profile of a 
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limestone bedrock stream due to erosional process continuing downstream where water 

reemerges to the surface after being pirated upstream. Woodside et al. (2015) identified these 

anomalous features in a limestone bedrock stream as being a function of karst processes in a 

fluviokarst system in northeastern Kentucky. At the same time, Schroeder (2014) found that 

these anomalous features were not present in a fluviokarst system located in southeastern 

Minnesota. As previously mentioned, fluviokarst forms at the contact of carbonate and non-

carbonate rocks. Non-carbonate rocks, specifically siliciclastic rocks, weather primarily by 

physical processes due to their low solubility. The solubility of quartz and other silicate minerals 

are relatively insoluble when compared to limestone (Nesbitt et al. 1997). Physical and chemical 

weathering of limestones as opposed to just physical weathering of siliciclastic rocks result in a 

result in erosional resistance.  

 One way to evaluate the potential  difference in erosional resistance, is to analyze 

longitudinal stream profiles. Typically, karst systems are subterranean limiting the application of 

longitudinal stream profile analysis in karst settings.  However, fluviokarst systems consist of at 

least some surface streams allowing for analysis of stream profiles.  White and White (1983) 

conducted a study on stream profiles in a karst system and found that streams in the subsurface 

maintain a profile similar to that of a surface stream. They describe fluviokarst as streams that 

sink at the contact of limestone, and re-emerge from springs at base level, or at the contact of 

non-carbonate rocks, while maintaining an equilibrium profile. Similarly, Woodside et al. (2015) 

found streams diverted to the subsurface maintain an equilibrium profile. Subsurface streams can 

be exposed in karst windows, openings between caves that form due to collapse and expose what 

was once a subterranean river (Ritter et al. 2011). The anomalous bumps in limestone bedrock 
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longitudinal stream profiles discussed by Woodside et al. (2015) are representative of caves, and 

the openings between the caves are thought to be the result of cave collapse (Figure 2).  

 

   

Figure 2. Example longitudinal stream profile showing karst features formed by subsurface 
piracy.  
 

Study Area 

Carter Caves State Resort Park (CCSRP), is located in northeastern Kentucky and has 

been extensively studied for its development as a fluviokarst system (Dogwiler and Wicks, 2004, 

Engel and Engel, 2009, Peterson et al., 2011, Jacoby et al., 2013, and Woodside et al., 2015). 

This study will focus on the Cave Branch and Horn Hollow Basins, each with sections inside and 

beyond the boundaries of CCSPR (Figure 3). Engel and Engel (2009) provide a detailed 
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description of the regional stratigraphy and salient descriptions of bedrock within the integral 

units. CCSRP consists of Mississippian and Pennsylvanian age, with approximately 25 meters of 

carbonate bedrock bounded by siliciclastic units (Figure 4). The area is comprised of three 

formations: the Borden Formation, the Slade Formation, and the Paragon Formation. Borden 

Formation, the lower most Mississippian unit, consists of the Cowbell and Nada Members. The 

Cowbell Member is a 90-meter-thick sandstone with interbedded siltstones and shales. The Nada 

Member consists of interbedded shales. The Slade Formation, the next Mississippian, consists of 

the St. Louis, Ste. Genevieve, and upper-member Newman. The St. Louis Limestone is a very-

fine to medium grain gray to yellow and tan limestone. The Ste. Genevieve Limestone is a white 

to light-gray limestone, formed in a shallow, subtidal environment. The Upper Newman consists 

of limestones, interbedded with red and gray chert silt and sand. The Paragon Formation, the 

upper unit, consists of the Carter Caves Sandstone, Lee, and Breathitt formations. The Carter 

Cave Sandstone is a fine to medium-grained, well-sorted quartz sandstone.  Contact between the 

Carter Cave Sandstone and the underlying Newman Limestone occurs at 274 meters above sea 

level (MASL) (Jacoby et al., 2013). The Breathitt and Lee Formations consists of interbedded 

sandstones, siltstones, and coal beds. All formations have surface exposure; therefore, streams 

transition from clastic to carbonate to clastic moving towards the regional base level defined by 

Tygrat’s Creek, which flows along the Borden formation and below all karst development. The 

area that will be evaluated in this study is within the Cave Branch and Horn Hollow Basin. The 

headwaters of the basins originate in the Carter Caves Sandstone.  The units that underlie these 

watersheds are the Carter Cave Sandstone and the Upper Member Newman Limestone 
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Figure 3. Cave Branch Basin, including its tributary Horn Hollow. Horn Hollow 
constitutes the northeastern part of the watershed.  
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Figure 4. Stratigraphic column of northeastern Kentucky. Red arrow represents 274 
MASL.  
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Previous Work in This Region 

 Woodside et al. (2015) looked at the presence of anomalous bumps in the profiles of, 

Horn Hollow Creek, a limestone bedrock stream in CCSRP. These bumps in the profile are 

associated with subsurface stream piracy, where the piracy results in a decrease in erosion at the 

surface downstream. Even with the presence of anomalies, and most of the water being diverted 

into the subsurface, the profile of the stream represents near equilibrium conditions.  The study 

looked at whether sediment mobility could serve as a proxy for anomalous areas, and if cross-

sectional profiles could reveal areas of cave collapse and natural downcutting.  They found that 

sediment distribution does not follow the progression of typical fining-out pattern which is 

directly related to the anomalous sections affecting the hydraulics of the stream.  The cross-

sectional areas also were possible indicators of downcutting and cave collapse. Sections of the 

streams bounded near vertical walls likely formed due to cave collapse, and areas of stream with 

a v-shaped channel are likely a function of natural downcutting. The final conclusion of the study 

was that the longitudinal profile of the limestone stream is strongly influenced by karst 

processes.  

 Schroeder (2014) looked to identify the same anomalous features in separate fluviokarst 

system located in southeastern Minnesota. The area is a more mature fluviokarst system that had 

started to develop prior to the last glacial episode. No anomalous segments were observed in 

streams due to subsurface piracy. Any bumps observed in the profile of streams were due to 

pool-riffle sequences.  

 Peterson et al. (2011) determined there were four cave levels within the CCSRP with the 

use of a 30-meter DEM (digital elevation model). And, Jacoby et al. (2013) looked to more 

accurately measure the elevation of the cave levels with a 10-meter DEM. Multiple cave levels 
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have developed due to changes in base level associated with glacio-eustatic processes, which led 

to the formation of the Ohio River and the abandonment of the Teays River Valley (Tierney, 

1985).  Being able to accurately determine the elevation of cave levels is useful for the 

interpretation of landscape history. These four distinct cave levels observed in this work were the 

result of static base levels, and show how the system responded to subsurface drainage helping to 

explain the development of what was observed in Woodside et al (2015). Jacoby et al. (2011) 

found that there was no correlation between areas of higher sensitivity to erosion and areas of 

higher cave density.  

Objective 

 The presence of anomalous segments in fluviokarst streams were observed in 

northeastern Kentucky, but not in southeastern Minnesota. To further understand this dichotomy, 

evaluating difference in erodibility based on lithology would be useful. The purpose of this study 

is to determine if lithology is a controlling factor in the development of the fluviokarst system 

located in CCSRP in northeastern Kentucky. The objectives of this study are to (1) determine if a 

state of disequilibrium exists because of a variation in lithology; (2) determine whether the 

limestone or sandstone is more resistant to erosion based on stream power; and (3) assess how 

erosional resistance is related to the overall development of the system.  
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CHAPTER II 

METHODS 

 To further understand the development of fluviokarst systems, streams were evaluated 

using a stream power model. The stream power model served to answer the three objectives in 

this study. The integral method introduced by Perron and Royden (2013) and presented above, 

was used to conduct the profile analyses. The benefit of this method is that it scales erosion with 

drainage area. This aspect of erosion being scaled with drainage area is crucial to this study 

because it allows to determine whether or not an entire watershed is in a state of equilibrium 

because of varying lithology. Tributaries and the main stem in a watershed should erode at 

relatively the same rate.  We can also use this method to compare the upstream and downstream 

segments allowing a comparison of the erodibility of the Carter Cave Sandstone and the Upper 

Member Newman Limestone. Once we determine whether or not the watershed is in 

disequilibrium based on lithology and whether limestone or sandstone is eroding at a faster rate, 

the third objective of this work can be addressed which is to understand how variation in 

lithology may influences the overall development of a fluviokarst system.  

Geographic Information System (GIS) 

 To that end, the first step was to create individual watersheds, which were generated in 

ArcGIS 10.3.1. 10-meter DEMs were downloaded from the USGS 3D Elevation Program. The 

Cave Branch watershed and sub-watersheds were delineated by placing a pour point on a DEM 

aided by the creation of a stream network.  After the DEM of the CCSRP area was downloaded, 
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the following process was taken to create a stream network that allowed for the creation of 

individual watersheds (Figure 5).  

 

 

 
 

Figure 5. Flow chart for creating watersheds in GIS, which consists of two processes. 

 

The first process consists of five steps. First, we filled sinks in the DEM, those areas that 

are irregularly low (or high) relative to neighboring pixels.   Next, we use the filled DEM to 

identify the flow direction for each cell.  Using a flow accumulation process then determines the 

total number of cells draining to each cell. Finally, we used Raster Calculator to select all cells 

where more than a 1000 cells are draining to it (e.g., the collection points for a significant 

amount of surface flow). A sequence of cells with a 1000 or more cells draining to it represents a 

stream. With a 10-meter DEM, 1000 cell drainage area represents 100,000 m2. Thus, the 

threshold of 1000 cells represent the transition from colluvial to fluvial, which occurs when the 

drainage area of a watershed ranges from 105 to 106 m2 (Whipple and Tucker, 1999).  

The second process consists of four steps. First we identified a pour point that is used to 

create the individual watersheds. Pour points were placed at the confluence of Cave Branch and 

Horn Hollow, and five locations up stream at 274 MASL, the contact between the upstream 
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(c) Flow 
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sandstone and the downstream limestone. The stream network created in the first process was 

used to assistant in the placement of the pour points. Next, we computed the watershed 

boundaries, which involves computing all of the cells with directional flow (from the flow 

direction layer generated in the first process, the output from step b) leading to that pour point. 

Watersheds were created for both Cave Branch, upstream from the confluence with Horn 

Hollow, and Horn Hollow (Figure 6). Within the Cave Branch watershed, the use of a pour point 

at 274 MASL generates three upstream sub-watersheds, which are named CB274 north, mid, and 

south. Within the Horn Hollow watershed, two upstream sub-watersheds were created, HH274 

west and east (Figure 7). The individual watersheds were then manipulated by converting the 

pixel values to 1, then multiplied by the values of the DEM. Thus, creating a watershed that was 

“clipped” from the DEM. Last, the DEM watersheds were and exported to MATLAB to conduct 

stream power calculations.   
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Figure 6. Cave Branch and Horn Hollow watershed 
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Figure 7. Sub-watersheds for Cave Branch and Horn Hollow above 274 MASL.  

 

MATLAB 

 The individual watersheds were exported to and analyzed in MATLAB using the 

Topotoolbox (Schwanghart and Scherler 2014) and Image Processing Toolbox (MATLAB). The 

entire process is represented in the flow chart (Figure 8).   
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Figure 8. Outline for chi plot analysis in MATLAB.  

 

 The first step occurs before the watershed DEM is imported into MATLAB. The DEM 

must be converted into a TIF in GIS. To analyze the watershed in MATLAB, a stream network 

must be recreated using a process called object oriented programming (OOP). The stream 

network must be recreated because it is not carried over from GIS. Using OOP, three classes of 

information are created based on the DEM. The three classes of information create a stream 

Evlaute chi plots

Compare R2 values (objective 1) Compare steepness index  of limestone v. sandstone (objective 2)

Run chi plot function
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(S,'downstreamto',DEM<=Elevation)

FLOWobj

FD = FLOWobj(DEM,'preprocess','fill') A = flowacc(FD)

GRIDobj

DEM = GRIDobj('filename')

Set path to DEM and Topotoolbox

Convert DEM to TIF
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network similar to the process used in GIS and are applied in the following order: GRIDobj, 

FLOWobj, and STREAMobj.  The last class of information, STREAMobj, creates the stream 

network. Using this step, the flow accumulation size that determines what qualifies as a stream is 

established, and it allows for the stream network to be modified.  

 An important aspect of the flow accumulation size is to determine where the transition 

from colluvial to fluvial occurs. While the transition typically occurs between 105 and 106 m2, 

the transition for a given watershed can be determined by plotting drainage area against slope. 

The inflection in this graph represents where the transition from colluvial to fluvial occurs 

(Montgomery and Bluffington, 1997). For the entire Cave Branch watershed, including Horn 

Hollow, the log of drainage area and the of log slope were plotted against each other. The point 

along the x-axis (drainage area) where the inflection occurs represents the drainage area that was 

used for the stream networks to be analyzed by the integral method via chi plots. We then 

modified the stream network to include areas above and below a certain elevation, and determine 

how the m/n is selected.  

  To determine if variation in lithology was creating a state of disequilibrium within the 

fluviokarst system, we compared the profiles of the sandstone segments above 274 MASL and 

the limestone segments below 274 MASL to the individual Cave Branch and Horn Hollow 

watersheds.   To create the chi plots for all of Cave Branch and Horn Hollow, the chi plot 

function in the Topotoolbox was run to include all streams above the confluence of the two 

streams. To create the chi plots for limestone segments, we ran the chi plot function to only 

include streams below 274 MASL. To create the chi plots for the sandstone streams, the 

upstream watersheds had to be created because an individual chi plot requires that streams drain 
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to one point. The five upstream watersheds (Figure 6) were analyzed using the chi plot function 

including all streams above their pour point.  

 Before calculating the degree of equilibrium of watersheds or steepness index of streams, 

the m/n ratio must be determined. To reiterate, the m/n ratio represents the concavity of a stream. 

The m/n ratio used for a given chi plot can established in one of two ways. The first way is to 

exclude the input value when running the chi plot, which is what is used to determine if variation 

in lithology was creating a state of disequilibrium. When this course of action is taken, the m/n 

ratio will automatically be determined by the Topotoolbox by running a linear least-squares 

regression. The m/n ratio that gives the greatest R2 value will then be used. The R2 value 

represents the degree of equilibrium for a watershed. As previous discussed, the chi plot method 

scales erosion with drainage area. Therefore, the main stem and tributaries should have almost 

the same slope in a chi plot. The higher the R2 value, measured on a scale from 0 to 1, the more 

streams that conform the same slope. A system completely in equilibrium will have a R2 of 1.  

We then compared the limestone streams and the sandstone streams to entire watersheds to see if 

there was a difference in the degree of equilibrium as a result of varying lithology.  

 To determine whether either the limestone or sandstone is more resistant to erosion (thus, 

having a greater SI) chi plots were analyzed in a different manner. First, subwatersheds were 

generated based solely on the lithology. The four watersheds with sandstone stream segments 

were compared to the two with limestone stream segments (Figure 9).  Upstream sandstone 

watersheds were determined by placing pour points above 274 MASL. The downstream 

limestone watersheds were created from the Cave Branch and Horn Hollow watersheds, only 

including streams below 274 MASL.  Second, the m/n ratio was entered manually when running 
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the chi plots. Finally, instead the of comparing the chi plots of watersheds in terms of R2, the chi 

plots of individual limestone and sandstone streams were compared in terms of their SI.  

 

 

Figure 9. Individual watersheds with corresponding lithology. Limestone below 274 MASL, 
sandstone above 274 MASL. 
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  To compare the SI of different streams, limestone against sandstone, the same m/n ratio 

must be used. The m/n ratio to be used was determined with a sensitivity analysis. A sensitivity 

analysis was run for each watershed to determine the m/n ratio that yielded the lowest R2 value. 

A range of 0.1-0.9 was used to in the sensitivity analysis, which was used because bedrock 

streams typically have an m/n ratio of 0.2 to 0.6 (Whipple and Tucker 1999). Using the same 

m/n, chi plots were generated for each of the watersheds. Data for individual streams were taken 

from MATLAB and plotted in Excel.  Once the SI of each individual limestone and sandstone 

streams were established, the values were evaluated with at t-test to determine if there was a 

statistical difference between the limestone and sandstone streams.  
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CHAPTER III 

RESULTS 

 Before creating chi plots, the proper flow accumulation size needed to be determined. 

This was accomplished by creating a log-log plot of drainage area against slope for streams 

within the watersheds (Figure 10). The infection of the drainage area-slope graph, which 

signifies the transition from colluvial to fluvial occurs around 105.98m2. Only streams with a 

drainage area greater than this value were used in the chi plot calculations.  
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Figure 10. Log-log drainage area-slope plot used to determine the flow accumulation that 
constituted a stream in the Cave Branch Basin. The inflection occurs at 105.98 m2  
 

 

Equilibrium Analysis 

 The analyses provided chi plot results for the Cave Branch and Horn Hollow watersheds 

along with the sub watersheds in each Table (1).   
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Table 1. Results from equilibrium analysis. SS represents sandstone and LS represents 
limestone. 

Watershed m/n R2 
Cave Branch (SS&LS) 0.276 0.8008 
CBless274 (LS) 0.502 0.859 
CB274south (SS) 0.5536 0.977 
CB274north (SS) -0.599 0.79 
CB274mid (SS) 0.6461 0.9381 
Horn Hollow (SS&LS) 0.05 0.923 
HHless274 (LS) 0.543 0.7978 
HH274east (SS) -1.724 0.8557 
HH274west (SS) -0.093 0.8595 

 

The results of the equilibrium analysis revealed that the entire Horn Hollow watershed had a 

greater R2 than its subwatersheds, and the entire Cave Branch had a lower R2 than its 

subwatersheds. For both Cave Branch and Horn Hollow, the sandstone segments exhibit a 

greater R2 than the limestone segments. The m/n values for Horn Hollow and its subwatersheds 

ranged from -0.59 to 0.64. The m/n values for Cave Branch and its subwatersheds ranged from   

-1.724 to 0.543. A positive m/n represents a stream with a concave-up, while a negative m/n 

represents a concave-down stream profile.  Both watersheds exhibited a range of m/n ratios, but 

the m/n ratio of the entire Horn Hollow and Cave Branch watersheds differed by an order of 

magnitude. The chi plots of the individual watersheds can be seen in Figures 11-19.   The more 

collinear the chi plot, the higher the R2. Slope of chi plot represent the SI. 
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Figure 11. Cave Branch chi plot, including sandstone and limestone segments. Gray lines 
represent chi plot individual streams and the blue line represents best fit for the watershed. 
 
 

 

Figure 12. CB<274, Cave Branch streams below 274 MASL, limestone streams.  
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Figure 13. CB274North, Cave Branch chi plot above 274 MASL, sandstone streams. 

 

 

Figure 14. CBMid274, Cave Branch chi plot above 274 MASL, sandstone streams. 
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Figure 15. CBSouth274, Cave Branch chi plot above 274 MASL, sandstone streams. 

 

 

Figure 16. Horn Hollow chi plot including sandstone and limestone streams. 
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Figure 17. HH<274, Horn Hollow chi plot below 274 MASL, limestone streams. 

 

 

Figure 18. HH274East, Horn Hollow chi plot above 274 MASL, sandstone streams.  
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Figure 19. HH274West, Horn Hollow chi plot above 274 MASL, sandstone streams. 

 

Sensitivity Analysis 

The sensitivity analysis was conducted by running a chi plot for the entire Cave Branch 

watershed, including Horn Hollow which used manually entered m/n ratios by the user.  Values 

from 0.1 to 0.9 were used to determine which yielded the highest R2 value (Table 2).  The m/n 

value of 0.4 generated the highest R2 value, making it the most representative of the entire 

watershed. This value of 0.4 was used when chi plots were created to compare the SI of 

sandstone and limestone streams, falling within the range of values produced from the 

equilibrium analysis using a least square regression. There were a range of m/n ratio generated 

from the equilibrium, including both positive and negative values suggesting concave-up and 

concave-down stream profiles respectively. The positive value for the entire Cave Branch 

watershed, including Horn Hollow, suggest overall the system consists of concave-up stream 

profiles. 
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Table 2. Sensitivity analysis of m/n ratio for the Cave Branch Basin. 

m/n R2 
 
 

Steepness 
index 

0.1 0.7643  0.0076 
0.2 0.7993  0.0107 
0.3 0.8224  0.015 
0.4 0.8262  0.0207 
0.5 0.8015  0.0279 
0.6 0.7385  0.0369 
0.7 0.6286  0.0475 
0.8 0.4667  0.595 
0.9 0.253  0.0726 

   

 

Steepness Index (SI) Analysis 

Upon identifying a m/n ratio of 0.4, individual chi plots for the limestone and sandstone 

watersheds were generated chi plots for 17 limestone streams and 16 sandstone streams provided 

SI values for comparison. The mean SI for the streams with limestone bedrock was 0.026 with a 

variance of 2.0 × 10-4; for the sandstone hosted streams, the mean SI was 0.013 with a variance 

of 2.2 × 10-5.  This suggests that the limestone streams are more resistant, and there less 

consistency in the resistance of limestone streams. A t-test was performed, using an alpha value 

of 0.05, to see if there was a statistical difference between the two lithologies and p-value of 

0.0007 suggests that there is a statistical difference between the limestone and sandstone streams. 

The box plot of the SI values for sandstone and limestone streams can be seen in Figure 20.   
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Figure 20. Box plot of SI values of sandstone and limestone streams.  
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CHAPTER IV 

DISCUSSION 

 The first objective of this study was to determine whether lithology was responsible for a 

state of disequilibrium. The results of the equilibrium analysis revealed that the degree of 

equilibrium varied from the sandstone to the limestone sections of Cave Branch and Horn 

Hollow.  All the factors that can affect the shape of a profile, which include climate, tectonics, 

changes in base level, are held constant except for variation in lithology.  The results of the 

equilibrium analysis revealed that the sandstone watersheds were generally in a greater degree of 

equilibrium than the limestone. The variation in m/n suggest that the system as a whole is in a 

state of disequilibrium. This assessment is illustrated in the chi plot of the entire Horn Hollow 

watershed (Figure 21). At the contact of sandstone and limestone (red line on the diagram), the 

Horn Hollow chi plot displays a drastic change in slope, or SI. The second objective was to 

determine whether the sandstone or limestone streams was more resistant based on SI. 

Performing chi plots on individual sandstone and limestone streams, and evaluating those results 

with a t-test, revealed that there is a statistical difference between sandstone and limestone, and 

that limestone streams have a greater SI. The third objective was to determine how variation in 

lithology was effecting the development of this fluviokarst system. The conclusion of the third 

objective is the interpretation of the chi plot data in conjunction with findings from previous 

investigations.  
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The results of the equilibrium analysis show that the sandstone watersheds generally have 

a greater R2 value than the limestone watersheds. The first objective was to determine whether 

variation in lithology was creating a state of disequilibrium within the entire Cave Branch and 

Horn Hollow watershed. Based on the R2 values alone, the results are inconclusive. While the 

individual sandstone and limestone streams were different in the degree of equilibrium, the Horn 

Hollow watershed as a whole was in a greater state of equilibrium than the individual sub-

watersheds.  The entire Cave Branch watershed had a lower degree of equilibrium than 3 of its 4 

sub-watersheds. The extract reason for this difference is unknown and will require further 

investigation. One chi plot did represent a drastic change from sandstone to limestone.  

Qualitatively, there is an abrupt change in the chi plot Horn Hollow (Figure 21).  In the chi plot 

of the entire Horn Hollow watershed, there is a drastic change in the slope of transformed stream 

profile. It appears that the upstream sandstone segment is equilibrium, while the downstream 

segments appear to be in a state of disequilibrium, with a greater SI.   
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Figure 21. Chi plot of Horn Hollow. Red Line represents 274 meters above sea level, where 
a change in the slope, SI, occurs.  
 
 
 
 One aspect that did support the lithology creating a state of disequilibrium was the 

difference in m/n values between the sandstone watersheds. In Horn Hollow, both of the 

sandstone watersheds had a negative m/n, and one of three Cave Branch sandstone watersheds 

had a negative m/n. Typically, bedrock streams have a m/n value between 0.2 to 0.6 giving a 

concave-up profile. A negative m/n suggests a concave-down stream profile. The transition from 

concave down profiles to concave-up profiles suggest a state of disequilibrium. It should be 

noted that equilibrium streams typically have a concave-up profile. To better understand the 

relationship between m/n and R2, further investigation will be necessary. 

 The second objective was to determine whether the limestone or sandstone was more 

resistance to erosion based on SI, for which there was a conclusive answer.  Based on the results 

of a t-test which compared the SI of sandstone and limestone streams, limestone streams have a 

greater SI, and the difference in statistically significant. On the surface, the greater SI of 
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limestone streams would suggest that limestone in the Carter Caves area is more resistant than 

the sandstone. This is a possible explanation, but not necessarily the case when all variables are 

considered.  

 One explanation for the different observed SI in the sandstones and limestone is the 

difference in weathering processes. As previously stated, sandstones are subjected to physical 

weathering, and limestone can be weathered by physical and chemical processes. In the 

limestone segments, streams can be diverted to the subsurface. The reason streams are diverted 

into the subsurface in a specific location is that water moving from a sandstone to a limestone is 

going to be more aggressive, having yet to be neutralized (Bogli, 1964). The more aggressive 

water is likely to encourage dissolution and subsurface piracy, once in contact with soluble 

limestone. Once in the subsurface, the stream maintains an equilibrium profile, leaving a ‘bump’ 

in the profile where erosion is not occurring (White and White, 1983, Woodside et al., 2015).  

Furthermore, the difference in SI between limestone and sandstone streams could be due 

to the continued denudation in the limestone areas of Cave Branch and Horn Hollow. As streams 

in the limestone sections are diverted into the subsurface, the continued denudation in the 

subsurface increased the gradient between tributary and main stem. Woodside et al. (2015) 

observed evidence of cave collapse in Horn Hollow. Instead of the typical v-shaped valley that 

develop in bedrock streams, Horn Hollow displayed vertical valley walls in areas. In areas where 

cave collapse has occurred, the steeper gradient is exposed to the surface. The existence of cave 

collapse would also explain the greater degree of equilibrium observed in the sandstone 

watersheds. 

 The third objective was to determine how erosional differences in the limestone and 

sandstone are related to the overall development. To answer this question, the assessments made 
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from the first and second objectives must be considered concurrently. The greater degree of 

equilibrium in the sandstone watersheds and the greater steepness in the limestone streams is a 

function of both the soluble nature of limestone and the glacial-fluvial development of 

northeastern Kentucky. The rapid development of the fluviokarst system in northeastern 

Kentucky lead to the development of 4 distinct cave level (Jacoby et al. 2013). The caves in the 

Horn Hollow and Cave Branch represent the levels of cave development linked to a common 

static base level. During these periods of stable base level, streams in the limestone segments 

were diverted to the subsurface. While in the subsurface, these limestone streams maintain their 

equilibrium profile (White and White, 1983, Woodside et al., 2015). Overtime, a subterranean 

stream can be exposed to the surface because of cave collapse. Woodside et al. (2015) saw 

evidence of Cave Collapse in Horn Hollow Creek. The disequilibrium in the limestone sections 

of Horn Hollow and Cave Branch is the result of cave collapse. As cave collapse occurs the 

disequilibrium that exists between main stem and ephemeral tributary is exposed to the surface.  

The greater SI in the limestone streams is a result of the subsurface piracy and eventual cave 

collapse. As the main stem continued to denudate in the subsurface, the gradient between it and 

the tributaries increased. The sandstone streams, which generally had a greater degree of 

equilibrium had started to develop prior to glaciation when the system was a part of the Teays 

drainage system (Tierney, 1985). 

  Schroeder (2014) conducted a study on a fluviokarst system in southeastern Minnesota, 

where anomalous segments were not present in the limestone streams. The difference between 

the fluviokarst system in southeastern Minnesota and the one in northeastern Kentucky was that 

glacial-fluvial influence. This suggests that rapid development of the fluviokarst system, caused 
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by glacial and interglacial periods, has created the anomalous sections and the difference in 

equilibrium between the limestone and sandstone watersheds.   
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CHAPTER V 

CONCLUSION 

 The purpose of this study was to determine how the variation in lithology was influencing  

the development of the fluviokarst system in CCSRP in northeastern Kentucky. To do this, 

streams were compared using a equation that calculates stream power and allows for the degree 

of equilibrium of watersheds and SI values of streams to be compared. Using this method, the 

watersheds and individual streams of Cave Branch and Horn Hollow watershedds were analyzed.   

It was determined that sandstone watersheds were generally in a greater degree of equilibrium 

than the limestone watersheds, and that the limestone streams had a greater SI. SI is a measure of 

a streams resistance to erosion, but when the differences in weathering processes in limstone and 

sandstone are considered, SI reveals more than just resistance to erosion. The soluble nature of 

limestone lends its self the development of karst, while sandstone is eroded only by physical 

processes. Also, the difference between the limestone and sandstone segements is due to the 

rapid development influeced by glacial and interglacial periods. The glacial-fluvial influence 

explains the difference between the fluviokarst system in northeastern Kentukcy and the one in 

southeastern Minnesota.   

 One uncertainty that remains from this study were the results of the equilibrium analysis. 

While there was generally a greater degree of equilibrium in the sandstone watersheds than in the 

limestone watersehds, the entire Horn Hollow watershed had a greater degree of equilibrium than 

all of its sub-watersheds. In contrast, the entire Cave Branch watershed had a lower R2 than three 
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of its four sub-watersheds. While the R2 values indicated that the entire Horn Hollow watershed 

was in a greater state of equilibrium than its subwatersheds, the transition from concave-down 

stream profiles to concave-up, suggetsts that as a whole the system is in a state of disequilibrium. 

To better understand the results of the equilibrium analysis, further investigation will be 

nessessary to understand the difference and the significance of R2 and the application of m/n. 

This would allow for a better understanding of the differences between Cave Branch and Horn 

Hollow.  

 It would also be helpful to apply the method used in this study to the fluviokarst system 

in southeastern Minnesota. While it has been established that streams in this system did not 

display anamolus bumps de to subsurface piracy, looking at the degree of equilibrium of 

limestone and sandstone watersheds anc comparing the SI values could provide further insite 

into the development of this system.  
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