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Nutrients such as nitrate and phosphorus are necessary for life, but excessive amounts can 

be detrimental. Large amounts of nutrients entering bodies of water can lead to hypoxic zones 

such as the one in the Gulf of Mexico. Nutrients are also problematic in drinking water 

reservoirs, as high concentrations of nitrate in drinking water can cause health conditions such as 

blue baby syndrome and high phosphorus concentrations can lead to algal blooms. Suspended 

sediment leads to reservoir sedimentation, habitat degradation, and is able to transport particulate 

nutrients. High nutrient and sediment concentrations are a recurring problem in the drinking 

water reservoirs for the City of Bloomington, Illinois where water is drawn from two reservoirs – 

Evergreen Lake and Lake Bloomington. The primary source of these nutrients is from 

agriculture, which dominates the land use in the area. To better understand the dynamics of 

nitrate, phosphorus, and suspended sediment transported into these reservoirs, water samples 

were collected at the major tributary for each reservoir - Six Mile Creek for Evergreen Lake and 

Money Creek for Lake Bloomington. SedEvent, an autosampler system that uses a turbidity 

threshold sampling method to determine when a rain event is occurring, was used to collect 

water samples at both tributaries. Water samples were analyzed for nitrate, total phosphorus, and 

dissolved reactive phosphorus using flow injection analysis (FIA). Samples were analyzed for 

suspended sediment by filtration and drying of samples. Results showed high nutrient and 



suspended sediment concentrations and loads in both creeks during or just after rain events, 

when discharge was high. Nitrate concentrations ranged from 1.58 to 13.3 ppm, total phosphorus 

concentrations ranged from 11.9 to 1250 ppb, and total suspended sediment concentrations 

ranged from 2.5 to 4100 ppm. Seasonal patterns in nutrient dynamics were present and, in 

general, water quality tended to be lower during the spring and higher during the summer. In 

both Six Mile and Money Creek, the majority (>70%) of phosphorus and total suspended 

sediment cumulative load occurred during stormflow conditions which accounted for less than 

25% of flow time. The majority of nitrate cumulative load at Six Mile Creek occurred during 

baseflow conditions and at Money Creek, slightly more nitrate was transported during 

stormflow. Overall, seasonal changes in water quality coincide with agricultural activities, which 

suggests that alternative management practices may help improve water quality.   
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1 

CHAPTER I: INTRODUCTION 

Agriculture is a major source of water pollution in the United States, affecting 70% of 

rivers and streams with impaired water quality (Kennedy et al., 2012). The application of 

fertilizer and the use of artificial drainage increases the export of nutrients such as nitrate and 

phosphorus in streams, and are at least partially responsible for coastal hypoxic zones (Skaggs, 

1994; Kennedy et al., 2012). 

In the Midwestern United States, channelization of headwater streams and the 

agricultural practice of subsurface drainage, known as tile drainage, has been used for several 

decades. Tile drainage has been suggested as a mechanism for quickening nutrient rich soil water 

and shallow groundwater flow directly into streams which eventually flows into the Mississippi 

River and into the Gulf of Mexico (Booth and Campbell, 2007; Kennedy et al., 2012). The Upper 

Mississippi River Basin is the dominant source of riverine nitrate flux contributing to the overall 

load of nitrate entering the Gulf of Mexico (Figure 1) (David et al., 2010).  The nitrogen  

 

 

Figure 1. Predicted average riverine nitrate yield from January to June for all counties in 

the Mississippi River basin between 1997 to 2006 (David et al., 2010). 
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transported by the Mississippi River supports the development of massive algal blooms which 

decompose and consume the oxygen present in the water (Booth and Campbell, 2007). For at 

least the last twenty years, the summer occurrence of the “Dead Zone” in the Gulf of Mexico has 

threatened marine life.  

Nitrate 

Nitrate is water-soluble and moves with water until it can re-enter soil or be used by 

microbes or plants (Follett and Delgado, 2002). Soil nitrogen supplies are often inadequate for 

optimum crop production and nitrogen fertilizers are an economically viable approach to supply 

crops with enough nitrogen (Follett and Delgado, 2002). Because nitrogen fertilizers are 

commonly used, 

nitrate losses are usually monitored during autumn and spring, which corresponds with crop 

fertilization periods (Royer et al., 2006; Ramos et al., 2015). Soil properties and the amount and 

timing of rainfall influence loss of dissolved nitrate in runoff. Soils with low runoff potential 

usually have high infiltration rates and contain sands or gravels. Soils with high runoff potential 

usually have low infiltration when thoroughly wet due to high clay content (Follett and Delgado, 

2002). Agricultural nitrate can also enter surface water with eroded sediment (Figure 2). 

In an agricultural catchment in Portugal, nitrate loads had large seasonal and annual 

variability with nitrate yield being high during the autumn and spring – higher in the autumn 

(Ramos et al., 2015). A study in agricultural watersheds in Illinois found that almost all nitrate 

export occurred when discharge was greater than median discharge, and extreme discharges 

(>90th percentile) were responsible for over 50% of nitrate transport (Royer et al., 2006). Royer  
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et al. (2006) also noted that annual nitrate loss consistently occurred from mid-January through 

June due to increased runoff during storm events and a high presence of nitrate from fertilizer. In 

southern France, nitrate transport during flood events accounted for 62-64% of annual load, 

which only represented 16-20% of the annual flow time (Oeurng et al., 2010). High nitrate 

export occurs as stream discharge increases due to there being less opportunity for the exchange 

of nitrate between the water column and benthic sediments where biological uptake and 

denitrification can occur (Royer et al., 2006).  

Nitrate pollution poses a direct health threat to humans and other mammals. At high 

concentrations, nitrate in water has been linked to methemoglobinemia or “blue baby syndrome” 

in infants as well as thyroid dysfunction in children and pregnant women (U.S. Environmental 

Protection Agency, 2015). To prevent these complications, the Environmental Protection Agency 

(EPA) has a limit of 10 mg/L for NO3-N in drinking water. 

Phosphorus 

Phosphorus is also an important nutrient for agriculture. It is necessary for seed and root 

formation, and increasing straw strength (Hart et al., 2004). Agriculture has been identified as the 

Figure 2. Inputs, outputs, and transport processes of nitrate and phosphorus (Carpenter, 

1998). 
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major nonpoint source of phosphorus to surface waters (Johnes and Hodgkinson, 1998; Gentry et 

al., 2007). Phosphorus accumulated in soils is often lost through leaching and surface runoff 

(Figure 2). Phosphorus loss from agricultural areas is primarily exported in particulate form, 

usually attached to eroded soil particles, and a lesser amount of loss is exported through 

phosphorus dissolved in water (Ramos et al., 2015; Hart et al., 2004). The transport of water 

through tile drains is also a significant pathway for phosphorus to enter surface waters (Royer et 

al., 2006; Gentry et al., 2007).  

The direct loss of phosphorus is considered an event specific loss where the loss 

occurrence has a direct relation with a hydrological factor such as a heavy rainfall event. Heavy 

rainfall events allow phosphorus to be transported along overland flow pathways (Johnes and 

Hodgkinson, 1998; Hart et al., 2004). In east-central Illinois, dissolved reactive phosphorus 

(DRP) and total phosphorus (TP) concentrations in streams were elevated during storm events 

and reduced during baseflow events during the summer and fall (Gentry et al., 2007). Total 

phosphorus concentrations >0.2mg/L were associated with intense rainfall events which resulted 

in high flows with increased sediment transport capacity (Gentry et al., 2007). In an agricultural 

watershed in Portugal, phosphorus transport during flood events accounted for 80.4% - 82.4% of 

annual phosphorus transport and transport was dependent on the intensity and amplitude of the 

flood event (Ramos et al., 2015). Another study in east-central Illinois found that 80% of 

phosphorus export occurred during flow above median flow primarily during the winter and 

spring when runoff potential was high (Royer et al., 2006). In an agricultural watershed in 

Pennsylvania, 32% of stream flow was stormflow and accounted for 65% of dissolved 

phosphorus and 76% of total phosphorus exported (Sharpley et al., 2008). Large, infrequent 

storm flow events (>10-year return rate) were found to have the greatest potential to carry large 
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amounts of phosphorus (Sharpley et al., 2008). However, these storms accounted for only 20% 

of the total exported phosphorus. More frequent, low intensity storms were responsible for a 

higher percentage exported phosphorus (Sharpley et al., 2008).   

Phosphorus in water is not considered to be directly toxic to humans and animals and 

there is no drinking water standard (Carpenter et al., 1998). Phosphorus does stimulate the 

growth of algal blooms in freshwater which causes anoxic conditions, and the EPA has set a 

phosphorus limit of 0.05 mg/L in any reservoir or lake with a surface area of 0.081 km2 or 

greater, or in any stream at the point where it enters any reservoir (U.S. Environmental 

Protection Agency, 1988). 

Suspended Sediment 

Sediment is the product of erosion and is another major pollutant entering surface waters. 

Sediment is the largest pollutant from agricultural lands (Skaggs, 1994). Suspended sediment 

transport from agriculture is responsible for aquatic habitat degradation, reservoir sedimentation 

and the transport of sediment-bound pollutants such as pesticides, particulate nutrients (nitrate, 

phosphorus), and heavy metals (Salant et al., 2008; Oeurng et al., 2010a; Loperfido et al., 2010). 

 Strong seasonal and annual variability observed in suspended sediment concentration is 

related to tillage operations done at the same time in agricultural areas. Heavy rains during 

autumn and tillage operations enhance soil erosion and sediment transport in streams (Ramos et 

al., 2015). Sediment loads are generally lower during the winter, and increase again during the 

spring as more soil erosion occurs because of more tillage operations and more flood events 

(Oeurng et al., 2010a; Ramos et al., 2015). Suspended sediment concentration is directly related 

to discharge and sediment availability (Salant et al., 2008). It is common for most of a stream’s 
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annual suspended sediment to be transported during a few large runoff events (Lewis, 2003; 

Ramos et al., 2015).  

In southwest France, a large agricultural catchment experienced 85-95% of annual 

suspended sediment load during stormflow, which only accounted for 16-20% of annual flow 

time (Oeurng et al., 2010a). In addition, 70-79% of annual sediment load was transported during 

the spring (Oeurng et al., 2010a). In Portugal, an agricultural catchment experienced higher 

suspended sediment concentrations during flood events and lower concentrations during non-

flood events. Flood events were responsible for 55.8-76.8% of annual sediment transport (Ramos 

et al., 2015). The timing of the increase in suspended sediment concentration and loss closely 

matched with the timing of increases in phosphorus concentration and loss (Ramos et al., 2015)   

Hysteresis 

The relationship between discharge and suspended sediment can vary and often presents 

hysteretic behavior (Figure 3). Differences in suspended sediment concentration are due to the 

exhaustion of available sediment in the channel or differences in sediment availability at the 

beginning and end of a flood (Oeurng et al., 2010a). Clockwise hysteresis occurs when 

suspended sediment concentration on the rising limb of a storm hydrograph is higher than that 

measured at equivalent flows on the falling limb and peak suspended sediment concentration 

occurs before peak discharge (Williams, 1989). This is due to the presence of readily available 

sediment deposited in the channel and nearby source areas (Williams, 1989). These sediments 

are only transported after there has previously been a flood event with sufficient transport 

capacity (Salant et al., 2008; Oeurng et al., 2010a). The depletion of available sediment that 

occurs generally before peak discharge is either due to a small supply of readily available 
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sediment or a decreasing sediment availability during a long lasting and/or intense flood 

(Williams, 1989; Oeurng et al., 2010a).  

Counterclockwise hysteresis occurs when the concentration of suspended sediment on the 

falling limb is higher than for the same discharge on the rising limb and the maximum 

concentration occurs after peak discharge (Williams, 1989; Salant et al., 2008). Sediment sources 

are widely spread throughout the catchment and sediment is not rapidly exhausted. Sediment 

concentration is higher on the falling limb because transport from upstream and tributaries may  

take longer to reach the sample site (Oeurng et al., 2010a).  

 

 

 

 

 

Clockwise hysteretic loops were more commonly seen in an agricultural catchment 

during flood events, occurring 68% of the time (Oeurng et al., 2010a). Clockwise hysteresis 

patterns were more common during the autumn and spring when soil erosion and sediment 

availability were high, and counterclockwise hysteresis during the winter as sediment availability 

lowered (Ramos et al., 2015).  

Figure 3. Suspended sediment concentration and discharge timing and relationship showing   

clockwise and counterclockwise hysteresis loops (Williams, 1989). 



8 

Turbidity 

Turbidity is a way of measuring the optical properties of a water sample which causes 

light rays to be scattered and absorbed. Turbidity has been found to be proportional to suspended 

sediment concentrations in streams and is the most reliable and cost-effective proxy (Slaets et al., 

2014). Automated turbidity monitoring has become a common method to continuously monitor 

sediment concentrations in surface water (Slaets et al., 2014; Ziegler et al., 2014). The use of 

turbidity sensors can ideally monitor suspended sediment and nutrient concentrations such as 

total phosphorus by establishing a relationship between suspended sediment concentration and 

turbidity, and then establishing a relationship between total phosphorus and suspended sediment 

concentration (Slaets et al., 2014).     

Research Questions 

The overarching objective of this study is to determine how much water, nitrate, total 

phosphorus, dissolved reactive phosphorus, and total suspended sediment are being transported 

through Six Mile Creek and Money Creek. Within this objective are several questions and 

hypotheses: 

 

• Are there any seasonal patterns of nitrate, total phosphorus, and total suspended 

sediment concentrations and loads?  

o There will be seasonal changes in the amount of nutrients and sediment being 

transported. Most nutrients and sediment will be transported during the spring 

and autumn which is when agricultural practices are occurring. 

• Is there a relationship between discharge and the amount of nutrients and suspended 

sediment being transported? 
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o Nutrient and suspended sediment loads will be greater at higher discharges 

since a major transport mechanism for nitrate, phosphorus, and suspended 

sediment is surface runoff. 

• Is there a relationship between discharge and the concentration of nutrients and 

suspended sediment? 

o The concentrations of nutrients may be lower during periods of high discharge 

because the greater amount of water moving through the streams will dilute 

the concentration. The concentration of suspended sediment and total 

phosphorus will vary depending on sediment availability before and during 

storm events. 

• How do nitrate, phosphorus, and suspended sediment concentrations and loads differ 

between Six Mile Creek and Money Creek? 

o The concentration and loads of nitrate, phosphorus and suspended sediment 

will generally be greater in Money Creek than Six Mile Creek. This is because 

Money Creek has a larger catchment area. 

• Is there a relationship between nitrate and total phosphorus and between total 

phosphorus and dissolved reactive phosphorus? 

o There will be a positive relationship between nitrate and total phosphorus, and 

between total phosphorus and dissolved reactive phosphorus.  

• How strong is the relationship between total phosphorus, total suspended sediment, 

and turbidity? 

o There will be a strong relationship between total phosphorus, total suspended 

sediment, and turbidity. The literature has suggested that there is a 
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relationship between total suspended sediment and turbidity, as well as a 

relationship between total phosphorus and total suspended sediment. 

• How does hysteresis change seasonally?  

o Clockwise hysteresis will occur more often during the autumn and spring 

when soil erosion and sediment availability are higher, and counterclockwise 

hysteresis will occur more often during the winter when sediment availability 

is low.  

 
  



11 

CHAPTER II: METHODS 

Study Sites 

The study areas include the Evergreen Lake (Figure 4) and Lake Bloomington (Figure 5) 

watersheds. The Evergreen Lake watershed covers 106.5 km2 in McLean and Woodford 

Counties in Illinois. The land use within the watershed is primarily agricultural (87%). The 

watershed includes northern Normal and Hudson, IL. Evergreen Lake was constructed in the 

early 1970’s as a supplemental drinking water reservoir for the City of Bloomington as well as 

for recreational use (Evergreen Lake Watershed Management Plan, 2008). Evergreen Lake has   

been impaired by high concentrations of phosphorus and total suspended sediment (Evergreen  

 

Figure 4. Evergreen Lake watershed. The red dot indicates the location of the Six Mile 

Creek sample site. (Modified from http://illinoiscbmp.org/Watersheds/Lake-Evergreen/). 
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Lake TMDL, 2006). The primary tributary to Evergreen Lake is Six Mile Creek. 

The Lake Bloomington watershed covers an area of 181km2 in McLean County and is 

east of the Evergreen Lake watershed (Figure 5). The primary land use is also agricultural (83%). 

Lake Bloomington was constructed in 1929 and provides water for the City of Bloomington 

(Lake Bloomington Watershed Management Plan, 2008). Lake Bloomington has been impaired 

by high concentrations of total phosphorus, total suspended sediment, and nitrate. The primary 

sources of these contaminants are crop production and surface runoff (Lake Bloomington 

TMDL, 2006). The primary tributary to Lake Bloomington is Money Creek.  

Figure 5. Lake Bloomington watershed. The red dots indicate the old and new sample 

sites for Money Creek. (Modified from http://illinoiscbmp.org/Watersheds/Lake-

Bloomington/). 

Current sample 

site 

Old Sample Site 
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This study used the same sample site as Hanna (2013) at Six Mile Creek (Figure 4) and a 

new sample site at Money Creek approximately 6.5 km downstream from the site used by Hanna 

(2013) (Figure 5). The location at Money creek was changed because the new site has a steadier 

substrata which allows for more accurate discharge measurements, and was once the location of 

a USGS gaging station (USGS 05564400) which recorded discharge between 1958 and 1983. 

The drainage area at the Six Mile Creek site is 47.3 km2 and at the Money Creek site, the 

drainage area is 127 km2.    

Geology and Climate 

 

Glacial movements, running water, and windblown deposits have contributed to the 

formation of the land in McLean County. There are many glacial moraines running from 

northwest to southeast across McLean County from the Wisconsinan glaciation that have been 

worn down, and filled with sediment and loess. A common soil type includes Sable silty clay 

loam, which is a byproduct of loess, distributed during glacier retreat 11,000 years ago. This soil 

has a high clay content and slow infiltration rate as well as poor drainage with high runoff levels 

(Evergreen Lake Watershed Plan, 2008). The majority of the Lake Bloomington and Evergreen 

Lake watersheds contain soils with moderate to very low infiltration rates with high clay content 

(Evergreen Lake Watershed Management Plan, 2008; Lake Bloomington Watershed 

Management Plan, 2008).  

The study area has a continental climate with cold, dry winters, and warm, humid 

summers. Temperatures range from -10 to 30°C with a yearly average temperature of 10.6°C. 

The average annual precipitation in Normal, Illinois is 95.3 cm with a monthly average of 7.87 

cm. March through August are wet months, and September through March are relatively dry. 

Severe drought is not common, but prolonged dry periods during part of the growing season are 
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not uncommon (Lake Bloomington TMDL, 2008). In this study, spring, summer and winter were 

determined based on the changing of solstice and equinox. 

Monitoring Station Setup 

 

There is one monitoring station located along Six Mile Creek and Money Creek (Figures 

4 and 5). Both sites have an autosampling system which uses SedEvent (Forest Technology 

Systems, Inc. (FTS)), a turbidity threshold sampling program, to determine when a rain event is 

occurring and when to collect water samples. At each site, a DTS-12 turbidity sensor and a SDI-

SPT-5-CS pressure transducer were employed at the bottom of the creek near the thalweg. An 

ISCO 6712 is also connected to an Axiom H2 datalogger and is programed to pump 800mL of 

creek water into 24 1L bottles. Each bottle has had 0.8mL of 50% sulfuric acid added to keep the 

pH below 2 in order to prevent sorption to the walls of the bottle and to kill any microbes. An 

RG-T Precision Tipping Bucket Rain Gauge is set up at each site to record precipitation. 

Parameters including turbidity, stage, precipitation, and water temperature were measured every 

15 minutes and the data w saved on the datalogger located on site. The setup is powered by a 

12V battery which is recharged by a solar panel. Water samples began to be collected at Six Mile 

Creek on 4/21/2016, and on 7/22/2016 at Money Creek. The rain gauges became functional at 

both sites on 7/31/2016. Sampling concluded at both sites on 12/15/2016. 

Storm event turbidity thresholds were similar for each stream (Table 1). When a turbidity 

measurement read above or below different threshold values, water samples were automatically 

collected. To ensure that samples were collected during rain events that occurred after a 

prolonged dry period, the minimum stage necessary for a sample to be collected was reduced to 

below baseflow level.  
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Stage and Manual Discharge Measurements 

Biweekly discharge measurements were taken at each creek using a Sontek Flowtracker 

ADV. At each creek, 20 velocity measurements were taken at 0.6 depth of the water column 

from the water surface to the creek bed along the creek before total discharge was calculated. 

Additional discharge measurements were taken during high flow events. If the water level was 

too high to safely use the Sontek Flowtracker, discharge measurements were taken using a bridge 

board and a Sigma portable velocity meter secured on top of a 6.8 kg weight. Each creek was 

divided into 10 equal sections, and 10 velocity measurements were taken before total discharge 

was calculated. With the discharge data and stage data from the pressure transducer, a rating 

curve was created for each creek (Figure 6), allowing for the calculation of discharge based on 

pressure transducer data alone. The highest measured discharge at Six Mile and Money Creek 

Table 1. Turbidity thresholds used by the Six Mile and Money Creek autosamplers. 

Rising Falling Rising Falling

40 40 40 30

77 62 77 40

115 105 125 62

170 159 170 105

300 225 300 125

467 302 467 159

670 391 670 225

820 491 820 302

910 602 910 391

1187 724 1187 491

1500 858 1500 602

1850 1004 1850 724

1160 858

1328 1004

1507 1160

1698 1328

1900 1507

1698

1900

Six Mile Creek 

Turbidity 

Thresholds

Money Creek 

Turbidity 

Thresholds
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were 4.4 m3/s and 4.8 m3/s respectively. Any calculated discharge value above these maximum 

values may be inaccurate.  

 

 

 

Figure 6. Rating curves at Six Mile Creek (y=3.20x3.05, R2=0.978) and 

Money Creek (y=5.30x2.16, R2=0.988). 
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Determining a Storm Event and Stormflow 

In this study, a storm event was defined as a precipitation event that caused discharge to 

increase, and caused turbidity to change enough for the autosampler to collect several samples 

during the period of time discharge was elevated. The beginning of a storm event and stormflow 

conditions were manually chosen based on when discharge began to increase during or after a 

precipitation event. Equation 1 was used to determine how long after peak discharge stormflow 

returns to baseflow at each study site based on drainage area size (Davie, 2008).  

 

                                                Time (Days) = Drainage Area (mi2)0.2  Eq. (1) 

 

At Six Mile Creek, stormflow ended 1.79 days (43 hours) after peak discharge, and at Money 

Creek, stormflow ended 2.2 days (52 hours) after peak discharge. 

 The study by Hanna (2013) had defined storm events differently. A storm event occurred 

when water level increased past a certain threshold above baseflow, generally 27.4 – 51.8 

centimeters. Once this threshold was passed, the autosampler collected 24 water samples at 

predetermined time intervals. Because samples were only collected on time intervals, samples 

were not always collected in a way that accurately represented the hydrograph, and changes in 

nutrient and sediment dynamics may not be as accurate. 

Determining Which Samples to Process 

During each site visit, data were downloaded from the Axiom H2 datalogger onto a 

flashdrive. To determine which samples from the autosampler to process for further analysis, a 

hydrograph comparing stage, time, and at what stage a sample was collected was created. From 

this graph, samples were chosen so that the most accurate representation of the hydrograph could 
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be made. Guidelines provided by the FTS SedEvent manual were also generally followed. Three 

to four samples may be sufficient for small storms, and up to 15 samples may be required for 

larger storms (Forest Technology Systems, 2016). Appendix A shows when samples were 

collected by the autosampler, and which of those samples were processed for nutrient and 

sediment analysis. 

Turbidity and Total Suspended Sediment Processing 

 

 For every sample processed, turbidity was measured using the value the DTS-12 recorded 

at the time the sample was taken, as well as by using a 2100P Turbidimeter in the lab. To 

measure the total suspended sediment concentration of a sample, a known volume of sample was 

filtered through a pre-weighed and combusted glass microfiber filter (Whatman 934-AH, 

diameter 47mm). The filters were then placed into a 105 °C oven for at least 24 hours to 

evaporate any water and were then reweighed. The concentration of total suspended sediment 

(TSS) could then be calculated using Equation 2:                 

                                                          

                     TSS � mg

L
�  = 

�Mass of filter (g )+Sediment �g�� - Mass of filter �g�
Volume �L� *

1000 mg

g
            Eq. (2)       

 

 

 

Nutrient Sample Processing 

Every sample processed was analyzed for nitrate (NO3-N), dissolved reactive phosphate 

(DRP), and total phosphorus (TP) using a Lachat Flow Injection Analyses instrument. Processing 

samples involved syringing approximately 50 mL of sample water into two 60 mL bottles. One 

60 mL bottle received unfiltered water and the other bottle received water that was syringed 

through a Millipore Grade A/E, pore size 1 μm, 25 mm filter. If samples contained a lot of 

sediment, sample water would first be filtered through the Whatman 934-AH, diameter 47 mm 



19 

filter first, and would then be filtered again through the Millipore Grade A/E, pore size 1 μm, 25 

mm filter into the 60 mL bottle.  

Load Calculations 

Load calculations for nitrate, total phosphorus, dissolved reactive phosphorus, and total 

suspended sediment were calculated by multiplying the concentration of the sample by the 

discharge at the time the sample was taken in L/s, giving a load in mg/s (Equation 3). 

 

                   Load � mg

s
� = Concentration � mg

L
� * Discharge � m3

s
� * 1000 (

L

m3
)           Eq. (3)    

 

Cumulative nitrate, total phosphorus, dissolved reactive phosphorus, and total suspended 

sediment load were determined during each site’s sampling period. This was calculated by 

adding the parameter load per time (mg/s) of two subsequent samples, dividing by two to find 

the average, multiplying by the time difference between the two samples, and then taking the 

summation (Equation 4).  

 

Cumulative Load �kg�= � 	Loadi �mg
s

�  + Loadi+1 ( mg
s

)

2

 *�Ti+1�sec�- Ti�sec��*

1 g
1000 mg

*
1 kg

1000 gn

i=1
 

Eq. (4) 

 

 

 

Statistical Analysis 

Average nutrient and suspended sediment concentration and load at Six Mile Creek were 

compared between spring, summer, and autumn using a one-way analysis of variance (ANOVA) 

(σ = 0.05) test. If ANOVA results determined a significant difference, a Tukey Post-Hoc test was 
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used to determine which seasons were significantly different (p <0.05). At Money Creek, a t-test 

(σ = 0.05) was used to determine if there was a significant difference between summer and 

autumn. A t-test was also used to determine if there was a significant difference between 

baseflow and stormflow concentration and load for each season, and between each creek. 

Analysis of covariance (ANCOVA) (σ = 0.05) was used to determine if there was a significant 

difference in regression line slopes and y-intercepts between seasons. 
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CHAPTER III: RESULTS 

Overview 

During the sampling period, there were 17 storm events and 17 bi-weekly sampling 

events at Six Mile Creek. Details about individual storm events at Six Mile Creek are located in 

Appendix A. Discharge was measured in the field during 10 periods of stormflow and 10 periods 

of baseflow (Figure 7).  Water samples were successfully collected during each storm event 

except for Event 3 where no samples were collected due the autosampler already being full 

before the storm occurred.  

At Six Mile Creek, there were four storm events during the spring, nine during the 

summer, and four during the autumn. The highest discharge occurred during Event 2 in the 

spring on 5/10/2016 with a calculated discharge of 29.0 m3/s. The lowest calculated discharge 

was during the summer at 0.115 m3/s on 8/15/2016. The median discharge was 0.284 m3/s. Six 

Mile Creek experienced stormflow conditions during 17% of the study period. A total of 88.34 

cm of precipitation occurred with the highest daily precipitation amount recorded being 5.21 cm 

on 5/28/2016 (Figure 7).  

 During the sampling period at Money Creek, there were a total of 11 storm events and 11 

bi-weekly sampling events. More details about each storm event at Money Creek can be found in 

Appendix A. Discharge was measured in the field 10 times at Money Creek with seven 

stormflow measurements and three baseflow measurements. There were eight storms events 

during the summer and three storm events during the autumn (Figure 8). The highest calculated 

discharge at Money Creek was during the summer at 8.27 m3/s on 7/25/2016 during Event 9. The 

lowest calculated discharge was also during the summer at 0.124 m3/s on 8/11/2016. The median 

discharge was 0.854 m3/s. Money Creek experienced stormflow conditions during 24% of the 
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study period. A total of 44.37 cm of precipitation occurred and the highest daily precipitation 

amount recorded was 6.71 cm on 8/15/2016 (Figure 8). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



23 

 

Figure 7. Calculated and measured discharge, flow conditions, and daily precipitation 

at Six Mile Creek. Daily precipitation at Six Mile Creek. Daily precipitation data were 

used from the National Weather Service Weather Forecast Office between 4/21/2016 

and 7/21/2016 (http://forecast.weather.gov/product.php?site=ILX& 

issuedby=BMI&product=CF6). From 7/22/2016 to the end of the study period, daily 

precipitation data were collected from the on-site rain gage. 
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Figure 8. Calculated and measured discharge, flow conditions, and daily 

precipitation at Money Creek. All daily precipitation data were collected from an 

on-site rain gage. 
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Seasonal Characteristics 

Nitrate Concentration and Load  

At Six Mile Creek, there was a wide range of nitrate concentrations which ranged from 

1.58 mg/L in the summer to 13.3 mg/L in the spring (Figures 9 and 10). The outliers in Figure 10 

occurred during larger storm events. During total flow conditions, the one-way ANOVA 

indicated there was a significant difference in average nitrate concentration between spring, 

summer, and autumn (F(2,341)=261.5, p<0.0001). Spring had a significantly higher average 

nitrate concentration, and summer had a significantly lower average nitrate concentration 

(Spring-Summer: p<0.0001, Spring-Autumn: p<0.0001, Summer-Autumn: p<0.0001) (Table 2). 

During the spring and first week of summer, 58% of samples collected had nitrate concentrations 

above the EPA drinking water limit of 10 mg/L, but no samples during the rest of the summer, or 

autumn had concentrations above the limit.  

There was also a wide range of nitrate loads at Six Mile Creek ranging from 0.22 g/s in 

the summer to 278 g/s in the spring (Figure 11). Outliers that occurred during baseflow were 

from elevated baseflow conditions after larger storm events. The outliers during stormflow 

occurred during larger storm events. During total flow conditions, the one-way ANOVA 

indicated a significant difference in average nitrate load between spring, summer, and autumn 

(F(2,341)=9.664, p<0.0001). Spring had a significantly higher average nitrate load (Spring-

Summer: p<0.001, Spring-Autumn: p<0.01) and there was no significant difference between 

summer and autumn average nitrate load. 

Seasonal changes in average baseflow and stormflow nitrate concentrations occurred at 

Six Mile Creek. The one-way ANOVA indicated a significant difference in average nitrate 

concentration between spring, summer, and autumn during baseflow and stormflow conditions 
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(Baseflow: F(2,150)=104.5, p<0.0001, Stormflow: F(2,188)=87.4, p<0.0001). Average baseflow 

(bf) and stormflow (sf) nitrate concentration were significantly higher during the spring and 

significantly lower during the summer (Spring-Summer bf: p<0.0001, Spring-Autumn bf: 

p<0.0001, Summer-Autumn bf: p<0.05, Spring-Summer sf: p<0.0001, Spring-Autumn sf: 

p<0.0001, Summer-Autumn sf: p<0.001). During each season, average baseflow nitrate 

concentration was significantly higher than average stormflow nitrate concentration (Spring: 

p<0.0001, Summer: p<0.01, Autumn: p<0.01). 

 Seasonal changes in average baseflow and stormflow nitrate load also occurred at Six 

Mile Creek. The one-way ANOVA indicated a significant difference in average nitrate load 

between spring, summer, and autumn during baseflow and stormflow conditions (Baseflow: 

F(2,150)=31.4, p<0.0001, Stormflow: F(2,188)=28.2, p<0.0001). Average baseflow and 

stormflow nitrate load at Six Mile Creek were significantly higher during the spring (Spring-

Summer bf: p<0.0001, Spring-Autumn bf: p<0.0001, Spring-Summer sf: p<0.0001, Spring-

Autumn sf: p<0.0001). There was no significant difference between summer and autumn nitrate 

load during baseflow or stormflow. During each season, average stormflow nitrate load was 

significantly higher than average baseflow nitrate load (Spring: p<0.0001, Summer: p<0.0001, 

Autumn: p<0.0001). 

Temporal patterns in nitrate concentration and load at Money Creek were similar to those 

at Six Mile Creek. Nitrate concentrations at Money Creek ranged from 1.69 mg/L in the summer 

to 11.8 mg/L in the autumn (Figures 9 and 10). During total flow conditions, average nitrate 

concentration was significantly higher during the autumn compared to summer (p<0.0001) 

(Table 3). During the summer, 8% of samples collected had nitrate concentrations above the 
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EPA drinking water limit of 10 mg/L. During the autumn, 36% of samples had nitrate 

concentrations above the limit.  

Nitrate load at Money Creek ranged from 0.017 g/s to 63.2 g/s, which both occurred 

during the autumn (Figure 11). Outliers present during stormflow occurred during larger storm 

events. During total flow conditions, autumn had a significantly higher average nitrate load 

compared to the summer (p<0.01). 

At Money Creek, storm events influenced nitrate concentration and load only during 

certain seasons. There was no significant difference between average baseflow and average 

stormflow nitrate concentration during the summer. During the autumn, average baseflow nitrate 

concentration was significantly higher than average stormflow nitrate concentration (p<0.05). 

Average baseflow and stormflow nitrate concentration at Money Creek were significantly higher 

during the autumn than during the summer (Summer-Autumn bf: p<0.01, Summer-Autumn sf:  

p<0.0001).  

 There was no significant difference in average baseflow nitrate load between summer and 

autumn in Money Creek. Average stormflow nitrate load was significantly higher during the 

autumn compared to summer (p<0.01). During each season, average stormflow nitrate load was 

significantly higher than average baseflow nitrate load (Summer: p<0.001, Autumn: p<0.05).  

Average baseflow and stormflow nitrate concentration and loads were significantly 

different between Six Mile and Money Creek. During the summer and autumn, Money Creek 

had a significantly higher average baseflow and average stormflow nitrate concentration 

compared to Six Mile Creek. (Summer bf: p<0.001 Summer sf: p<0.0001, Autumn bf: p<0.01, 

Autumn sf: p<0.0001). Average baseflow and stormflow nitrate load were also significantly 
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higher at Money Creek compared to Six Mile Creek (Summer bf: p<0.0001, Summer sf: p<0.01, 

Autumn bf: p<0.01, Autumn sf: p<0.0001).   

 

 

Table 2. Mean nitrate concentration and load (± standard error of the mean) during baseflow, 

stormflow, and total flow during each season at Six Mile Creek. 

Six Mile 

Creek 

Baseflow 

Conc. 

(mg/L) 

Stormflow 

Conc. 

(mg/L) 

Total 

Flow 

Conc. 

(mg/L) 

Baseflow 

Load 

(g/s) 

Stormflow 

load 

(g/s) 

Total 

Flow 

Load  

(g/s) 

Spring 
10.80 

(±0.15) 

9.28 

(±0.29) 

10.30 

(±0.15) 

4.87 

(±0.24) 

53.40 

(±9.87) 

20.00 

(±3.61) 

Summer 
6.01 

(±0.44) 

4.06 

(±0.22) 

4.99 

(±0.20) 

2.17 

(±0.26) 

6.43 

(±0.75) 

5.22 

(±0.58) 

Autumn 
7.50 

(±0.38) 

6.06 

(±0.19) 

6.40 

(±0.19) 

2.31 

(±0.31) 

7.10 

(±0.60) 

5.78 

(±0.54) 

 

 

 

Table 3. Mean nitrate concentration and load (± standard error of the mean) during baseflow, 

stormflow, and total flow during each season at Money Creek (MCH). 

Money 

Creek 

Baseflow 

Conc. 

(mg/L) 

Stormflow 

Conc. 

(mg/L) 

Total 

Flow 

Conc. 

(mg/L) 

Baseflow 

Load 

(g/s) 

Stormflow 

load  

(g/s) 

Total 

Flow 

Load  

(g/s) 

Spring N.A. N.A. N.A. N.A. N.A. N.A. 

Summer 
7.91 

(±0.44) 

7.24 

(±0.25) 

7.40 

(±0.25) 

6.25 

(±0.76) 

10.50 

(±1.06) 

9.47 

(±0.85) 

Autumn 
10.2 

(±0.57) 

8.76 

(±0.26) 

9.07 

(±0.22) 

10.50 

(±2.35) 

18.20 

(±2.53) 

16.5 

(±2.10) 
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Figure 9. Seasonal nitrate concentration at Six Mile and Money Creek during the sampling 

period. The orange line represents the EPA drinking water limit of 10 mg/L. 
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Figure 10. Box and whisker plots showing nitrate concentration during 

each season as well as during baseflow and stormflow of each season.  

“SMC” represents Six Mile Creek and “MCH” represents Money Creek. 
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Figure 11. Nitrate load at Six Mile and Money Creek during the study period, 

and seasonal baseflow and stormflow nitrate load box and whisker plots 
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Total Phosphorus Concentration and Load 

At Six Mile Creek, there were a wide range of total phosphorus concentrations ranging 

from 11.9 μg/L to 1250 μg/L which both occurred during the spring (Figures 12 and 13). Outliers 

that occurred during total flow conditions were from larger storm events. During total flow 

conditions, the one-way ANOVA indicated a significant difference in average total phosphorus 

concentration between spring, summer, and autumn (F(2,341)=6.96, p<0.01). Spring had a 

significantly lower average total phosphorus concentration compared to summer and autumn 

(Spring-Summer: p<0.05, Spring-Autumn: p<0.001), and there was no significant difference 

between summer and autumn average total phosphorus concentration (Table 4).  

There was also a wide range of total phosphorus loads at Six Mile Creek, which ranged 

from 0.005 g/s during the autumn to 36.0 g/s during the spring (Figure 14). During total flow 

conditions, the one-way ANOVA indicated there was no significant difference in average total 

phosphorus load between seasons. 

Average baseflow and average stormflow total phosphorus concentration did not always 

differ between seasons at Six Mile Creek. The one-way ANOVA indicated a significant 

difference between spring, summer, and autumn during baseflow and stormflow conditions 

(Baseflow: F(2,150)=66.2, p<0.0001, Stormflow: F(2,188)=4.41, p<0.05). Average baseflow 

total phosphorus concentration was significantly higher during the summer compared to spring 

and autumn (Spring-Summer: p<0.0001, Summer-Autumn: p<0.0001), and there was no 

significant difference between spring and autumn. Average stormflow total phosphorus 

concentration was significantly higher during the spring compared to summer (Spring-Summer: 

p<0.05), and there was no significant difference between spring and autumn or summer and 

autumn. Storm events had a large impact on total phosphorus concentration, as average total 



33 

phosphorus concentration was significantly higher during stormflow than baseflow during each 

season (Spring: p<0.0001, Summer: p<0.0001, Autumn: p<0.0001). 

Average baseflow and stormflow total phosphorus load also did not always change each 

season at Six Mile Creek. The one-way ANOVA indicated no significant difference in average 

baseflow total phosphorus load between seasons (F(2,150)=2.86, p=0.061). During stormflow 

conditions the one-way ANOVA indicated a significant difference in nitrate load between spring, 

summer, and autumn (F(2,188)=9.53, p<0.001). Spring had a significantly higher average 

stormflow total phosphorus load compared to summer and autumn (Spring-Summer: p<0.001, 

Spring-Autumn: p<0.01), and there was no significant difference between autumn and summer 

(Figure 14). Total phosphorus load was heavily influenced by storm events as average stormflow 

load was significantly higher than average baseflow load during each season (Spring: p<0.01, 

Summer: p<0.0001, Autumn: p<0.0001). 

Money Creek also experienced a wide range of total phosphorus concentrations ranging 

from 29.2 μg/L during the autumn to 699 μg/L during the summer (Figures 12 and 13). During 

total flow conditions, there was no significant difference between average summer and autumn 

total phosphorus concentration (Table 5). 

Total phosphorus load was also widely ranged at Money Creek from 0.0035 g/s in the 

autumn to 2.56 g/s in the summer (Figure 14). There was no significant difference in average 

total phosphorus load between summer and autumn during total flow conditions. 

Changes in the season did not have much impact on total phosphorus concentration at 

Money Creek. There was no significant difference in average baseflow, or average stormflow 

total phosphorus concentration between summer and autumn (Figure 13). Storm events did have 

a large influence on total phosphorus concentration at Money Creek. Average total phosphorus 
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concentration was significantly higher during stormflow compared to baseflow for each season 

(Summer: p<0.0001, Autumn: p<0.0001). 

Similar to total phosphorus concentration, there was also no significant difference in 

average baseflow or stormflow total phosphorus load between seasons at Money Creek (Figure 

14), and during each season, average stormflow load was significantly higher than average 

baseflow load (Summer: p<0.0001, Autumn: p<0.0001). 

  Differences in average total phosphorus concentration and load were sometimes apparent 

between Six Mile and Money Creek. Average baseflow total phosphorus concentration was 

significantly higher at Money Creek during the summer compared to Six Mile Creek (p<0.01). 

During the autumn, there was no significant difference in average baseflow concentration. There 

was also no significant difference in average stormflow total phosphorus concentration during 

the summer, but during the autumn, Six Mile Creek had a significantly higher average stormflow 

total phosphorus concentration compared to Money Creek (p<0.05).  

 Average baseflow total phosphorus load was significantly higher at Money Creek during 

the summer and autumn compared to Six Mile Creek (Summer: p<0.001, Autumn: p<0.01). 

There was no significant difference in average stormflow total phosphorus load between Six 

Mile and Money Creek during the summer or autumn. 
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Table 4. Mean total phosphorus concentration and load (± standard error of the mean) during 

baseflow, stormflow, and total flow during each season at Six Mile Creek. 

Six Mile 

Creek 

Baseflow 

Conc. 

(μg/L) 

Stormflow 

Conc. 

(μg/L) 

Total 

Flow 

Conc. 

(μg/L) 

Baseflow 

Load 

(mg/s) 

Stormflow 

load 

(g/s) 

Total 

Flow 

Load  

(g/s) 

Spring 
34.9 

(±1.6) 

305.5 

(±45.3) 

122.2 

(±17.8) 

18.1 

(±2.1) 

3.83 

(±1.23) 

1.25 

(±0.42) 

Summer 
80.3 

(±4.9) 

207.7 

(±15.5) 

173.5 

(±12.4) 

32.6 

(±7.5) 

0.658 

(±0.14) 

0.498 

(±0.11) 

Autumn 
43.3 

(±4.9) 

280.8 

(±21.4) 

234.6 

(±21.4) 

13.2 

(±3.1) 

0.383 

(±0.05) 

0.288 

(±0.04) 

 

 

 

Table 5. Mean total phosphorus concentration and load (± standard error of the mean) during 

baseflow, stormflow, and total flow during each season at Money Creek (MCH). 

Money 

Creek 

Baseflow 

Conc. 

(μg/L) 

Stormflow 

Conc. 

(μg/L) 

Total 

Flow 

Conc. 

(μg/L) 

Baseflow 

Load 

(mg/s) 

Stormflow 

load  

(g/s) 

Total 

Flow 

Load  

(g/s) 

Spring N.A. N.A. N.A. N.A. N.A. N.A. 

Summer 
100.7 

(±4.2) 

185.4 

(±14.3) 

165.2 

(±11.5) 

60.7 

(±7.3) 

0.432 

(±0.063) 

0.352 

(±0.049) 

Autumn 
69.0 

(±16.5) 

206.7 

(±22.8) 

177.2 

(±20.2) 

71.8 

(±13.5) 

0.360 

(±0.80) 

0.291 

(±0.067) 
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Figure 12. Total phosphorus concentration at Six Mile and Money Creek. 
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Figure 13. Box and whisker plots showing total phosphorus 

concentration at Six Mile and Money Creek during each season 

as well as during baseflow and stormflow. 
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Figure 14. Total phosphorus load at Six Mile and Money Creek 

during the study period, and seasonal baseflow and stormflow total 

phosphorus load box and whisker plots. 
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Total Suspended Sediment Concentration and Load  

 Total suspended sediment concentration was widely ranged at Six Mile Creek from 2.5 

mg/L during the autumn to 4.11x103 mg/L during the spring (Figures 15 and 16). Outliers seen in 

Figure 16 generally occurred during large storm events and during elevated baseflow after storm 

events. During total flow conditions, the one-way ANOVA indicated no significant difference in 

average total suspended sediment concentration between spring, summer, and autumn 

(F(2,342)=0.188, p=0.829).  

 Six Mile Creek also had a wide range of total suspended sediment loads from 5.47x10-4 

kg/s during the autumn to 111 kg/s in the spring (Figure 17). During total flow conditions, the 

one-way ANOVA indicated no significant difference in average total suspended sediment load 

between spring, summer, and autumn (F(2,341)=2.65, p=0.072). 

 Total suspended sediment concentration and load did not always experience seasonal 

changes. The one-way ANOVA indicated a significant difference in total suspended sediment 

concentration between spring, summer, and autumn during baseflow and stormflow conditions 

(Baseflow: F(2,150)=3.19, p<0.05, Stormflow: F(2,188)=8.09, p<0.001). Average baseflow total 

suspended sediment concentration at Six Mile Creek was significantly higher during summer 

compared to autumn (p<0.05), and there was no significant difference between spring and 

summer or spring and autumn (Table 6). Average stormflow total suspended sediment 

concentration was significantly higher during the spring compared to summer and autumn 

(Spring-Summer: p<0.001, Spring-Autumn: p<0.05). There was no significant difference 

between summer and autumn average stormflow concentration. Storm events had a significant 

impact on total suspended sediment concentration as average total suspended sediment 
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concentration was significantly higher during stormflow compared to baseflow during each 

season (Spring: p<0.0001, Summer: p<0.0001, Autumn:  p<0.0001). 

 Total suspended sediment load also did not always experience seasonal changes at Six 

Mile Creek. The one-way ANOVA indicated that there was no significant difference in average 

baseflow total suspended sediment load between spring, summer, and autumn (F(2,150)=1.89, 

p=0.155). The one-way ANOVA did indicate a significant difference in average stormflow total 

suspended sediment load between spring, summer, and autumn (F(2,188)=8.81, p<0.001). 

Average stormflow total suspended sediment load was significantly higher during the spring 

compared to summer and autumn (Spring-Summer: p<0.01, Spring-Autumn: p<0.01). There was 

no significant difference between summer and autumn average stormflow load. For each season, 

average stormflow total suspended sediment load was significantly higher during stormflow 

compared to baseflow (Spring: p<0.01, Summer: p<0.001, Autumn: p<0.0001). 

At Money Creek, total suspended sediment concentration ranged from 2.5 mg/L during 

autumn to 559.5 mg/L during summer (Figures 15 and 16). During total flow conditions, average 

total suspended sediment concentration was significantly higher during the summer (p<0.001) 

(Table 7). 

 Total suspended sediment load at Money Creek ranged from 1.12x10-3 kg/s in the autumn 

to 2.28 kg/s in the summer (Figure 17). During total flow conditions, there was no significant 

difference in average total suspended sediment load between summer and autumn.    

Seasonal changes in average baseflow and average stormflow total suspended sediment 

concentration were present at Money Creek. Average baseflow and average stormflow total 

suspended sediment concentration were significantly higher during the summer compared to 

autumn (Baseflow: p<0.0001, Stormflow: p<0.001). During each season, total suspended 
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sediment concentration was significantly higher during stormflow compared to baseflow 

(Summer: p<0.0001, Autumn: p<0.0001). 

 Average baseflow total suspended sediment load was significantly higher during the 

summer at Money Creek (p<0.05). There was no significant difference in average stormflow 

total suspended sediment load between summer and autumn. For each season, average total 

suspended sediment load was statistically higher during stormflow compared to baseflow 

(Summer: p<0.0001, Autumn: p<0.001). 

 Average baseflow total suspended sediment concentration was significantly greater at Six 

Mile Creek compared to Money Creek during the summer (p<0.05). There was no significant 

difference in average baseflow total suspended sediment concentration during the autumn. 

Average stormflow total suspended sediment concentration was significantly higher at Six Mile 

Creek compared to Money Creek during the summer and autumn (Summer: p<0.0001, Autumn: 

p<0.0001). 

 There was no significant difference in average baseflow total suspended sediment load 

between Six Mile and Money Creek during the summer. During the autumn, average baseflow 

total suspended sediment load was significantly higher at Money Creek (p<0.05). Average 

stormflow total suspended sediment load was significantly higher at Six Mile Creek during the 

summer and autumn (Summer: p<0.01, Autumn: p<0.01).  
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Table 6. Mean total suspended sediment concentration and load (± standard error of the mean) 

during baseflow, stormflow, and total flow during each season at Six Mile Creek. 

Six Mile 

Creek 

Baseflow 

Conc. 

(mg/L) 

Stormflow 

Conc. 

(mg/L) 

Total 

Flow 

Conc. 

(mg/L) 

Baseflow 

Load 

(g/s) 

Stormflow 

load 

(g/s) 

Total Flow 

Load  

(g/s) 

Spring 
51.3 

(±5.03) 

635 

(±127.8) 

239 

(±46.6) 

27.4 

(±3.72) 

9.23x103 

(±3.31x103) 

3.00x103 

(±1.12x103) 

Summer 
65.7 

(±7.16) 

291 

(±38.6) 

230 

(±29.5) 

24.1 

(±3.58) 

1.14x103 

(±280) 

840   

(±209) 

Autumn 
27.4 

(±8.38) 

249 

(±28.1) 

196 

(±25.0) 

8.34 

(±2.64) 

325  

(±42.2) 

250  

(±37.0) 

 

 

 

Table 7. Mean total suspended sediment concentration and load (± standard error of the mean) 

during baseflow, stormflow, and total flow during each season at Money Creek (MCH). 

Money 

Creek 

Baseflow 

Conc. 

(mg/L) 

Stormflow 

Conc. 

(mg/L) 

Total 

Flow 

Conc. 

(mg/L) 

Baseflow 

Load 

(g/s) 

Stormflow 

load  

(g/s) 

Total Flow 

Load  

(g/s) 

Spring N.A. N.A. N.A. N.A. N.A. N.A. 

Summer 
46.7 

(±2.65) 

115 

(±11.8) 

98.8 

(±9.48) 

36.5 

(±5.00) 

245 

(±50.6) 

195  

(±39.5) 

Autumn 
18.4 

(±4.16) 

70.3 

(±5.84) 

59.2 

(±5.72) 

18.3 

(±4.56) 

161 

(±35.1) 

130 

 (±29.0) 
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Figure 15. Total suspended sediment concentration at Six Mile and Money 

Creek. 
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Figure 16. Box and whisker plot showing total suspended sediment 

concentration at Six Mile and Money Creek during each season as well 

as during baseflow and stormflow. 
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Figure 17. Total suspended sediment load at Six Mile and Money 

Creek during the study period, and seasonal baseflow and stormflow 

total suspended sediment load box and whisker plots. 
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Dissolved Reactive Phosphorus Concentration and Load 

Dissolved reactive phosphorus concentration at Six Mile Creek ranged from 1.37 μg/L to 

871 μg/L, which both occurred during the spring (Figures 18 and 19). During total flow 

conditions, the one-way ANOVA indicated a significant difference between spring, summer and 

autumn average dissolved reactive phosphorus concentration (F(2,341)=6.18, p<0.01). Average 

dissolved reactive phosphorus concentration was significantly higher during the autumn 

compared to spring (p<0.01) and there was no significant difference between spring and summer, 

or summer and autumn (Table 8).  

Dissolved reactive phosphorus load at Six Mile Creek ranged from 4.06x10-4 g/s to 25.3 

g/s, which both occurred during the spring (Figure 20). During total flow conditions, the one-

way ANOVA indicated no significant difference in average dissolved reactive phosphorus load 

between spring, summer, and autumn (F(2,341)=2.23, p=0.109) (Table 8). 

 Seasonal changes in dissolved reactive phosphorus concentration and load during 

baseflow and stormflow were not always apparent at Six Mile Creek. The one-way ANOVA 

indicated a significant difference between seasons for average baseflow dissolved reactive 

phosphorus concentration (F(2,150)=18.56, p<0.0001). Average baseflow dissolved reactive 

phosphorus concentration was significantly lower during the spring compared to summer 

(p<0.0001) and there was no significant difference between average baseflow dissolved reactive 

phosphorus concentration between spring and autumn or between summer and autumn. 

 The one-way ANOVA indicated a significant difference between spring, summer, and 

autumn for average stormflow dissolved reactive phosphorus concentration (F(2,188)=3.61, 

p<0.05). Average stormflow dissolved reactive phosphorus concentration was significantly 

higher during the spring compared to summer (p<0.05), and there was no significant difference 
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between spring and autumn or between summer and autumn. Storm events had a significant 

effect on dissolved reactive concentration as average stormflow dissolved reactive phosphorus 

concentration was significantly higher than average baseflow dissolved reactive phosphorus 

concentration during each season (Spring: p<0.0001, Summer: p<0.0001, Autumn: p<0.0001). 

 The one-way ANOVA indicated no significant difference in average baseflow dissolved 

reactive phosphorus load between seasons at Six Mile Creek (F(2,150)=0.674, p=0.511), but did 

indicate a significant difference in average stormflow dissolved reactive phosphorus load 

(F(2,188)=9.53, p<0.001). Average stormflow dissolved reactive phosphorus load was 

significantly higher during the spring (Spring-Summer: p<0.001, Spring-Autumn: p<0.01), and 

there was no significant difference between summer and autumn. For each season, average 

dissolved reactive phosphorus load was significantly higher during stormflow conditions 

compared to baseflow (Spring: p<0.01, Summer: p<0.0001, Autumn: p<0.0001).  

 At Money Creek, dissolved reactive phosphorus concentration ranged from 4.35 μg/L to 

430 μg/L, which both occurred during the summer (Figures 18 and 19). During total flow 

conditions, there was no significant difference in average dissolved reactive phosphorus 

concentration between summer and autumn (Table 9). 

 Dissolved reactive phosphorus load at Money Creek ranged from 3.84x10-3 g/s to 2.57 

g/s, which both occurred during the summer (Figure 20). During total flow conditions, there was 

no significant difference in average dissolved reactive phosphorus load between summer and 

autumn. 

 Changes in the season did not have any effect on dissolved reactive phosphorus 

concentration or load at Money Creek, but storm events did. There was also no significant 

difference between summer and autumn for average baseflow or average stormflow dissolved 
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reactive phosphorus concentration. For each season, average stormflow concentration was 

significantly greater than average baseflow concentration (Summer: p<0.0001, Autumn: 

p<0.0001).   

 There was also no significant difference between summer and autumn for average 

baseflow and average stormflow dissolved reactive phosphorus load. For each season, average 

stormflow dissolved reactive phosphorus load was significantly greater than average baseflow 

load (Summer: p<0.001, Autumn: p<0.0001). 

 There was no significant difference in average baseflow or average stormflow dissolved 

reactive phosphorus concentration between Six Mile Creek and Money Creek during summer or 

autumn. Money Creek had significantly higher average baseflow dissolved reactive phosphorus 

loads compared to Six Mile Creek (Summer: p<0.001, Autumn: p<0.01). There was no 

significant difference in average stormflow dissolved reactive phosphorus load between the two 

creeks.  
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Table 8. Mean dissolved reactive phosphorus concentration and load (± standard error of the 

mean) during baseflow, stormflow, and total flow during each season at Six Mile Creek. 

Six Mile 

Creek 

Baseflow 

Conc. 

(μg/L) 

Stormflow 

Conc. 

(μg/L) 

Total 

Flow 

Conc. 

(μg/L) 

Baseflow 

Load 

(mg/s) 

Stormflow 

load 

(g/s) 

Total 

Flow 

Load  

(g/s) 

Spring 
21.0 

(±1.51) 

189 

(±32.4) 

75.1 

(±12.2) 

12.1 

(±1.68) 

2.52 

(±0.81) 

0.821 

(±0.275) 

Summer 
43.7 

(±4.10) 

127 

(±10.3) 

105 

(±8.22) 

16.3 

(±2.48) 

0.433 

(±0.095) 

0.322 

(±0.072) 

Autumn 
31.4 

(±6.13) 

179 

(±18.6) 

144 

(±16.6) 

10.1 

(±2.34) 

0.261 

(±0.040) 

0.202 

(±0.034) 

 

 

 

Table 9. Mean dissolved reactive phosphorus concentration and load (± standard error of the 

mean) during baseflow, stormflow, and total flow during each season at Money Creek (MCH). 

Money 

Creek 

Baseflow 

Conc. 

(μg/L) 

Stormflow 

Conc. 

(μg/L) 

Total 

Flow 

Conc. 

(μg/L) 

Baseflow 

Load 

(mg/s) 

Stormflow 

load  

(g/s) 

Total 

Flow 

Load  

(g/s) 

Spring N.A. N.A. N.A. N.A. N.A. N.A. 

Summer 
53.3 

(±4.86) 

121 

(±11.7) 

105 

(±9.43) 

36.7 

(±5.25) 

0.263 

(±0.055) 

0.209 

(±0.043) 

Autumn 
44.9 

(±9.04) 

152 

(±14.1) 

129 

(±13.1) 

44.6 

(±10.7) 

0.314 

(±0.056) 

0.256 

(±0.047) 
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Figure 18. Dissolved Reactive Phosphorus concentration at Six Mile and 

Money Creek. 
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Figure 19. Box and whisker plots showing dissolved reactive 

phosphorus concentration at Six Mile and Money Creek 

during each season as well as during baseflow and stormflow. 
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Figure 20. Dissolved reactive phosphorus load at Six Mile and Money 

Creek during the study period, and seasonal baseflow and stormflow 

dissolved reactive phosphorus load box and whisker plots. 
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Relationship Between Load and Discharge 

Nitrate Load versus Discharge 

At Six Mile Creek, as discharge increased, nitrate load also increased (Figure 18). 

Regression analysis showed a strong relationship between nitrate load and discharge that 

followed a square root model during each season and the study period (Table 10). Analysis of 

covariance (ANCOVA) indicated that each season had significantly different slopes (Spring-

Summer: p<0.0001, Spring-Autumn: p<0.001, Summer-Autumn: p<0.0001) with spring having 

the highest slope and summer having the lowest. 

 Nitrate load also increased as discharge increased at Money Creek. Regression analysis 

showed a strong the relationship between nitrate load and discharge that followed a linear model 

during each season and the study period (Table 11). Analysis of covariance indicated a 

significant difference in slope between summer and autumn (p<0.0001) with autumn having a 

higher slope.   

 

 

Table 10. Nitrate load and discharge regression analysis at Six Mile Creek.  

Six Mile 

Creek 
Model Transformation Slope y-intercept R-Squared p-value 

Spring Square Root x=√� 45.43 -28.51 0.925 <0.0001 

Summer Square Root x=√� 8.82 -3.14 0.771 <0.0001 

Autumn Square Root x=√� 11.25 -4.37 0.886 <0.0001 

Study 

Period 
Square Root x=√� 34.45 -22.43 0.725 <0.0001 

 

 

 

Table 11. Nitrate load and discharge regression analysis at Money Creek. 

Money 

Creek 
Model Transformation Slope y-intercept R-Squared p-value 

Summer Linear None 5.31 -2.18 0.872 <0.0001 

Autumn Linear None 9.64 0.59 0.946 <0.0001 

Study 

Period 
Linear None 6.98 0.02 0.832 <0.0001 
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Figure 21. Nitrate load vs. discharge at Six Mile and Money Creek. Regression 

lines: black (study period), red (spring), blue (summer), green (autumn). 
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Total Phosphorus Load versus Discharge  

At Six Mile Creek, as discharge increased, total phosphorus load also increased (Figure 

22). Regression analysis showed a strong relationship between total phosphorus load and 

discharge that followed a power model during each season and the study period (Table 12). 

Analysis of covariance indicated that each season had significantly different slopes (Spring-

Summer: p<0.0001, Spring-Autumn: p<0.05, Summer-Autumn: p<0.0001) with autumn having 

the highest slope and summer have the lowest.  

At Money Creek, as discharge increased, total phosphorus load also increased. 

Regression analysis showed a strong relationship between total phosphorus load and discharge 

that followed a linear model during each season and the study period (Table 13). Analysis of 

covariance indicated no significant difference in slope or y-intercept between summer and 

autumn.  
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Table 12. Total phosphorus load and discharge regression analysis at Six Mile Creek. 

Six Mile 

Creek 
Model Transformation Slope y-intercept R-Squared P-Value 

Spring Power 
y=log10(y) 

x=log10(x) 
1.86 -1.15 0.951 <0.0001 

Summer Power 
y=log10(y) 

x=log10(x) 
1.53 -0.77 0.940 <0.0001 

Autumn Power 
y=log10(y) 

x=log10(x) 
2.05 -0.66 0.910 <0.0001 

Study 

Period 
Power 

y=log10(y) 

x=log10(x) 
1.72 -0.93 0.870 <0.0001 

 

 

 

Table 13. Total phosphorus load and discharge regression analysis at Money Creek 

Money 

Creek 
Model Transformation Slope y-intercept R-Squared p-value 

Summer Linear None 0.308 -0.13 0.867 <0.0001 

Autumn Linear None 0.289 -0.16 0.823 <0.0001 

Study 

Period 
Linear None 0.300 -0.14 0.851 <0.0001 
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Figure 22. Total phosphorus load vs. discharge at Six Mile and Money Creek 

Regression lines: black (study period), red (spring), blue (summer), green (autumn). 
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Total Suspended Sediment Load versus Discharge 

At Six Mile Creek, as discharge increased, total suspended sediment load also increased 

(Figure 23). Regression analysis showed a strong relationship between total suspended sediment 

load and discharge that followed a power model during each season and the study period (Table 

14). Analysis of covariance indicated that each season had significantly different slopes (Spring-

Summer: p<0.01, Spring-Autumn: p<0.05, Summer-Autumn: p<0.0001) with autumn having the 

highest slope, and summer having the lowest. 

 At Money Creek, total suspended sediment load also increased as discharge increased. 

Regression analysis showed a strong relationship between total suspended sediment load and 

discharge that followed a quadratic model during each season and the study period (Table 15). 

Analysis of covariance indicated a significant difference in slope between summer and autumn 

(p<0.0001) with summer having a higher slope.  
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Table 14. Total suspended sediment load and discharge regression analysis at Six Mile Creek. 

Six Mile 

Creek 
Model Transformation Slope Intercept R-Squared p-value 

Spring Power 
y=log10(y) 

x=log10(x) 
1.97 -1.02 0.905 <0.0001 

Summer Power 
y=log10(y) 

x=log10(x) 
1.76 -0.76 0.911 <0.0001 

Autumn Power 
y=log10(y) 

x=log10(x) 
2.30 -0.80 0.792 <0.0001 

Study 

Period 
Power 

y=log10(y) 

x=log10(x) 
1.90 -0.89 0.866 <0.0001 

 

 

 

Table 15. Total suspended sediment load and discharge regression analysis at Money Creek. 

Money 

Creek 
Model Transformation Slope Intercept R-Squared p-value 

Summer Quadratic y=
� 5.62 3.21 0.837 <0.0001 

Autumn Quadratic y=
� 4.24 2.01 0.836 <0.0001 

Study 

Period 
Quadratic y=
� 5.06 2.90 0.786 <0.0001 



60 

 

 

Figure 23. Total suspended sediment load vs. discharge at Six Mile and Money 

Creek. Regression lines: black (study period), red (spring), blue (summer), green 

(autumn). 
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Dissolved Reactive Phosphorus Load versus Discharge 

At Six Mile Creek, as discharge increased, dissolved reactive phosphorus load also 

increased (Figure 24). Regression analysis showed a strong relationship between dissolved 

reactive phosphorus load and discharge that followed a power model during each season and the 

study period (Table 16). Analysis of covariance indicated a significant difference in slope 

between spring and summer (p<0.01), and between summer and autumn (p<0.0001) with 

summer having the lowest slope. There was no significant difference in slope between spring and 

autumn, but spring had a significantly higher y-intercept compared to autumn (p<0.0001).  

 At Money Creek, as discharge increased, dissolved reactive phosphorus load also 

increased. Regression analysis showed a strong relationship between dissolved reactive 

phosphorus load and discharge that followed a linear model during each season and the study 

period (Table 17). Analysis of covariance indicated a significant difference in slope between 

summer and autumn (p<0.01) with slope being higher during the summer. 
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Table 16. Dissolved reactive phosphorus load and discharge regression analysis at Six Mile 

Creek. 

Six Mile 

Creek 
Model Transformation Slope Intercept R-Squared p-value 

Spring Power 
y=log10(y) 

x=log10(x) 
1.95 -1.51 0.817 <0.0001 

Summer Power 
y=log10(y) 

x=log10(x) 
1.66 -1.01 0.930 <0.0001 

Autumn Power 
y=log10(y) 

x=log10(x) 
2.08 -0.90 0.854 <0.0001 

Study 

Period 
Power 

y=log10(y) 

x=log10(x) 
1.82 -1.22 0.773 <0.0001 

 

 

 

Table 17. Dissolved reactive phosphorus load and discharge regression analysis at Money Creek. 

Money 

Creek 
Model Transformation Slope Intercept R-Squared p-value 

Summer Linear None 0.267 -0.158 0.863 <0.0001 

Autumn Linear None 0.204 -0.106 0.825 <0.0001 

Study 

Period 
Linear None 0.246 -0.146 0.841 <0.0001 
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Figure 24. Dissolved reactive phosphorus load vs. discharge at Six Mile and 

Money Creek. Regression lines: black (study period), red (spring), blue (summer), 

green (autumn). 
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Relationship Between Concentration and Discharge 

Nitrate Concentration versus Discharge 

Nitrate concentration greatly varied during low and high flow at Six Mile and Money 

Creek throughout the study period (Figure 25). Regression analysis at both creeks showed no 

relationship between nitrate concentration and discharge during the study period or during any 

season (Tables 18 and 19). 

 

Table 18. Nitrate concentration and discharge regression analysis at Six Mile Creek. 

Six Mile 

Creek 
Model Transformation Slope Intercept R-Squared p-value 

Spring Linear None -0.044 10.4 0.0125 0.167 

Summer Linear None -0.281 5.36 0.0726 <0.01 

Autumn Linear None -0.359 6.74 0.0275 0.226 

Study 

Period 
Linear None -0.009 7.61 0.00009 0.859 

 

 

 

Table 19. Nitrate concentration and discharge regression analysis at Money Creek. 

Money 

Creek 
Model Transformation Slope Intercept R-Squared p-value 

Summer Linear None -0.342 7.87 0.056 0.05 

Autumn Linear None 0.271 8.59 0.051 0.151 

Study 

Period 
Linear None -0.087 8.05 0.003 0.500 
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Figure 25. Nitrate concentration vs. discharge at Six Mile and Money Creek. 

Regression lines: black (study period), red (spring), blue (summer), green 

(autumn). 
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Total Phosphorus Concentration versus Discharge 

At Six Mile Creek, as discharge increased, total phosphorus concentration also increased 

(Figure 26). Regression analysis showed a strong relationship between total phosphorus 

concentration and discharge that followed a square root model during each season and the study 

period (Table 20). Analysis of covariance indicated a significant difference in slope between 

each season (Spring-Summer: p<0.01, Spring-Autumn: p<0.0001, Summer-Autumn: p<0.0001) 

with slope being the highest during the autumn and lowest during the summer. 

At Money Creek, total phosphorus concentration was more varied during periods of 

lower discharge. Regression analysis showed a weak relationship between total phosphorus 

concentration and discharge during the study period and summer that followed a power model, 

and showed there was no relationship during the autumn (Table 21).  
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Table 20. Total phosphorus concentration and discharge regression analysis at Six Mile Creek. 

Six Mile 

Creek 
Model Transformation Slope Intercept R-Squared p-value 

Spring Square root x=√� 220 -113 0.894 <0.0001 

Summer Square root x=√� 186 -3.96 0.730 <0.0001 

Autumn Square root x=√� 390 -133 0.683 <0.0001 

Study 

Period 
Square root x=√� 210 -51.4 0.746 <0.0001 

 

 

 

Table 21. Total phosphorus concentration and discharge regression analysis at Money Creek. 

Money 

Creek 
Model 

Relationship/ 

Transformation 
Slope Intercept R-Squared p-value 

Summer Power 
y=log10(y) 

x=log10(x) 
0.315 2.15 0.231 <0.0001 

Autumn Power 
y=log10(y) 

x=log10(x) 
0.282 2.10 0.084 0.063 

Study 

Period 
Power 

y=log10(y) 

x=log10(x) 
0.291 2.14 0.149 <0.0001 
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Figure 26. Total phosphorus concentration vs. discharge at Six Mile and Money 

Creek. Regression lines: black (study period), red (spring), blue (summer), green 

(autumn). 

 



69 

Total Suspended Sediment Concentration versus Discharge 

At Six Mile Creek, total suspended sediment concentration increased as discharge 

increased (Figure 27). Regression analysis showed a moderately strong relationship between 

total suspended sediment concentration and discharge during each season that followed a power 

model, and a strong relationship during the study period that followed a linear model (Table 22). 

Analysis of covariance indicated a significant difference in slope between each season (Spring-

Summer: p<0.01, Spring-Autumn: p<0.05, Summer-Autumn: p<0.0001) with autumn having the 

highest slope, and summer having the lowest. 

  At Money Creek, total suspended sediment concentration generally increased as 

discharge increased, but concentration was more varied during lower discharges. Regression 

analysis showed a weak relationship between total suspended sediment concentration and 

discharge that followed a linear model during each season and the study period (Table 23). 

Analysis of covariance indicated no significant difference in slope between summer and autumn 

and that summer had a significantly higher y-intercept (p<0.001). 
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Table 22. Total suspended sediment concentration and discharge regression analysis at Six Mile 

Creek. 

Six Mile 

Creek 
Model Transformation Slope Intercept R-Squared p-value 

Spring Power 
y=log10(y) 

x=log10(x) 
0.970 1.98 0.699 <0.0001 

Summer Power 
y=log10(y) 

x=log10(x) 
0.762 2.24 0.656 <0.0001 

Autumn Power 
y=log10(y) 

x=log10(x) 
1.30 2.20 0.550 <0.0001 

Study 

Period 
Linear 

y=log10(y) 

x=log10(x) 
109.8 53.5 0.737 <0.0001 

 

 

 

Table 23. Total suspended sediment concentration and discharge regression analysis at Money 

Creek. 

Money 

Creek 
Model Transformation Slope Intercept R-Squared p-value 

Summer Linear None 29.6 58.2 0.215 <0.0001 

Autumn Linear None 13.7 34.8 0.257 <0.001 

Study 

Period 
Linear None 22.7 52.3 0.162 <0.0001 
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Figure 27. Total suspended sediment concentration vs. discharge at Six Mile and 

Money Creek. Regression lines: black (study period), red (spring), blue (summer), 

green (autumn). 
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Dissolved Reactive Phosphorus Concentration versus Discharge 

At Six Mile Creek, dissolved reactive phosphorus concentration increased as discharge 

increased (Figure 28). Regression analysis showed a strong relationship between dissolved 

reactive phosphorus concentration and discharge during each season and the study period that 

followed a square root model (Table 24). Analysis of covariance indicated a significant 

difference in slope between spring and autumn (p<0.0001), and between summer and autumn 

(p<0.001) with slope being higher during the autumn. There was no significant difference in 

slope between spring and summer, however spring had a significantly higher y-intercept 

(p<0.0001). 

At Money Creek, dissolved reactive phosphorus concentration generally increased as 

discharge increased, but concentration was varied during low and medium flow. Regression 

analysis showed a weak relationship between dissolved reactive phosphorus concentration and 

discharge during the summer and the study period that followed a square root model, and showed 

no relationship during the autumn (Table 25).   
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Table 24. Dissolved reactive phosphorus concentration and discharge regression analysis at Six 

Mile Creek 

Six Mile 

Creek 
Model Transformation Slope Intercept R-Squared p-value 

Spring Square root x=√� 147 -81.7 0.845 <0.0001 

Summer Square root x=√� 131 -20.7 0.834 <0.0001 

Autumn Square root x=√� 300 -132 0.671 <0.0001 

Study 

Period 
Square root x=√� 144 -46 0.732 <0.001 

 

 

 

Table 25. Dissolved reactive phosphorus concentration and discharge regression analysis at 

Money Creek. 

Money 

Creek 
Model Transformation Slope Intercept R-Squared p-value 

Summer Square root x=√� 103 -6.09 0.269 <0.0001 

Autumn Square root x=√� 35.3 85.0 0.038 0.213 

Study 

Period 
Square root x=√� 82.5 18.9 0.186 <0.0001 
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Figure 28. Dissolved reactive phosphorus concentration vs. discharge at Six Mile 

and Money Creek. Regression lines: black (study period), red (spring), blue 

(summer), green (autumn). 
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Relationship Amongst Water Quality Parameters 

Total Phosphorus and Turbidity Relationship 

At Six Mile Creek, total phosphorus concentration increased as turbidity increased 

(Figure 29). Regression analysis showed a strong relationship between total phosphorus 

concentration and turbidity during the spring, summer and study period that followed a linear 

and square root model respectively (Table 26). The relationship during the autumn also followed 

a square root model, but was not as strong. Analysis of covariance indicated no significant 

difference in slope between summer and autumn and that autumn had a significantly higher y-

intercept (p<0.01). 

 At Money Creek, total phosphorus concentration increased as turbidity increased. 

Regression analysis showed a moderately strong relationship between total phosphorus 

concentration and turbidity during each season and the study period that followed a power model 

(Table 27). Analysis of covariance indicated no significant difference in slope between summer 

and autumn and that autumn had a significantly higher y-intercept (p<0.0001). 
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Table 26. Total phosphorus concentration and turbidity regression analysis at Six Mile Creek. 

Six Mile 

Creek 
Model Transformation Slope Intercept R-Squared p-value 

Spring Linear Linear 0.662 15.77 0.883 <0.0001 

Summer 
Square 

root 
x=√� 21.3 -31.9 0.772 <0.0001 

Autumn 
Square 

root 
x=√� 17.5 47.5 0.434 <0.0001 

Study 

Period 

Square 

root 
x=√� 23.0 -65.9 0.727 <0.0001 

 

 

 

Table 27. Total phosphorus concentration and turbidity regression analysis at Money Creek. 

Money 

Creek 
Model Transformation Slope Intercept R-Squared p-value 

Summer Power 
y=log10(y) 

x=log10(x) 
0.66 1.03 0.512 <0.0001 

Autumn Power 
y=log10(y) 

x=log10(x) 
0.733 1.07 0.499 <0.0001 

Study 

Period 
Power 

y=log10(y) 

x=log10(x) 
0.576 1.22 0.512 <0.0001 
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Figure 29. Total phosphorus concentration vs. turbidity at Six Mile and Money 

Creek. Regression lines: black (study period), red (spring), blue (summer), green 

(autumn). 
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 Total Suspended Sediment and Turbidity Relationship 

At both Six Mile and Money Creek, total suspended sediment concentration increased as 

turbidity increased (Figure 30). Regression analysis showed a strong relationship between total 

suspended sediment concentration and turbidity at both Six Mile and Money Creek that followed 

a linear model (Table 28).  

 

Table 28. Total suspended sediment concentration and turbidity regression analysis at Six Mile 

and Money Creek.  

Study Site Model Transformation Slope Intercept R-Squared p-value 

Six Mile 

Creek 
Linear None 1.67 -13.5 0.869 <0.0001 

Money 

Creek 
Linear None 1.47 4.46 0.926 <0.0001 
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Figure 30. Total suspended sediment concentration vs. turbidity regression at Six Mile 

and Money Creek.  
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Total Suspended Sediment and Total Phosphorus Relationship 

At Six Mile Creek, total phosphorus concentration increased as total suspended sediment 

concentration increased (Figure 31). Regression analysis showed a strong relationship between 

total phosphorus concentration and total suspended sediment concentration that followed a 

power model during each season and during the study period (Table 29). Analysis of covariance 

indicated a significant difference between spring and summer (p<0.01) and spring and autumn 

(p<0.001) with spring have a higher slope. There was no significant difference in slope between 

summer and autumn, and autumn have a significantly greater y-intercept (p<0.0001). 

 At Money Creek, total phosphorus concentration increased as total suspended sediment 

concentration increased. Regression analysis showed a strong relationship between total 

phosphorus concentration and total suspended sediment concentration during the summer, and a 

moderately strong relationship during the autumn and the study period (Table 30). Analysis of 

covariance indicated no significant difference in slope between summer and autumn and that 

autumn had a significantly higher y-intercept (p<0.0001). 
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Table 29. Total phosphorus and total suspended sediment concentration regression analysis at 

Six Mile Creek. 

Six Mile 

Creek 
Model Transformation Slope Intercept R-Squared p-value 

Spring Power 
y=log10(y) 

x=log10(x) 
0.744 0.358 0.819 <0.0001 

Summer Power 
y=log10(y) 

x=log10(x) 
0.597 0.876 0.761 <0.0001 

Autumn Power 
y=log10(y) 

x=log10(x) 
0.594 0.994 0.718 <0.0001 

Study 

Period 
Power 

y=log10(y) 

x=log10(x) 
0.719 0.543 0.736 <0.0001 

 

 

 

Table 30. Total phosphorus and total suspended sediment concentration regression analysis at 

Money Creek. 

Money 

Creek 
Model Transformation Slope Intercept R-Squared p-value 

Summer Power 
y=log10(y) 

x=log10(x) 
0.630 0.971 0.738 <0.0001 

Autumn Power 
y=log10(y) 

x=log10(x) 
0.598 1.15 0.536 <0.0001 

Study 

Period 
Power 

y=log10(y) 

x=log10(x) 
0.561 1.14 0.587 <0.0001 
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Figure 31. Total phosphorus concentration vs. total suspended sediment 

concentration at Six Mile and Money Creek. Regression lines: black (study 

period), red (spring), blue (summer), green (autumn). 
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Total Suspended Sediment and Dissolved Reactive Phosphorus Relationship 

At Six Mile Creek, dissolved phosphorus concentration increased as total suspended 

sediment concentration increased (Figure 32). Regression analysis showed a strong relationship 

between dissolved reactive phosphorus concentration and total suspended sediment 

concentration that followed a square root model during the spring, summer, and study period, 

and a moderately strong relationship that followed a power model during the autumn (Table 31). 

Analysis of covariance indicated no significant difference in slope or y-intercept between spring 

and summer. 

 At Money Creek, dissolved reactive phosphorus concentration increased as total 

suspended sediment concentration increased. Regression analysis showed a moderately strong 

relationship between dissolved reactive phosphorus concentration and total suspended sediment 

concentration that followed a linear model during the summer and study period, and a power 

model during the autumn (Table 32).  
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Table 31. Dissolved reactive phosphorus and total suspended sediment concentration regression 

analysis at Six Mile Creek. 

Six Mile 

Creek 
Model Transformation Slope Intercept R-Squared p-value 

Spring 
Square 

Root 
x=√� 12.0 -58.9 0.726 <0.0001 

Summer 
Square 

Root 
x=√� 10.7 -33.3 0.814 <0.0001 

Autumn Power 
y=log10(y) 

x=log10(x) 
0.551 0.840 0.490 <0.0001 

Study 

Period 

Square 

Root 
x=√� 11.5 -41.1 0.667 <0.0001 

 

 

 

Table 32. Dissolved reactive phosphorus and total suspended sediment concentration regression 

analysis at Money Creek. 

Money 

Creek 
Model Transformation Slope Intercept R-Squared p-value 

Summer Linear None 0.965 14.8 0.674 <0.0001 

Autumn Power 
y=log10(y) 

x=log10(x) 
0.644 0.950 0.625 <0.0001 

Study 

Period 
Linear None 0.908 37.5 0.491 <0.0001 
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Figure 32. Dissolved reactive phosphorus concentration vs. total suspended 

sediment concentration at Six Mile and Money Creek. Regression lines: black (study 

period), red (spring), blue (summer), green (autumn). 
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Correlations 

Nitrate and Total Phosphorus Correlation 

Correlation analysis at Six Mile Creek showed a weak negative correlation between 

nitrate and total phosphorus concentration where nitrate concentration decreased when total 

phosphorus concentration increased (Figure 33). The correlation coefficient across all the data 

during the study period was -0.250. Within each season there were weak negative correlations of 

-0.171, -0.272, and -0.293 for spring, summer, and autumn respectively.  

Correlation analysis at Money Creek showed a moderate negative correlation between 

nitrate and total phosphorus concentration where nitrate concentration decreased when total 

phosphorus concentration increased. During the study period, the correlation coefficient was        

-0.519. During the summer and autumn, the correlation coefficients were -0.661 and -0.417 

respectively.  
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Figure 33. Nitrate concentration vs. total phosphorus concentration at Six Mile 

and Money Creek. 
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Total Phosphorus and Dissolved Reactive Phosphorus Concentration Correlation 

The correlation coefficient between dissolved reactive phosphorus and total phosphorus 

at Six Mile across all of the data during the study period was 0.937 (Figure 34). This was a 

strong correlation and when total phosphorus concentration increased, dissolved reactive 

phosphorus concentration also increased. Within each season, there were strong correlation 

coefficients of 0.955, 0.946, and 0.819 during the spring, summer, and autumn respectively. 

At Money Creek, the dissolved reactive phosphorus and total phosphorus correlation was 

strong with a correlation coefficient of 0.902. This indicates that when total phosphorus 

concentration increased at Money Creek, dissolved reactive phosphorus concentration also 

increased. Each season also had strong correlation coefficients of 0.819 and 0.946 during the 

summer and autumn respectively.  
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Figure 34. Dissolved reactive phosphorus concentration vs. total phosphorus 

concentration at Six Mile and Money Creek. 
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Cumulative Loads 

Total Phosphorus Cumulative Load 

The cumulative total phosphorus load during the study period at Six Mile and Money 

Creek were 1.96x103 kg and 1.90x103 kg respecitvely (Figure 35). Total phosphorus cumulative 

load increased at a quicker rate at Money Creek compared to Six Mile Creek. After the activation 

of the Money Creek site on 7/22/2016, the cumulative total phosphorus load at Six Mile Creek 

was 8.32x102 kg (Figure 35). Total phosphorus load showed a step-like pattern where load would 

dramatically increase in a short period of time multiple times throughout the sampling period.. At 

Six Mile Creek 74% of total phosphorus load occurred during stormflow conditions. At Money 

Creek, 67% of total phosphorus loss occurred during stormflow conditions. Discharge above 

median flow accounted for 90% of cumulative load at Six Mile Creek and 93% at Money Creek. 
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Figure 35. Cumulative total phosphorus load at Six Mile and Money Creek during 

the entire study period and during the same time period. 
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Nitrate Cumulative Load 

Cumulative nitrate load at Six Mile and Money Creek were 8.13x104 kg and 1.01x105 kg 

repsepctively (Figure 36). Cumulative nitrate load showed a step-like pattern where a higher 

amount nitrate was transported in a short period of time during a storm event. Cumulative nitrate 

load accumulated at a quicker rate at Money Creek compared to Six Mile Creek. After the 

installation of the Money Creek site on 7/22/2016, cumulative nitrate load at Six Mile Creek was 

3.19x104 kg (Figure 36). Stormflow conditions accounted for 37% of cumulative load at Six 

Mile Creek and 48% at Money Creek. Discharge above the median flow accounted for 85% of  

cumulative load at Six Mile Creek and 87% at Money Creek. 
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Figure 36. Cumulative nitrate load at Six Mile and Money Creek during the entire 

study period and during the same time period. 
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Total Suspended Sediment Cumulative Load 

Cumulative total suspended sediment load at Six Mile and Money Creek were 2.92x106 

kg and 8.88x105 kg respectively (Figure 37). Cumulative total suspended sediment load showed 

a step-like pattern at both creeks where most of the load occurred in a short period of time. 

Cumulative total suspended sediment load accumulated at a quicker rate at Money Creek 

compared to Six Mile Creek. After the installation of the Money Creek site on 7/22/2016, 

cumulative total suspended sediment load at Six Mile Creek was 7.20x105 kg (Figure 37). 

Stormflow conditions at Six Mile Creek accounted for 86% of cumulative total suspended 

sediment load and 71% at Money Creek. Discharge above median flow accounted for 94% of 

cumulative load at Six Mile Creek and 88% at Money Creek.  
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Figure 37. Cumulative total suspended sediment load at Six Mile and Money Creek 

during the entire study period and during the same time period. 
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Dissolved Reactive Phosphorus Cumulative Load 

Cumulative dissolved reactive phosphorus loss at Six Mile and Money Creek were 

1.31x103 kg and 1.30x103 kg respectively (Figure 38). Cumulative dissolved reactive phosphorus 

load showed a step-like pattern at both creeks where a high amount of dissolved reactive 

phosphorus was transported in a short period of time during a storm event. Cumulative dissolved 

reactive phosphorus load accumulated at a quicker rate at Money Creek compared to Six Mile 

Creek. After the installation of the Money Creek site on 7/22/2016, cumulative dissolved 

reactive phosphorus load at Six Mile Creek was 5.44x102 kg. Stormflow conditions accounted 

for 75% of cumulative load at Six Mile Creek and 67% at Money Creek. Discharge above 

median flow accounted for 92% of cumulative load at both sites.  
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Figure 38. Cumulative dissolved reactive phosphorus load at Six Mile and Money 

Creek during the entire study period and during the same time period. 
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Water Cumulative Load 

Cumulative water load at Six Mile and Money Creek were 9.86x106 m3 and 1.11x107 m3 

respectively (Figure 39). Cumulative water load showed a step-like pattern where a large amount 

of water moved passed the sites in a short period of time. Water load accumulated at a quicker 

rate at Money Creek compared to Six Mile Creek. After the installation of the Money Creek site 

on 7/22/2016, ccumulative water load at Six Mile Creek was 4.66x106 m3 (Figure 39). Stormflow 

conditions accounted for 42% of the cumulative water load at Six Mile Creek and 43% at Money 

Creek. Discharge above median flow accounted for 80% of the cumulative water load at Six 

Mile Creek and 77% at Money Creek. 
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Figure 39. Cumulative water load at Six Mile and Money Creek during the entire 

study period and during the same time period. 
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Hysteresis 

 

 

 

Storm 

Event 

Six Mile Creek 

Direction 

Money Creek 

Direction 
Season 

Event 1 
Counterclockwise 

Figure-eight 
N.A. Spring 

Event 2 
Counterclockwise 

Figure-eight 
N.A. Spring 

Event 3 Clockwise N.A. Spring 

Event 4 Counterclockwise N.A. Spring 

Event 5 Clockwise N.A. Summer 

Event 6 
Counterclockwise 

Figure-eight 
N.A. Summer 

Event 7 Clockwise N.A. Summer 

Event 8 
Counterclockwise 

Figure-eight 
Clockwise Summer 

Event 9 Clockwise Clockwise Summer 

Event 10 Clockwise Clockwise Summer 

Event 11 Clockwise Clockwise Summer 

Event 12 Clockwise Clockwise Summer 

Event 13 Clockwise Clockwise Summer 

Event 14 No Event Clockwise Summer 

Event 15 No Event Clockwise Summer 

Event 16 Counterclockwise Clockwise Autumn 

Event 17 Counterclockwise Clockwise Autumn 

Event 18 Counterclockwise No Event Autumn 

Event 19 Counterclockwise Clockwise Autumn 

 

 

 

During the spring at Six Mile Creek, there was one storm event with clockwise hysteresis 

loop, one storm event with a counterclockwise hysteresis loop, and two storms with a 

counterclockwise figure-eight pattern. During the summer at Six Mile Creek, there were seven 

storm events with clockwise loops, one storm event with a counterclockwise loop, and two 

events with a counterclockwise figure-eight pattern. During the summer at Money Creek, all 

eight storm events had clockwise loops. During the autumn at Six Mile Creek, all four storm 

Table 33. Hysteresis patterns at Six Mile and Money Creek. 
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events resulted in counterclockwise loops. During the autumn at Money Creek, all three storm 

events had clockwise loops. Hysteresis patterns for each event are located in Appendix A. 
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CHAPTER IV: DISCUSSION 

There were broad patterns in water quality that were generally similar at each stream. 

These patterns were seasonal, and primarily driven by the high agricultural land use, but were 

also influenced by precipitation as nutrients and sediment are usually transported to the streams 

during storm events. It is also possible that the urban landuse of upstream Six Mile Creek 

contributed to water degradation as northern Normal and Hudson, IL drain into the creek. There 

were some differences in total suspended sediment and phosphorus dynamics between each 

stream, but these are likely due to differences in stream gradient as each stream is in different 

stages of channel evolution.  

Seasonal Patterns 

Spring 

In the spring at Six Mile Creek, water quality was generally poorer compared to summer 

and autumn. During this time, the anhydrous ammonia fertilizer had undergone nitrification 

which increased the presence of nitrate on the fields. In addition, there was little to no vegetation 

in the fields to take up the nitrate for much of the spring. This allowed for a larger amount of 

nitrate to become dissolved and be transported to the creek through tile drainage and surface 

runoff after precipitation events. The seasonal nitrate concentration and load data (Table 2), and 

the nitrate load versus discharge regression analysis (Table 10 and Figure 21) support this idea. 

Similar patterns of higher nitrate concentration and loads during the spring in agricultural 

watersheds due to fertilizer application and increased runoff have been well documented in other 

studies (Arheimer and Linden 2000; Royer et al., 2006; Hoorman et al., 2008; Oeurng et al., 

2010; Ramos et al., 2015). 
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Total suspended sediment concentration and load were highest during storm events in 

spring likely due to the combination of larger precipitation events, and disturbed soil after crops 

were planted. During these precipitation events, it is likely that soil erosion occurred in the bare 

fields and sediment was transported to the creeks through surface runoff since total suspended 

sediment concentration and load increased during stormflow (Figures 15 and 17). It is also 

possible that higher discharges led to more streambank erosion and bank collapse as there was 

not much vegetation present which has been reported to help stabilize soil (Rey et al., 2004; 

Lefrancois 2007; Zuazo and Pleguezuelo, 2008; Holz et al., 2015), and the results of this study 

showed total suspended sediment concentration and load increased with discharge (Tables 14 

and 22, Figures 23 and 27). These results align well with other agricultural watershed studies 

where stormflow total suspended sediment concentrations and loads were highest during the 

spring with concentrations ranging from 1500 to 16000 mg/l due to streambank erosion and 

possible bank collapse (Salant et al., 2010; Oeurng et al., 2010a; Ramos et al., 2015). 

Phosphorus concentration and load were also high during the spring. Both total 

phosphorus and dissolved reactive phosphorus patterns were similar to those of total suspended 

sediment (Figures 31 and 32). This was expected since phosphorus tends to bind onto and move 

with sediment particles (Hart et al., 2004; Gentry et al., 2007; Ramos et al., 2015) and we found 

strong relationships between total suspended sediment and total phosphorus, and total suspended 

sediment and dissolved reactive phosphorus. There was some application of phosphorus on fields 

during the spring, so loss of this fertilizer could also potentially be a contributor to the highest 

phosphorus loads. This fertilizer phosphorus would most likely enter the streams bound to 

sediment particles.    
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Although the sample site at Money Creek had not yet been installed in the spring, it is 

likely that similar patterns in nutrient and total suspended sediment concentration and loads 

would have been seen since the land use and precipitation for both watersheds is similar. 

Spring Sediment Dynamics 

Sediment sources in spring were generally from throughout the catchment as spring 

hysteresis at Six Mile Creek generally showed counterclockwise or counterclockwise figure-

eight patterns (Table 33). Event 1 and Event 2 showed a counterclockwise figure-eight pattern 

which indicates a more complex sequence of sediment source contribution which has been 

reported in the literature, but has not been investigated in much depth (Megnouif et al., 2013; 

Sun et al., 2015). The initial clockwise pattern is thought to be caused by an early flushing and 

depletion of sediments from within the channel or nearby sources early in the storm event. At the 

falling limb, sediment from sources further upstream finally reach the site and cause the pattern 

to change to a counter-clockwise (Megnouif et al., 2013). The supply of sediment from further 

upstream may be from soil erosion from the bare fields throughout the catchment, or from the 

streambank as both are susceptible to erosion during this time (Steegen et al., 1998; Oeurng et 

al., 2010a). Gao and Joefsen (2011) reported similar figure-eight patterns to Event 1 and Event 2 

where turbidity on the rising limb was greater than on the falling limb, and suggested this may be 

due to depletion of sediment from the upstream sources because sediment supply was limited. 

Event 3 showed a clockwise hysteresis pattern which indicated a presence of readily 

available sediment within the channel and from nearby source areas such as a cut bank or from 

within the stream (Williams, 1989). The clockwise pattern also suggests sediment availability 

declined as the discharge continued to increase and that the sediment supply from across the 

catchment may have still been exhausted from Event 2 and had not yet been replenished. During 
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Event 4, the hysteresis pattern was counterclockwise which suggests that the sediment supply 

across the catchment had been replenished and could transport more sediment (Salant et al., 

2008). 

Summer 

During the summer, several aspects of water quality improved compared to spring. 

Nitrate, phosphorus and total suspended sediment concentration and load were generally lower 

during stormflow (Tables 2-9). One cause for the lower presence of nitrate may be uptake from 

crops. Also, the presence of vegetation in the fields inhibited rain drops from reaching the 

ground, slowed surface runoff, and stabilized the soil. This would lower the amount of water that 

could dissolve nitrate, erode soil, and reduce the overall amount of surface runoff and tile 

drainage that could occur. Since vegetation inhibited erosion and runoff by preventing rain drops 

from reaching the ground, it would take larger precipitation events to have an impact on 

discharge and the presence of nutrients and sediment in the both creeks, which is consistent with 

the patterns in these data.    

Lower nitrate concentrations and loads during summer due to a less runoff and available 

nitrate are consistent with the findings of Oeurng et al. (2010) where summer nitrate 

concentrations ranged from 5-10 mg/l compared to 15-42 mg/l in the spring. Royer et al. (2006) 

found summer to contribute the least nitrate to yearly nitrate load due to less runoff. Udawatta et 

al. (2004) and Udawatta et al. (2006) noted seasonal differences in nitrate and phosphorus 

transport and suggested the presence of vegetation during the summer had a large impact in the 

reduction of nutrient and sediment loss. Steegen et al. (1998) also reported lower suspended 

sediment concentrations due to an increase in vegetation.   
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Summer Sediment Dynamics 

 Sources of sediment at Six Mile Creek were more varied during the early summer, and 

became consistent mid-summer. Hysteresis patterns at Six Mile Creek during the early summer 

(Events 5-8) alternated between clockwise and counterclockwise figure-eight patterns, which 

suggests changes in the sources of sediment during each event (Williams 1989, Oeurng et al., 

2010a). Half of the precipitation events transported sediment from nearby sources or from within 

the channel itself (Events 5 and 7). The clockwise hysteresis of these events also suggests that 

there was less available sediment to be transported and sediment availability was progressively 

declining during the event as sediment from further upstream was deposited before it reached the 

site (Steegen et al., 1998; Oeurng et al., 2010a). The other half of the precipitation events 

probably transported sediment from nearby sources or within the channel initially, then from 

further upstream later on before sediment availability was depleted (Events 6 and 8). The rest of 

the storm events during the summer (Events 9-15) showed clockwise hysteresis patterns at both 

Six Mile and Money Creek which suggests there was a constant supply of sediment from nearby 

sources and within the stream bed that was rapidly exhausted during each storm event. Steegen et 

al. (1998) also observed primarily clockwise hysteresis patterns during the summer and 

suggested it may be due to decrease in soil erosion from higher vegetation cover.   

Autumn 

In the autumn, water quality generally decreased compared to summer, primarily for 

nitrate. Nitrate concentration and loads increased again probably due to decomposition of plant 

material, fertilizer application, and an increase in surface runoff. In late autumn, vegetation 

decay due to the onset of winter released nitrogen back onto the ground surface. Fertilizer was 

also applied during the autumn, as it is generally cheaper (Fernandez et al., 2009), however, it 
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may not have had much effect on the presence of nitrate as the anhydrous ammonia fertilizer 

may not have undergone much nitrification as average October and November temperature were 

14.4° and 7.8° C which is only about 2° C above average (U.S. Climate Data, 

http://www.usclimatedata.com/climate/normal/illinois/united-states/usil0861/2016/). The data 

also suggests fertilizer may not have undergone much nitrification as average nitrate 

concentration was still lower in the autumn compared to spring at Six Mile Creek (Table 2). 

Since there was a lack of vegetation after harvest, smaller precipitation events were needed to be 

able to dissolve and transport any available nitrate into the creeks, and this is evident in the data. 

Higher nitrate concentration and loads during the autumn compared to the summer due to 

fertilizer application and increased runoff are consistent with the literature (Royer et al., 2006; 

Udawatta et al., 2006; Ramos et al., 2015)    

At Six Mile Creek, total suspended sediment and total phosphorus concentrations and 

loads were similar to summer (Tables 4 and 6), even though there was less precipitation and 

smaller storm events (Figure 7). This is likely because soil had been disturbed when crops were 

removed during harvest. The bare fields allowed for more soil erosion, and surface runoff to 

occur even during smaller precipitation events and has also been seen in the literature (Royer et 

al., 2006; Lecce 2006; Gentry et al., 2007; Hanna, 2013; Holz et al., 2015). Vegetation along the 

creek banks also decayed, and the possibility for streambank erosion increased again. Had 

precipitation events been similar to those seen in the spring and summer, total suspended 

sediment and total phosphorus concentration and loads may have been more similar to spring.  

 At Money Creek, autumn total suspended sediment and phosphorus concentration and 

loads were generally similar when compared to summer (Tables 5 and 7). This may be due to 
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Money Creek having a more stable channel and lower gradient which makes it more difficult for 

streambank erosion to occur and for sediment to be transported.  

Autumn Sediment Dynamics 

 Sources of sediment in the autumn were different from the spring and summer for Six 

Mile Creek. In the autumn, all four storm events showed counterclockwise hysteresis patterns 

which suggests sediment came from throughout the watershed and sediment supply was never 

exhausted. This supply of sediment could be from enhanced soil erosion due to bare fields and 

from increased streambank erosion. Since precipitation events and discharge were smaller, not as 

much erosion occurred to exhaust sediment supply. At Money Creek, sediment sources 

continued to be similar to the summer, primarily from within the stream and from nearby 

sources. 

Storm Events 

Even though nitrate was introduced during storm events, nitrate concentrations 

sometimes decreased by as much as 7 mg/l due to dilution (Figure 9), causing average stormflow 

concentration to be lower than average baseflow concentration in both creeks (Tables 2 and 3). 

This dilution effect has been well documented in other studies where nitrate concentration can 

decrease by as much as 10 mg/L between the beginning of a storm event and peak discharge 

(Borah et al., 2003; Oeurng et al., 2010; Ramos et al., 2015). Even though stormflow nitrate 

concentration was lower than during baseflow, nitrate stormflow loads were still higher than 

baseflow loads partially due to higher discharge (Tables 2 and 3).   

Storm events led to higher concentrations and loads for total suspended sediment and 

phosphorus. At both Six Mile and Money Creek, each season had significantly greater total 

suspended sediment and phosphorus concentrations and loads during stormflow conditions 
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compared to baseflow conditions (Tables 4-9). This is likely due to sediment and phosphorus 

being introduced to the creeks through soil erosion, surface runoff, streambank erosion, and 

sediment already along the streambed becoming suspended as discharge increased during a storm 

event. This is evident in the data as sediment and phosphorus concentration would only increase 

during stormflow (Figures 12, 15, and 18). 

These results are similar to other studies in agricultural watersheds which reported 

dissolved reactive phosphorus and total phosphorus concentrations greater than 200 μg/l during 

storm events, and concentrations less than 50 μg/l during baseflow conditions (Borah et al., 

2003; Gentry et al., 2007; Sharpley et al., 2008; Ramos et al., 2015). Elevated total suspended 

sediment concentrations in excess of 2000 mg/l during stormflow have also been reported 

(Salant et al., 2008; Oeurng et al., 2010a; Ramos et al., 2015). 

Cumulative Loads 

Cumulative loading was heavily influenced by storm events, depending upon their 

frequency. The pattern of cumulative nitrate load at Six Mile and Money Creek were similar in 

that cumulative load gradually increased during baseflow conditions, and during stormflow 

conditions, cumulative load would increase at a quicker rate for a short period of time (Figure 

36). At Six Mile Creek, the greatest cumulative nitrate load occurred during the spring and 

lowest during the summer as that was when the highest and lowest nitrate concentrations and 

loads occurred (Figures 10 and 11). At Money Creek, the cumulative nitrate load was greater 

during the autumn compared to summer, but this was at least partially due to the sample station 

not being set up until July in addition to nitrate concentrations and loads being greater during the 

autumn (Figures 10 and 11). When Six Mile and Money Creek were compared on the same time 

scale (7/22/16 – 12/15/16), cumulative nitrate load accumulated at a greater rate at Money Creek 
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which is similar to the results of Hanna (2013). Money Creek experienced higher nitrate 

concentrations and loads likely due to its larger drainage basin and was able to transport more 

nitrate.  

The majority of cumulative nitrate load occurred during baseflow conditions at Six Mile 

Creek (63% of cumulative load). This result was different from the findings of Hanna (2013) and 

other studies in agricultural where the more than 60% of annual cumulative nitrate load occurred 

during stormflow (Royer et al., 2006; Oeurng et al., 2010). The majority of cumulative nitrate 

load at Money Creek occurred during stormflow conditions (52% of cumulative load) more 

closely matches these studies. It is important to note that stormflow still provided 36% of 

cumulative nitrate load at Six Mile Creek during only 17% of flow time. Most of cumulative 

nitrate load did occur when discharge was above median discharge at both Six Mile (79% of 

cumulative load) and Money Creek (83% of cumulative load) which more closely resembles the 

findings of Royer et al. (2006). This suggests both stormflow and elevated baseflow conditions 

after a storm event are when the most nitrate is being transported as this is when nitrate load is 

high due to the transport of nitrate through overland flow and tile drainage. 

The cumulative nitrate load during this study was much greater than the cumulative 

nitrate load reported by Hanna (2013) when data were analyzed during the same time period 

(July – December). During this time period, Hanna (2013) reported a cumulative nitrate load of 

2.01x102 kg at Six Mile Creek and 1.37x104 kg at Money Creek. During this study, the 

cumulative nitrate load at Six Mile Creek was over two orders of magnitude greater at 3.50x104 

kg, and at Money Creek, the cumulative nitrate load was almost one order of magnitude greater 

at 1.01x105 kg. The cause for such a difference is the study done by Hanna (2013) occurred 

during a drought year where the yearly precipitation was 20 to 30.5 centimeters below normal 
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(ISWS, 2013). The drought caused discharge to be low, and thus caused nitrate load to be low 

since nitrate load was found to be strongly related to discharge (Tables 10 and 11, Figure 21).   

When taking catchment size into account, nitrate load per hectare was more similar 

between Six Mile and Money Creek. Between 7/22/16 and 12/15/16, Six Mile Creek transported 

6.74 kg/ha (6.02 lbs/acre) and Money Creek transported 7.95 kg/ha (7.09 lbs/acre). Nitrate load 

per hectare at Six Mile Creek during its entire study period (4/21/16 – 12/15/16) was much 

higher at 17.2 kg/ha (15.3 lbs/acre) due to the greater amount of loading that occurred during the 

spring and early summer (Figure 36) and is likely a more accurate representation of nitrate load.     

The pattern of cumulative total suspended sediment load was similar between Six Mile 

and Money Creek in that during baseflow conditions, cumulative load would slowly increase 

over an extended period of time, and during stormflow conditions, cumulative load would 

greatly increase in a very short period of time because that is when the most sediment was being 

transported (Figure 37). At Six Mile Creek, the cumulative total suspended sediment load was 

greatest during the spring and lowest during the autumn as that is when the highest and lowest 

total suspended sediment loads occurred. At Money Creek, the greatest and lowest cumulative 

load occurred during the summer and autumn as that was also when the highest and lowest total 

suspended sediment loads occurred.  

When Six Mile and Money Creek were compared on the same time scale, cumulative 

total suspended sediment load was greater at Money Creek due to the larger catchment area 

which provided more discharge and higher total suspended sediment loads even though Six Mile 

Creek experienced higher total suspended sediment concentrations (Tables 6 and 7). When 

taking the size of the catchment areas into account, cumulative load per hectare at Six Mile 

Creek was 152 kg/ha (136 lbs/acre) which is greater than at Money Creek which was 69.9 kg/ha 
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(62.4 lbs/acre). During the entire study period at Six Mile Creek, loading was 617 kg/ha (551 

lbs/acre) due to the large amount of sediment loading that occurred during the spring (Figure 37). 

Six Mile Creek having a higher load per area was also seen by Hanna (2013), and this difference 

is likely due to Six Mile Creek being an actively incising creek which allows for a constant 

supply of sediment from degrading banks, whereas Money Creek has a more stable channel and 

a lower gradient which makes bank erosion and sediment transport more difficult.  

The fact that Money Creek has more stable channels, a lower gradient, and is not actively 

incising suggests it is further along in the stream channel evolution model and is closer to 

reaching a state of equilibrium compared to Six Mile Creek (Simon and Rinaldi, 2006). Since 

Six Mile Creek is incising, this suggests a steeper gradient, and stormflow is generally contained 

within the channel due to the elimination of floodplain interaction (Shields et al., 2010). Channel 

incision increases bank height and streambank erosion which eventually leads to bank collapse 

(Simon and Rinaldi, 2006). Streambank erosion and bank collapse are able to provide a 

consistent supply of sediment which can cause counter-clockwise and counter-clockwise figure-

eight hysteresis patterns depending on how much sediment is available (Salant et al., 2008; Gao 

and Josefson, 2011). Kinney (2005) found that 61% of the banks at Six Mile Creek were actively 

downcutting and incising into parent material and that streambank erosion was generating 90% 

of sediment entering Evergreen Lake. Since Money Creek is not actively downcutting, there is a 

less consistent supply of sediment as the primary source is from streambank erosion from lateral 

bank migration (Lake Bloomington Watershed TMDL, 2008). 

The cumulative total suspended sediment load during this study was much greater than 

the cumulative load reported by Hanna (2013) when data were recorded during the same time 

period. Hanna (2013) reported a cumulative total suspended sediment load of 4.89x102 kg at Six 
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Mile Creek and 3.38x103 kg at Money Creek. Cumulative total suspended sediment load at Six 

Mile Creek during this study was over three orders of magnitude greater with a cumulative load 

of 7.81x105 kg, and Money Creek was over two orders of magnitude greater at 8.88x105 kg. The 

cause for such a difference is because the study done by Hanna (2013) occurred during a drought 

year when not many storm events resulted in higher discharge which is when more total 

suspended sediment loading occurs (Tables 14 and 15, Figure 23)  

 At Six Mile Creek, 86% of cumulative total suspended sediment load occurred during 

stormflow conditions which accounted for 17% of flow time. At Money Creek, 71% of 

cumulative total suspended sediment load occurred during stormflow conditions which 

accounted for 24% of the study period time. These results align with other studies that have 

found between 56% and 95% of annual cumulative total suspended sediment load occurred 

during stormflow conditions (Oeurng et al., 2010a; Ramos et al., 2015). At Six Mile Creek, 

Event 2 alone was responsible for 61% of the cumulative load, and Event 2, Event 3, and Event 9 

were responsible for 79% of cumulative load. These results agree with other studies that found as 

much as 79% of cumulative total suspended sediment load can occur during just a few large 

storm events (Oeurng et al., 2010a; Ramos et al., 2015). 

The majority of cumulative total phosphorus and dissolved reactive phosphorus load at 

both Six Mile and Money Creek occurred during stormflow and above median flow conditions 

which is similar to other studies where as much as 65% of dissolved reactive phosphorus and 

80% of total phosphorus cumulative load occurred during stormflow (Royer et al., 2006; Gentry 

et al., 2007; Sharpley et al., 2008; Ramos et al., 2015). Dissolved reactive phosphorus and total 

phosphorus loads were higher during storm events because higher discharges were shown to 

transport more phosphorus (Tables 12, 13, 16, and 17, Figures 22 and 24), and sediment which 
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could transport adsorbed phosphorus (Tables 14 and 15, Figure 23). Event 2 alone was 

responsible for 42% of the cumulative total phosphorus load and 44% of the cumulative 

dissolved reactive phosphorus load at Six Mile Creek. This is similar to the findings of Sharpley 

et al. (2008) where large storm events have the greatest potential to transport large amounts of 

phosphorus.  

When Six Mile and Money Creek were compared on the same time scale, cumulative 

load was greater at Money Creek due to the larger catchment area providing more discharge and 

higher loads (Figures 35 and 38). When comparing cumulative load to catchment size, 

cumulative load per hectare was slightly greater at Six Mile Creek. At Six Mile Creek, 

cumulative total phosphorus and dissolved reactive phosphorus loads per hectare were 0.176 

kg/ha (0.157 lbs/acre) and 0.115 kg/ha (0.103 lbs/acre) respectively, compared to Money Creek 

which had cumulative total phosphorus and dissolved reactive phosphorus loads per hectare of 

0.150 kg/ha (0.133 lbs/acre) and 0.102 kg/ha (0.091 lbs/acre) respectively. Load per hectare may 

have been higher at Six Mile Creek compared to Money Creek because it also had a higher 

cumulative total suspended sediment load per hectare, which could transport more particulate 

phosphorus. During the entire study period at Six Mile Creek, total phosphorus and dissolved 

reactive phosphorus load per hectare were 0.414 kg/ha (0.369 lbs/acre) and 0.277 kg/ha (0.247 

lbs/acre) respectively.    

. 
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CHAPTER V: CONCLUSION 

Storm events were the main drivers of nitrate, phosphorus, and suspended sediment 

transport. There were seasonal patterns in water quality, with the highest water quality generally 

occurring during the summer, and the lowest during the spring. 

Nitrate concentrations and loads were greatest during the spring likely due to the 

abundance of nitrate from fertilizer application. Nitrate became progressively less present during 

the summer possibly due to plant uptake, and due to vegetation lowering the amount of surface 

runoff that could occur and transport the nutrient. In the autumn, nitrate concentrations increased 

again after harvest probably due to the release of nutrients from decaying vegetation, fertilizer 

application, and an increase in surface runoff due to bare fields.  

Phosphorus and total suspended sediment dynamics were similar during each season in 

that concentrations and loads were low during baseflow, and greatly increased during stormflow 

when sediment was introduced into the creeks likely through soil erosion, surface runoff, and 

bank erosion.    

Higher phosphorus and total suspended sediment concentrations and loads occurred in 

the spring due to the combination of large precipitation events and lack of vegetation which 

promoted soil erosion and surface runoff. After summer crops were planted in late spring, soil in 

the fields were disrupted and were even more susceptible to erosion. During the summer, larger 

precipitation events were needed for phosphorus and total suspended sediment concentrations 

and loads to increase. This was likely due to the presence of vegetation which lowered the 

amount of soil erosion and surface runoff that could occur. In the autumn, soil erosion and 

surface runoff potential increased after harvest, allowing for precipitation events to have more 
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influence on sediment and phosphorus concentrations and loads. However, precipitation events 

were not as large and were less common compared to spring and summer.  

In both Six Mile and Money Creek, the majority (>70%) of phosphorus and total 

suspended sediment cumulative load occurred during stormflow conditions which accounted for 

less than 25% of flow time. The majority of nitrate (63%) cumulative load occurred during 

baseflow conditions at Six Mile Creek and at Money Creek close to equal amounts of nitrate 

were transported during baseflow and stormflow. Cumulative load for all constituents were 

greater at Money Creek compared to Six Mile Creek due to the larger catchment area. 

Overall, these results are consistent with those found in other agricultural streams. The 

EPA drinking water limit for nitrate was often exceeded during the spring and autumn, and the 

limit for phosphorus was often exceeded throughout the year during storm events. Additional 

research is needed in order to better understand how water quality changes during the year and 

annually. Overall, seasonal changes in water quality coincide with agricultural activities, which 

suggests that alternative management practices may help improve water quality.   
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APPENDIX A: INDIVIDUAL STORM EVENTS 

Event 1 

Six Mile Creek 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SMC Event 1 TSS (kg) NO3 (kg) TP (kg) DRP (kg) Water (m3) 

Cumulative 

Storm Load 
1.43x104 1.21x103 6.13 0.402 1.37x105 
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Event 2 

Six Mile Creek 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SMC Event 2 TSS (kg) NO3 (kg) TP (kg) DRP (kg) Water (m3) 

Cumulative 

Storm Load 
1.70x106 1.46x104 777 545 1.39x106 
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Event 3 

Six Mile Creek 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SMC Event 3 TSS (kg) NO3 (kg) TP (kg) DRP (kg) Water (m3) 

Cumulative 

Storm Load 
N.A. N.A. N.A. N.A. 4.19x105 
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Event 4 

Six Mile Creek 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SMC Event 4 TSS (kg) NO3 (kg) TP (kg) DRP (kg) Water (m3) 

Cumulative 

Storm Load 
9.13x103 606 8.41 4.78 6.80x104 
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Event 5 

Six Mile Creek 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SMC Event 5 TSS (kg) NO3 (kg) TP (kg) DRP (kg) Water (m3) 

Cumulative 

Storm Load 
2.44x105 2.62x103 126 78.3 2.77x105 
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Event 6 

Six Mile Creek 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SMC Event 6 TSS (kg) NO3 (kg) TP (kg) DRP (kg) Water (m3) 

Cumulative 

Storm Load 
3.35x104 889 21.6 13.8 1.40x105 
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Event 7 

Six Mile Creek 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SMC Event 7 TSS (kg) NO3 (kg) TP (kg) DRP (kg) Water (m3) 

Cumulative 

Storm Load 
7.20x103 438 6.28 4.03 7.97x104 
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Event 8 

Six Mile Creek 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SMC Event 8 TSS (kg) NO3 (kg) TP (kg) DRP (kg) Water (m3) 

Cumulative 

Storm Load 
2.16x104 289 15.9 9.06 8.68x104 
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Event 8 

Money Creek 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MCH Event 8 TSS (kg) NO3 (kg) TP (kg) DRP (kg) Water (m3) 

Cumulative 

Storm Load 
9.09x103 1.21x103 20.1 17.2 1.81x105 
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Event 9 

Six Mile Creek 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SMC Event 9 TSS (kg) NO3 (kg) TP (kg) DRP (kg) Water (m3) 

Cumulative 

Storm Load 
2.64x105 1.65x103 190 140 5.35x105 
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Event 9 

Money Creek 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MCH Event 9 TSS (kg) NO3 (kg) TP (kg) DRP (kg) Water (m3) 

Cumulative 

Storm Load 
2.22x105 7.12x103 255 215 1.04x106 
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Event 10 

Six Mile Creek 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SMC Event 10 TSS (kg) NO3 (kg) TP (kg) DRP (kg) Water (m3) 

Cumulative 

Storm Load 
8.54x104 1.16x103 111 68.4 3.81x105 

 



133 

Event 10 

Money Creek 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MCH Event 10 TSS (kg) NO3 (kg) TP (kg) DRP (kg) Water (m3) 

Cumulative 

Storm Load 
1.02x105 3.23x103 198 127 7.09x105 

 



134 

Event 11 

Six Mile Creek 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SMC Event 11 TSS (kg) NO3 (kg) TP (kg) DRP (kg) Water (m3) 

Cumulative 

Storm Load 
3.35x103 173 5.14 1.94 4.72x104 
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Event 11 

Money Creek 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MCH Event 11 TSS (kg) NO3 (kg) TP (kg) DRP (kg) Water (m3) 

Cumulative 

Storm Load 
1.43x104 1.78x103 26.1 8.16 2.12x105 
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Event 12 

Six Mile Creek 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SMC Event 12 TSS (kg) NO3 (kg) TP (kg) DRP (kg) Water (m3) 

Cumulative 

Storm Load 
8.39x103 376 11.7 4.93 8.64x104 
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Event 12 

Money Creek 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MCH Event 12 TSS (kg) NO3 (kg) TP (kg) DRP (kg) Water (m3) 

Cumulative 

Storm Load 
1.68x104 2.50x103 35.9 12.9 2.65x105 
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Event 13 

Six Mile Creek 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SMC Event 13 TSS (kg) NO3 (kg) TP (kg) DRP (kg) Water (m3) 

Cumulative 

Storm Load 
1.53x104 649 22.8 13.1 1.51x105 
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Event 13 

Money Creek 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MCH Event 13 TSS (kg) NO3 (kg) TP (kg) DRP (kg) Water (m3) 

Cumulative 

Storm Load 
2.57x104 3.13x103 50.7 37.0 3.68x105 
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Event 14 

Money Creek 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MCH Event 14 TSS (kg) NO3 (kg) TP (kg) DRP (kg) Water (m3) 

Cumulative 

Storm Load 
7.98x103 1.33x103 16.8 9.4 1.51x105 
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Event 15  

Money Creek 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MCH Event 15 TSS (kg) NO3 (kg) TP (kg) DRP (kg) Water (m3) 

Cumulative 

Storm Load 
1.73x104 2.43x103 33.6 21.0 2.77x105 
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Event 16 

Six Mile Creek 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SMC Event 16 TSS (kg) NO3 (kg) TP (kg) DRP (kg) Water (m3) 

Cumulative 

Storm Load 
2.30x104 1.19x103 36.9 32.5 1.57x105 
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Event 16 

Money Creek 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MCH Event 16 TSS (kg) NO3 (kg) TP (kg) DRP (kg) Water (m3) 

Cumulative 

Storm Load 
1.16x103 1.83x103 16.1 14.8 2.53x105 
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Event 17 

Six Mile Creek 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SMC Event 17 TSS (kg) NO3 (kg) TP (kg) DRP (kg) Water (m3) 

Cumulative 

Storm Load 
2.28x104 1.07x103 30.1 21.4 1.49x105 
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Event 17 

Money Creek 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MCH Event 17 TSS (kg) NO3 (kg) TP (kg) DRP (kg) Water (m3) 

Cumulative 

Storm Load 
3.60x104 5.66x103 112 87.5 5.99x105 
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Event 18 

Six Mile Creek 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SMC Event 18 TSS (kg) NO3 (kg) TP (kg) DRP (kg) Water (m3) 

Cumulative 

Storm Load 
2.15x103 293 3.50 1.96 5.37x104 
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Event 19 

Six Mile Creek 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SMC Event 19 TSS (kg) NO3 (kg) TP (kg) DRP (kg) Water (m3) 

Cumulative 

Storm Load 
6.06x104 2.05x103 77.4 53.7 2.86x105 
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Event 19 

Money Creek 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MCH Event 19 TSS (kg) NO3 (kg) TP (kg) DRP (kg) Water (m3) 

Cumulative 

Storm Load 
2.26x105 2.20x104 558 401 1.17x106 
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