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The objective of this study was to determine the effects of Wet Brewer’s Grains (WBG) 

on the growth performance, carcass performance, and meat quality of finishing cattle. Twenty-

four (n=24; 12 heifers, 12 steers) beef calves of Simmental-Angus genetics, heifers weighing 

approximately 303kg and steers weighing approximately 346kg, were utilized and finished at the 

Illinois State University (ISU) Farm. Animals were utilized in accordance with ISU’s 

Institutional Animal Care and Use Committee (IACUC) approval (Protocol # 014 – 2015). 

Calves were paired by sex, blocked by body weight (BW) within sex in a 2 x 2 factorial 

arrangement with three replications per treatment, and fed for 140d. Control diets were a 

conventional finishing-diet consisting primarily of corn silage and shelled corn. Experimental 

diets were modeled after the control diet with the inclusion of WBG on a thirty-percent dry 

matter (DM) basis. Diets were mixed on a per week basis with feed refusal collection prior to the 

offering of new diet batches (~5d periods) and feed was offered once daily. Calves were weighed 

every 28d with two-day average weights collected and used to calculate Average Daily Gain 

(ADG), Average Daily Feed Disappearance (ADFD), and Gain to Feed (G:F). Daily feed offered 

was increased in constant increments, adjusted from feed refusal, and cattle were visually 

appraised by an industry procurement agent for degree of finish. Following feeding, calves were 

transported 159km for slaughter and processing. Following harvest under USDA-FSIS 



inspection, whole primal ribs (IMPS #1103) were obtained and transported to the ISU Fresh 

Meat Lab for further fabrication. Boneless ribeye steaks (IMPS #1112) were fabricated from the 

ninth – eleventh ribs and utilized for further meat quality analyses. Statistical analysis was 

modeled in a two-way fixed ANOVA utilizing the MIXED procedure of SAS. No differences 

were observed in Total Gain (TG) and ADG between diets respectively (P = 0.6919). Calves fed 

WBG exhibited an increase in ADFD (P < 0.0001). Decreases in G:F were observed in calves 

fed WBG (P = 0.0121). No differences were observed in Hot Carcass Weight (HCW), Yield 

Grade (YG), or Quality Grade (QG) respectively (P > 0.05). No differences were observed in 

Warner-Bratzler Shear Force (WBSF), Package Purge (PP), or Cook Loss (CL) measurements 

respectively (P > 0.05). This data indicates WBG inclusion supports growth performance, 

carcass performance, and meat quality of finishing cattle similar to that of a conventional corn – 

corn silage finishing diet. 

 

KEYWORDS: Wet Brewer’s Grain, Growth Performance, Carcass Performance, Meat Quality, 

Finishing Cattle 
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CHAPTER I: GENERAL INTRODUCTION 

 The livestock industry is a dynamic industry that is constantly evolving, driven by 

growing populations and incomes, changing food preferences, and increased global trade in 

livestock products (Steinfeld et al., 2006). Advances in meat production, product variety, and 

increased meat consumption have driven increases in production efficiency for domestic use and 

foreign export. Livestock products supply one-third of global protein intake and is projected to 

nearly double from 252 million tons in 1999/2001 to 512 million tons by 2050 (Steinfeld, 2006). 

On average, American men consume 6.9 ounces of meat per day and women consume slightly 

less at 4.4 ounces per day (NAMI, 2016). These increased costs, production size, and rate of 

consumption push for the adoption of necessary changes to maintain a successful enterprise. 

 Corn is considered a traditional energy source in feedlot diets. However, as traditional 

energy sources are diverted to supply substrates for other production purposes (ethanol 

production), an increase in by-product utilization has been seen (Hersom et al., 2010). Since 

feedstuffs often encompass the largest portion of production costs, more emphasis has been 

placed on the cost effective use of alternative and supplemental feed sources (Hersom, 2006).  

 Over the past few decades, Dried Distillers Grains with Solubles (DDGS) has become 

one of the industry standards for alternative feeds. Specifically, DDGS is the residue remaining 

after the starch fraction of fermented corn is removed for alcohol production and distillation, 

during the ethanol production process (Hersom, 2006). Dried Distillers Grains with Solubles are 

viewed as an excellent source of protein, particularly by-pass protein which is roughly fifty-

percent of its crude-protein content (Hersom, 2006). This nutritional value has driven DDGS as a 

leading feed supplement, because its ability to provide supplemental protein and combat possible 

protein deficiencies from the microbial supplied protein of the rumen (Aines et al., 1986).  
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 Wet Brewer’s Grains are the by-product of brewing for the production of beer and malt 

products (Hueze et al., 2015). More specifically, after the fermentation process and formation of 

wort for beer or malt, the fermented medium is filtered off resulting in a high-moisture residual 

(Mussato et al., 2006). Wet Brewer’s Grains are a variable product both in physical composition 

and nutritional value (Hueze et al., 2015). The process of using Wet Brewer’s Grains (WBG) is 

not a newly discovered trend, but increases in production, micro-brewery location, and 

availability have stimulated new interest in this product.  

 In the past decade, the Micro-brewing industry has increased (Cohen, 2016). According 

to the Brewers Association (BA), the trade association representing small and independent 

American craft brewers, the number of operating breweries in the U.S. in 1970 was roughly one-

hundred and by 2015 breweries totaled 4,269, equating to the most in American history (Cohen, 

2016). The revival of micro-brewery production has renewed an age-old relationship between 

brewers and livestock producers (Landry, 2002). The opportunity exists for producers to benefit 

from a brewing by-product that can be utilized in cattle feeding, all while creating a local 

industry partnership. 

 Meat quality can be an ambiguous term, including components of eating quality, shelf 

life, wholesomeness, nutritional composition, and convenience (Apple and Yancey, 2016). 

Hofmann (1986), as referenced by Otto (2004), defined meat quality as the sum of all meat 

quality characteristics. One of many important quality factors that is a determinant of consumer 

preference and choice is meat color. Meat purchasing decisions are influenced by color more 

than any other quality factor, because consumers use discoloration as an indicator of freshness 

and wholesomeness (Mancini and Hunt, 2005). Flavor, tenderness, and juiciness are quality 

characteristics grouped closely together by consumers; who in the market place are the ultimate 
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decider of meat quality (Maltin et al., 2003). Some of these characteristics are determined during 

the muscle to meat conversion and postmortem events (Maltin et al., 2003). Pre-slaughter 

handling, slaughter methods, and carcass chilling rate having the greatest impacts on quality 

(Apple, 2010). Other contributing factors affecting these quality traits are: ratio of fat to lean, pH 

decline rate, Water Holding Capacity (WHC), flavor compounds present, and the synergistic 

action of enzymatic systems including calpains; μ-calpain specifically (Ouali et al., 2006). Flavor 

is the subjective characteristic perceived by consumers while consuming a meat product. Many 

descriptors exist to describe what exact flavor is experienced and complaints of blandness or off-

flavors are a focus of concern (Ouali et al., 2006). The tenderizing process is enzymatic in nature 

and it is generally agreed that postmortem events are the main determinants of tenderness 

(Maltin et al., 2003). Juiciness, or the amount of moisture present, is a function of WHC. Water 

holding capacity is the ability of meat to retain naturally occurring or added moisture during the 

application of external forces and affects nearly every meat quality characteristic (Aberle et al., 

2012).  

 Since consumer preference for high quality meat and the role inputs of production play in 

product quality is important, research on how feeding by-products and co-products effect this is 

critical. However research on WBG inclusion in beef cattle and evaluating the effect on meat 

quality and carcass characteristics is lacking. Thus further research is necessary. Linton (1973), 

observed that brewery by-products had no effect on carcass characteristics or meat quality, but 

further research was indicated as necessary. Homm et al. (2008) further supported this, 

concluding that feeding fifteen to forty-five percent WBG in feedlot diets supported animal 

performance and carcass characteristics similar or greater to traditional finishing diets. As 

echoed by Shand et al. (1998), few reports of beef trials of animals fed WBG have been 
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published, which may give producers and feedlots opportunities to take advantage of these 

alternative feeds to provide quality product for the consumer.  

The Illinois livestock industry is expected to experience significant growth, with total 

number of “Notices of Intent to Construct” filed by local producers, increasing 137% between 

2010 to 2014 (DIS, 2015). Although cattle inventories are low compared to the past, record high 

beef prices will continue to drive prices and further incentivize producers to expand in livestock 

production (DIS, 2015). Illinois alone produced 279.1 million pounds in June of 2016, equating 

to 101% of production from the year prior (USDA-NASS, 2016). Since feedstuffs often 

encompass the largest portion of production costs, more emphasis will be placed on the cost 

effective use of alternative feed sources as expansion continues (Hersom, 2006). The revival of 

micro-brewery production has renewed an age-old relationship between brewers and livestock 

producers (Landry, 2002). This opportunity enables producers to benefit from WBG to be 

utilized in cattle feeding, all while creating a local partnership with micro-brewers. Moreover, 

much of the literature available on WBG focuses on product from large scale brewers and does 

not address increases from micro-breweries and possible product differences. As producers seek 

to utilize this local and economical alternative feed source, further research on the efficacy of 

WBG inclusion in necessary. 

However, much of the literature available on WBG focuses on product from large scale 

brewers and does not address increases from micro-breweries and possible product differences. 

As producers seek to utilize this local and economical alternative feed source, further research on 

the efficacy of WBG inclusion is necessary. The objective of this study was to determine the 

effects of Wet Brewer’s Grains (WBG) on the growth performance, carcass performance, and 

meat quality of finishing cattle. 
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Thesis Organization 

This thesis is an alternate format. It includes a general introduction, manuscript 

formatting according to the style of The Professional Animal Scientist (PAS), and a review of the 

literature. 
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CHAPTER II: EFFECT OF WET BREWER’S GRAIN INCLUSION ON THE GROWTH 

PERFORMANCE, CARCASS PERFORMANCE, AND MEAT QUALITY OF FINISHING 

CATTLE 

ABSTRACT 

The objective of this study was to determine the effects of Wet Brewer’s Grains (WBG) 

on the growth performance, carcass performance, and meat quality of finishing cattle. Twenty-

four (n=24; 12 heifers – 303kg, 12 steers – 346kg) calves of Simmental-Angus genetics were 

utilized. Calves were paired by sex, blocked by BW within sex in a 2 x 2 factorial arrangement 

with three replications per treatment, and fed for 140d. Control diets were a conventional corn 

silage – shelled corn finishing-diet. Experimental diets modeled the control diet with the 

inclusion of WBG on a thirty-percent DM basis. Cattle were visually appraised by an industry 

procurement agent for degree of finish. Finished cattle were transported 160km for slaughter 

under USDA-FSIS inspection. Primal ribs (IMPS #1103) were obtained and transported to ISU’s 

Meat Lab. Ribeye steaks (IMPS #1112) were fabricated from the ninth – eleventh ribs for further 

meat quality analyses. Statistical analysis was modeled in a two-way fixed ANOVA utilizing the 

MIXED procedure of SAS. No differences were observed in total gain and ADG between diets 

respectively (P = 0.6919). Average daily feed disappearance (ADFD) increased in WBG calves 

(P < 0.0001). Decreases in G:F were observed in WBG calves (P = 0.0121). No differences were 

observed in HCW, YG, or QG respectively (P > 0.05). No differences were observed in Warner-

Bratzler Shear Force, Package Purge, or Cook Loss measurements (P > 0.05). This data indicates 

WBG inclusion supports growth performance, carcass performance, and meat quality of 

finishing cattle similar to a conventional finishing diet. 
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INTRODUCTION 

 Feedstuffs often encompass the largest portion of production costs, emphasis has been 

placed on utilization of alternative feed sources (Hersom, 2006). Corn is considered a traditional 

energy source in feedlot diets. However, as traditional energy sources are diverted to supply 

substrates for other industries, emphasis has been placed on the utilization of alternative feed 

sources to further maintain a successful enterprise (Hersom et al., 2010).    

 Wet Brewer’s Grains (WBG) are the by-product of brewing (Hueze et al., 2015). After 

mashing and formation of wort for beer or malt, the medium is filtered off resulting in a high-

moisture residual (Mussato et al., 2006). Physical composition and nutritional value of WBG is 

highly variable (Hueze et al., 2015). The process of feeding WBG to cattle is not a newly 

discovered trend. Linton (1973), observed that brewery by-products had no effect on carcass 

characteristics or meat quality, but indicated further research was necessary. Increases in micro-

brewing and product availability have stimulated new interest in this product.  

 In the past few decades micro-brewing has increased substantially (Cohen, 2016). 

According to the Brewers Association (BA) there were approximately 100 breweries in the U.S. 

in 1970, and by 2015 this increased to 4,269, the most in American history (Cohen, 2016). The 

revival of micro-brewery production has renewed an age-old relationship between brewers and 

livestock producers (Landry, 2002).  

Although cattle inventories are low compared to the past, record-high beef prices will 

continue to drive prices and further incentivize producers to expand (DIS, 2015). This 

opportunity enables producers to benefit from WBG utilized in cattle feeding, all while creating 
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a local partnership with the micro-brewing industry. Moreover, much of the literature available 

on WBG focuses on grains from large scale brewers and does not address micro-breweries and 

possible product differences. As producers seek to utilize this local and economical alternative 

feed source, further research on the efficacy of WBG inclusion is necessary. The objective of this 

study was to determine the effects of WBG sourced from a local craft brewery on the growth 

performance, carcass performance, and meat quality of finishing cattle. 

MATERIALS AND METHODS 

All animals were utilized in accordance with Illinois State University's Institutional 

Animal Care and Use Committee (IACUC) approval (Protocol # 014 – 2015). 

Experimental Design 

 Twenty-four (n=24; 12 heifers, 12 steers) beef calves of Simmental-Angus genetics, 

heifers weighing approximately 303kg and steers weighing approximately 346kg, were utilized 

and finished at the Illinois State University (ISU) Farm. Calves were paired by sex and blocked 

by body weight (BW) within sex in a 2 x 2 factorial arrangement with three replications per 

treatment. Pen was the experimental unit in both the live and carcass phase, thus data collected 

was reported as pen averages. Following an acclimation period, cattle were implanted 

(Synovex® – H, Synovex® – S; Zoetis Services LLC, Parsippy, NJ, USA) and fed for 140d. 

Control diets were a conventional finishing-diet consisting of corn silage, shelled corn, DDGS, 

lime mineral, and a pelleted balancer. Experimental diets were modeled after the control diet 

consisting of; corn silage, shelled corn, DDGS, lime mineral, pelleted balancer, and inclusion of 

WBG on a thirty-percent dry matter (DM) basis. 
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Diet Mixing, Feeding, and Feed Refusal 

Calculated analysis of trial diets are shown in Table 1. Diets were mixed on a weekly 

basis to coincide with availability of WBG from the brewery. Diet batches were mixed and 

stored indoors in three-walled open bunkers on concrete flooring. Calves were offered feed once 

daily. Feed refusal collection was performed prior to the offering of new diet batches in 

approximately five day periods.  

Growth Performance 

 Calves were weighed every 28d with two-day average weights collected and used to 

calculate Average Daily Gain (ADG), Average Daily Feed Disappearance (ADFD), and Gain to 

Feed (G:F). Daily feed offered was increased in constant increments and adjusted from feed 

refusal calculations and measurements. At the end of the finishing period, cattle were visually 

appraised by an industry procurement agent for degree of finish. Upon determination of finish, 

cattle were transported 160km for slaughter and fabrication at a USDA-FSIS inspected packing 

facility. 

Carcass Measurements 

 Following harvest under USDA-FSIS inspection, hot carcass weight (HCW) was 

obtained immediately. After 24h chilling period carcasses were measured for Ribeye area (REA), 

12th rib fat thickness (RIBF), and kidney-pelvic-heart (KPH) fat. Quality grade (QG) for each 

carcass were assigned by an in-plant USDA grader. Carcasses were then further fabricated into 

whole primals. Vacuum-packaged whole bone-in primal ribs (IMPS #1103), from the right side 

of each carcass, were obtained and transported 160 kilometers to Illinois State University’s (ISU) 

Meat Lab for further fabrication and processing. 
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Fabrication and Meat Quality Analysis 

Twenty-four (n = 24) whole primal ribs (IMPS #1103; NAMP, 2007) were deboned, 

trimmed, and sliced into boneless ribeye steaks (IMPS #1112: NAMP, 2007) from the ninth – 

eleventh ribs. Three ribeyes from each rib-roll were utilized for further meat quality analyses as 

follows: 

One boneless ribeye steak was utilized for Warner-Bratzler Shear Force (WBSF; 

Tallgrass Solutions, Manhatten, KS, USA) analysis and Cook Loss (CL) measurements. Steaks 

were weighed raw and cooked to a common degree of doneness by the way of the following: 

samples were cooked to an internal temperature of 35ºC, turned and cooked to a final internal 

temperature of 71ºC, removed from heat and reweighed after a period of cooling. Cook Loss 

percentages were calculated by subtracting the weight following cooking from the raw weight 

and reported as a percentage of weight (water) lost from the raw steak, where CL% = {100 – 

[(cooked weight / raw weight) * 100]}. Six cores (13mm) from each steak were removed and 

sheared perpendicular to the cut surface. WBSF applied a crosshead speed of 225mm/minute. A 

WBSF value was determined as the peak force in kilograms required to completely shear through 

each core. The shear-force value was then averaged from the values of all six cores per sample.  

One boneless ribeye steak was weighed, placed on a foam tray with an absorbent pad, 

overwrapped in oxygen-permeable polyvinylchloride film and placed in a deli-style retail display 

case (4.5 ºC). Color measurements (L*, a*, b*), utilizing a HunterLab Miniscan 

Spectrophotometer (Hunter Associates Laboratory, Inc., Reston, VA, USA), from the face of 

each steak were taken on d 0, 1, 4, and 7. Following the 7d display period, steaks were removed 

from packaging and reweighed to determine water loss as Package Purge (PP). Package purge 

was calculated as PP% = {100 – [(post weight / pre weight)*100]}.  
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One steak from each carcass was halved, each half was packaged in a 4-ounce WHIRL-

PAK® bag, and frozen (-20 ºC) for 60d. Following storage, samples were analyzed for fat, 

moisture, and fatty acid profile. Analysis of fat and moisture percentage was performed per 

manufacturer’s instructions using a CEM SMART Trac Moisture and Rapid Fat Analyzer 

System, (CEM Corp., Matthews, North Carolina, USA). Fatty acid analysis was determined 

using an adaptation of the methods outlined by Folch et al. (1957) and Morrison and Smith 

(1964). Adaptations of these methods were discussed by Wiegand et al. (2011). Percentages of 

individual fatty acids were used to calculate an Iodine Value (IV) for free fatty acids for each 

sample using the following equation: IV = (0.95 x C16:1) + (0.86 x C18:1n9) + (1.732 x 

C18:2n6) + (2.616 x C18:3n3) + (0.785 x C20:1) (AOCS, 1998).  

Statistical Analysis 

 In this study pen was the experimental unit in both the live phase and carcass phase. 

Statistical analysis was modeled in a two-way fixed ANOVA utilizing the MIXED procedure of 

SAS to obtain LSMeans. Furthermore, LSMeans were separated using the PDIFF option. Model 

design included the main effects of diet and sex, as well as all possible interactions. Block was 

included as a random effect and significance was determined administering a level of α = 0.05. 

Growth performance variables consisted of ADG, G:F, F:G, Total gain (TG), and 

Average daily feed disappearance (ADFD). Carcass performance variables analyzed consisted of 

HCW, YG, DP, KPH, Ribeye Area (REA), Marbling score (MS), and 12th Rib fat thickness 

(RIBF). Meat quality measurements analyzed consisted of Warner-Bratzler Shear Force (WSBF) 

measures, Package Purge (PP) measures, Cook Loss (CL) measures, and Fatty Acid Profile.  

Retail display quality measurement analysis was conducted using the repeated measures 

in the MIXED procedure of SAS. The model included the main effects of diet, sex, day of retail 
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display, and all possible interactions. Block was included as a random effect and significance 

was determined at a level of α = 0.05. 

RESULTS AND DISCUSSION 

Growth Performance 

 Growth performance data is shown in Table 2. Total Gain (TG) and ADG were not 

different between dietary treatments (P = 0.619). Average Daily Feed Disappearance (ADFD) 

was affected by dietary treatments (P < 0.0001), where cattle fed WBG consumed more feed 

than cattle receiving the control diet; but no differences were observed between sex (P = 0.2086). 

However, the inclusion of WBG had no effect on G:F or F:G conversion rates (P > 0.05). 

 Homm et al. (2008) observed increased growth performance (ADG and final BW) in 

heifers offered thirty-percent WBG, however in our study ADG was not affected by treatment (P 

> 0.05). Furthermore, the inclusion of WBG had no effect on G:F or F:G conversion rates and is 

in agreement with Homm et al. (2008), who concluded no differences in G:F between dietary 

treatments. Growth performance in the current study is supported by Preston et al. (1973), who 

reported acceptable feedlot performance when either 25% or 50% of the total ration was derived 

from Dried Brewer’s Grain (DBG) compared to a 95% corn ration. Findings by Crickenberger 

and Johnson (1982) further support the current study, by concluding that feeding a WBG – corn 

silage diet had no effect on ADG, DM intake, or final weight in wintering beef heifers. 

Additionally, Aguilera-Soto et al. (2007) found no differences, despite different fiber and lipid 

content in diets, from WBG fed growing lambs on rumen fermentation, digestion, and 

performance. Yang et al. (2000) also reported similar growth performance results on the 

influence of feeding WBG-silage to castrated dairy goats. 
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Previous studies have reported varying results following WBG inclusion and could 

possibly be a result of product variation utilized between individual studies. Thomas et al. 

(2010), reported a 13% varying range in DM percentages collected. Furthermore, Murdock et al. 

(1981) reported Total Digestible Nutrient (TDN) and net energy for lactation of dry matter of 

WBG as approximately sixteen-percent higher than those listed by the NRC. Cozzi and Polan 

(1994), accredited positive production responses of cows fed DBG to a more favorable balanced 

amino-acid profile in Rumen Undegradable Protein (RUP).  

Carcass Performance and Meat Quality 

 Carcass performance and meat quality data is shown in Table 3. No differences were 

exhibited in carcass characteristics between dietary treatments for HCW, YG, REA, MS, and DP 

(P > 0.05). Steers exhibited the lowest 12th Rib fat thickness (1.693 cm) regardless of diet (P = 

0.0157). Heifers exhibited the highest KPH percentages (3.92%) regardless of diet (P = 0.0322). 

No differences based on diet or sex were observed for Warner-Bratzler Shear Force, Package 

Purge (PP), or Cook Loss (CL) measurements (P > 0.05).  

 Carcass characteristics gathered in this current trial were similar to that of Linton (1973), 

who reported brewery byproducts had no effect on carcass characteristics or meat quality. This 

study was further supported by Homm et al. (2008), who reported no significant differences in 

DP and YG across dietary treatments at harvest. Preston et al. (1973) indicated a positive 

correlation between DP and amount of DBG offered, however in this study no relationship was 

observed. Heifers exhibiting higher levels of KPH could be further explained by Zinn et al. 

(1970), who reported heifers fattened more rapidly and accredited this to heifers maturing at an 

earlier age.  Additionally, Homm et al. (2008) reported a negative linear relationship between 

REA as WBG increased in the diet, which is in contrast to the current study. Homm et al. (2008) 
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also concluded there was a tendency for heifers fed WBG to exhibit lower MS. In the present 

study no significant differences were found in diet or sex on MS. Although MS was not 

significantly different across dietary treatments (P = 0.1086), WBG fed cattle exhibited lower 

numerical MS values. This may be an issue when marketing on a quality grid basis. Control fed 

cattle graded within the top two-thirds of Choice (MS = 655.00) and WBG fed cattle graded 

slightly below in the bottom third of the Choice (MS = 585.00). If the goal is to produce product 

to meet or exceed Mid-Choice quality grade and its associated premium, producer discretion is 

necessary when incorporating WBG and maintaining production goals. However, all cattle in this 

study graded Choice and 87% graded Mid-Choice or greater. 

 Few reports of WBSF, PP, and CL of WBG fed beef have been published. Linton (1973) 

and Homm et al. (2008) primarily assessed the effects of WBG on carcass characteristics and 

meat quality. The current study showed no significant effects on WBSF, PP, and CL 

measurements of beef from animals fed WBG. Mills et al. (1992) slightly address these traits, 

who concluded that a trained sensory panel found no differences in hardness, juiciness, or other 

textural properties of beef steaks due to varying dietary forages. Shand et al. (1998), reported that 

eating quality and meat properties of beef fed WBG or wheat based Wet Distillers Grain (WDG) 

were not superior to meat from animals fed conventional feeds, but neither were there any 

negative effects on meat quality. 

Fatty Acid Profile 

 Fatty acid analysis data is shown in Table 4. Heifers exhibited a 3.86% lower SFA 

content (P = 0.0292), 3.85% higher MUFA content (P = 0.0175), and a 3.62% increase in IV 

scores (P = 0.0106) regardless of diet. Waldman et al. (1968) support these findings, who 

observed heifers of Angus genetics displaying higher concentrations of unsaturated acids and 
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lower concentrations of saturated acids compared to steers. In contrast, Marchello et al. (1970) 

observed no significant differences in fatty acids due to sex, utilizing chloroform-methanol 

extraction.  

In the current study, higher MUFA concentrations and IV values shown in heifers could 

be attributed to increased levels of soft fat present. This is in agreement with Wood et al. (2003) 

who indicated as unsaturation of fats increases, fat firmness and melting point decreases. 

Additionally, Rickard (2011) further explains that IV is the measure of the degree of unsaturation 

of the fat profile, therefore a higher IV correlates to a softer fat profile. However, Smith et al. 

(2006) convey that there is no economic incentive for producers to produce beef higher in 

concentrations of certain fatty acids and in the present beef grading systems, carcass value is 

determined primarily by the abundance of total intramuscular fat and not by type alone.  

Retail Display Color 

 Retail display color data is shown in Table 5, 6, and 7. Heifers exhibited significantly 

higher L* values on d 1 and 7 regardless of diet (P < 0.05). A significant interaction of diet x sex 

was observed for L* scores on d 7, with control fed heifers displaying the highest L* value (P = 

0.0294). This was the only interaction observed in the retail display analysis. No significant 

effect of diet or sex was observed for a* and b* values during the duration of retail display (d 0, 

1, 4, 7) (P > 0.05). Although it is generally recognized that male cattle have much higher 

propensity to produce darker color values, a small number of authors have investigated the 

differences in color between steers and heifers (Murray, 1989). Jones et al. (1989) reported 

heifers showed a lower occurrence of darker meat than steers. In contrast, Murray (1989) 

reported heifers display slightly darker meat than that of steers, but considered this as an effect of 

carcass weight and more rapid cooling post-slaughter. However, Murray (1989) reported that 
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carcass fatness was highly related to ultimate color and as carcass fatness increases the 

occurrence of dark meat decreases several-fold. This could possibly explain the occurrence of 

steers exhibiting lower color scores than heifers in this study, since steers also exhibited 

significantly lower 12th rib fat (1.693 cm versus 2.053 cm). Furthermore, Jeremiah et al. (1996) 

found no significant effect of gender on Hunter L* values.  

IMPLICATIONS 

 These data indicate that the inclusion of Wet Brewer’s Grain (WBG) on a thirty-percent 

DM basis support the growth performance, carcass performance, and meat quality of finishing 

cattle. As producers seek to utilize this local and economical alternative feed source, opportunity 

exists to decrease production costs without sacrificing production returns. Moreover, much of the 

preceding literature available focuses on WBG from large scale brewers and does not address 

possible differences of grains from micro-breweries. Further research on the effects of WBG 

inclusion on growth performance, carcass performance, and meat quality of finishing cattle is 

necessary.   
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CHAPTER III: LITERATURE REVIEW 

Introduction 

The livestock industry is a dynamic industry that is constantly evolving, driven by 

growing populations and incomes, changing food preferences, and increased global trade in 

livestock products (Steinfeld et al., 2006). In livestock production, there are roughly six-hundred 

thousand operations specializing in beef cattle feeding, with 13.2 million head of slaughter cattle 

inventoried as of January 1st, 2016 (USDA-NASS, 2016). Nearly eighty-percent of cattle are fed 

in feedlots with capacities of one-thousand head or more (USDA-NASS, 2016). Advances in 

meat production, product variety, and increased meat consumption have driven increases in 

production efficiency for domestic use and foreign export. In 2013 alone, total beef production in 

the U.S. reached nearly twenty-six billion pounds of product; exporting 1.7 billion metric tons 

(MT) of beef (NAMI, 2016). Furthermore, companies associated in meat production, livestock 

supply, distribution, retail and auxiliary sectors employ 6.2 million individuals in the U.S. alone, 

totaling $200 billion in wages (NAMI, 2016). Livestock products supply one-third of global 

protein intake and is projected to nearly double from 252 million tons in 1999/2001 to 512 

million tons by 2050 (Steinfeld, 2006). On average, American men consume 6.9 ounces of meat 

per day and women consume slightly less at 4.4 ounces per day (NAMI, 2016). These increased 

costs, production size, and rate of consumption push for the adoption of necessary changes to 

maintain a successful enterprise.  

Corn is considered a traditional energy source in feedlot diets. However, as traditional 

energy sources are diverted to supply substrates for other production purposes (ethanol 

production), an increase in by-product utilization has been seen (Hersom et al., 2010). A by-

product is produced during industrial processing and has marginal value or is seen as waste. A 
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by-product can be considered a co-product by acquiring value through application in another 

industry sector, for example beef cattle feeding. Since feedstuffs often encompass the largest 

portion of production costs, more emphasis has been placed on the cost effective use of these 

alternative and supplemental feed sources (Hersom, 2006). 

Co-Product Use 

Over the past few decades, Dried Distillers Grains with Solubles (DDGS) has become 

one of the industry standards for alternative feeds. Specifically, DDGS is the residue remaining 

after the starch fraction of fermented corn is removed for alcohol production and distillation, 

during the ethanol production process (Hersom, 2006). This process results in two products, 

Dried Distillers Solubles (DDS) or Dried Distillers Grains (DDG), which are blended together 

into an intermediate product labeled Dried Distillers Grains with Solubles (DDGS) (Hersom, 

2006). Dried Distillers Grains with Solubles saw a large increase in production during the mid-

2000s due to tripling crude oil prices, provisions from the Energy Policy Act of 2005, and 

already existing federal and state biofuel programs incentivizing the expansion (Westcott, 2007).  

After its initial introduction, a market for DDGS was established in the cattle feeding 

sector and has grown in value. This has been accomplished through improved profitability and 

competitive pricing from subsidized production, and a better understanding of the nutritional 

composition of DDGS (Loy and Lundy, 2014). Dried Distillers Grains with Solubles are viewed 

as an excellent source of protein, particularly by-pass protein which is roughly fifty-percent of its 

crude-protein content (Hersom, 2006). By-pass protein or protein that escapes digestion in the 

rumen is vital in ruminant nutrition, due to its availability for absorption by the abomasum and 

small intestine for further productive functions (Aines et al., 1986). Furthermore, in comparison 

of available by-pass protein, DDGS are 230 to 260% higher than soybean meal (Aines et al., 
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1986). This nutritional value has driven DDGS as a leading feed supplement, because its ability 

to provide supplemental protein and combat possible protein deficiencies from the microbial 

supplied protein of the rumen (Aines et al., 1986).   

Although DDGS are a valued feed supplement, considerations for use do exist in its 

nutritional composition, feeding, logistics, and storage. Dried Distillers Grains with Solubles are 

commonly low in Calcium (Ca) levels and relatively higher in Phosphorus (P) and Sulfur (S) 

(Tjardes and Wright, 2002). Mineral concentrations are important when formulating appropriate 

feed rations to prevent deficiencies and their associated symptoms (Tjarders and Wright, 2002). 

Also, proper manure management is key if excess mineral excretion is seen (Tjardes and Wright, 

2002). Low levels of calcium can be offset through limestone supplementation in feed rations 

and suggested Ca:P ration is 1.2:1, but no greater than 7:1 (Tjardes and Wright, 2002). Studies 

have concluded that high levels of sulfur have led to Poloencephalomalacia, commonly termed 

“brainers”, or the necrosis of the cerebral grey matter; as well as, inhibition of Copper (Cu) 

absorption and metabolism (Tjardes and Wright, 2002). Variation in overall composition has 

been speculated (Honeyman and Lammers, 2007). This variation could be due to different 

ethanol plants, drying techniques and equipment, grain quality, or the final mixing ratio; which 

makes sampling of each load delivered necessary (Honeyman and Lammers, 2007). Ultimately 

the utilization of DDGS is commonly dictated by the overall goals of production. However, other 

industry by-products do exist and knowledge of DDGS use may become beneficial when 

successfully utilizing similar products. 

Wet Brewer’s Grain 

Wet Brewer’s Grains are the by-product of brewing for the production of beer and malt 

products (Hueze et al., 2015). More specifically, after the mashing process and formation of wort 
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for beer or malt, the medium is filtered off resulting in a high-moisture residual (Mussato et al., 

2006). Wet Brewer’s Grains commonly consist of but are not limited to; cereal grains of barley, 

wheat, rice, and corn (Hueze et al., 2015). Wet Brewer’s Grains are a variable product both in 

physical composition and nutritional value (Hueze et al., 2015). This variation can be seen 

between breweries as well as the brew recipe used, whether it is a common recipe consistently 

brewed or a seasonal recipe brewed infrequently. The process of using Wet Brewer’s Grains 

(WBG) is not a newly discovered trend, but increases in production, micro-brewery location, and 

availability have stimulated new interest in this product. 

Physical Properties, Spoilage, and Storage 

Physical characteristics of WBG vary, with the product marketed most commonly in wet 

form and in bulk composite loads (Thomas et al., 2010). This is primarily due to limited drying 

capabilities of breweries and daily batches being compiled into one composite batch for removal 

at the end of a production week. The varying physical composition of WBG becomes important 

to consider when assessing the feasibility of incorporation into a beef cattle operation. Studies 

conducted have conveyed general considerations concerning the physical properties such as: 

spoilage rates, transportation, and efficient utilization of WBG as a supplemental feedstuff.  

The relationship between spoilage rate and utilization rate is a primary issue with WBG, 

due to loss in economic returns if utilization rates fall below that of the rate of spoilage. The high 

moisture content in WBG dramatically decreases the duration of time before spoilage (Mussato 

et al., 2006). High-moisture levels also increase susceptibility to weather conditions such as: 

spoilage from heat and freezing from low temperatures (Thomas et al., 2010).  

Although the shelf-life of fresh WBG is finite, approximately five to seven days, studies 

have explored possible storage methods to increase longevity (Thomas et al., 2010). According 
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to Thomas et al. (2010), blending WBG in a Total Mixed Ration (TMR) with other feedstuffs, is 

an adequate way to incorporate positive characteristics of other feeds and counter high moisture 

levels. Blending WBG with other feeds such as corn silage, hay, or soybean hulls results in a 

ration with increased dry matter and increases the shelf-life by a small number of days (Thomas 

et al., 2010). The authors also observed blending of WBG decreased the amount of gut-fill or 

distention produced through high levels of water intake (Thomas et al., 2010). Drying has been 

viewed as a possible preservation method, with the benefit of decreased product volume, thus 

decreasing transportation and storage costs (Santos, 2003). Drying of WBG is commonly 

accomplished with rotary-drum dryers, but is not cost effective and is energy-intensive, along 

with the possibility of air-pollution through burning/over-cooking grains (Mussatto et al., 2006). 

Furthermore, in a comprehensive review article published by Mussato et al. (2006), multiple 

alternative methods of drying have been studied such as oven-drying, freeze-drying, mechanical 

pressing, and superheated steam; but all have their own set of benefits and drawbacks. A third 

storage method which has shown possibly the most opportunity in preservation is the ensiling of 

WBG. Ensiling is the process of using high-moisture feedstuffs and fermenting the crop in a pit, 

tower, bunker, trench, or plastic silo bag (Jennings, 2013). Ensiling is a common practiced 

method of feedstuff storage in agricultural operations. The main goal of the process is 

fermentation, done by storing crops in an environment with minimal oxygen and lowering pH 

levels, through increased lactic acid content via microbial populations (Jennings, 2013). The 

fermentation process can be further achieved through incorporation of an inoculant (Muck, 

2012). According to Wang and Nishino (2008) WBG can be successfully ensiled. The 

researchers found that WBG ensiled alone sustained lactobacillus bacterial communities at 14d 

and 56d (Wang and Nishino, 2008). Additionally, WBG incorporated in a TMR prior to ensiling 
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was shown to support microbial populations, active suppression of aerobic spoilage, and 

improved TMR stability at fourteen days and fifty-six days of storage (Wang and Nishino, 2008). 

Due to the high moisture and fermentable sugar content, WBG is a very unstable material and is 

liable to deteriorate rapidly due to microbial activity (Mussato et al., 2006). Opportunities do 

seem to exist in ensiling WBG when the ability to decrease moisture through TMR incorporation 

and stabilization of microbial populations through an anaerobic environment, as well as, 

incorporation of an inoculant. 

Logistical Implications 

WBG is a highly perishable, high-moisture, and dense product; which incurs its own 

transportation issues (Ben-Hamed et al., 2011). The feasibility of WBG inclusion decreases 

when distance transported from the brewery increases (Ben-Hamed et al., 2011). The accepted 

maximum range for transporting WBG is approximately two-hundred miles (Thomas et al., 

2010). If WBG can be purchased at minimal cost or 0% the price of corn and other traditional 

dry feeds, economic returns are optimized by the shorter distance of travel from brewery to the 

feedlot (Ben-Hamed et al., 2011). According to Ben-Hamed et al. (2011) factors that influence 

the efficacy of WBG are: costs of fuel, vehicle use, labor, and spoilage. If these operating costs 

are not properly managed, they essentially price-out the economic benefits of WBG versus 

traditional dry feeds (Ben-Hamed et al., 2001). Although animal performance can be maintained 

or even improved through proper inclusion rates of WBG versus conventional feeds, 

transportation in wet form is seen as one of the biggest impediments to its use (Ben-Hamed et al., 

2011; Mussato et al., 2006).  
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Nutritional Properties 

Currently, two main outlets for WBG are landfill dumping and feeding in the dairy 

industry. Research in feeding WBG to beef cattle is lacking (Landry, 2002), although multiple 

studies have concluded that its nutrient profile and complimentary traits to forage-based diets 

show opportunity as a supplemental feed (Mussato et al., 2006; Homm et al., 2008; Thomas et 

al., 2010; Shand et al., 1998). Since WBG is a variable product, deviation from standardized 

nutritional values could be expected and further research or sample analysis is necessary. 

Variation has been shown in values such as; Dry Matter percentage (DM, %), Crude Protein 

percentage (CP, %), and Crude Fiber Percentage (CF, %). The University of Florida, in 

cooperation with the Florida Cooperative Extension Service, published an article summarizing 

their findings on nutrient composition of WBG. The objective of the study was to determine the 

variation in nutritional values of locally available WBG. Nutrient values were compared between 

the National Research Council (NRC) standard, a study average, and a range of all values 

observed. The DM% listed value is 21.0%, where the determined range was 19.2% - 32.8%, and 

an average value of 26.0% (Thomas et al., 2010). The CP% listed value is 26%, where the 

determined range was 24.9% - 34.2%, with an average of 29.6% and the listed CF% is 15.3%, 

but the determined range was between 8.3% - 15.7%, with an average of 12% (Thomas et al., 

2010). Minor variations from the NRC given standards were observed concerning micronutrients 

and traces minerals such as Potassium (K) and Sodium (Na), which reiterated the importance of 

proper mineral supplementation mentioned throughout the literature (Thomas et al., 2010; 

Mussato et al., 2006). When focusing on the nutritional profile of WBG, knowledge of 

fluctuation and variability becomes essential when formulating rations and assessing the efficacy 

of inclusion in beef cattle diets.  
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As previously mentioned, fluctuations in DM% can have adverse effects on feed 

efficiency from gut-fill or distention and palatability issues due to increased spoilage rates but 

has been shown to be offset through TMR incorporation (Thomas et al., 2010). Extreme 

variations in CP% and CF% could have more economic impacts by resulting in a less uniform 

product or individual animals not meeting optimal live performance or carcass characteristics. 

These concerns could be explained in possibly decreased amounts of by-pass protein and readily 

fermentable fiber for utilization in intestinal absorption and progression of biological functions 

(Aines et al., 1986). Granted these concerns are minimal, because WBG consists of roughly 35% 

rumen-degradable protein, indicating higher levels of by-pass protein present (Thomas et al., 

2010). Furthermore, the energy value of WBG is 71 to 75%TDN with this energy being mainly 

derived from high fiber content and slight contribution from a 7 to 10% crude fat content 

(Thomas et al., 2010). This is further refuted by multiple studies, whose authors have concluded 

that feeding of WBG can maintain or enhance animal performance, economic return per head, 

and acceptable meat quality characteristics; if proper nutritional and feeding guidelines are 

followed (Mussato et al., 2006; Thomas et al., 2010; Ben-Hamed et al., 2011; Oltra et al.). 

Feeding  

Though research in feeding and supplementation of WBG in beef cattle operations is 

limited, suggested feeding guidelines and incorporation rates are available. Suggested feeding 

and supplementation rates are thirty to fifty pounds per animal per day for mature cattle and nine 

to twenty pounds per animal per day for young cattle (Thomas et al., 2010). In feedlot scenarios, 

studies have shown that feeding 15% to 45%WBG supported performance and carcass 

characteristics similar to or greater than cattle fed traditional finishing diets (Homm et al., 2008). 

Furthermore, dairy producers have seen that incorporating WBG with inexpensive forages is able 
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to provide all amino acids needed for proper nutritional health (Mussato, 2013). Mussato (2013) 

also concluded that inclusion of WBG in cow diets increased milk production, contents of total 

solids, and decreased the content of overall fat in milk produced. Anheuser-Busch, a proponent 

of partnerships between brewers and animal producers, sold 1.76 million tons of spent grains to 

local dairy farms in 1999 (Landry, 2002). Coors Brewing Company has begun drying and 

pelleting some of its grain to ship internationally for swine and poultry feed (Landry, 2002). 

Although research and industry practices support WBG inclusion, economic returns and 

feasibility have a direct influence on the use of alternative feeds. When vehicle costs and 

transportation distance from the brewery is within feasible range, feeding of WBG may provide 

an economical alternative and positively influence animal performance (Ben-Hamed et al., 

2001).  

Growth of the Micro-Brewing Industry 

Although DDGS are commonly utilized in the cattle feeding industry, by-products from 

other industry sectors do exist and are gaining interest and availability. In the past decade, the 

Micro-brewing industry has increased (Cohen, 2016). According to the Brewers Association 

(BA), the trade association representing small and independent American craft brewers, the 

number of operating breweries in the U.S. in 1970 was roughly one-hundred and by 2015 

breweries totaled 4,269, equating to the most in American history (Cohen, 2016). This growth in 

breweries represent a fundamental shift in the nature of brewing and product consumption 

(Schnell and Reese, 2003). In 2015, craft brewers produced 24.5 million barrels and saw a 

thirteen-percent increase in volume, representing twenty-one percent market share of the overall 

beer industry (Cohen, 2016). The growth in the micro-brewing industry is not a regionally 
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isolated phenomenon, but a growth stretching from coast-to-coast; with over three-quarters of 

legal drinking age adults living within ten miles of a local brewery (Delventhal, 2015).  

The revival of micro-brewery production has renewed an age-old relationship between 

brewers and livestock producers (Landry, 2002). The opportunity exists for producers to benefit 

from a brewing by-product that can be utilized in cattle feeding, all while creating a local 

industry partnership. The by-product is termed Wet Brewer’s Grains (WBG); with annual 

production totaling approximately 400 million tons and is available to producers throughout the 

year at minimal cost (Landry, 2002). Wet Brewer’s Grains may provide an economical 

alternative and positively influence animal performance (Ben-Hamed et al., 2001). Much of the 

literature available on WBG focuses on product from large scale brewers and does not address 

increases from micro-breweries and possible product differences may not be properly 

characterized. Product from microbrewers have more distinct compositional profiles and produce 

a diverse array of ales differing from those brewed by Budweiser, Coors, or Miller (Schnell and 

Reese, 2003). In recent years, the general public have become accustomed to a standardized list 

of product that renders large brewers indistinguishable from one another, and in response 

microbrewers have actively created new brews and locally-based economies that are not 

currently represented by available research (Schnell and Reese, 2003). As producers seek to 

utilize this economical alternative in cattle feeding, further research concerning the adoption of 

this within the industry in essential.   

Meat Quality 

Advancements in meat production, product variety, and increases in meat consumption 

have led to increases in production efficiency, as well as, increased amounts produced for 

domestic use and foreign export. In 2012 alone, total meat production in the U.S. reached more 
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than ninety-three million pounds of product; exporting 1.7 billion metric tons (MT) of beef, 1.65 

billion MT of pork, and 3.6 billion MT of poultry in 2014 (NAMI, 2016). The meat industry and 

all distribution linkages support many businesses and economies. All companies associated in 

meat production, livestock supply, distribution, retail and auxiliary sectors employ 6.2 million 

individuals in the U.S. alone, totaling $200 billion in wages (NAMI, 2016). Consumption of 

meat has transitioned from a position of social and economic prestige, to an accepted fact in the 

affluent lives of most Americans (Aberle et al., 2012; Bray, 1997). On average, American men 

consume 6.9 ounces of meat per day and women consume slightly less at 4.4 ounces per day 

(NAMI, 2016). Meat available for consumption has increased prominently, due to the increases 

in production quality via increased regulations, improved sanitation practices, and processing 

innovation. Initial fabrication of meat was done with the goal of preservation, through salting and 

packing into barrels for storage (Aberle et al., 2012). From the industrial revolution brought 

development of mechanical refrigeration and improved shelf-life and transportability of meat 

products (Aberle et al., 2012). The meat industry now has the capabilities to prolong shelf-life 

through multiple packaging and storage practices, such as, Modified Atmospheric Packages 

(MAP) and vacuum packaging (Aberle et al., 2012). 

 Higher quality standards and meat quality research ensures a wholesome and safe product 

for the consumer. Meat quality can be an ambiguous term, including components of eating 

quality, shelf life, wholesomeness, nutritional composition, and convenience (Apple and Yancey, 

2016). Hofmann (1986), as referenced by Otto (2004), defined meat quality as the sum of all 

meat quality characteristics.  
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Meat Color 

One of many important quality factors that is a determinant of consumer preference and 

choice is meat color. Meat purchasing decisions are influenced by color more than any other 

quality factor, because consumers use discoloration as an indicator of freshness and 

wholesomeness (Mancini and Hunt, 2005). Smith et al. (2000), as referenced by Mancini and 

Hunt (2005), states that inference of freshness based on color results in nearly fifteen-percent of 

retail beef discounts, equating to roughly one billion dollars in revenue lost annually. 

Meat color is influenced by the protein Myoglobin and what molecular state is present. 

Although myoglobin is the protein that is heavily focused and accredited for meat color, two 

accompanying heme-proteins, Hemoglobin and Cytochrome C may also play a role in color 

characteristics of beef, pork, lamb, and poultry (Mancini and Hunt, 2005). Myoglobin is a water-

soluble protein molecule, containing eight α-helices linked by short non-helical sections, formed 

off of a centralized Iron (Fe2+) atom (Mancini and Hunt, 2005). This molecule contains a ligand-

binding site, four bound pyrrole nitrogen atoms, and another binding site; creating a varying 

hydrophobic heme-pocket influenced by a distal histidine-64 (Mancini and Hunt, 2005). The 

varying valence of Iron (Fe2+) and the ligand presence allows for four chemical forms of 

myoglobin; Deoxymyoglobin, Oxymyoglobin, Metmyoglobin, and Carboxymyoglobin (Mancini 

and Hunt, 2005).  

Deoxymyoglobin forms when no ligand is presently bound and the central heme iron is 

ferrous (Fe2+) (Mancini and Hunt, 2005). Deoxymyoglobin is characterized by purplish-red or 

purplish-pink color, due to low oxygen tension (Mancini and Hunt, 2005). Oxymyoglobin is 

characterized by a bright cherry-red color and while there is no alteration in the valence of the 

heme iron (Fe2+), the previously empty ligand-binding site is occupied by a diatomic oxygen 
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(Mancini and Hunt, 2005). Metmyoglobin is characterized by a brownish pale color caused from 

over-exposure to oxygen and the heme iron becoming ferric (Fe3+) (Mancini and Hunt, 2005). 

Furthermore, Metmyoglobin formation is not only dependent on oxygen levels, but temperature, 

pH, reduced activity of the NADH pool, and microbial growth in some cases (Mancini and Hunt, 

2005). Carboxymyoglobin is characterized by a bright-red that is relatively very stable, but there 

are many questions that have not yet been answered on the actuality and biochemistry behind 

carboxymyoglobin (Mancini and Hunt, 2005).  

 Meat color is subjective through consumer perception, but is also seen as objective 

through the use of colorimetry and its associated numerical values (Mancini and Hunt, 2005; 

AMSA, 2012). Use of a colorimeter allows for quantitative values to be observed and create an 

objective scale of measurability for experimentation and compared to consumer preference 

trends. L*, a*, and b* are three values measured, which establish a three-dimensional color space 

(AMSA, 2012).  L* represents lightness of a meat product (0 – 100), a* values corresponds to 

the green (negative a*) – red (positive a*) color spectrum of meat, and b* corresponds to the blue 

(negative b*) – yellow (positive b*) color spectrum (AMSA, 2012). Although we can interpret 

meat color through numerical values and utilize this for research, it is still the consumer who 

ultimately decides in the marketplace (Maltin et al., 2003). Carpenter et al. (2001) concluded that 

packaging can alter dramatically how consumers see two similar products packaged differently. 

Panelists reviewed two products in two different packages with nearly identical L*, a*, b* 

values, but visually assessed the two drastically different (Carpenter et al., 2001). Product in a 

Vacuum Skin Package (VSP) was described as purple or brown by only fifteen-percent of the 

panelists and a product in a Modified Atmospheric Package (MAP) was described as either 

purple or brown by forty-percent of panelists (Carpenter, 2001). These results help show insight 
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on the variability of consumer preference and perception of color while making purchasing 

decisions.  

Flavor 

Flavor, tenderness, and juiciness are quality characteristics grouped closely together by 

consumers; who in the market place are the ultimate decider of meat quality (Maltin et al., 2003). 

Some of these characteristics are determined during the muscle to meat conversion and 

postmortem events (Maltin et al., 2003). The conversion occurs in three steps: pre-rigor step, 

rigor step, and tenderizing step (Ouali et al., 2006). Animals are slaughtered and carcasses hung 

in refrigerated temperatures for ten to twenty-one days dependent on packer practice and 

preference, allowing the conversion to take place (Ouali et al., 2006). Pre-slaughter handling, 

slaughter methods, and carcass chilling rate having the greatest impacts (Apple, 2010). Other 

contributing factors affecting these quality traits are: ratio of Fat to Lean, pH decline rate, Water 

Holding Capacity (WHC), flavor compounds present, and the synergistic action of enzymatic 

systems including calpains; μ-calpain specifically (Ouali et al., 2006). 

Flavor is the subjective characteristic perceived by consumers while consuming a meat 

product. Many descriptors exist to describe what exact flavor is experienced and complaints of 

blandness or off-flavors are a focus of concern (Ouali et al., 2006). Ouali et al. (2006) state that 

the major contributors to flavor are lipid peroxidation together with amino acids, as well as, the 

generation of peptides by proteolysis. Additionally, the oxidation process is initiated as a free-

radical autocatalytic chain mechanism in which pro-oxidants, especially oxygen and related 

radicals, will continually generate more free radicals ensuring the oxidative chain continues 

(Ouali et al., 2006). 
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Furthermore, flavor in red meat is held synonymous with fat: subcutaneous, 

intermuscular, and intramuscular fat. When nutrient intake is adequate fat is deposited under the 

skin as subcutaneous fat and between muscle groups as intermuscular fat, otherwise known as 

seam fat (Aberle et al., 2012). Intramuscular fat, the last to be deposited, are deposits between 

the fibers and muscle bundles themselves, otherwise known as marbling (Aberle et al., 2012). 

The type of fatty acids present is important as well. Fatty acid composition effects the firmness 

or softness of fat in subcutaneous, intermuscular, and intramuscular fat (Wood et al., 2003). The 

effect of fatty acids on meat flavor is due to the products of lipid oxidation during cooking and 

their involvement with the products of the Maillard reaction (Wood et al., 2003). The 

combination of these products form other volatiles which contribute to odor and flavor (Wood et 

al., 2003). Additionally, unsaturated fatty acids are particularly important and have been seen to 

determine species' specific flavors (Wood et al., 2003). An experiment by Rodbotten et al. 

(2004) developed a sensory map of meat from different species, consisting of select 

characteristics such as: odor, flavor, color, texture, and juiciness. The sensory profile was 

designed to exclude species specific traits and include general traits exclusively (Rodbotten et 

al., 2004). The authors concluded that flavors differed among species, but only differed in 

intensities (Rodbotten et al., 2004). This could be expected since meat from various species are 

comprised of the same elements, but of varying degrees and compositions. 

Tenderness 

A major factor in determining consumer satisfaction with meat products after purchase is 

tenderness (Maltin et al., 2003; Melody et al., 2004). The tenderizing process is enzymatic in 

nature and it is generally agreed that postmortem events are the main determinants of tenderness 

(Maltin et al., 2003). Research suggests a role of calpains, mainly calcium dependent peptidases 
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μ-calpain or calpain 1, which are active participants in the degradation of myofibrillar proteins 

(such as titin, nebulin, desmin, and troponin-T) (Huff-Lonergan et al., 1996; Melody et al., 2004; 

Ouali et al., 2006; Aberle et al., 2012). Ouali and Talmant (1990) suggest that there are four 

isoforms being expressed at different levels within fast-twitch and slow-twitch muscle 

respectively, possibly explaining why different levels of tenderness from different muscle groups 

of the carcass are experienced. Huff-Lonergan et al. (1996) reported μ-calpain as the major agent 

for many of the proteolytic changes that occur as meat is aged. Not only is tenderness determined 

by enzymatic pathways and reactions, fat plays a role as well. Grunert et al. (2004) concluded 

that degrees of marbling contributes to tenderness, even though some consumers perceive it as a 

detractor. This negative viewpoint towards fat could be linked to increased health awareness and 

authorities recommending a reduction in dietary fat (Wood and Enser, 1997). Since 

intramuscular fat is consumed with the meat and external fat is often discarded, consequently 

degrees of marbling has an impact on the overall composition of meat cuts (Mills et al., 1992). 

Tenderness can also be enhanced through mechanical tenderization such as: blade-

tenderization, pre-massaging, moisture enhancement, and post-injection tumbling (Pietrasik and 

Shand, 2005). Pietrasik and Shand (2005) investigated the validity of post-fabrication processes 

through improved cooking yield, expressible moisture (EM), and textural characteristics 

(Warner-Bratzler Shear, Kramer Shear). The authors utilized round roasts, retail cuts from one 

area of an ovine carcass seen to have lower tenderness values (Pietrasik and Shand, 2005). 

Pietrasik and Shand (2005) concluded that blade tenderization and brine injection, significantly 

lowered shear force (SF) values, resulting in higher tenderness values. Blade tenderization 

increased tenderness through physically cleaving large muscle fibers into smaller fibers prior to 

cooking, whereas brine injection increased tenderness through increased water holding capacity 
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and moisture retention (Petrasik and Shand, 2005). Furthermore, post-mortem electril stimulation 

has received considerable attention due to enhanced meat quality characteristics primarily 

tenderness and flavor (Unruh et al., 1986). Unruh et al. (1986) reported that rapid rigor onset as a 

result of Low Voltage Electrical Stimulation (LVES) and moderate chilling rate can result in 

improved tenderness, but possible decreased Water Holding Capacity (WHC) resulting in 

lighter-colored beef. 

Water Holding Capacity  

Juiciness, or the amount of moisture present, is a function of Water Holding Capacity 

(WHC). Water holding capacity is the ability of meat to retain naturally occurring or added 

moisture during the application of external forces and affects nearly every meat quality 

characteristic (Aberle et al., 2012). Lean muscle tissue is comprised of approximately 75% 

water, 20% protein, 5% lipids, while 1% is allocated to both carbohydrates, vitamins, and 

minerals (Aberle et al., 2012). Depending on the properties and treatment of meat after slaughter, 

water content may be gained or lost and is important economically since it is sold by weight 

(Offer et al., 1989). Water in meat is found in three forms: Bound, Immobilized, and Free 

(Aberle et al., 2012). Bound water is linked to charged molecules like protein and non-aqueous 

constituents, whereas immobilized water is held within the muscle, but is not bound to proteins, 

and is most affected by the muscle to meat conversion and the rigor process (Huff-Lonergan and 

Lonergan, 2005). Free water moves within the tissue unimpeded and weak surface forces hold 

this fraction of water in meat (Huff-Lonergan and Lonergan, 2005). Immobilized water is the 

primary water source affected by purge during the muscle to meat conversion (Huff-Lonergan 

and Lonergan, 2005). Knowledge of this has created a goal for packers to conserve as much of 

this water as possible. One factor that can enhance the retention capabilities of immobilized 
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water is by manipulation of the myofibrillar protein net charge (Huff-Lonergan and Lonergan, 

2005). Myofibrillar proteins form myofibrils or muscle strands and myofibrils form the structure 

of the muscle cell and its components (Huff-Lonergan and Lonergan, 2005). Net charge of 

myofibrillar proteins is important, because if the muscle proteins reach their isoelectric point (pI 

= 5.4), myfibrillar proteins essentially have a net charge of zero and pack tightly together 

decreasing available space, resulting in repulsion of structures in the myofibril and decreased 

water retention within the myofibrillar lattice spacing (Huff-Lonergan and Lonergan, 2005; 

Aberle et al., 2012). Product with high purge results in an unattractive appearance (pale or 

lacking in color) and therefore has lower consumer acceptance and loss in sales (Otto et al., 

2004). Furthermore, decreased water holding capacity limits the yield in further processing (Otto 

et al., 2004). This process can be counteracted by guiding pH decline, rapid pH decline during 

the muscle to meat conversion process causes denaturation and water binding ability of many 

proteins (Aberle et al., 2012). Not only does pH alter water holding capacity of muscle, changes 

steric space effect water holding ability also. Myofibrils make up a large portion of the muscle 

cell, accounting for 85% of the volume within muscle, and believed to hold more than 80% of 

the water present through capillary forces (Aberle et al., 2012). Millman et al. (1981, 1983), as 

quoted by Huff-Lonergan and Lonergan (2005), reported that in living muscle, sarcomeres 

remain isovolumetric, meaning the amount of water within the filament structure does not 

change only the location. However, as muscle enters the rigor process, crossbridges form 

between the thick and thin filaments (Offer and Trinick, 1983). The resulting structure has 

decreased sarcomere filament spacing and forces sarcoplasmic fluid from between the 

myofilaments to the extramyofibrillar space (Offer and Trinick, 1983). Hoinkel et al. (1986) 

reported that purge, or expelled sarcoplasmic fluid, can increase linearly to the decrease in length 
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of sarcomeres. In addition, decreased length in sarcomeres can influence shrinkage and lead to 

the expulsion of water from the myofibrillar structure; ultimately reducing overall water holding 

capacity (Bendall and Swatland, 1988).  

Effects of Co-Product Use on Meat Quality 

Since consumer preference for high quality meat and the role inputs of production play in 

product quality is important, research on how feeding by-products and co-products effect this is 

critical. Many studies have been conducted assessing the effects of by-product incorporation in 

feeding protocols on meat quality. In swine feeding, studies have reported that feeding as much 

as thirty-percent of DDGS will not only impact fat quality and composition, but also reduce 

carcass performance and meat quality characteristics (Apple, 2010; Rickard et al., 2012). Poor 

carcass characteristics and fat quality is detrimental and a concern for packers both in further 

processing and products not potentially meeting export criteria (Carr et al., 2005). However, 

losses in quality from feeding high levels of DDGS can possibly be recovered by removal of 

DDGS during the late period of finishing diets (Apple, 2010). Additionally, incorporation of 

ractopamine hydrochloride can further negate the effects of DDGS through improved growth 

performance and increased carcass weights (Wiegand et al., 2011; Rickard et al., 2012).  

Furthermore, studies have shown the efficacy of supplemental feeding of by-products, in 

beef cattle production, from ethanol production. Segers et al. (2014) concluded that feeding co-

product blends to early-weaned calves produced carcasses similar to those fed a traditional corn-

diet. Furthermore, the authors indicate that the inherent variation in nutrient profiles of co-

product feedstuffs constitutes further research (Segers et al., 2014). Contrary to swine feeding, 

feeding DDGS at a thirty-percent dry matter basis in beef cattle has resulted in no detrimental 

effects on performance, carcass characteristics, and sensory attributes (Leupp et al., 2009). This 
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data was further supported by Koger et al. (2010), who concluded that distillers grains, wet or 

dry, has little to no effect on meat quality, retail display of ground beef, or fatty acid profile of 

longissimus muscle (LM). Although, it has been mentioned that feeding high levels of DDGS 

may negatively affect steak color and steers may need to be marketed early if excess fattening is 

observed (Koger et al., 2010; Leupp et al., 2009). 

Since research on WBG inclusion in beef cattle, effect on meat quality, and carcass 

characteristics is lacking, further research is necessary. Linton (1973), as referenced by Shand et 

al. (1998), observed that brewery by-products had no effect on carcass characteristics or meat 

quality, but further research was indicated as necessary. Steers fed either conventional barley-

based, Wet Distillers Grains (WDG), or WBG based rations during backgrounding and finishing 

had similar meat quality and eating properties (Shand et al., 1998). While there has been no 

indication that animals fed brewery by-products are superior to conventional or barley based 

diets, neither are there negative effects observed from these products, primarily eating quality 

(Shand et al., 1998). Homm et al. (2008) further supported this, concluding that feeding fifteen to 

forty-five percent WBG in feedlot diets supported animal performance and carcass 

characteristics similar or greater to traditional finishing diets. Additionally, feedlot performance 

and carcass quality was found to be very acceptable when either twenty-five percent or fifty-

percent of the total ration was derived from brewers grains, in their dried form, compared to a 

ninety-five percent corn ration (Preston et al., 1973). As echoed by Shand et al. (1998), few 

reports of beef trials of animals fed WBG have been published, which may give producers and 

feedlots opportunities to take advantage of these alternative feeds to provide quality product for 

the consumer. 



47 

The Illinois livestock industry is expected to experience significant growth, with total 

number of “Notices of Intent to Construct” filed by local producers, increasing 137% between 

2010 to 2014 (DIS, 2015). Although cattle inventories are low compared to the past, record high 

beef prices will continue to drive prices and further incentivize producers to expand in livestock 

production (DIS, 2015). Illinois alone produced 279.1 million pounds in June of 2016, equating 

to 101% of production from the year prior (USDA-NASS, 2016). Since feedstuffs often 

encompass the largest portion of production costs, more emphasis will be placed on the cost 

effective use of alternative feed sources as expansion continues (Hersom, 2006). The revival of 

micro-brewery production has renewed an age-old relationship between brewers and livestock 

producers (Landry, 2002). This opportunity enables producers to benefit from WBG to be 

utilized in cattle feeding, all while creating a local partnership with micro-brewers. Moreover, 

much of the literature available on WBG focuses on product from large scale brewers and does 

not address increases from micro-breweries and possible product differences. As producers seek 

to utilize this local and economical alternative feed source, further research on the efficacy of 

WBG inclusion is necessary. 
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