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Background: Due to the extreme forces on the glenohumeral (GH) joint during the 

throwing motion, and the high number of repetitions that occur during overhead sports, 

alterations in range of motion (ROM) are a common occurrence in overhead athletes, 

particularly baseball and softball players. The presence of limited GH motion that occurs 

as a result of posterior shoulder tightness can increase the risk of injury. Despite clinical 

evidence pointing to the use of joint mobilizations and muscle energy technique (MET) 

for the treatment of various pathologies, there currently are no data examining the overall 

effectiveness of joint mobilizations and MET to determine optimal treatment for posterior 

shoulder tightness. 

Purpose: To compare the acute effectiveness of MET and joint mobilizations for 

reducing posterior shoulder tightness by increasing GH horizontal adduction and internal 

rotation ROM.

 



Methods: Forty-two asymptomatic high school baseball and softball players were 

randomly assigned to one of three groups. Fourteen participants received one application

of joint mobilizations, and fourteen participants received one cycle of MET, between 

pretest and posttest measures of passive GH internal rotation, external rotation, and 

horizontal adduction ROM. The remaining 14 participants served as the controls, and did 

not receive any treatment. Data were analyzed using separate one-way analyses of 

covariance, for internal rotation and horizontal adduction ROM at two time periods 

(immediately after treatment, 15 minutes after treatment application). The dependent 

variables consisted of the post-test ROM and the covariates were pre-test ROM. 

Results: Acute results determined that the MET group had significantly more 

horizontal adduction ROM post-treatment compared to the control group (p=0.04). No 

differences existed between MET and joint mobilizations or joint mobilizations and the 

control group for horizontal adduction (p>0.16). No significant between group 

differences existed acutely for internal rotation (p>.28). There were no significant 

between group differences for either horizontal adduction or internal rotation at the 15-

minute posttests (p>0.70). 

Conclusion: The results of this study indicate that the application of MET to the 

horizontal abductors provides acute improvements to GH horizontal adduction ROM in 

high school baseball and softball players. 
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CHAPTER I 
 

INTRODUCTION 
 

 

Due to the extreme ranges of motion (ROM) and the high velocities placed on the 

shoulder, the glenohumeral joint is subject to tremendous amounts of force during the 

baseball throwing motion. Internal rotation velocity peaks at over 7,000°/second,1 and 

torque forces at the peak moment of external rotation can exceed 60 Nm.2 As a result of 

the repetitive application of such large loads, specific adaptions commonly occur to the 

osseous and soft tissue components of the glenohumeral joint.3-6 A combination of these 

structural adaptations have been shown to modify the normative ROM in the throwing 

arm, resulting in increased external rotation and decreased internal rotation movements.  

More specifically, this tightness can result in decreased glenohumeral horizontal 

adduction7-9 and internal rotation motion4,10-13 and an increased capacity for injury.2,10,14-

23  

 Studies have implicated posterior shoulder tightness (PST) as a potential cause of 

injuries such as muscular dysfunction,24-27 superior labral anterior to posterior 

lesions,20,26,28-33 subacromial impingement,7,34 and pathological internal 

impingement.10,24,26,31,35 However, pathological implications of PST often only become 

prevalent once significant losses in ROM have occurred.2,10,14,22,23,36,37 A majority of the 

studies pertaining to ROM changes and PST focus on the loss of the internal rotation, but
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 decreased horizontal adduction has also been observed.9,18,38 Certain contributing factors 

to PST, such as posterior capsule and muscular restrictions,3-5,39 may be managed 

effectively with different types of conservative treatment options.40-46 Muscle energy 

techniques (MET) applied to the GH joint have been shown to aid in improving ROM.40 

Moore et al40 explored the effects of a MET treatment applied to the glenohumeral 

external rotators compared to the horizontal abductors. These authors determined that 

treatment to the horizontal abductor muscle group yielded a greater improvement in both 

internal rotation and horizontal adduction motions when compared to a control group. 

Joint mobilizations are another form of manual therapy and have been clinically shown to 

improve joint motion and kinematics.39,47,48 Joint mobilizations have also been shown to 

be an effective technique for decreasing pain and treating pathologies, such as adhesive 

capsulitis.39,47,48 

 Due to the potential negative effects of PST, determining optimal treatment 

options for improving glenohumeral internal rotation and horizontal adduction could aid 

in decreasing the rate and severity of injury in overhead throwing athletes. The purpose 

of this study was to compare the acute effectiveness of MET and joint mobilizations for 

reducing PST among high school baseball and softball players. The secondary purpose 

was to determine if any changes in ROM persisted over a 15 minute time period. We 

hypothesized that the application of the joint mobilizations would yield the greatest 

restorative results for PST.
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CHAPTER II 
 

REVIEW OF LITERATURE 
 

 
 During overhead sports such as baseball, softball, volleyball, tennis, swimming, 

and handball the athlete’s upper extremity is subject to extreme forces, large torques, and 

many repetitions in each sporting exposure. The high number of repetitions and the large 

forces have been shown to relate to the presence of changes in range of motion at the 

glenohumeral (GH) joint due to both soft tissue and osseous adaptations. The changes in 

motion can become drastic shifts away from the normal scope of motion, and cause 

pathologic onset of a variety of conditions. Various treatment methods have been used to 

decrease the soft tissue adaptations in an attempt to prevent injury. The purpose of this 

study is to compare the application of muscle energy technique (MET) to the horizontal 

abductors to posterior joint mobilizations to determine which treatment is most effective 

for reducing posterior shoulder tightness (PST) acutely and to monitor any lasting effects 

of either treatment. In order to identify the question, we must first understand the 

anatomy of the GH joint, the changes that occur in the overhead athlete’s shoulder, as 

well as the operational definition of PST. The implications of PST as well as an 

understanding of the types of pathologies affiliated with PST are also essential for this 

study. Since this study compares treatment methods that can be used to decrease levels of 

PST, it is important to understand the other types of treatments that have been previously
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 examined and proven effective. Overall, the goal of this study is to provide health care 

professionals with accurate information regarding the most effective method to treat PST, 

in the hopes of preventing injury and providing optimal therapeutic interventions for the 

various shoulder pathologies associated with PST. 

 

 Anatomy of the Shoulder 

 The shoulder consists of three joints: glenohumeral, sternoclavicular, and 

acromioclavicular.49 However, this review of literature will focus on the anatomy of the 

glenohumeral (GH) joint, where the head of the humerus is received into the glenoid 

fossa of the scapula, creating a ball-and-socket joint.49 The arrangement of the 

articulation is a contributing factor for the large range of motion present at this joint. The 

articulating surfaces are protected by a layer of articular cartilage, with the cartilage of 

the humeral head being thicker in the center as compared to the edges. The opposite is 

true for the articular cartilage covering the glenoid fossa, as it is thicker around the edge 

of the cavity, and thinner throughout the middle.49   

The articulation of the GH joint is supported by the ligamentous structures of the 

shoulder. Gray49 refers to the glenohumeral joint capsule as the capsular ligament and 

observes that it completely encircles the articulation of the GH joint and attaches to the 

entire circumference of the glenoid cavity and the anatomical neck of the humerus. The 

capsular ligament is thicker superior and inferior to the GH joint itself49. The capsular 

ligament has also been described by Gray49 as “remarkably loose and lax” which allows 

for separation of the articulating surfaces, providing the extreme freedom of movement 

found at the GH joint. 
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The GH capsule is strengthened by supplementary bands of ligament located in 

the interior of the joint49. The supplementary bands of the capsule are known as the 

glenohumeral ligaments, and are clearly separated into three separate segments: the 

superior, middle and inferior glenohumeral ligaments.50 The GH ligaments help resist 

excessive motion of the GH joint and help prevent dislocation.51 Each segment of the 

glenohumeral ligament resists a specific translation of the humeral head and aids in 

preventing excessive movement of the humeral head. The superior glenohumeral 

ligament (SGHL) runs from the supraglenoid tubercle to the lesser tuberosity of the 

humerus and resists anterior and inferior translations of the humeral head.52,53 The SHGL 

also prevents the dislocation of the biceps tendon from its sulcus.54 The middle 

glenohumeral ligament (MGHL) serves as a key stabilizer of the anterior aspect of the 

GH joint during the motion of external rotation with concurrent GH abduction.55 The 

MGHL extends from the superior portion of the glenoid tubercle to the inferior portion of 

the lesser tuberosity.54 The inferior glenohumeral ligament (IGHL) consists of two 

segments, the anterior band and the posterior band.54 The posterior segment of the IGHL 

prevents excessive posterior translation of the humeral heading during abduction and 

external rotation movements.52,56 However, the primary restraint of anterior translation of 

the humeral head when the arm is abducted and externally rotated is the anterior band of 

the inferior GH ligament.57-59 The transverse humeral ligament, passing from the lesser to 

the greater tuberosity of the humerus, and the glenoid labrum, which is a fibro-

cartilaginous rim around the edge of the glenoid cavity, also provides stability to the GH 

joint49. The glenoid labrum is a fibrocartilaginous structure that deepens the glenoid rim 

and creates a functional seal around the articulating surface of the humerus.50 This 
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functional seal generates inter-articular pressure which aids in stabilization of the GH 

joint and keeping the humeral head centered in the glenoid fossa.50 

The design of the ball-and-socket joint allows freedom of movement in all 

directions, especially when combined with proper activation and accessory movement 

patterns of the scapula and clavicle at the acromioclavicular joint and the sternoclavicular 

joint.49 The humerus is drawn into flexion by the pectoralis major, anterior fibers of the 

deltoid, coracobrachialis, and by the biceps when the elbow is flexed.49 The muscles that 

contribute to extension are the latissimus dorsi, teres major, posterior fibers of the deltoid, 

and the triceps when the elbow is extended.49 The GH joint is abducted by the middle 

deltoid and supraspinatus while the subscapularis, pectoralis major, latissimus dorsi and 

teres major contribute to GH adduction.49 Activation of the infraspinatus and teres minor 

muscles cause the GH joint to move into external rotation, and contraction of the 

subscapularis, latissimus dorsi, teres major and pectoralis major cause the GH joint to 

move into internal rotation.49 The GH joint is moved into horizontal adduction by the 

anterior deltoid and pectoralis major.60 The posterior deltoid, infraspinatus, and teres 

minor horizontally abduct the GH joint.60 

Muscle fibers also act as dynamic stabilizers of the GH joint throughout motion.49 

The primary dynamic stabilizers of the GH joint are the muscles of the rotator cuff as 

well as the tendon of the long head of the biceps.51 The supraspinatus, infraspinatus, teres 

minor, and subscapularis encase the anterior, superior, and posterior aspects of the GH 

joint capsule and help resist excessive movement of the humeral head via rhythmic 

contraction and relaxation.51 The tendon of the long head of the biceps acts as a dynamic 

stabilizer of the anterosuperior aspect of the GH joint due to its origin, and insertion.51 
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The nerves that enervate the musculature surrounding the GH joint are derived from the 

circumflex (axillary), subscapular, musculocutaneous, and suprascapular nerves. 49 

 

The Overhead Athlete 

 Overhead athletes face unique challenges and demands of their sport. The 

throwing motion often requires high repetitions, extreme velocities, repeated accuracy, 

and extreme range of motion (ROM) of the GH joint; placing stress on the same body 

segments with each throw. The external rotation ROM typically seen in the throwing arm 

of an overhead athlete is approximately 180 degrees, and this extreme motion is required 

to create the high rotational forces and ball velocity during each throw.1 Larger amounts 

of external rotation allow for a longer throwing arc, which allows for a longer period of 

time for the athlete to create the rotational torques and angular velocities needed for faster 

ball speed.10,61 The fastest velocities experienced by the human body often occur during 

the throwing motion. Internal rotation velocity has been observed at peak velocities of 

7000 degrees per second, and rotational torques have been recorded near 70 Nm.1,33,62 It 

has been postulated that these extreme forces and velocities are related to adaptations that 

occur within the dominant arm of an overhead athlete that are not present within the 

athlete’s non-dominant arm or in non-overhead athletes.2,6,63-65 In order to fully 

understand the relationship between the demands of overhead sports and the adaptations 

that have been observed within the dominant arm of athletes, it is essential to understand 

the mechanics and movements of the throwing motion. 

 Throwing has been described as continuous movement that begins in the lower 

extremity and core, which provides a strong base of support and helps generate kinetic 
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energy that is transferred through the athlete’s dominate arm, ending with the release of 

the ball.66-69 The task of throwing requires a sequential transfer of forces and motions 

through the mechanical linkage of body segments through the kinetic chain, utilizing all 

portions of the body to complete the motion.70,71 The mechanics of the throwing motion 

have been broken down into six main phases: the wind-up, the stride, arm cocking, 

acceleration, deceleration, and follow through.24,72 

 The first phase of the throwing motion is the wind-up. During this first phase, the 

athlete begins in a dual leg stance, transferring their weight to the leg on the throwing 

side of the body, which is known as the stance leg.67 This shift in body weight changes 

the location of the athlete’s center of gravity, positioning it over the stance leg.73 The 

muscles of the stance leg maintain isometric contractions to stabilize the athlete in a 

single leg stance while maintaining proper positioning for the throwing motion, including 

a level pelvis, knee flexion, and hip flexion.67 The athlete’s stride leg, the leg opposite to 

the throwing side of the body, is elevated and flexed.1,67 The trunk and upper body rotate 

90 degrees, away from the target of the throw.1,67 

The second phase of motion is the stride phase, which begins when the athlete 

separates their hands and ends when the stride foot makes contact with the ground.1,67 

During this phase the center of gravity continues to lower as the hip of the stance leg 

moves into flexion.67 The stance leg then hip extends, abducts, and internally rotates 

while the stride leg extends and externally rotates toward the target, initiating forward 

motion.67 The torso begins to rotate toward the target, the dominant arm beings to 

horizontally abduct and externally rotate, and the scapula protracts, laterally rotates, and 

tilts anteriorly.67 Rotation of the torso and lower extremity during this phase is important 
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to the velocity of the throw because 51-55% of the force development occurs in the core 

and legs, and is transferred up the kinetic chain during the throwing motion.70,74 

The third phase of motion is the arm cocking phase, which lasts from stride foot 

contact until max GH external rotation is achieved.1,67,74 The muscles of the stride leg 

contract to decelerate the flexion of the knee, stabilize the leg, and create a stable base for 

the final phases of the throwing motion.67 The pelvis, trunk, and upper torso continue to 

rotate toward the target with the lumbar spine positioned in hyperextension67, with 

excessive hyperextension limited by an eccentric contraction of the abdominal obliques73, 

and stabilization by the gluteus maximus.75 The elbow flexes, and the GH joint externally 

rotates, and the arm moves into 90 degrees of GH abduction,67 approaching maximal 

external rotation which has been recorded to range from 165 to 180 degrees,1,33,76,77 and is 

capable of producing forces ranging from 550 N to 770 N.33,78 The scapula reaches 

maximal retraction and external rotation, and moves into a posterior tilt when the GH 

joint is in a position of maximum external rotation and maximum abduction.67 During 

this phase, the forearm moves into a position of pronation.70 Toward the late cocking 

phase, the most strain is placed on the anterior glenohumeral capsuloligamentous 

structures to prevent anterior translation of the humeral head.79 Maximal external rotation 

can be limited by the contact of the greater tuberosity of the humerus and rotator cuff 

against the posterosuperior glenoid,10 but these restrictions have been shown to be 

overcome by soft tissue adapation.80 

The fourth phase of the throwing motion is the acceleration phase, which begins 

when the shoulder reaches a position of maximal external rotation, and ends with ball 

release.73 During this phase the trunk continues to rotate and tilt toward the target 
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allowing the energy to transfer to the upper extremity with the shift from hyperextension 

to controlled forward flexion.67,73 The stride leg moves into hip flexion and knee 

extension.73 The GH joint moves into rapid internal rotation, producing maximum force 

and angular velocity required for the throwing motion, which as been observed as great 

as 90 Nm of internal rotation torque.73,81 Over the course of this phase, the elbow moves 

from maximum elbow flexion to maximum elbow extension.73 The forearm is pronated 

and the wrist is in a neutral position.73 

The fifth phase of the throwing motion is the deceleration phase, which begins 

with ball release and culminates when the GH joint is in a position of maximum internal 

rotation.73 During this movement phase, the elbow extends, the GH joint moves into 

continued internal rotation, and begins to move across the body into horizontal 

adduction.73 During deceleration, the musculature of the posterior rotator cuff dissipates 

the forces that develop during the throwing movement. The greatest amount of tissue 

loading occurs during the deceleration phase due to increased inferior shear forces, 

increased compressive forces, and increased adduction torques.67,73 The elbow flexors 

eccentrically contract to slow the motion of elbow extension.67,73 The scapula moves 

from an upwardly rotated position into protraction and an anterior tilt.67,73 

The final phase of the throwing motion is the follow through. During the follow 

through, the weight of the athlete is transferred to the stride leg, which extends at the 

knee. The torso continues to decelerate and also moves into a flexed position over the 

stride leg.67 The GH joint ends in the optimal fielding position of approximately 60 

degrees of horizontal adduction.73 During both the deceleration and follow through 

phases, the posterior joint capsule and rotator cuff muscles experience eccentric loads up 
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to 108% of body weight,82 with fatigue of the posterior rotator cuff resulting in a greater 

percentage of the eccentric forces translating through the joint capsule. 83,84 These unique 

sport specific demands, high repetitions, and extreme forces experienced during the 

throwing motion have been postulated to cause adaptive changes within both the osseous 

and soft tissue components surrounding the GH joint, resulting in ROM changes. 

 The most commonly reported changes in the range of motion of the dominant arm 

among overhead athletes include increased external rotation, decreased internal rotation, 

and decreased horizontal adduction.4,11-13,85 The loss of internal rotation has been 

categorized as glenohumeral internal rotation deficit (GIRD).6,13,18,86-91 In order to better 

analyze the total shift in motion that occurs in the overhead athlete, Wilk et al5 proposed 

the concept of total rotational motion (TROM), where the measures of  IR and ER are 

combined to obtain an absolute total arc of motion. Surprisingly enough, the 

measurements of TROM can be equal when compared bilaterally despite the shift in IR 

and ER.6,12,13,91 Equal bilateral measurements of TROM have been recorded in athletes at 

the professional level2,13,14 and in adolescent/developmental athletes.90,92 Several different 

definitions of posterior shoulder tightness (PST) exist within the literature. Pathologic 

GIRD or PST has been defined by Burkhart et al10,20,93 as a loss of 20 degrees or more of 

IR as compared contralaterally or greater than 10% loss of TROM seen in the non-

throwing shoulder. Wilk et al2,14,37 has indicated that a bilateral difference in total 

rotational arc of motion exceeding 5 degrees on the dominant side is representative of 

PST in the throwing arm. Kibler et al36 suggested that pathological GIRD or PST 

consisted of a side to side asymmetry of greater that 18 degrees, indicating that large 

shifts in ROM can be detrimental to the integrity of the GH joint. However, it has been 
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reported that as long as the GIRD is less than or equal to the gain in ER, ensuring that 

TROM remains equal, the throwing shoulder may be at less risk of developing injury.20 

Changes in GIRD and TROM have been observed to have age related changes,90 but the 

cause of these changes is yet to be determined. Overall, the literature is inconclusive in 

identifying a singular cause for these changes in ROM. 

 

Osseous Adaptations 

 There are two main theories for the changes in ROM that occur at the GH joint; 

changes to the osseous structures or changes to the soft tissue components of the joint. 

However, some literature states that both osseous and soft tissue adaptations contribute to 

the development of GIRD in the throwing shoulder, but the relative contributions of each 

is still inconclusive.94 Studies have shown that accommodating for changes to the 

humerus only account for approximately 10-17 degrees of rotational motion that is lost 

due to GIRD.6,95 This osseous change is known as humeral retrotorsion, and is defined as 

the angle created by the humeral head and an axis between the medial and lateral 

epicondyles of the distal humerus.94 An increased angle of retrotorsion results in 

increased external rotation of the distal humerus as compared to the proximal segment.96 

Measures of retrotorsion have been shown to clinically effect records of GH measures of 

ROM6,91,97 since increased levels of retrotorsion allow for excessive external rotation 

motion while limiting internal rotation, mimicking the appearance of posterior shoulder 

hypomobility.15 It is hypothesized that increased levels of retrotorsion in adult overhead 

athletes stems from participation in throwing sports before skeletal maturity6,98, allowing 

the rotation torques to influence bone development under the principles of Wolff’s Law.99 
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At the end of the cocking phase of the throwing motion, the muscular forces and body 

acceleration create an internal rotation toque at the proximal humerus while the distal 

humerus and forearm continue to apply an external rotation torque which is responsible 

for creating the twist along the axis of the humerus.98,99 Differences in retrotorsion 

ranging from 0-29 degrees have been observes in baseball players when compared to 

non-throwing athletes and when compared to their non-dominant arm.6,91,98,100 Hibberd et 

al101 observed gendered differences when measuring retrotorsion in elite overhead 

athletes, suggesting that difference in kinetics generated by males and females influences 

the degree of retrotorsion. Age related increases in GIRD have also been observed with 

changes in retrotorsion among youth overhead athletes.15 Hibberd15 monitored levels of 

retrotorsion as well as total changes in ROM in an attempt to determine the impact of 

increased retrotorsion on overall ROM. Results demonstrated that there was no 

significant changes in ROM after measurements were normalized to account for the 

degree of humeral retrotorsion in each athlete. This allowed the authors to postulate that 

changes in ROM occurred mainly as a result of increased retrotorsion since there were no 

overall changes in ROM between subject groups once the data had been normalized to 

account for increased retrotorsion.15 It was also recorded that the largest change in levels 

of GIRD between age groups also occurred during the time of greatest changes in 

retrotorsion,15 showing a strong relationship between the two measures.15,98 Increased 

levels of retrotorsion in the overhead athlete are significant to the clinician because 

retrotorsion has been linked to increased performance100 and the decreased risk of 

injury.97,102 Evidence shows that increased levels of retrotorsion may help athletes avoid 
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injuries due to decreased external rotation ROM needed at the proximal humerus to reach 

maximal ER, thus potentially decreasing shear forces through the throwing motion.25,103  

 

Soft Tissue Adaptations 

  After skeletal maturity, any further alterations in range of motion at the GH joint 

stem from soft tissue adaptation caused by changes to the joint capsule, ligaments, or the 

musculature of the posterior shoulder.98 A majority of the literature focuses on the 

changes to the joint capsule, and the main theory behind muscular involvement relates to 

fatigue and contracture caused by excessive eccentric loading during the deceleration 

phase.83,84 The muscles of the posterior shoulder including the posterior rotator cuff and 

deltoid have been shown to contribute to posterior shoulder tightness (PST)104. PST is the 

combination of contracture of the posterior shoulder musculature and decreased tissue 

compliance of the joint capsule. PST is prevalent in overhead athletes when GIRD 

exceeds the amount of internal rotation loss caused by humeral retrotorsion or when IR 

loss exceeds ER gain.105 Use of measurements corrected for osseous contributions to 

internal rotation loss have been suggested in order to isolate and evaluate the role of PST 

in the overhead athlete.98 It has also been postulated that differences in TROM may be 

more sensitive to the involvement of PST on ROM measures since TROM should not be 

affected by humeral retrotorsion.98 A measurement of horizontal adduction ROM has also 

been proven as a reliable and valid method of recording levels of PST in the overhead 

athlete.9,38  

Changes in ROM due to changes in the posterior capsule occur as a result of 

repetitive stretching and microtrauma caused by the distraction and rotational forces 
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during the deceleration and follow through phases of throwing.10,24 The repeated 

microtrauma causes the capsule to shorten and thicken, creating increased ER because the 

shortened posterior capsule changes the contact point of the humeral head on the surface 

of the glenoid fossa, shifting it in a posterosuperior direction.10,24 The change in the 

contact point allows the greater tuberosity to clear the glenoid rim, and accounts for the 

increase in external rotation.10,24 Chronic tearing of the posterior capsule due to the 

immense loading sustained during the deceleration phase of throwing may also result in 

increased fibroblastic response, increased collagen deposition, and decreased tissue 

compliance, which in turn leads to increased capsule stiffness.84 Studies have also shown 

that throwers exhibiting GIRD showed a severely thickened and contracted 

posteroinferior recess in the posterior band of the inferior GH ligament during surgical 

observations.10 Research106 has shown that when accounting for humeral retrotorsion in 

measures of GH rotational motion, ROM can change between two throwing seasons, 

suggesting that changes in ROM may be transient and responsive to modulation. It has 

also been shown that internal rotation stretching and posterior capsular release can 

decrease GIRD, emphasizing the role of soft tissue contracture.89,107,108 In the youth 

athlete, however, it has been suggested that the soft tissue surrounding the shoulder may 

provide less influence on the integrity of the GH joint, and therefore, the changes in 

motion of the youth athlete may possibly be directly related to osseous adaptation.10 The 

changes in osseous alignment and soft tissue extensibility have been shown repeatedly to 

play a role in changes to ROM in the throwing arm of an overhead athlete. Each factor 

has also been evaluated as component of GIRD and PST. Excessive alterations in ROM 

caused by PST have been shown to increase the risk of developing a pathological concern 
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in the throwing arm. Understanding the relationship between PST, and injury is essential 

for the clinician to provide the optimal care for the throwing athlete. 

 

Pathological Implications of PST 

 Symptoms of injury in the overhead athlete generally develop with an insidious 

onset and may not always cause immediate pain or decreased performance.109 Generally, 

the symptoms present as non-specific and broad, most commonly include the inability to 

“get loose”, issues controlling the accuracy of the throw, decreased velocity, increased 

pain, or the inability to throw.109 Several studies have linked PST and alterations in ROM 

to shoulder pain and injury.7,10,16-19,21,93 Several studies have also shown that extreme 

alterations in ROM, elevated levels of PST, and asymmetrical TROM result in high 

incidence of injury among overhead athletes. Kevern et al22 has noted that baseball 

pitchers with greater than 20 degrees of GIRD as compared to the non-dominant side 

were nearly twice as likely to suffer an injury as those athletes whose measurements of 

GIRD were less than 20 degrees. An increased incidence of ulnar collateral ligament tears 

has also been recorded in athletes with significant changes in GH ROM as compared to 

athletes who did not have excessive loss of IR ROM. 23 Dines23 reported that athletes that 

suffered a torn UCL in the throwing arm reported  an average of 18.8% of GIRD in the 

dominant arm as opposed to 8.8% measure of GIRD in throwing athletes that did not 

suffer a UCL rupture. The literature has reported that asymmetrical and excessive TROM 

can also impact the onset of shoulder pathology. Wilk et al2 has shown that pitchers with 

as little as 5 degrees of GIRD had an increased risk for injury compared to athletes with 

no presence of GIRD in the dominant arm, showing that even slight alterations in motion 
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can become affiliated with pathology. There is a 250% increased risk of injury among 

athletes with asymmetrical TROM by 5 degrees or greater.2,14 In addition to asymmetrical 

TROM, excessive TROM is also contributing factor for injury in the throwing athlete. 

Wilk et al14 reported that 78% of overhead athletes with a TROM greater than 176 

degrees will have an injury. Clinicians have also stated that TROM should not exceed 

186 degrees as an absolute measure.36 The literature reports that if an athlete does not 

gain sufficient external rotation to counter-balance lost internal rotation, there is a 230% 

increase in risk for injury.37 Reports also show that disruption of the kinetic chain at 

proximal segments, such as the GH joint, can alter movements and forces at the distal 

segments, resulting in the possible development of injury.70 The breakdown in the kinetic 

chain can arise from variations in motor control, strength deficits, decreased flexibility, 

and decreased muscular endurance.70,73 Common sites of deficiency in the kinetic chain 

include the legs, core, scapula, and shoulder.70 

 PST has been implicated with several pathologies common to the overhead 

athlete.63 A relationship between PST and labral pathology, most frequently a superior 

labral anterior to posterior (SLAP) lesions has been noted. It has been reported that 

injuries to the labrum develop as a results of a variety of mechanisms of injury including: 

the tensile failure of the long head of the biceps tendon. The long head of the biceps acts 

as a dynamic stabilizer of the GH joint via eccentric loads placed on the elbow during 

deceleration.32 SLAP lesions can also occur from the torsional forces when the shoulder 

reaches a position of maximal abduction and maximal external rotation creating the “peel 

back mechanism”, which occurs when forces translated up the long head of the biceps 

tendon peel the labrum away from the glenoid fossa.110 SLAP lesions can also occur 
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more acutely when the humeral head translates up and over the labrum as the shoulder is 

moved into a position of excessive external rotation.33 The literature has also suggested 

that the normal contact between the greater tuberosity and the posterosuperior labrum 

when the shoulder is abducted and externally rotated can become pathologic as a result of 

increased frequency.26,31 Of the four main types of SLAP tears, Type II lesions, which is 

defined as an avulsion of the glenoid labrum and biceps anchor from the glenoid rim,29,110 

have been recorded as the most commonly associated with overhead activity.28-30 It has 

been postulated that labral pathologies have been linked to the mechanisms of the 

throwing motion due to the torsional forces that occur when the arm is in a position of 

maximal external rotation and abduction, thought to “peel back” the biceps and 

labrum.110 However, another theory suggests that labral pathologies develop a result of 

the role of the biceps as a deceleration force acting on the elbow, resulting in tensile 

failure at the insertion of the biceps.32  

Posterosuperior impingement, also referred to as internal impingement, is the 

most common cause of shoulder pain in the throwing athlete,35 most commonly 

experienced during the late cocking and early acceleration phases.26,31 Internal 

impingement is the impingement of the undersurface of the rotator cuff between the 

greater tuberosity and posterior humerus with the posterosuperior labrum and the glenoid 

during a position of maximal GH external rotation and abduction.25,111,112 The extreme 

forces generated during these phases can result in the development of impingement and 

stretching of the anterior joint capsule.10,24 Posterior impingement often results in the 

development of rotator cuff partial substance tears of the supraspinatus and infraspinatus 

tendons, which can then progress to full substance tears.25,26 The posterior rotator cuff 
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musculature and posterior capsule may also be susceptible to injury as a result of a 

shortened throwing motion which does not permit enough time for the proper distribution 

of forces during the deceleration and follow-through phases.24,27 Mihata et al113 

demonstrated that fatigue of the rotator cuff musculature created increased overlap of the 

rotator cuff insertion and the glenoid at varying degrees of abduction, linking the 

formation of internal impingement to changes in the posterior shoulder musculature. 

It has been postulated that PST plays a role in the development of subacromial 

impingement due to abnormal translations of the humeral head.34 These abnormal 

translations have been shown to occur due to the selective tightening the posteroinferior 

capsule, allowing the humeral head to excessively translate anteriorly, which may 

decrease the width of the subacromial space.17,34  

As reported earlier in this review, breakdowns in the proximal segments of the 

kinetic chain can result in dysfunction at the distal segments, including the elbow.70 

GIRD has also been implicated in damage to the ulnar collateral ligament in throwers.23 

PST can play a significant role in the alteration of throwing mechanics, allowing for 

increased valgus stress on the elbow. If the throwing arm is unable to internally rotate the 

arm before extending the elbow during the acceleration phase of throwing, a “lag” is 

created, causing a majority of force production to stem from the elbow, resulting in 

higher valgus forces.66 Excessive external rotation, limited internal rotation, and less than 

90 degrees abduction during the acceleration phase also contribute to increased valgus 

stress at the elbow, resulting in more force transmitted through the UCL.67,70 Current 

findings in the literature support the theory that GIRD and PST are implicated in the 

development of shoulder and elbow pathology. Due to the incidence of these injuries in 
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the overhead athlete, it is beneficial for the clinician to understand the philosophy and 

results of the various treatments that have been shown to decrease the influence and 

effects of PST on GH ROM.  

 

Treatments to Reduce PST 

 As discussed in previous sections of this literature review, PST is a multifactorial 

condition with no isolated, singular cause that may result in the development of a variety 

of shoulder pathologies. As a result of the many factors contributing to the onset of PST, 

several treatment methods have been examined in an attempt to determine which is most 

effective for decreasing PST and restoring normative GH ROM.  

 Several studies have examined the different types of stretching techniques that 

target the musculature of the posterior shoulder.10,18,41,45,114-117 Previous research has 

suggested a variety of stretching techniques including the towel stretch,118,119 the sleeper 

stretch,10,41,116,120 and the cross body stretch45 improve GH ROM. The literature 

surrounding these stretching techniques mainly focuses on the effectiveness of the sleeper 

stretch and the cross body stretch. The sleeper stretch has the participant in a side-lying 

position on the side to be stretched with the shoulder and elbow both flexed to 90 

degrees. The lateral border of the scapula is stabilized by the treatment table due to the 

side-lying position, and the distal forearm is moved toward the table, moving the GH 

joint into a position of internal rotation.41 This stretch has been shown to significantly 

improve PST by increasing both horizontal adduction (HADD) 41,121and internal rotation 

motion.41,121,122 Wilk et al5 detailed slight modifications to the sleeper stretch protocol, 

but did not evaluate the effectiveness of those changes, yet they are often used in clinical 
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application. Research on stretching techniques has also examined the role of scapular 

stabilization in both the sleeper stretch and the cross body stretch.45,115 A study by 

McClure et al45 compared the effectiveness of the sleeper stretch to the cross body stretch 

noting that the patient position during the sleeper stretch stabilizes the scapula firmly 

against the treatment table,41 where as the cross body stretch does not stabilize the 

scapula and does not isolate the tissues of the glenohumeral joint.45 However, this study45 

reported that the cross body stretch was more effective for increasing IR ROM when 

compared to a control group. This result was surprising to the authors who expected the 

stabilized scapula to have a larger contribution to the stretching mechanism. However, 

this study only examined the effects of stretching on IR ROM as opposed to total PST, 

which also often includes HADD.45 The role of scapular stabilization was further 

examined by Salamh115, who incorporated the stabilization into the cross body stretch. 

Their results showed that scapular stabilization significantly improved PST via HADD 

and IR ROM, where as non-stabilization of scapula during the cross body stretch only 

improved IR ROM.115 Yamauchi et al121 compared the effectiveness of the modified 

cross body stretch to the modified sleeper stretch, both with the scapula stabilized, 

determining that both treatments created significant increases in internal rotation and 

horizontal adduction ROM, which the modified cross body stretch creating a slightly 

larger gain in horizontal adduction motion.  

 The utilization of joint mobilizations has been examined in the treatment of 

various pathologies that impact GH ROM, primarily adhesive capsulitis.43,47,48,123-125 

Clinicians have used joint mobilizations as a method for increasing capsular joint 

mobility and soft tissue extensibility.43,44,46,126 The effectiveness of joint mobilizations 
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has yet to be determined due non-consistent results amongst studies,43,47,123-125 as well as 

inconsistencies in the method of treatment application varying in intensity and duration. 

However, there have been successes in treating GH joint ROM disorders, primarily 

adhesive capsulitis, with joint mobilizations in the inferior, posterior and anterior 

directions,47 as well as anterior to posterior and posterior to anterior glides.48 Vermeulen 

et al47 examined high grade and low grade mobilizations in patients with adhesive 

capsulitis and determined that the more aggressive high end (Maitland grade III 

mobilizations) had greater results in increasing abduction and external rotation ROM, 

both actively and passively as wells as decreasing disability measures, pain scores, and 

general health and activity limitations. The low end mobilizations (Maitland grade II 

mobilizations) also had significant improvements over the baseline measures but not as 

large as the high end mobilizations.47 Gutierrez et al127 compared posterior joint 

mobilizations to traditional physical therapy exercise for the rehabilitation of adhesive 

capsulitis, recording the effects of each treatment protocol on passive range of motion 

and overall levels of pain. The results of this study determined that both treatment 

protocols yielded a significant improvement in all outcome measures as compared to a 

control group, the individuals treated with joint mobilizations improved dramatically in 

ROM measures and in decreased levels of pain over the group treated with an exercise 

regiment.127 Despite the fact that joint mobilizations have been shown as an effective 

treatment for ROM pathologies of the GH joint, there is no literature that examines the 

singular effects of joint mobilizations on treating the changes to ROM that occur at the 

GH joint as a result of PST and GIRD. The literature that examines the use of 

mobilizations on PST also implemented a stretching protocol concurrently with the 
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mobilization treatment.128-130 All three studies128-130 that were found for the purposes of 

this literature review found significant changes in IR ROM after a combination treatment 

of stretching protocol and joint mobilizations. Significant results for stretching only 

protocol in all three studies also produced significant results when compared to baseline 

measures.128-130 Harshbarger131 discussed that none of the results found on the 

comparison of stretching and joint mobilizations128-130 yielded significant changes at 

follow up times and there is still a need for the development of a treatment that creates 

lasting changes. 

 Muscle energy technique (MET) is another commonly used treatment for 

improving soft tissue mobility. Muscle energy technique is a type of manual therapy that 

consists of an active contraction of the target muscle group met with a precise, clinician 

controlled counter force that is followed by a passive stretch of the target muscle 

group.132 The use of MET has been validated through research for strengthening and 

lengthening muscles, reducing edema, improving circulation, and mobilizing restricted 

articulations.132 Schenk et al133 evaluated the effectiveness of MET to improve cervical 

flexion, extension, axial rotation and lateral flexion in subjects with predetermined ROM 

limitations. The MET treatment protocol was applied over a 4 week treatment period, 

with multiple sessions per week, yielding significant results for improvements in cervical 

extension ROM.133 Schenk also investigate the effects of MET on the lumbar spine,134 

applying a protocol similar to that of cervical spine MET study.133 The results 

demonstrated that MET effectively restored lumbar extension ROM after a 4 week 

treatment protocol, validating the use of MET as a treatment for lumbar spine 

hypomobility.134 Lenehan135 and Ballantyne136 further examined the effectiveness of 
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MET, limiting the treatment application to a single treatment session to evaluate the acute 

effects of MET on ROM restoration. Lenehan135 explored the effects of MET on gross 

trunk ROM, finding that a single application of MET significantly improved ROM in 

subject with rotatory restrictions and a non-significant improvement of ROM in subjects 

that did not present with any ROM restrictions. The results of this study indicate that 

MET is an effective treatment for both symptomatic and asymptomatic individuals. 

Ballantyne136 produced similar results when treating hamstring extensibility with a single 

application of MET. A single application of MET has been proven effective in increasing 

passive knee extension in asymptomatic subjects.136 MET has been proven an effective 

treatment for mobilizing the cervical spine and lumbar spine, improving gross trunk 

movement, and improving hamstring extensibility133-136 however, there is no significant 

literature regarding the application of MET to the shoulder complex. Laudner et al137 

explored the effectiveness to the anterior portion of the shoulder girdle, evaluating the 

effectiveness of MET to lengthen the pectoralis minor in order to improve forward 

shoulder posture. MET proved to be an effective treatment, creating significant results for 

improving the length of the pectoralis minor over the course of a 6 week treatment 

program.137 Moore40 has been the only study that applied MET treatments for the 

management of PST via treatment of the horizontal abductor muscle group. Results found 

significant improvements in horizontal abduction when compared to a control group and 

significantly greater improvements in internal rotation when compared to a control group 

and a group who received MET applied to the GH external rotators. 40  

 After reviewing the literature surrounding the treatment options that have 

evaluated for effectiveness of managing PST, it is clear that there is a void in the 
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literature that examines the isolated effects of joint mobilizations and muscle energy 

techniques on PST. There is also no literature that compares treatments that target the 

capsular components of PST to the treatments targeting the muscular contributions to 

PST. These gaps in the literature have prompted the investigators of this study to design a 

protocol to test these considerations in an attempt to determine the effectiveness of joint 

mobilizations for reducing the capsular component of PST while comparing to a MET 

treatment.  

 

Conclusion 

 The review of this literature provided insight on the anatomy of the shoulder, the 

sport specific demands of overhead athletes, an oversight into PST, various pathologies 

related to the development of PST, and a review of treatments used in reducing PST. The 

knowledge of these topics will help clinicians understand the purpose of this study; 

whether an application of MET applied to the horizontal adductors or an application of 

posterior glenohumeral joint mobilizations is more effective in reducing PST through 

increased glenohumeral internal rotation ROM.
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CHAPTER III 
 

METHODS 
 

 
Materials and Methods 

 This study utilized a randomized controlled trial design. The independent 

variables included group (muscle energy technique (MET), joint mobilizations, and 

control).  The dependent variables were glenohumeral horizontal adduction and internal 

rotation ROM immediately following treatment and 15-minutes post-treatment.  

 

Participants 

 The participants who volunteered for this study consisted of youth throwing 

athletes recruited from two different high schools. Inclusion criteria required participants 

to be a current member of a competitive high school baseball or softball team. 

Participants were excluded from the study if they had any recent history (past 3 months) 

of upper extremity injury that prevented participation in their respective sport. The total 

number of participants for this study was 42 (24 male, 18 female). Thirty-six participants 

were right-hand dominant throwing athletes, while six were left hand dominant throwing 

athletes. Participant demographics can be viewed in Table 1.
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Table 1. Participant Demographics 

Group Age (years) Height (cm) Mass (kg) 

MET (n=14) 17.07±1.0 176.17±14.7 69.81±12.9 
Joint Mobs (n=14) 16.43±0.8 172.72±11.4 71.88±17.4 
Controls (n=14) 16.50±1.2 174.46±11.4 72.23±26.6 

      MET = muscle energy technique; joint mobs = joint mobilization 

 

Instrumentation  

A Pro 3600 digital inclinometer (SPI-Tronic, Garden Grove, CA, USA) was used 

to record ROM measurements for glenohumeral horizontal adduction, external rotation, 

and internal rotation.  

 

Procedures 

Participant Consent, Demographics, and Group Allocation 

Each participant and their parents or legal guardians completed the necessary 

consent and assent forms as required by the Institutional Review Board prior to reporting 

for testing. Participant demographic information was recorded and included age, height 

(cm), body mass (kg), injury history, and throwing arm preference. Group allocation 

(control, MET, joint mobilizations) was determined prior to participation in this study, 

such that an equal number of participants were randomly assigned to each group based on 

subject number.  

All participants completed three testing sessions (pre-test, immediate post-test, 15 

minutes following post-test). The immediate post-test measurements were recorded 

directly following the treatment application for the experimental groups and after a one 
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minute waiting period for the control group. All participants then waited an additional 15-

minutes for a second round of post-tests.  

 

Data Collection 

Data collection occurred during the midpoint of the competitive season for all 

participants. Prior to data collection, participants completed their team’s specific standard 

warm-up. The warm up consisted of mild jogging cardiovascular activity, static and 

dynamic total body stretches, and low velocity overhead/throwing motions with few 

repetitions. The warm up for this study was not standardized in order to mimic the normal 

playing conditions and regular training regimen for each specific participant. After 

completing the warm up, each participant was assessed for a baseline measurement of 

horizontal adduction and the total arc of internal/external rotation in their dominant and 

non-dominant arms.  

 

Range of Motion Assessments 

To assess GH horizontal adduction ROM, each participant was positioned supine 

with both shoulders flush against a standard examination table.  A tester stood at the top 

of the examination table towards the participant’s head and stabilized the lateral border of 

the scapula by providing a posterior force. The participant was placed in a position of 90 

degrees of GH abduction with 90 degrees of elbow flexion. The opposite hand of the 

clinician held just distal to the participant’s elbow and passively horizontally adducted 

the arm (Figure 1). At the end of the motion a second tester recorded the amount of 

motion present by aligning the digital inclinometer with the shaft of the humerus. 
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GH internal and external 

rotation were measured with the 

participant lying supine on the 

examination table, with the 

shoulder abducted to 90 degrees 

and the elbow in 90 degrees of 

flexion. The clinician applied a 

posterior stabilizing force to the 

acromion processes of the scapula, 

and internally rotated the arm until 

the first point of resistance. A 

second clinician recorded the amount of motion by aligning the digital inclinometer with 

the shaft of the ulna. GH external rotation motion was collected using the same 

technique. All post-test measurements were performed in an identical manner to the pre-

test measurements. The order of the ROM measurements was not randomized. 

A pilot test consisting of 16 subjects was completed a priori to determine intra-

rater reliability and the standard error of measurements (SEM) for all ROM tests. Each 

subject had their bilateral ROM measured resulting in 32 limbs tested. Subjects were 

tested and then repeated the tests a minimum of 24 hours later.  All measurements 

showed excellent intra-rater reliability and SEM (horizontal adduction: r=.85, SEM=2.3 

degrees, external rotation: r=.97, SEM=3.4 degrees, internal rotation: r=.87, SEM=4.2 

degrees).  

 

Figure	1.	Horizontal	ROM	Measurement	
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Interventions 

The participants that received the joint mobilization intervention were positioned 

supine along the edge of the examination table, so that the glenohumeral joint did not 

have any support in a posterior direction. The participant’s arm was abducted to 90 

degrees and internally rotated to the first barrier of resistance, with the elbow flexed and 

relaxed (Figure 2). The 

participant’s distal forearm was 

braced on the clinician’s hip as a 

support, with the clinician’s 

hand applying overpressure to 

the GH joint in the posterior 

direction. The clinician then 

mobilized the humeral head in a 

posterior direction. Fifteen grade 

III posterior mobilizations were 

applied to the humeral head at 

the glenoid, with one second of rest between mobilizations over a 30 second period. 

The participants in the muscle energy technique (MET) treatment group were 

positioned supine on the examination table with the clinician stabilizing the lateral border 

of the scapula. The clinician passively horizontally adducted the arm until the first barrier 

to motion, applying a passive stretch for three seconds. The clinician then instructed the 

			Figure	2.	Joint	Mobilizations	
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participant to attempt to horizontally abduct the test arm at 25% of their maximal effort 

while the clinician applied manual resistance to create an isometric contraction lasting 

five seconds. The clinician then brought the participant’s arm back into horizontal 

adduction, for a three second active assistive stretch. Four of these application cycles 

were completed in total.  

 

Statistical Methods 

SPSS Statistical software SPSS (IBM SPSS Statistics for Windows, version 22.0; 

IBM Corp, Armonk, NY) was used to analyze the data. Statistical analyses were 

conducted via separate one-way analyses of covariance (ANCOVA) for horizontal 

adduction and internal rotation. The dependent variables consisted of post-test ROM and 

the covariates were pre-test ROM. Fisher’s least significant difference post hoc analysis 

was used when appropriate. All analyses were considered significant at the 0.05 alpha 

level. Effect sizes were calculated using the formula (experimental group mean – control 

group mean) / largest standard deviation.  



	
	
	

32 

CHAPTER IV 
 

RESULTS 
 

Results 

 The descriptive pre-test ROM values for all groups are provided in Table 2. The 

results of this study showed there was a significant between group difference for post-

intervention horizontal adduction ROM (F(2,38) = 8.7; p = 0.001). Post hoc analysis 

showed that the shoulders treated with MET had significantly more horizontal adduction 

ROM post-treatment compared with the control group (p = 0.04) (Table 3). There were 

no significant differences between joint mobilizations and MET (p = 0.16) or joint 

mobilizations and control (p = 0.48) for horizontal adduction (Table 3). As for IR ROM 

there was no significant between group difference post-intervention (F(2,38) = 1.3; p = 

.28) (Table 4). When analyzing the results of measurements collected 15 minutes post 

intervention, there was no significance between groups differences for either horizontal 

adduction (F(2,38) = 0.4; p = 0.70) or IR (F(2,38) = 0.1; p = 0.91) (Tables 3 & 4). 

 

Table 2. Pre-intervention Range of Motion Measures (°) 

Group Internal Rotation External Rotation Total Arc 
MET  53.2±8.9 116.5±8.9 169.7±12.1 

Joint Mobs  55.4±11.5 115.7±10.6 171.1±19.0 
Control 55.2±9.8 114.5±15.5 169.7±20.2 

MET=muscle energy technique; Joint Mobs=joint mobilization 
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Table 3. Means and Standard Deviations for Horizontal Adduction Range of Motion 

Group Pre Test 
(°) 

Acute Post 
Test (°) 

Difference 
(°) 

Effect 
Size 

15 Minutes 
Post Test (°) 

Difference 
(°) 

Effect 
Size 

MET* 15.6±7.7 24.0±7.4 8.3±7.6 .73 17.8±5.7 2.2±5.7 .02 
Joint Mobs 18.5±5.8 19.9±6.9 1.4±4.0 .24 19.1±7.4 0.6±5.4 .13 

Control 18.6±9.7 17.9±8.4 -0.7±5.0 .07 18.0±8.2 -0.6±7.1 .06 
MET=muscle energy technique; Joint Mobs=joint mobilization 
* = Significant difference between MET and control groups (p = 0.04) 

 

Table 4. Means and Standard Deviations for Internal Rotation Range of Motion 

Group Pre Test 
(°) 

Acute Post 
Test (°) 

Difference 
(°) 

Effect 
Size 

15 Minutes 
Post Test (°) 

Difference 
(°) 

Effect 
Size 

MET  53.2±8.9 58.2 ±9.4 5.0±5.5 .04 54.6±10.0 1.4±6.8 .28 
Joint Mobs 55.4±11.5 57.9±11.8 2.5±4.1 .02 57.3±10.6 1.9±4.6 .06 

Control  55.2±9.8 57.7±10.5 2.5±3.6 .24 58.0±12.1 2.9±6.2 .23 
MET=muscle energy technique; Joint Mobs=joint mobilization 
 

Discussion 

Athletes that participate in throwing sports place specific demands on the upper 

extremity, such as the extreme velocities and high repetitions, often present with 

PST.2,6,63-65 This tightness has been repeatedly shown to alter shoulder ROM,4,6,11-13,18,85-91 

kinematics,70,73,109 and kinetics.70,73,101 Alterations to glenohumeral ROM in the overhead 

athlete have been linked to various pathologies including muscular dysfunction,24-27 

labral lesions,20,26,28-33  and impingement syndromes, 7,10,24,26,31,34,35  as well as decreased 

performance.109 In order to prevent and treat various pathologies related to this tightness, 

it is essential to implement techniques that lengthen both the contractile and non-

contractile tissues of the posterior shoulder. The results of this study demonstrate that the 

application of MET to the horizontal abductors provides acute improvements in GH 

horizontal adduction ROM in high school baseball and softball players. 
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Despite the importance of maintaining normal ROM in the overhead athlete to 

prevent the development of altered kinetics during the throwing motion, there is no 

definitive consensus on which manual therapy provides the most significant reductions in 

PST. Previous literature has determined that a variety of stretching techniques targeting 

the musculature of the posterior shoulder are effective methods for reducing the ROM 

discrepancies associated with PST.10,18,41,45,114-117 Studies have demonstrated that the 

towel stretch, 118,119 the sleeper stretch10,41,116,120 and the cross body stretch45 are all 

beneficial. The bulk of the literature on the effectiveness of stretching techniques pertains 

to the sleeper stretch and the cross body stretch. Both stretches have been proven 

effective for increasing horizontal adduction and internal rotation, with the largest 

increases in both motions occurring when the scapula is stabilized during both stretching 

techniques.45,115,121 Research focused on the use of stretching techniques has validated 

that treatments targeting the soft tissue components of the GH joint are an effective 

method to decrease PST. Because our application of MET targeted several muscles of the 

glenohumeral joint our results would support these previous findings.  

In addition to the use of stretching techniques to improve range of motion, MET 

has also been explored as a treatment targeting the soft tissue extensibility issues behind 

motion restrictions. A series of studies have validated the use of MET for increasing 

range of motion by observing the effects on different segments and directions of trunk 

motion133-135 and hamstring extensibility.136 Relatively few studies have applied this 

technique to the upper extremity,40,137 however these past studies have shown strong 

evidence validating MET for improving ROM. 
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Moore et al.,40 examined the effects of a MET application to the shoulder external 

rotators and horizontal abductors with a similar technique as used in this study. This 

previous study demonstrated that the horizontal abductors responded well to an acute 

MET treatment, creating significant improvements in horizontal adduction and IR ROM. 

The results of our study support those of Moore40 as we were also able to produce 

increased horizontal adduction. However, Moore also reported a significant improvement 

in internal rotation. This could be due to several factors, such as Moore’s use of a larger 

sample size and a longer stretch phase during the MET intervention.  

Moore et al.,40 discussed that at the time of their publication it was unknown if 

muscular or capsular tightness was a larger contributor to PST and the associated ROM 

changes. Although, this debate still has not be resolved, our results seem to indicate that 

the lack of response from the joint mobilizations may be due to the decreased role of the 

posterior capsule. Conversely, previous research has postulated that capsular tightness 

contributes significantly to PST.10,24 Several studies have shown that joint mobilizations 

are an effective method for treating conditions such as adhesive capsulitis, by targeting 

the motion restrictions created through capsular tightening and increasing 

motion.43,47,48,123-125,127 However, the literature surrounding the use of joint mobilizations 

to decrease PST has not yet examined the isolated effects of joint mobilizations, but 

rather paired the mobilizations with a series of different stretching and therapeutic 

exercise protocols.128-130 Our findings support previous studies that focused on muscular 

extensibility.5,10,18,40-42,114-117,137 Our findings may suggest that the contributions of the 

GH capsule in the development of PST is limited, especially in high school baseball and 

softball players. As such, youth athletes may have not experienced the same degree of 
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posterior capsular tightening as an adult overhead athlete. However, further research is 

needed to explore this topic.  

The effects of the MET treatment were transient, lasting less than 15 minutes.  

Research106 has shown that ROM can change between two throwing seasons, suggesting 

that changes in ROM may be reversible and responsive to modulation. The transient 

nature of these changes emphasizes the clinical importance of preventative treatments 

that may reduce the prevalence of shoulder pathologies over time. The results of our 

study indicate the effectiveness of MET for short term changes in improving GH ROM 

and decreasing PST. Similarly, previous research has shown that repeated treatments 

applied to the soft tissue components of the GH joint are effective in creating 

improvements to GH ROM.45,137 Unfortunately, there is little research determining the 

duration of the lasting changes to the length of the GH musculature. Furthermore, athletes 

who perform MET prior to sport participation may see longer lasting results when 

immediately followed by their sport activity, as opposed to being static, as during our 

study. However, future research is needed to validate this hypothesis. 

The MET application to the horizontal abductor group yielded significant 

improvements in horizontal adduction when compared to the control group. This result 

revealed a moderate-to-large effect size as evaluated by Cohen’s d (0.73). The difference 

between the pre- and post-test values (8.3 degrees) was also larger than the SEM (2.3 

degrees), which may indicate clinical significance. The results of our study demonstrate 

that MET applied to the horizontal abductors are beneficial in treating this tightness. As 

such, this type of intervention should be considered in the prevention and treatment of a 
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variety of shoulder injuries associated with PST, such as superior labrum anterior-

posterior lesions,20,28-30,110 internal impingement,18,35 and subacromial impingement.7,17,34  

 

Limitations 

The population of this study consisted of youth athletes, limiting the application 

of these results to older athletic populations. The subjects were also limited to 

participation in baseball and softball, limiting the generalizability of these results to other 

overhead sports such as volleyball and tennis that also often present with PST. This study 

evaluated the effects of these treatments in asymptomatic subjects. Those with a 

pathologic conditions may respond to MET in a different manner. The results of this 

study indicate that a single application of MET is an effective method of acutely 

decreasing PST. Future research should be directed toward observing any potential 

lasting changes in glenohumeral ROM and PST following a course of multiple MET 

applications. 

Conclusion 

 Our findings indicate that a single application of MET to the glenohumeral 

horizontal abductors significantly increases horizontal adduction ROM among high 

school baseball and softball players. However, the effects of the treatment were transient, 

lasting less than 15 minutes. The application of MET did not have any significant effect 

on internal rotation motion. Our findings also indicate that the results created by the 

application of joint mobilizations were negligible at both the immediate posttest and the 

delayed posttest for both horizontal adduction and internal rotation measures. Therefore, 
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the application of MET to the horizontal abductors may assist in treating PST in youth 

baseball and softball players. 
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