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CHAPTER I: INTRODUCTION AND BACKGROUND 

 

It has been estimated that greater than 1.57 million metric tons of nitrogen are delivered 

to the Gulf of Mexico on an annual basis, of which agricultural leaching of nitrogen (loss of 

nitrogen from the soil profile) accounts for approximately 65% (Alexander et al., 2000, Rabalais 

et al., 2002; Robertson and Saad et al., 2013). The link between Midwestern agriculture and the 

hypoxic zone in the Gulf of Mexico has become increasingly clear, with relatively poor nitrogen 

use efficiency (ratio of crop nitrogen uptake to applied nitrogen fertilizer) of 60% or less across 

the Midwestern region demonstrating the need for alternative nutrient management strategies to 

be developed (Chichester et al., 1978; Dinnes et al., 2002; Goolsby et al., 2001). In response to 

the Gulf Hypoxic Zone Action Plan released by the Environmental Protection Agency (EPA) in 

2008, the Illinois EPA developed the Illinois Nutrient Reduction Strategy which contained a goal 

of reducing total nutrient transfer from Illinois water ways to the Mississippi River by 45% 

(IEPA, 2015). In order to achieve this goal, the efficacy of all nutrient management strategies 

employed across the state must be improved. 

The  use of split nitrogen applications (50% or greater  of total N applied in spring) has 

been identified as one of the best in-field practices in order to achieve the goal set forth in the 

Illinois Nutrient Loss Reduction Strategy (IEPA, 2015). Making the change from fall to spring 

applied nitrogen has been shown to reduce agricultural leaching by as much as 17%, increase 

corn nitrogen uptake by 3-8%, and increase corn grain yields by as much as 7% (Randall et al., 

2003; Vetsch and Randall, 2004; Strock et al., 2004; Randall and Vetsch, 2005). However, even 

with the demonstrated agronomic and environmental benefits of spring applied nitrogen over fall 

applied nitrogen, surveys suggest that within some Midwestern regions 46% - 75% of producers 
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still apply some nitrogen in the fall (Smiciklas et al,. 2008; Bierman et al,. 2011; O’Rourke and 

Winter 2010; Lemke et al,. 2011). Therefore, a need exists for the development of strategies to 

increase the efficacy of fall dominated nitrogen management systems. 

Cover crops (CC), also identified as one of the best in-field practices by the ILNLRS, 

represent the best management practice (BMP) with the lowest annual cost per hectare when 

compared to constructed wetlands and two-stage ditches; but, over 50 years, CC represent the 

lest cost-effective BMP in terms of cost per kilogram of N removed from surface water sources 

(Roley et al., 2016). However, CC represent an in-field practice that require only short-term 

commitments from producers, as they are planted and removed each year. Unlike constructed 

wetlands and two-stage ditches which require up to 5% of the land for which they are 

implemented to be removed from production, CC represent an effective BMP which requires 

zero land to be removed from production; and thus, may be a more attractive option to producers 

looking to implement environmentally friendly practices into their operations (Roley et al., 2016; 

D’Ambrosio et al., 2015; Christianson and Helmers, 2011). 

CC have demonstrated the potential to absorb nitrogen from the soil profile and 

assimilate it into their organic structure, thus preventing the nitrogen from being lost from the 

agricultural field to the environment via leaching, denitrification, or volatilization. CC used in a 

fall nitrogen management system have demonstrated the ability to stabilize 66-91% of fall 

applied nitrogen and can potentially reduce the amount of nitrate leaching within a fall 

application management strategy (Lacey and Armstrong, 2014). They also have proven 

environmental benefits of erosion control, improving soil tilth, increasing soil organic matter, 

and increased water-holding capacity, they also have the potential to be used as a nutrient 
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management tool in order to increase overall soil fertility (Danso et al., 1991; Odell et al., 1984; 

Hartwig and Ammon, 2002; Ditsch et al., 1991; Kaspar and Singer, 2011; IEPA, 2015).   

There has been a  vast amount of research concerning the impact of CC on grain yields of 

the subsequent cash crop in which the vast majority found the yields to be equal or greater than 

those from non-CC fields; however, others have found grain yields following CC to be equal or 

slightly less attributing the decreases to poor crop establishment or potential soil property 

differences, and possible cereal rye allelopathic effects (Deppe 2016; O’Reilly et al., 2011, 2012; 

Frye et al., 1985; Sainju et al., 2003; Belfry et al., 2016; Miguez and Bollero 2005; Reese et al., 

2014; Ketterings et al., 2015; Moore et al., 2014; olson et al., 2010; Pantoja et al., 2015; 

Raimbault et al., 1990, 1991; Johnson et al., 1998). While much research exists concerning grain 

yields following CC, there is a dearth of knowledge surrounding the effect of CC on nitrogen 

uptake of the subsequent cash crop. Consequently, there is a need for research examining cash 

crop N uptake by growth stage following CC, to determine if specific critical growth stages 

impacted by CC can be identified.  

 The Conservation Technology Information Center conducted a survey to gauge producer 

perspective towards CC revealed increased soil health and organic matter, reduced soil 

compaction, reduced soil erosion, nitrogen scavenging, and being a source of nitrogen as the top 

motivators towards CC adoption (CTIC, 2016). However, surveys also reveal that the top 

barriers to CC adoption amongst producers include the costs of planting and managing the CC, 

the cost of the CC seed itself, and the lack of measurable economic returns following 

implementation (CTIC, 2015). A lack of measurable economic returns being identified as a top 

barrier to CC adoption is a concern, as most farm operations operate with the primary objective 

of profit maximization. There has been little research conducted concerning the value of 
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measureable environmental benefits of CC. With profit maximization the primary objective of 

many producers, there is a great need for research to be conducted on the valuation of CC 

environmental benefits and how they relate to the recovery of CC implementation costs. 

With CC recognized as one of the best and most cost effective in-field practices in 

helping reduce the impact of agriculture on the hypoxic zone in the Gulf of Mexico, it is 

important to begin breaking down the barriers to widespread adoption of the practice (ILNLRS, 

2015). While the environmental benefits of CC as a method of improving water quality and soil 

health should be considered by producers and policy makers, cost and logistical obstacles must 

be accounted for before widespread implementation of CC can occur (Strock et al,. 2004). 

Therefore, there is a need for research concerning the valuation of CC environmental benefits 

and how they relate to the recovery of CC implementation costs. 

  



5 

Research Hypotheses 

1. Fall and spring nitrogen management treatments with cover crops will have greater cash crop 

biomass production and nitrogen uptake at all growth stages versus the fall and spring 

nitrogen management treatments without cover crops 

2. Fall and spring nitrogen management treatments with cover crops will have greater cash crop 

grain yields versus the fall and spring nitrogen management treatments without cover crops 

3. The environmental benefits associated with cover crop will offset 100% of cover crop 

implementation costs in both the fall and spring dominated nitrogen management treatments. 

Research Objectives 

1. Investigate the effects of nitrogen application timing and cover crops on biomass production, 

nitrogen uptake, and grain yield of the subsequent cash crop. 

2. Quantify and assign value to cover crop environmental benefits, and determine the potential 

for the value of cover crop environmental benefits to offset the costs of cover crop 

implementation. 
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CHAPTER II: LITERATURE REVIEW 

 

Nitrogen Management 

General 

Nitrogen is an essential element for the sustainability of any life form, and is the nutrient 

taken up in the largest proportion by plants. Nitrogen is essential in the formation of compounds 

such as DNA, RNA, chlorophyll, amino acids, proteins, and enzymes in plants; but is often 

considered the most limiting factor in the production of corn and other non-leguminous crops. 

Generally crops considered to be non-leguminous require the addition of nitrogen fertilizer in 

either organic or inorganic form in order to achieve the yields expected in modern day 

agriculture. However, nitrogen is also the nutrient most susceptible to environmental loss via the 

process of leaching. 

After application, nitrogen is susceptible to varying biological processes within the soil 

including leaching, denitrification, volatilization, and immobilization due to microbial activity; 

all of which result in a loss of available nitrogen within the profile. Therefore, different nitrogen 

management strategies will influence the amount of plant available nitrogen in different ways. 

The potential for nitrogen loss via these biological processes increases as the time between 

application and planting increases. This is true for applied nitrogen as well as residual nitrogen 

(Bock et al., 1991, Durieux et al., 1995). 

When nitrogen is applied, whether as organic fertilizer such as manure or inorganic 

fertilizer such as anhydrous ammonia, it undergoes several biological processes within the soil. 

One such biological process is known as nitrification, the conversion of ammonium (NH4
+) the 

positively charged ionic form of nitrogen to the negatively charged ionic form of nitrogen nitrate 
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(NO3
-). Soil particles also carry a negative charge due to their clay and organic matter content. 

Therefore, the negatively charged nitrate ions are repelled by the negatively charged soil 

particles making nitrate free to move within soil profile. The downward movement of nitrate 

through the soil profile is known as leaching.  

In fields with subsurface drainage the downward movement of the nitrogen is intercepted 

by the drainage line, and the nitrate is removed from the field and delivered to a surface water 

source. The introduction of nitrate from agricultural fields to surface waters, along with surface 

runoff of nitrogen and atmospheric deposition account for up to 81% of the annual nitrate load in 

the hypoxic zone located on the Gulf of Mexico (alexander et al., 2000). 

This nitrate loading effect can be linked to the intensification of row crop production 

within the Midwest. The two major components behind the intensification of Midwest 

agriculture are the increased availability of inorganic nitrogen fertilizers following World War II 

and the establishment of the Haber-Bosch process, as well as the growth in use of artificial 

subsurface drainage covering approximately 20.8 x 106 Midwest hectares by 1987 (practice that 

removes excess water from soil subsurface quickly and effectively) (Dinnes et al., 2002). This is 

especially true in the case of a continuous corn rotation, which has continuously been identified 

as the largest source of nitrate leaching to surface water sources through subsurface drainage due 

to the need for added nitrogen fertilizer each crop year (Kanwar et al., 1993). This has led to the 

development of adaptive management strategies to help improve conventional nitrogen 

management practices. 

Conventional Management 

Nitrogen management is: “managing the amount, source, placement, form and timing of 

application of nitrogen to the soil” as defined by the NRCS (Natural Resources Conservation 
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Service), a division of the USDA (United States Department of Agriculture) (USDA-NRCS, 

2006). Current nitrogen practices within the Midwest are generally inefficient, resulting in an 

increased potential for water source contamination (Kanwar et al., 1993, Randall et al., 1997).  

Traditionally, nitrogen fertilizer rates for the production of corn were based on 60% nitrogen use 

efficiency rates, however this percentage can be drastically altered by suboptimal weather 

conditions (Chinchester et al., 1978). A broad definition of nitrogen use efficiency as set forth by 

the NRCS is: “the ratio of crop nitrogen uptake to available soil nitrogen (N) which would 

include applied fertilizer N plus residual mineral N in the soil” (USDA-NRCS, 2007). This 

means that the greater the nitrogen uptake to available soil nitrogen ratio, the more efficient the 

use of nitrogen. The key for producers is to obtain optimal crop yields while using minimal 

nitrogen inputs. High nitrogen use efficiency results in reduced amounts of nitrogen remaining in 

the soil profile after crop removal, which is subject to leaching or denitrification processes 

resulting in a loss of nutrients from the agronomic rooting depth of the soil profile (USDA-

NRCS, 2007).  

The relatively low nitrogen use efficiency in current nitrogen practices has led to the 

development of certain strategies aimed at increasing nitrogen use efficiency. The primary 

strategies for increasing nitrogen use efficiency are by following Best Management Practices 

(BMPs) as set forth by the NRCS, The Fertilizer Institute (TFI) and other state agencies such as 

the Illinois Council on Best Management practice (ICBMP), specifically focusing on the use of 

the 4R Nutrient Stewardship strategy for nitrogen Management. The 4R Nutrient Stewardship 

strategy for the management of nitrogen focuses on using the right fertilizer source, the right 

fertilizer rate, the right application timing, and the right application placement in order to 

increase environmental protection, increase production and overall operational profitability, as 
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well as improved sustainability (Johnson, 2011). The 4R strategies as defined by Bruulsema et 

al., (2013) are as follows: 

 Rate: matching nitrogen application rates with crop requirements while accounting for all 

other N sources, irrigation water, atmospheric deposition and residual N from previous 

crops 

 Timing: Applying Nitrogen fertilizers as close to maximum crop uptake as possible, 

rather than applying before the crop is planted (ex: fall application) 

 Placement: placing and keeping nutrients, via injection or incorporation into the soil, 

where the crop can get to them, nitrogen use efficiency is maximized, and the potential 

for leaching and volatilization is reduced. 

 Source: matching the right fertilizer product with soil properties and crop needs 

Timing 

Fall Application 

Fall and spring application of nitrogen are the two primary application timings within 

which producers work to apply their nitrogen fertilizers sources. It has been demonstrated that 

nitrate losses through subsurface drainage can be reduced by as much as 13%-17% and overall 

leachate can be reduced by 11-13% with the use of spring application methods for nitrogen 

fertilizer (Randall et al., 2003, Strock et al., 2004). However, it has been shown that 46-55% of 

farmers’ nitrogen fertilizer applications occur in the fall within some Midwest regions (Smiciklas 

et al,. 2008; Bierman et al,. 2011). In fact, 48-52% of farmers in the central Illinois region apply 

their nitrogen fertilizer in the fall (Smiciklas et al,. 2008; O’Rourke et al., 2010). Furthermore, up 

to 75% of farmers applied their nitrogen fertilizer in the fall within some Illinois watersheds 

(Lemke et al,. 2011). However, Smiciklas’s study also showed that regardless of application 
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timing or inhibitor use nitrate levels leaving subsurface drainage lines were well above the 

Environmental Protection Agency (EPA) standard of 10 ppm for drinking water. In fact, fields 

that received zero application of nitrogen exhibited nitrate levels in excess of the EPA standard 

for drinking water. Though this study again demonstrated a reduction in subsurface nitrate runoff 

for spring application of nitrogen as compared to a fall application system (Smiciklas et al., 

2008). 

Fall application of nitrogen fertilizer has the potential for greater input losses as 

compared to spring application of nitrogen due to the increased amount of time between the 

application and critical crop uptake stages. However, fall application of nitrogen is generally 

perceived to be more economically feasible due to lower nitrogen prices as well as requiring less 

equipment to complete the application thus making fall application a preferred method by 

producers and also the fertilizer industry (Smiciklas et al., 2008; Illinois agronomy handbook). 

Logistical advantages also exist with the use of fall nitrogen application such as saving time in 

the spring to allow for early planting, better distribution of labor and equipment, and generally 

better soil conditions due to reduced compaction of the seed bed (Vetsch et al., 2004; Fernández 

et al., 2009). If producers choose to use the fall application method of nitrogen the preferred 

nitrogen source is anhydrous ammonia injected into soils at temperature below 50°F. Anhydrous 

ammonia is preferred because it nitrifies at a slower rate than other sources, and urea containing 

fertilizers should be avoided as they are not as effective as fall-applied anhydrous ammonia or 

spring-applied urea (Nafziger et al., 2013; Fernández et al., 2009). Several considerations should 

be taken into account when contemplating the fall application of nitrogen including: soil 

temperature, soil moisture, nitrogen source, and whether or not a nitrification inhibitor should be 

used (Nafziger et al., 2013).  
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Although the recommended soil temperature for the application of fall nitrogen is 50°F 

due to the drastic reduction of nitrifying microbial activity, the biological process continues until 

temperature are below 32°F. In fact, in cases of late fall and early spring nitrogen application 

most of the applied N is converted to nitrate by corn planting due to nitrification during the 

period of time when soil temperatures are between 32°F and the mid-40s (Fernández et al., 

2009). Use of a nitrification inhibitor will slow the nitrification process that converts ammonium 

to nitrate (Nafziger et al., 2013). A nitrification inhibitor is a nitrogen fertilizer amendment 

which inhibits the activity of the nitrosomonas bacterium within the soil. Nitrosomonas is the 

bacterium which converts ammonium into nitrite, the first step of the two step nitrification 

process. 

Spring Application 

While spring application of nitrogen may not always be a viable option, dependent upon 

weather conditions affecting the workability of a field, there are demonstrated benefits from the 

use of a spring nitrogen management system. It has been shown that nitrate losses through 

subsurface drainage can be reduced by as much as 13%-17% and overall leachate can be reduced 

by 11-13% with the use of spring application methods for nitrogen fertilizer (Randall et al., 2003, 

Strock et al., 2004). This reduction in nitrate leaching may be due to the timing of the application 

being closer to critical crop uptake stages. Greater yields as compared to fall nitrogen 

management systems have also been demonstrated with the use of a spring nitrogen management 

system (Vetsch and Randall, 2004, Welch et al., 1971). Two methods of spring application exist: 

pre-emergence and post-emergence application. Post-emergence side-dress application of 

nitrogen is the most optimal application method as it delivers the nitrogen to the plant at the time 

of critical growth, however pre-emergence is still preferred over any fall application. Some 
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deterrent to the use of a spring nitrogen management system include cost, availability of 

equipment and nitrogen sources, as well as the delegation of time away from other in-field 

activities. Also, producers often worry about causing irreversible yield damage caused by delays 

in application timing due to weather (Scharf et al., 2002, Fernández et al., 2009). As with all 

processes in agriculture, nitrogen application is very weather dependent and application timing 

may change from year to year. 

Cover Crops 

History 

Records indicate that early civilizations such as Mesopotamia, Greece, Egypt, and Rome farmed 

their lands so intensively that the soils became depleted of nutrients due to poor soil stewardship 

(Paine et al. 1993). Leaving a field fallow, or bare, has until recently been the most common 

method for dealing with declining soil productivity. In fact, fallowing is the earliest recorded 

attempt at the restoration of soil fertility, and is still used amongst some indigenous farmers 

(Paine et al., 1993). However, in 500 BC China introduced the idea of green manure, defined as: 

“plant material incorporated with the soil while green or soon after maturity, for improving the 

soil” (SSSA, 2015, Pieters et al., 1927). In 1927, Adrian Pieters released a book titled Green 

Manuring Principles and Practice in which he categorized green manure into four general 

categories based on how the crop fits into a producer’s rotation. 

 Main Crop- green manure grown during the regular growing season in place of any other 

crop on poor soils incapable of growing other crops 

 Catch Crop- green manure planted after the main crop in hope of capturing residual soil 

nutrients 
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 Winter Cover Crop-planted in fall and serves to cover the soil during winter to protect 

from erosion 

 Companion Crop- a species planted with main crop or during final cultivation and 

allowed to grow between crop rows as well as after crop harvest, now known as “living mulch” 

The concept of green manure amongst European and American producers was generally 

not accepted until several studies were published during the 19th century demonstrating benefits 

for the use of green manure (Paine et al., 1993). 

The adoption of these practices brought about the introduction of modern day cover crops 

(CC) such as cereal rye, annual rye, daikon radish, crimson clover, triticale, and hairy vetch. 

Traditionally, CC were defined as crops grown to protect soil from erosion and loss of plant 

nutrients, while green manures were crops grown with the purpose of improving soil productivity 

(Pieters et al., 1927, Reeves et al., 1994, SSSA, 2015). However, in modern agriculture we 

generally use the term CC as an inclusive term, where the two are interchangeable, as we reap 

the benefits of both definitions from the introduction of CC into a rotation. 

Benefits 

Several potential benefits can be seen within varying cropping systems following the 

introduction of a CC into the crop rotation. CC have many potential benefits, though they are 

primarily grown for their ability to reduce soil erosion. Soil erosion as defined by the Soil 

Science Society of America is the detachment and movement of soil or rock by water, wind, ice, 

or gravity (SSSA, 2015). The process of erosion can affect the productivity of an agricultural 

field by removing the fertile top soil. Splash erosion is defined as: “the detachment and airborne 

movement of small soil particles caused by the impact of raindrops on the soil” (SSSA, 2015). 

CC provide vegetative cover to cushion the force of falling raindrops as well as reduce the rate of 
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runoff which increases infiltration rates, effectively reducing splash and erosive surface runoff 

(Hartwig et al., 2002, Mermut et al., 1997). 

Erosion control is not the only benefit from the introduction of CC into a rotation. Along 

with erosion control, the introduction of a CC into a crop rotation may potentially provide and 

conserve nitrogen for grain crops, reduce weed pressure, and increase soil organic matter 

(Hartwig et al., 2002). Soil organic matter is: “the organic fraction of the soil exclusively 

comprised of undecayed plant and animal residue” and is essential to soil health (SSSA 2015). 

Approximately 100 years ago the average soil organic matter of the U.S. Corn belt was about 

12%, but after years of intensive row crop agriculture the average soil organic matter of those 

soils is less than 6% and in many cases is even lower. These soils would greatly benefit from the 

addition of organic matter, and CC provide the potential to increase soil organic matter and in 

turn benefit many other soil properties (Odell et al., 1984). CC may also improve soil structure, 

water-holding capacity, and help reduce the chance of environmental pollution from nitrogen 

fertilizers (Danso et al., 1991). 

In recent decades one heavily researched topic is the ability of CC to be used as a nutrient 

management tool in order to increase overall soil fertility. Of the 17 elements essential to crop 

growth and development, nitrogen is at the forefront of this research.  

Integration of Cover Crops 

Following the harvest of cash crops, producers can plant fast-growing annual cereal 

crops, known as catch crops, for the purposes of scavenging residual nitrogen from the soil 

profile in an attempt to optimize their nitrogen management strategy (Ditsch et al., 1991; 

Hartwig and Ammon, 2002; Pieters et al., 1927). Residual nitrogen from the fertilization of a 

previous cash crop is absorbed by these CC and assimilated into their structure, preventing the 
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nitrogen from being lost via leaching, denitrification, or volatilization (Hartwig and Ammon, 

2002; Kaspar and Singer, 2011). Following winterkill or chemical termination, the CC residues 

begin to breakdown and decay releasing the nitrogen held within the biomass back into the soil. 

Along with providing protective ground cover and reducing environmental losses of nitrogen, the 

CC residues have the capability of providing the following cash crop with enough required 

nitrogen to produce a high yielding crop (Danso et al., 1991). 

Use of CC within a fall nitrogen management system also has demonstrated benefits. It 

has been shown that CC have the ability to stabilize 66-91% of fall applied nitrogen and can 

potentially reduce the amount of nitrate leaching within a fall application management strategy 

(Lacey et al,. 2014). The ability of CC to absorb and assimilate residual plant-available nitrogen 

from the soil following the harvest of a cash crop not only reduces the potential for nitrate 

leaching, but may also eliminate many of the environmental problems associated with excess 

nitrogen in agricultural systems (Danso et al., 1991; Hartwig and Ammon, 2002; Kaspar and 

Singer, 2011). 

The long running concern of establishing a CC stand has been a deterrent to many 

producers concerning the introduction of a CC into their rotation. It has been shown that the 

probability of favorable conditions for the  establishment of a CC stand is 1 in 4 years (25%) in 

parts of southwestern Minnesota (strock et al,. 2004). However, new methods of CC planting 

have been established which would allow for producers to interseed CC into corn densities of up 

to 75,000 plants ha-1, while maintaining corn grain yields and allowing for enough biomass 

growth for the subsequent spring. This information could be used in low-input farming systems 

as a method of reducing nitrogen fertilizer inputs (Baributsa et al,. 2008).  
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Environmental Benefits of Cover Crops 

Another question often raised by producers when discussing CC is the return of nitrogen 

taken up by the CC being available to the following cash crop. There is no simple answer to this 

question, however in order to better understand the return of nitrogen from the biomass of the 

CC, one must understand the process of mineralization. The process of mineralization is the 

conversion of organically bound nitrogen found within the CC biomass, back into the plant 

available inorganic forms of nitrogen. This is a two-step process, the first of which is known as 

amminization where the organically bound nitrogen is converted into an amine with the form of 

R-NH2, where R- is used as a general term for any connected substituent. The second step of the 

process is known as ammonification where the previously converted amine is further converted 

into the positively charged plant available form of nitrogen, ammonium (NH4
+1). This process is 

primarily driven by microbial activity based on the ratio of carbon to nitrogen (C:N ratio) within 

the residues. Microbes within the soil require a C:N ratio of 24:1 for optimal residue 

decomposition. This mean that for every 24 carbon atoms within the residue, the microbes 

require only one nitrogen atom to decompose them. However, if the C:N ratio of the residue 

exceeds 24:1 then a process known as immobilization occurs. Immobilization is the process by 

which microbes pull nitrogen from the soil solution to obtain a 24:1 C:N ratio with the residue to 

allow for optimal decomposition. Once decomposition is complete the nitrogen is returned back 

to the soil solution. To our knowledge little work has been done on the determination of 

mineralization rates following the termination of a CC, especially amongst varying nutrient 

management and tillage systems. 

Since the 1950s annual nitrate deposition from the Mississippi River to the Gulf of 

Mexico has nearly tripled (Goolsby et al., 1999). Upwards of 1.57 million metric tons of nitrogen 
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is released annually into the Gulf of Mexico. Agricultural leaching, runoff, and atmospheric 

deposition have been estimated to account for up to 81% of the annual nitrogen load delivered to 

the Gulf of Mexico from the Mississippi River (Alexander et al., 2000). CC have been shown to 

reduce subsurface drainage discharge by as much as 11% and to reduce nitrate nitrogen loss 

through subsurface drainage by as much as 13% as compared to agricultural fields without CC 

(Strock et al,. 2004). A reduction in the load of nitrates, from the use of CC, entering surface 

waters via subsurface drainage lines may have the potential to reduce the nitrate load reaching 

the Gulf of Mexico, which in turn may reduce the overall size of the Hypoxic Zone. 

In 2008 the United States Environmental Protection Agency implemented the Gulf 

Hypoxia Action Plan which requires the 12 states within the Mississippi River Basin to develop 

individual state strategies for the reduction of nitrogen and phosphorous carried in rivers within 

the state and to the Gulf of Mexico and in 2011 set forth a framework by which the strategies 

should be constructed (ILNLRS, 2015). Illinois has set forth a strategy which comprehensively 

describes best management practices for reducing nutrient loading in water sources with the goal 

of reducing the phosphorous load in water sources by 25 percent and the nitrogen load by 15 

percent. Along with addressing water quality issues in Illinois’ rivers, lakes and streams, the 

ultimate goal of the Illinois Nutrient Loss Reduction Strategy is to reduce the total nutrient losses 

to the Mississippi River by 45 percent (ILNLRS, 2015). 

Cover Crop Adoption 

 National CC hectares increased from 48,393 hectares in 2010 to 151,157 hectares 

in 2015 corresponding to a 312% increase in national CC hectares over a period of just five years 

(CTIC, 2015).  A survey conducted by the Conservation Technology Information Center in 2016 

aimed at gauging producer perspective towards CC revealed that the top motivators amongst 
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producers for the adoption of CC include increased soil health and organic matter, reduced soil 

compaction, reduced soil erosion, nitrogen scavenging, and being a source of nitrogen (CTIC, 

2016). However, a survey conducted by the same group suggests that there are still several 

barriers to the widespread adoption of CC. The survey revealed that the top barriers to CC 

adoption amongst producers are the costs of planting and managing the CC, the cost of the CC 

seed itself, and the lack of measurable economic returns following implementation (CTIC, 

2015). There has been little research conducted concerning the value of measureable 

environmental benefits of CC. A lack of measurable economic returns being identified as a top 

barrier to CC adoption is a concern, as most farm operations operate with the primary objective 

of profit maximization. However, there has been little research conducted concerning the value 

of measureable environmental benefits of CC. With profit maximization the primary objective of 

many producers, there is a great need for research to be conducted on developing methods for the 

valuation of CC environmental benefits which allow for increased economic returns following 

the use of CC. 

In response to the Gulf Hypoxic Zone Action Plan release in 2008 by the Environmental 

protection Agency (EPA), the Illinois EPA developed the Illinois Nutrient Loss Reduction 

Strategy which outlined several management practices, in-field practices, and edge-of-field 

practices that could be implemented to reduce nutrient loading to the Mississippi River. The use 

of CC on all tiled and non-tiled acres in the state of Illinois was identified as one of the most cost 

effective and easily implemented in-field practices that could help achieve the ILNLRS goal of 

reducing total nutrient loading from Illinois waterways to the Mississippi River by 45% (IEPA, 

2015). Over a four year period from 2011 to 2015, total CC acres across the state of Illinois 

increased by 187% from 600,000 acres to 1,120,000 acres. The 187% statewide increase was a 
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result of non-tiled acres planted with CC increasing by 166% from 380,000 acres to 630,000 

acres, while tiled acres planted with CC increased by 223% from 220,000 acre to 490,000 acres. 

Illinois producers that planted CC in 2015 identified erosion control, nitrogen and phosphorus 

preservation, control of weeds and pests, and improved soil quality as their top motivations for 

planting CC (USDA-NASS, 2016). While the agronomic and environmental benefits may sway 

some producers towards the adoption of CC, the additional input costs and the recovery of those 

costs must considered by producers, and policy makers, before widespread adoption of CC 

without governmental economic assistance can occur. Therefore, research must be conducted 

that is aimed at quantifying the environmental benefits of CC, placing value to them, and 

determining their role in the recovery of the initial CC implementation costs. 

Economics of Cover Crops 

While the benefits of CC as a method of improving water quality should be considered by 

producers and policy makers, cost and logistical obstacles must be accounted for before 

widespread implementation of CC can occur (Strock et al,. 2004). The economic component of 

implementing CC is of concern to producers, as it has neither been proven nor disproven as to 

whether there is an economic incentive for implementing CC into crop rotations and nutrient 

management strategies. Based on most operations’ primary objective of profit maximization, a 

producer who considers implementing a CC into their rotation will only do so if the revenue 

from the cash crop after planting and managing the CC is greater than or equal to the cost of 

implementing the CC (Morton et al,. 2006).  

Currently, there are a couple spreadsheet based economic models commercially available 

for producers to use in determining the profitability of implementing CC into the operations. In 

general, these models use a cost benefit analysis to determine the profitability of CC 
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implementation costs based upon yield changes in the following cash crop (USDA-NRCS, 

2014). Other factors accounted for amongst these models include erosion control, nutrient credits 

from CC, and reduced pesticide application. However, there are some drawbacks to these 

commercially available tools. First, the general recommendation is to use nutrient credits from 

leguminous CC species only, and they do not account for nitrogen scavenged and assimilated 

into the biomass of grass or brassica CC species. Second, these nutrient credits are often valued 

by the amount change in a producer’s fertilizer application plan; however, many producers do 

not adjust fertilizer application rates following CC. Lastly, the method recommended for 

estimating erosion reduction is to use the downloadable RUSLE2 program available through the 

United States Department of Agriculture Natural Resources Conservation Service; however, this 

program is relatively non-user friendly to first time users, and requires time and effort to 

understand and comprehend the methods used in running the program. These tools certainly have 

value as a method of allowing producers to predict their profitability following CC use; but, 

research needs to be conducted into the valuation of all CC environmental benefits and their use 

in supplementing the value of crop grain yield impacts. The incorporation of the value of these 

environmental benefits into commercially available cost benefit models could allow producers to 

better predict economic returns following the use of CC. 

 Pratt et al., (2014) conducted a study across 24 Indiana farms in which they examined the 

ability of CC environmental benefits to recover the cost of CC implementation. A combination 

of four agronomic and environmental benefits were used in the cost benefit analysis including 

increased soil organic matter, reduced soil compaction, reduced soil erosion, and added nutrient 

content. However, much like the commercially available tools, the study conducted by Pratt et 

al., (2014) does have its weak points. First, they did not measure yield increases or decreases, but 
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rather assumed increases in soil organic matter were correlated to increased grain yield; however, 

this is not always the fact as evidenced by Ismail et al., (1994) who observed nine continuous 

years of declining corn grain yields despite increasing soil organic matter content. Second, as 

with the commercially available tools, added nutrient content was primarily accounted for only 

from leguminous CC species with only small values being associated with scavenged N from 

brassica and annual grass crops. Again, these nutrient credits were valued based upon the 

assumption that producers would reduce their fertilizer application rates by the assumed nutrient 

credit of the CC. Despite the drawbacks of this study, Pratt et al., (2014) determined that the that 

the on-site net benefit of CC ranged from a net loss of $11.09 ha-1 to a net benefit of $87.32 ha-1. 

Pratt et al., (2014) took their study a step further by examining and estimating the net 

economic benefit to producers following the removal of corn stover for the purposes of 

bioenergy production as a method of supplementing the value of CC agronomic benefits on the 

recovery of CC implementation costs. Through the introduction of a new source of revenue 

through the sale of corn stover for bioenergy production, they were able to increase the total net 

benefits of the cropping system containing CC to a range of net losses of $3.78 to net benefits of 

$249.52 dependent upon stover prices. Although the removal of corn stover as a method of cost 

recovery increased the overall net benefits of the CC system, if this practice is not already 

incorporated into a producers operation it may require the purchase of additional equipment or 

hiring of extra labor which could lead to additional annual costs exceeding that of the CC. 

One major component missing from all discussed models is the inclusion of a value for 

the amount of nutrients lost through subsurface drainage in a field without CC as compared to a 

field with CC. Through the determination of nutrient efficiency in a CC field via analysis of 

subsurface drainage leachate, the potential for reducing nutrient inputs as a result of increased 
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nutrient efficiency is possible. While CC have demonstrated the potential to provide various 

environmental benefits within cropping systems, there is a dearth of knowledge regarding the 

value of these environmental benefits in relation to the costs of including CC in a cropping 

system and research is still necessary to determine whether there is an economic incentive behind 

the implementation of CC. 
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CHAPTER III: COVER CROP AND NITROGEN TIMING IMPACT ON CORN AND 

SOYBEAN BIOMASS PRODUCTION, NITROGEN UPTAKE, AND GRAIN YIELD 

 

Abstract 

The coupling of cover crops (CC), along with spring application of nitrogen has shown 

improved nitrogen efficiency in corn production systems. However, studies have shown that only 

50% of central Illinois farmers practice spring application of nitrogen (N). Therefore, the 

overarching objective of this research was to evaluate the impacts of N application timing and 

CC inclusion on subsequent cash crop biomass production, N uptake, and grain yield. The 

experimental site was located at the Illinois State University Nitrogen Management Research 

Field Station, east of Lexington, IL.  The treatments consisted of fall and spring dominated N 

application systems, with and without CC. All treatments received a total N application of 224 

kg N ha-1 from a combination of diammonium phosphate and anhydrous ammonia prior to corn, 

while zero N fertilizer was applied to any of the treatments prior to soybeans. CC above ground 

biomass was collected once in the fall prior to daikon radish winter termination and once in the 

spring prior to cereal rye chemical termination to assess aboveground biomass production and N 

uptake. Two years of sampling demonstrated the ability of CC to produce an average 

aboveground biomass of 1,165 kg ha-1 and sequester an average of 42.5 kg N ha-1 prior to 

chemical termination in the spring. It was determined that winter CC did increase corn biomass 

production and N uptake during vegetative growth; however, corn biomass production and total 

N uptake at physiological maturity was not significantly different amongst any of the treatments. 

There was no significant impact on corn grain yield observed amongst the two N application 

timings, with or without CC. The coupled effect of CC and N application timing did not 
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significantly impact corn yield in the fall dominated N application; however, there was a 

significant (df=4 F=339.97 P< 0.0001) 7% reduction in corn grain yield following the 

introduction of CC in the spring dominated N application system. There was no impact on 

soybean yield amongst treatments. These data demonstrates the potential for CC to be introduced 

into existing nitrogen management systems common to the Midwest, while maintaining close to 

equal crop productivity levels.  
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Introduction 

It has been estimated that agricultural leaching of nitrogen (loss of nitrogen from the soil 

profile) accounts for approximately 65% of the greater than 1.57 million metric tons of nitrogen 

delivered annually to the Gulf of Mexico, resulting in the world’s second largest hypoxic zone 

(Alexander et al., 2000, Rabalais et al., 2002; Robertson and Saad et al., 2013). Relatively poor 

nitrogen use efficiencies (the ratio of crop nitrogen uptake to applied nitrogen fertilizer) of 60% 

or less across the Midwest have demonstrated the need for alternative nutrient management 

strategies, as the connection between the hypoxic zone in the Gulf of Mexico and Midwestern 

agriculture has become increasingly clear (Chichester et al., 1978; Dinnes et al., 2002; Goolsby 

et al., 2001). In an effort to mitigate nutrients carried by rivers to the Gulf of Mexico, the Gulf 

Hypoxic Zone Action Plan was released by the Environmental Protection Agency (EPA) in 

2008. This action plan required each of the 12 states in the Mississippi River Basin to develop 

individual strategies for mitigating nutrient transfer to the Gulf, and in response the Illinois EPA 

developed the Illinois Nutrient Loss Reduction Strategy stating an overall goal of reducing total 

nutrient transfer to the Mississippi River by 45% (IEPA, 2015). The use of CC, as well as, 

making a change to split applications of nitrogen in which 50% or greater of the total N 

application occurs in the spring have been identified as two of the best in-field practices to help 

achieve the 45% total reduction in nutrient transfer from Illinois rivers to the Gulf of Mexico 

(IEPA, 2015). 

Fall and spring applications of nitrogen are the two primary timings which producers use 

to apply their nitrogen fertilizers sources. Switching nitrogen applications from fall to spring has 

reduced nitrogen leaching by up to 17%, thus reducing the overall nutrient transfer from 

agricultural fields to surface waters (Randall et al., 2003, Strock et al., 2004). Previous studies 
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have determined that total plant N uptake for corn can increase by 3 – 8% and corn grain yields 

can increase by as much as 7% when nitrogen applications are moved from the fall to the spring 

(Randall et al., 2003; Vetsch and Randall, 2004; Randall and Vetsch, 2005). However, even with 

demonstrated environmental benefits of spring N applications, surveys suggest that 46-75% of 

farmers make fall nitrogen applications within some Midwestern regions (Smiciklas et al,. 2008; 

Bierman et al,. 2011; O’Rourke and Winter 2010; Lemke et al,. 2011). Thus, there is a need to 

develop strategies to improve the efficacy of fall nitrogen applications.   

CC have demonstrated the potential to absorb nitrogen from the soil profile and 

assimilate it into their organic structure, thus reducing the potential for nitrogen to be lost from 

agricultural fields to the environment via leaching, denitrification, or volatilization (Ditsch et al., 

1991; Hartwig and Ammon 2002; Kaspar and Singer 201l). Fast growing annual cereal crops can 

be planted following cash crop harvest for the purposes of scavenging residual, naturally 

mineralized, and applied fertilizer nitrogen from the soil profile. CC used in a fall nitrogen 

management system have demonstrated the ability to stabilize 66-91% of fall applied nitrogen 

and can potentially reduce the amount of nitrate leaching within a fall application management 

strategy (Lacey et al,. 2014). 

There has been a vast amount of research conducted on the impact of CC on yields of the 

following cash crops, in which the overwhelming results were that cash crop yields following 

winter CC we equal to or greater than yields observed on non-CC fields (Deppe 2016; O’Reilly 

et al., 2011, 2012; Frye et al., 1985; Sainju et al., 2003; Belfry et al., 2016; Miguez and Bollero 

2005; Reese et al., 2014; Ketterings et al., 2015). However, in comparison to the previous studies 

that demonstrated neutral or positive impacts of CC on cash crop yields, others have determined 

that the impact of CC on cash crop yields is either neutral or negative with decreases attributed to 
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poor crash crop establishment and potential soil property differences, as well as, possible cereal 

rye allelopathic effects (Moore et al., 2014; olson et al., 2010; Deppe 2016; Pantoja et al., 2015; 

Raimbault et al., 1990, 1991; Johnson et al., 1998). While there is much research concerning 

crop yields following CC, there is a dearth of knowledge surrounding the impacts of CC on N 

uptake throughout the cash crop growing season. Consequently, there is a need for research 

examining cash crop N uptake by growth stage following CC, to determine if specific critical 

growth stages impacted by CC can be identified.  

The potential for reducing environmental impacts of agriculture has been demonstrated 

for both spring nitrogen application systems and CC; however, it is important to understand how 

these practices will influence overall productivity of traditional Midwestern cropping systems. 

Therefore, the objectives of this study were I) determine the impact of nitrogen application 

timing on cash crop biomass production, nitrogen uptake, and grain yield, II) determine the 

impact of CC on cash crop biomass production, nitrogen uptake, and grain yield and III) 

determine the combined effect of nitrogen application timing and CC on cash crop biomass 

production, nitrogen uptake, and grain yield. 

Materials and Methods 

This study was conducted in Lexington, Illinois at the Illinois State University Nitrogen 

Management Research Farm, also known as the Tile Drainage Site (TDS). The predominant soil 

types found within the approximately 10 hectare (25 acre) field are Drummer and El Paso silty 

clay loams, as well as Hartsburg silty clay loam, all of which are poorly drained Mollisols 

containing a slope of 0-2%. The cropping history for the Nitrogen Management Research Farm 

includes an 8 year rotation of strip-tilled corn (Zea mays L.) and no-till soybeans (Glycine max 

L.), which are harvested and sold for grain. This experiment was a continuation of these 
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practices. The site was divided into fifteen individually tile drained plots (1.6 acre, 0.648 ha), 

each possessing its own controlled drainage structure and tile water monitoring systems. The N 

management strategies were to apply a total rate of 224 kg N ha-1 across various N application 

timings. The N rate for this study was the suggested MRTN (Maximum Return to Nitrogen) 

value of 224 kg N ha-1 for the central Illinois region as calculated by the Iowa State University N 

rate calculator. The plots were arranged in a complete randomized block design with three 

replications of each experimental treatment (Figure 1). The experimental treatments for this site 

included: 

- Fall Dominated ( 68% fall, 32% spring) N application system without CC (FN) 

- Fall Dominated ( 68% fall, 32% spring) N application system with CC (daikon radish 

(Raphanus sativus L.) and cereal rye (Secale cereal L.) blend) (FCC) 

- Spring Dominated (18% fall, 82% spring) N application System without CC (SN) 

- Spring Dominated (18% fall, 82% spring) N application system with CC (daikon 

radish (Raphanus sativus L.) and cereal rye (Secale cereal L.) blend). (SCC) 
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Figure 1- Illinois State University Nitrogen Management Research Field Station Plot Layout. 

 

 

 

Cultural Practices 

All in field practices and applications were designed to follow major agricultural 

practices used within the Midwest. Following popular cultural practices from the region allows 

the researchers to better communicate with producers on the logistics of the experiment, as well 

as demonstrate the ability to adapt and potentially improve current practices. Year-to-year 

decisions based on weather conditions were made in regards to application dates, although 

applications were made within the same period of time each year. The farmer from which the site 

is rented provided all equipment for the completion of general farming practices (planting, 

harvesting, pesticide application, mowing, etc.) at TDS.  
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 All treatments at the site received a total of 224 kg N ha-1 during the corn phase of the 

corn and soybean rotation. The N sources used to reach this application rate were anhydrous 

ammonia (AA) and diammonium phosphate (DAP). The fall portion (68%) of the fall dominated 

N management system was a result of 40 kg N ha-1 from DAP and 112 kg N ha-1 as AA. The fall 

portion (18%) of the spring dominated N management system was a result of 40 kg N ha-1 from 

DAP. All fall AA was applied with a nitrogen inhibitor (N-Serve), and application occurred only 

once soil temperatures fell below 10°C. The remaining N was applied to the plots in the spring 

following corn planting as a side-dress AA application near the V6 growth stage. The spring 

portion (32%) of the fall dominated N management system was a result of 72 kg N ha-1 as AA. 

The spring portion (82%) of the spring dominated N management system was a result of 184 kg 

N ha-1 as AA. Spring AA did not include a nitrogen inhibitor. 

 Corn and soybeans were planted in 76.2 cm rows using a John Deere 1770NT 24 row 

planter pulled by a John Deere 8360R. Corn was planted at a rate of 86,485 seeds per hectare on 

April 30, 2015. Soybeans were planted at a rate of 308,875 seeds per hectare on May 7, 2016. 

Weather conditions in 2015 allowed the corn stand to establish without problems. However, 

weather conditions in the early part of the 2016 growing season caused poor emergence and 

resulted in an average population of approximately 214,977 soybean plants per hectare. Due to 

this reduction in stand, a replant at a rate of 135,905 seeds per hectare occurred on May 25, 2016. 

After a population check the replant stand was found to be at approximately 133,434 plants per 

hectare, which resulted in an average of 348,411 plants per hectare. Harvest was carried out 

using a John Deere S670 combine with a John Deere 608C 8 row head for corn, and a John 

Deere 635FD 35 foot flex draper head for soybeans. The CC (CC) were interseeded at a rate of 

84 kg ha-1 into the standing crops using a Hagie STS12 modified with an air seeding box (figure 



37 

2) between late August and early September. The CC chosen were a 92% cereal rye and 8% 

daikon radish blend. This blend was selected because it provides ground cover in both fall/winter 

and spring, as well as opportunities for continual N scavenging from fall through spring. The 

daikon radish provides rapid fall N uptake and biomass production, while the cereal rye grows 

slower in the fall with some N uptake. Daikon radish generally winterkills, however, cereal rye is 

winter hardy and flourishes in the spring with rapid N uptake and biomass production.  

 

 

 

 

Figure 2. Hagie STS12 modified with an air seeding box used to plant cover crops. 
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Throughout the duration of the study, the daikon radish self-terminated through 

vegetative desiccation in mid-to-late December following several days of subfreezing weather 

conditions. The cereal rye, however, is a winter hardy species that was chemically terminated at 

least 2 weeks prior to the planting of the cash crop. Along with the chemical termination of the 

CC, the research plots received varying pesticide applications dependent upon the main crop and 

weather conditions. All applications, other than fungicides which were commercially flown on, 

were applied by the farmer with a John Deere 4730 spray rig with a 90 foot boom. In 2015, the 

CC was terminated two weeks prior to corn planting on April 14 using Roundup Powermax 

(active ingredient: glyphosate) at a rate of 2.34 liters per hectare. A pre-emergence herbicide 

application occurred on April 17 at a rate of 4.1 liters per hectare of Lexar (active ingredients: S-

metolachlor, atrazine, mesotrione) and 0.88 liters per hectare of 2, 4-Dichlorophenoxyacetic acid. 

A post-emergence application of 1.75 liters per hectare of Roundup Powermax took place on 

May 23. The final application of 2015 occurred on July 23 when 0.73 liters per hectare of 

Headline Amp fungicide (active ingredients: pyraclostrobin, metconazole) was applied. All 2015 

applications occurred across all plots. In 2016 the CC were terminated three weeks prior to 

soybean planting on April 16 with an application of 2.34 liters per hectare of Roundup 

Powermax. While the termination application occurred across all plots in 2015, only the CC plots 

were sprayed during the termination application in 2016. A pre-emergence/burndown application 

occurred across all plots on April 18 at a rate of 0.29 liters per hectare of Authority XL (active 

ingredients: sulfentrazone, chlorimuron ethyl), 1.75 liters per hectare of Roundup Powermax, 

and 0.88 liters per hectare of 2, 4-dichlorophenoxyacetic acid. A final post-emergence herbicide 

application of 2.34 liters per hectare of Roundup PowerMax, 0.22 liters per hectare of Fusilade 
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(active ingredient: fluazifop-p-butyl), and 1.0 kilograms per hectare of ammonium sulfate 

occurred on June 20. 

Cover Crop Sampling 

CC sampling occurred in both the fall and spring in order to document both above ground 

growth, as well as, CC nitrogen uptake. Within each treatment, four 0.6858 m2 quadrants were 

randomly chosen and the above ground CC biomass was collected in order to create a 

representative sample for each treatment. This sampling technique is a modified version of Dean 

and Weil’s method developed in 2009 (Dean and Weil, 2009). Samples were collected from all 

plots containing CC; no samples were collected from the control or zero control plots. The CC 

biomass samples were oven dried at 60 °C and ground to pass through a 1-mm sieve. The dry 

weight of each biomass sample was determined and used to calculate both total CC biomass, as 

well as total CC nitrogen uptake. The dried and ground above ground CC biomass was then 

analyzed for percent total nitrogen using a 0.1000 g sample via the use of a LECO FP-528 dry 

combustion instrument. The percent total nitrogen was then multiplied by total CC biomass in 

order to determine total CC nitrogen uptake (kg ha-1). 

Cash Crop Sampling 

Cash crop samples were taken at critical growth stages within the growing season as 

determined by previous studies involving plant nutrient uptake. The critical growth stages to be 

sampled for corn include vegetative stage 6 (V6), V12, VT (tasseling), and reproductive stage 6 

(R6, physiological maturity). The critical growth stages to be sampled for soybeans include 

vegetative stage 4 (V4), reproductive stage 2 (R2, full flowering), R4 (full pod), and R8 

(physiological maturity). During the collection of each cash crop plant sample, population 

densities were calculated for corn by counting the plants within a 5.3086 m length two times, and 
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for soybeans by counting the plants within a 1.8288 m length three times, and extrapolated out to 

determine plants per acre. Within each corn density check two whole plants (from soil surface to 

top of plant) were collected and within each soybean density check three whole plants (from soil 

surface to top of plant) were collected. The collected plants were combined into one 

representative sample, and analyzed for nitrogen content. Plants collected during the R6 corn 

sampling were divided into sample subsets including grain, cob, lower stalk, and remaining plant 

biomass. Plants collected during the R8 soybean sampling were divided into sample subsets 

including grain, pod, and remaining plant biomass. The cash crop plant samples were oven dried 

at 60 °C and ground to pass through a 1-mm sieve. The dry weight of each plant sample was 

determined and used to calculate both total cash crop biomass, as well as total cash crop nitrogen 

uptake. The dried and ground cash crop plant samples were analyzed for total percent nitrogen 

using a 0.1000 g sample via the use of a LECO FP-528 dry combustion instrument. The total 

percent nitrogen was then multiplied by total cash crop biomass in order to determine total cash 

crop nitrogen uptake (kg ha-1).  

Grain Yield Sampling 

Cash crop grain yield and moisture data was analyzed following the completion of each 

year’s harvest. Grain yields were calculated via weights collected from a weigh wagon following 

the harvest of an area with a known length and width. These weights were used to determine 

cash crop grain yield on a per hectare basis (bu ha-1). Grain samples from each plot were 

collected and dried in an oven at 100°C in order to determine the grains moisture content at 

harvest. 
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Statistical Analysis 

The experimental design for the analysis of biomass production, grain yield, and nutrient 

uptake was a complete randomized block. SAS 9.4 was used to analyze the data with block and 

CC treatment (CC trt) as the independent variables (one-way random analysis of variance). 

These variables were tested using [block x CC trt] as the error term. A α-level equal to 0.05 was 

used to determine significant value. Following the two-way analysis of variance, a Ryan’s test 

was used to determine significant differences between treatments. 

Results and Discussion 

Weather Conditions 

Ambient air temperature and precipitation data was collected for the duration of the study 

to better understand the effect of various climatic conditions on CC and cash crop growth and 

nitrogen sequestration. Noticeably different climatic conditions between the two seasons allowed 

for the observation of CC and cash crop performance within two distinctly different crop 

management systems. For the time period associated with the 2014 CC – 2015 corn season 

(September 2014 – August 2015), the average ambient air temperature and total precipitation 

were less than the 30-year regional average. However, the time period associated with the 2015 

CC – 2016 soybean season (September 2015 – August 2016) average ambient air temperature 

and total precipitation was greater than the 30-year regional average. 

Specifically, the 2014 CC season (September 2014 – April 2015), recorded temperatures 

of 1.1, 4.3, 6.1, and 1.9°C below the 30-year average in September, November, February, and 

March, respectively. There was 401.1mm of total precipitation recorded during the 2014 CC 

season, which was considerably lower than the 30-year average of 571.6mm for the same time 

period. Specifically, November – April ranged 17.6 - 40.9mm below the 30-year average for 
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total precipitation. Conversely, average ambient air temperatures recorded in September, 

November, December, February, and March during the 2015 CC season (September 2015 – 

April 2016) measured 1.5, 2.1, 6.0, 1.8, and 3.4°C warmer than the 30-year average ambient air 

temperature, respectively. Total precipitation for the 2015 CC season was in general lower than 

the 30-year average except for the months of November, December and March which observed 

21.9mm, 91mm, and 11.4mm greater total precipitation than the 30-year average, respectively.  

The average ambient air temperatures during the 2015 corn season (May 2015 – 

September 2015) were similar to the 30-year regional average, averaging just 0.2°C cooler. 

Measurably higher total precipitation was recorded during the 2015 corn season when compared 

to the 30-year average; specifically, record rainfall occurred in June 2015 resulting in 179.1mm 

total precipitation compared to the 30-year regional average of 100.5mm. The average ambient 

air temperatures during the 2016 soybean season (May 2016 – September 2016) were similar to 

the 30-year regional average, with May and July average 0.5 and 0.7°C cooler and June and 

September averaging 1.0 and 0.3°C warmer than the 30-year regional average. The 2016 soybean 

season had 515.7mm of total precipitation, which is 114.6mm greater than the 30-year average of 

401.1mm. Specifically, July and August (soybean reproductive period) observed measurably 

higher total precipitation, resulting in 58.7mm and 59.2mm greater than the 30-year average, 

respectively.  

Cover crop Biomass Production and Nitrogen Uptake 

The CC grown in the fall of 2014 through the spring of 2015 was prior to a corn cash 

crop, thus the CC was given the opportunity to interact with nitrogen fertilizer applied in the fall 

for the corn crop, along with residual and mineralized nitrogen from the previous year. Biomass 

production and nitrogen content were measured both in the fall prior to daikon radish winter 
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desiccation and the spring prior to chemical termination of the cereal rye. The fall CC sampling 

of the cereal rye and daikon radish CC mixture grown in the FCC and SCC treatments resulted in 

a total of 332.2 kg ha-1 and 265.2 kg ha-1 dry aboveground biomass and a total nitrogen content 

of 12.34 kg N ha-1 and 10.95 kg N ha-1, respectively. A study conducted in Finland regarding 

crop responses to temperature and precipitation, determined that winter cereal rye growth 

increases with early season increases in precipitation and warmer than average temperatures 

throughout the growing season (Peltonen-Saino et al., 2010). The results of that study, coupled 

with the collected weather data from this study that indicates a cool, dry winter portion of the CC 

season, could explain the low CC biomass and N uptake results observed among the treatments 

at the fall CC sampling date during the 2014 CC season. Below average ambient air temperatures 

and precipitation during the winter of 2014 caused early desiccation of the daikon radish in the 

CC mixtures; however, the winter-hardy cereal rye survived the cool and dry winter weather 

conditions and flourished in the spring of 2015. The spring sampling of the cereal rye biomass 

revealed significantly greater (df=3 F=5.16 P=0.0424) dry biomass production of 1,179.6 kg ha-1 

and 1,033.7 kg ha-1 and measurably greater total nitrogen content of 61.47 kg N ha-1 and 45.58 

kg N ha-1 for the FCC and SCC treatments, respectively, when compared to the fall CC biomass 

samplings from the same treatments. 

CC incorporated into the FCC treatment compared to those in the SCC treatment, resulted 

in greater biomass production and N uptake at both the fall and spring biomass samplings. This 

can likely be attributed to the incorporation of fall applied anhydrous ammonia and fall 

diammonium phosphate (DAP) into the FCC treatments, allowing for CC interaction with not 

only residual and naturally mineralized N, but also a large pool of inorganic N from fertilizer. 

Conversely, the SCC treatments only received DAP inorganic fertilizer prior to spring chemical 
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termination of the cereal rye, thus the pool of inorganic N from fertilizer available for CC 

interaction was much smaller. While the FCC treatment resulted in higher biomass production 

and N uptake at the fall and spring sampling dates, both the FCC and SCC treatments 

significantly increased biomass production (df=3 F=5.16 P=0.0424) and measurably increased N 

uptake at the spring sampling date compared to the fall sampling date. This difference can be 

attributed to the ability of cereal rye to withstand harsh winter conditions and thrive following 

the spring warming period. The cereal rye may also be interacting with soil N that is mineralized 

from the residue of daikon radish, which could also contribute to the vigorous cereal rye growth 

experienced in the spring. These results help solidify the idea that planting a mixture of CC 

species that provides both fall and spring growth aids in reducing the vulnerability of nitrate N to 

leave the soil profile.  

The fall 2015 through spring 2016 CC was grown preceding a soybean cash crop for 

which no inorganic fertilizer was applied; thus, the CC was only provided the opportunity to 

interact with residual nitrogen from the previous year, as well as, naturally mineralized nitrogen. 

The fall sampling of the cereal rye and daikon radish biomass from the FCC and SCC treatments 

resulted in 1,375.4 kg ha-1 and 1,459.1 kg ha-1 of accumulated dry biomass and  a total nitrogen 

content of 54.86 kg N ha-1 and 63.86 kg N ha-1, respectively. The weather results for the 2015 

CC season revealed a warmer and wetter than average winter period of the CC growing season. 

Coinciding with results from Peltonen-Saino et al., (2010), warm and wet conditions during CC 

growth promotes better performance from winter cereal crops such as the cereal rye found in the 

CC mixture used in this study. Significantly greater biomass production (df=3 F=5.16 P=0.0424) 

in the fall of 2015 compared to the fall of 2014 could be a result of measurably warmer ambient 

air temperatures during the winter months of 2015, allowing for a longer daikon radish growing 
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period prior to desiccation.  The remaining cereal rye biomass in the FCC and SCC treatments 

sampled prior to chemical termination in the spring resulted in 1,072.7 kg ha-1 and 1,373.8 kg ha-

1 of accumulated dry biomass and noticeably lower total nitrogen content of 29.05 kg N ha-1 and 

33.72 kg N ha-1 with respect to the fall CC sampling from the same treatments. The examination 

of short-term weather data during the 2014 and 2015 CC growing seasons demonstrated that air 

temperature and precipitation have a greater influence on annual CC growth compared to other 

variables such as nitrogen management or previous cash crop. 

In the 2014 CC growing season the FCC treatment had higher biomass production and N 

uptake than the SCC treatment at both the fall and spring sampling dates. Conversely, the 2015 

CC growing season saw opposite results with the SCC treatment recording higher biomass 

production and N uptake at both the fall and spring sampling dates. This reversal of roles can 

likely be attributed to a larger portion of the applied inorganic N fertilizer for corn growth in the 

SCC treatments being applied in mid-June as side dressed anhydrous ammonia compared to the 

majority of applied inorganic N fertilizer for the FCC treatment being applied the previous fall. 

Thus, there was likely a larger pool of residual N within the SCC treatment, allowing for greater 

N uptake and biomass growth compared to the FCC treatment. Following two years of 

experimentation, it is estimated that species dependent biomass production and nitrogen uptake 

may be dependent upon climatic conditions. It was observed that daikon radish growth flourishes 

in warm fall and winter conditions which allows for a longer duration of growth prior to winter 

termination, whereas cereal rye growth is maximized in moderate-to-cool fall and winter 

conditions followed by warm spring weather. This observation again demonstrates the security 

of planting a mixture of CC species that provide both fall and spring growth to guard against 

unknown climatic conditions. 
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Differences in average ambient air temperature and total precipitation between the two 

CC growing seasons had measureable impacts on fall biomass production and N sequestration, as 

well as, the date of daikon radish winter termination. Winter termination of the daikon radish 

occurred in mid-to-late November during the 2014 CC season compared to an early January 

winter termination date in the 2015 CC season. This equates to approximately 1-1.5 months of 

extra growth for the daikon radish in the 2015 CC growing season relative to the 2014 CC 

growing season, which can be attributed to the considerably warmer ambient air temperatures 

and higher precipitation totals of the 2015 CC season compared to the 2014 CC growing season. 

Below average ambient air temperature and total precipitation during the 2014 CC growing 

season resulted in 76 and 82% less biomass production with 80 and 76% less N uptake in the 

FCC and SCC treatments compared to the 2015 CC growing season, respectively. While the 

2014 CC performed relatively poorly in the fall, the cereal rye flourished during the spring 

warming period resulting in substantial biomass production and N uptake. In terms of biomass 

production, the 2014 CC and the 2015 CC performed relatively equally at the spring sampling 

date. While the 2014 CC increased its total N uptake from the fall sampling to the spring 

sampling, the 2015 CC saw a reduction in total N uptake between the fall and spring sampling 

dates. Many factors may have contributed to the reduction in N uptake seen in the spring 

sampling of the 2015 CC compared to the fall sampling of the 2015 CC and the spring sampling 

of the 2014 CC. The first consideration is that warmer and wetter than average climatic 

conditions allowed for longer growth of the daikon radish in the fall prior to winter termination, 

and thus greater uptake by the daikon radish within the CC mixture. The later termination date of 

the daikon radish, allowed less time for possible mineralization of N from the daikon radish to 

occur while the cereal rye was still growing, and therefore less possible transfer of N from the 
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daikon radish biomass to the cereal rye biomass. The second factor to consider when 

investigating the difference in N uptake between the fall and spring samplings for the 2015 CC is 

that it was grown prior to a soybean cash crop. Soybeans do not require inorganic N fertilizer to 

achieve optimal yields. Thus, the total inorganic N within the soil profile available for the 2015 

CC may have been reduced, and the CC was left to interact with just residual and naturally 

mineralized N. The vigorous fall growth of both the daikon radish and cereal rye, promoted by 

the warm and wet weather conditions, resulted in rapid uptake of N by both species. However, 

warm and wet environmental conditions are also ideal conditions to promote the loss of N from 

the soil via leaching and denitrification. Therefore, the late winter termination of daikon radish 

coupled with high leaching and denitrification potential, resulted in a depleted pool of inorganic 

nitrogen available within the soil profile. This, along with a lack of added inorganic N fertilizer 

during a soybean cash crop year to replenish the pool of N within the soil, resulted in a 

substantial decrease between the fall and spring samplings of the 2015 CC. 

Previous research in the area of CC being used as a nitrogen management tool used to 

interact and stabilize soil inorganic N has primarily been focused on the interaction of CC with 

residual and naturally mineralized N within spring applied N management systems (Sainju et al., 

2007; Weinert et al., 2002; O’Reilly et al., 2012; McCracken et al., 1994). The cereal rye 

component of our CC mixture was able to sequester 30-46 kg N ha-1 over the two years of study, 

despite distinctly different climatic conditions across two different cropping management 

systems. These results demonstrate the ability of the cereal rye CC to absorb 100% of N applied 

in the fall from DAP within our spring dominated N application system. These results align with 

previously published works from Dean and Weil (2009) which demonstrated the ability of cereal 

rye to absorb 37-83 kg N ha-1 when incorporated into spring N application systems in Maryland. 
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Kasper et al., (2007) determined cereal rye incorporated into spring N application systems in 

Iowa had the capacity to absorb 9-76 kg N ha-1. Though the majority of CC research has been 

performed in spring applied N systems, Adeli et al., (2011) investigated the impacts of CC 

inclusion in a fall applied broiler litter system, while research from Illinois State University 

looked at the interaction of CC in a fall applied anhydrous ammonia N application system (Lacey 

and Armstrong, 2014, 2015; Deppe, 2016). Adeli et al., (2011) demonstrated that cereal rye CC 

have the capability to absorb 10.8 - 64 kg N ha-1 within a fall applied broiler litter system, while 

the work conducted at Illinois State University demonstrated the ability of cereal rye within a 

cereal rye and daikon radish to absorb 32-128 kg N ha-1, corresponding to an 18-64% absorption 

of fall applied anhydrous ammonia (Lacey and Armstrong, 2014, 2015; Deppe, 2016). In 

comparison, the cereal rye incorporated into our fall dominated N application system was able to 

absorb 61.47 kg N ha-1 in the corn year which corresponds to 40% of the 152 kg N ha-1 applied 

in the fall as DAP and anhydrous ammonia, while the cereal rye was able to sequester just 29.05 

kg N ha-1 in the soybean year when zero fertilizer was applied.  

Cash Crop Biomass Production and Nitrogen Uptake 

In the 2014-2015 season, the cash crop grown was corn, which was sampled at various 

critical growth stages throughout the season. No significant differences in biomass production 

were observed amongst any of the treatments at any of the sampled growth stages. There were no 

significant differences in crop nitrogen uptake at V6, VT, R6, or any of the R6 subsamples (plant 

matter, cob, and grain); however, significant differences were observed between the SN and SCC 

treatments at V12.  

At growth stage V6, the spring sidedress application of nitrogen had not yet been applied. 

Therefore, the fall dominated N management treatments, which received a large portion of its 
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total applied inorganic N fertilizer in the fall, had potential for a greater amount of total inorganic 

N within the soil profile than the spring dominated nitrogen management treatments. While not 

significant, a decrease in both N uptake and crop biomass production was observed when the 

predominant portion of applied N fertilizer was moved from the fall to the spring. The move 

from a fall dominated to a spring dominated N application system resulted in a 24% reduction in 

total biomass production with the FN and SN treatments producing 661.47 kg ha-1 and 502.66 kg 

ha-1 of biomass, respectively. A 41% decrease in total nitrogen uptake was also observed 

following the change from a fall dominated to spring dominated N application system, with a 

total N uptake of 22.64 kg N ha-1 and 13.25 kg N ha-1 for the FN and SN treatments, 

respectively. These results indicate that a fall dominated N application system promotes more 

vigorous early season biomass production and N uptake. The introduction of a CC into the fall 

dominated N application system resulted in a 3% decrease in crop biomass production and a 1% 

increase in total N uptake relative to the FN treatment, with the FCC recording a total biomass 

production of 641.57 kg ha-1 and total N uptake of 22.93 kg N ha-1. The SCC treatment had a 

total crop biomass production of 504.43 kg ha-1 and total N uptake of 14.13 kg N ha-1, 

corresponding to a 0.4 and 6% increase relative to the SN treatment, respectively. In comparison, 

Deppe (2016) observed a 27% decrease in corn N uptake at V6 when a cereal rye and daikon 

radish mixture was introduced into a fall applied anhydrous ammonia N application system in 

central Illinois. While the increase was small, it may be attributed to differing levels of residual 

N within the soil profile or early mineralized N from the CC biomass. The percent N uptake at 

V6 relative to total N content at physiological maturity varied according to treatment but 

measured at 10, 12, 5, and 8% for the FN, FCC, SN, and SCC treatments, respectively. When the 

factors of N application timing and CC were coupled, it was observed that the FCC treatment 
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resulted in 21% greater crop biomass production and 38% greater total N uptake at growth stage 

V6 relative to the SCC treatment. This is likely due to a larger pool of inorganic N, including 

applied, residual, and mineralized N, being available in the fall dominated N management 

treatments than the spring dominated N management treatments 

At the V12 growth stage, while not significant, the movement from a fall dominated to a 

spring dominated N application system resulted in a 15% decrease in crop biomass production 

with the FN and SN treatments measuring 6671.07 kg ha-1 and 5661.27 kg ha-1, respectively. The 

same change in N application timing resulted in total N uptake of 126.03 kg N ha-1 and 110.70 

kg N ha-1 for the FN and SN treatments, which corresponds to a 12% decrease in total N uptake. 

These results indicate that a fall dominated N application system promotes higher biomass 

production and N uptake through the V12 growth stage, even following a spring sidedress 

application of nitrogen fertilizer. The introduction of CC into the fall dominated N application 

system resulted in 17% greater crop biomass production with the FCC and FN treatments 

measuring 8079.11 kg ha-1 and 6671.07 kg ha-1, respectively. The FCC treatment also increased 

total N uptake by 20% absorbing 30.81 kg N ha-1 more at the V12 growth stage relative to the 

FN treatment, measuring 156.84 kg N ha-1 and 126.03 kg N ha-1, respectively. The introduction 

of CC into the spring dominated N application resulted in a 19% increase in crop biomass 

production measuring 7023.56 kg ha-1 and 5661.27 kg ha-1 for the SCC and SN treatments. There 

was a significant increase (df=4 F=31.33 P<0.0001) in N uptake of 30% in the corn at V12 

between the SCC and SN treatments, measuring 157.05 kg N ha-1 and 110.70 kg N ha-1, 

respectively. These results indicate that the introduction of a CC into a cropping system, 

regardless of N application timing, promotes greater biomass production and total N uptake 

through the V12 growth stage. Worth noting is that the FCC treatment also resulted in 30% 
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greater crop biomass production and 29% greater N uptake at corn stage V12 when compared to 

the SN treatment. When the factors of N application timing and CC were coupled, it was 

observed that the FCC treatment resulted in 13% greater crop biomass production and less than 

1% lower total N uptake relative to the SCC treatment at growth stage V12. These results 

indicate that a fall dominated N application system with CC has the potential to outperform a 

spring dominated N application system with or without CC, in terms of crop biomass production 

and total N uptake through corn growth stage V12. The percent N uptake at V12 relative to total 

N content at physiological maturity varied according to treatment but measured at 55, 85, 43, and 

84% for the FN, FCC, SN, and SCC treatments, respectively. 

At growth stage VT, the FN treatment resulted in measurably less biomass production 

and total N uptake relative to the SN treatment. Total crop biomass measured 5767.07 kg ha-1 

and 6965.95 kg ha-1 and total N uptake was 108.50 kg N ha-1 and 151.20 kg N ha-1 for the FN 

and SN treatments, respectively. These results indicate that the change from fall dominated to 

spring dominated N application promotes greater crop biomass production and total N uptake by 

the time the corn plant reaches the VT growth stage. The introduction of CC into the fall 

dominated N application system resulted in 14% greater crop biomass production with measured 

values of 5767.07 kg ha-1 and 6713.75 kg ha-1 for the FN and FCC treatments, respectively. 

There was no significant difference in total N uptake between the FCC and FN treatments, 

however there again was noticeably greater uptake in the CC treatment compared to the non-CC 

treatment with corresponding N uptake of 124.80 kg N ha-1 and 108.50 kg N ha-1. There was a 

15% decrease in crop biomass production following the introduction of CC into the spring 

dominated N application system, with recorded crop biomass production of 6965.95 kg ha-1 and 

5884.68 kg ha-1 for the SN and SCC treatments. While the difference in corn N uptake at growth 
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stage VT was not significant between the SCC and SN treatments, there was a noticeably greater 

amount of corn N uptake in the SN treatment compared to the SCC treatment, measuring 151.20 

kg N ha-1 and 134.50 kg N ha-1, respectively. These results indicate that introducing CC into a 

fall dominated N application system has the potential to result in increased crop biomass 

production and total N uptake at the VT growth stage. However, the results also demonstrate that 

the introduction of CC into spring dominated N application systems could result in reduced crop 

biomass production and total N uptake at corn growth VT. When comparing the CC treatments 

from each N application system, it was observed that the FCC treatments resulted in 12% great 

crop biomass production relative to the SCC treatment; however, measured total N uptake for the 

FCC treatment was 8% lower than that of the SCC treatment. The percent N uptake at V6 

relative to total N content at physiological maturity varied according to treatment but measured 

at 47, 68, 58, and 72% for the FN, FCC, SN, and SCC treatments, respectively. These results 

align with Bender et al., (2013) who found that approximately two thirds of the total N uptake at 

physiological maturity is acquired by the VT/R1 growth stage. It is important to note that at the 

VT growth stage the crop biomass production and total N uptake decreased relative to the V12 

sampling for three of the four measured treatments. These decreases could be a partial result of 

sampling methodology, and the differences could potentially have been accounted for with more 

extensive sampling of the treatments. There has been work done that determined corn N uptake 

decreases during the transition period from vegetative to reproductive growth, and thus the 

possibility exists that the decrease in total N content between V12 and VT could be explained by 

a dilution effect as crop N uptake slows, but crop biomass production continues (Karlen et al., 

1987; Dharmakeerthi et al., 2006). In a study conducted at Oklahoma State University, Holtz 
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(2005) demonstrated corn biomass and N uptake decreases between growth stages V12 and VT 

within three separate N application rates. 

Within the growth stage R6 samples and the subdivided plant matter, cob, and grain 

samples, there were no significant differences between any of the treatments in either crop 

biomass production or total N uptake. While no significant differences were observed, there were 

notable biological trends that existed within all samplings for both crop biomass production and 

total N uptake. In terms of biomass production, the FN treatment recorded higher crop biomass 

production for the R6 plant matter subsample relative to the SN treatment. All other R6 samples 

recorded greater crop biomass production in the SN treatments compared to the FN treatment. 

Total N uptake recorded for each the R6 subsets was greater in the SN treatment relative to the 

FN treatment. Previous studies have determined that total plant N uptake for corn can increase by 

3 – 8% when nitrogen applications are moved from the fall to the spring (Randall et al., 2003; 

Vetsch and Randall, 2004; Randall and Vetsch, 2005). This could be due to a greater amount of 

nitrogen being added to the system through a sidedress application of anhydrous ammonia in the 

SN treatment compared to the FN treatment. Within each of the R6 samples, the FN treatment 

outperformed the FCC treatment in terms of both crop biomass production and total N uptake. 

The SN treatment recorded greater crop biomass production and total N uptake at all R6 samples 

relative to the SCC treatment. This indicates that the introduction of CC into both fall dominated 

and spring dominated N applications has the potential to reduce crop biomass production and 

total N uptake during the reproductive phase of crop growth. These results contradict findings by 

Deppe (2016) who found that crop nitrogen uptake increased by as much as 25% in fall N 

application systems containing a cereal rye and daikon radish CC, relative to the same N 

application without a CC. The reduction in N uptake between the non-CC treatments and the CC 
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treatments may be attributable to the heavy precipitation that occurred in June and July. The 

precipitation could have caused a flush of nitrogen from the soil profile resulting in lower total 

inorganic nitrogen available for plant growth. While the hope is that the N contained in the CC 

biomass will undergo mineralization and become available for cash crop uptake, there is a 

possibility that immobilization of soil N occurred in order to help facilitate CC biomass 

mineralization. Thus, the result of this process would be a higher pool of inorganic N within the 

soil profile in the non-CC treatments relative to the CC treatments, ultimately resulting in greater 

potential for cash crop N uptake within the non-CC treatment during the reproductive growth 

stages of the cash crop. The SCC treatment resulted in total crop biomass production at each of 

the R6 samples except for the plant matter subsample, relative to the FCC treatment. The same 

trend was observed for total N uptake amongst the R6 samples when comparing the SCC 

treatment to the FCC treatment.  

In the 2015 – 2016 season the cash crop grown was soybeans, and zero inorganic N 

fertilizer was applied to any of the treatments. The soybean crop resulted in zero significant 

differences in either crop biomass production or total N uptake amongst any of the treatments at 

the sampled growth stages V4, R2, R4, and R8, nor the subdivided R8 plant matter and R8 grain 

samples. 

At soybean vegetative growth stage 4, there was a 4% increase in crop biomass 

production in the SN treatment relative to the FN treatment, with recorded biomass production of 

570.12 kg ha-1 and 545.37 kg ha-1, respectively. There was also a 5% increase in total N uptake 

within the SN treatment relative to the FN treatment, with corresponding total N uptakes of 

26.43 kg N ha-1 and 25.23 kg N ha-1. These results indicate that a soybean crop grown following 

a corn crop with a spring dominated N application has the potential to promote great crop 
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biomass production and total N uptake than a soybean crop grown following a corn crop with a 

fall dominated N application. When comparing the CC and non-CC treatments within their 

respective N application timings at growth stage V4, there was a general trend of increased crop 

biomass production and total N uptake in the non-CC treatments relative to the CC treatments. 

Within the treatments that received a fall dominated N application the previous year, the FN 

treatment resulted in 16% greater crop biomass production relative to the FCC treatment 

measuring 545.37 kg ha-1 and 457.98 kg ha-1, respectively. The FN treatment also recorded 14% 

greater total N uptake relative to the FCC treatment, with corresponding total N uptakes of 25.23 

kg N ha-1 and 21.80 kg N ha-1. Within the treatments that received a spring dominated N 

application the previous year, the SN treatment resulted in 17% greater crop biomass production 

than the SCC treatment, with 570.12 kg ha-1 and 470.41 kg ha-1 of crop biomass production, 

respectively. The non-CC treatment also outperformed the CC treatment in terms of total N 

uptake, with a 14% increase from 22.60 kg N ha-1 in the SCC treatment to 26.43 kg N ha-1 in the 

SN treatment. These results indicate that the incorporation of a CC prior to a soybean cash crop, 

regardless of N application timing, has the potential to decrease crop biomass production and 

total N uptake in the subsequent soybean crop at the V4 growth stage. When comparing the two 

CC treatments, the SCC resulted in 3% greater crop biomass production and 4% greater total N 

uptake at growth stage V4 relative to the FCC treatment.  

Sampling at soybean growth stage R2 revealed that the soybeans grown in the FN 

treatment resulted in 6% greater crop biomass production and 2% greater total N uptake when 

compared those in the SN treatment. The measured crop biomass production was equal to 

3809.51 kg ha-1 and 3571.29 kg ha-1 and the total N uptake was 158.98 kg N ha-1 and 155.27 kg 

N ha-1 for the FN and SN treatments, respectively. The introduction of CC into the fall 
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dominated N application system prior to soybean growth resulted in 24% great crop biomass 

production from 3809.51 kg ha-1 in the FN treatment to 5029.13 kg ha-1 in the FCC treatment. 

There was also 27% greater total N uptake in the FCC treatment compared to the FN treatment, 

measuring 217.93 kg N ha-1 and 158.98 kg N ha-1, respectively. Within the spring dominated N 

application system, the crop biomass production measured 3571.29 kg ha-1 and 4486.32 kg ha-1 

for the SN and SCC treatments, respectively. This corresponds to a 20% increase in crop 

biomass production following the introduction of CC prior to soybean growth within the spring 

dominated N application system. There was an 18% increase observed in total N uptake between 

the SN and SCC treatments which measured 155.27 kg N ha-1 and 189.00 kg N ha-1, respectively. 

These results indicate that the introduction of CC prior to soybean growth, regardless of N 

application timing for the previous corn crop, has the potential to increase both crop biomass 

production and total N uptake at soybean growth stage R2. There was 11% greater crop biomass 

production and 13% great total N uptake observed in the soybeans grown in the FCC treatment 

when compared to those from the SCC treatment. 

The results from the soybean sampling at growth stage R4 revealed that the SN treatment 

had 1% greater crop biomass production compared to the FN treatment, with 6033.56 kg ha-1 and 

5951.55 kg ha-1 of accumulated biomass, respectively. The total N uptake for the SN treatment 

was 269.83 kg N ha-1 while the FN treatment had 254.68 kg N ha-1, corresponding to 6% greater 

total N uptake in the SN treatment compared to the FN treatment. The FCC treatment resulted in 

4% greater crop biomass production than the FN treatment with accumulated crop biomass 

production of 6172.68 kg ha-1 and 5951.55 kg ha-1, respectively. The FCC treatment had a total 

N uptake of 277.59 kg N ha-1 which was 8% higher than the FN treatment which had a total N 

uptake of 254.68 kg N ha-1. The SCC treatment also observed a 2 % increase in crop biomass 
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production and a 5% increase in total N uptake relative to the SN treatment. Corresponding crop 

biomass production and total N uptake for the SCC and SN treatments were 6184.86 kg ha-1 and 

6033.56 kg ha-1, and 284.30 kg N ha-1 and 269.83 kg N ha-1, respectively. These results indicate 

the potential for increased biomass production and total N uptake in soybeans grown in cropping 

systems following a CC compared to cropping systems that do not include a CC, regardless of 

previous N application timing. When comparing the crop biomass production and total N uptake 

for the FCC and SCC treatments, it was observed that the SCC treatment had <1% greater crop 

biomass production and 2% greater total N uptake relative to the FCC treatment. 

At the R8 growth stage total crop biomass production and total N uptake was measured, 

along with plant matter biomass production and N uptake and grain biomass production and N 

uptake. There was 1% greater total biomass production, with 4% greater plant matter biomass 

production and 1% less grain biomass production in the SN treatment compared to the FN 

treatment. Total N uptake was 2% greater in the SN treatment compared to the FN treatment, 

with 13% greater grain N uptake and >1% increase in plant matter N uptake. A 2% increase in 

total crop biomass production was observed between the FCC and FN treatments, measuring 

7871.13 kg ha-1 and 7732.65 kg ha-1, respectively. Plant matter biomass production increased by 

5% in the FCC treatment relative to the FN treatment, while grain biomass production decreased 

by less than 1%. Total N uptake increased by 1% from 350.66 kg N ha-1 in the FN treatment to 

355.99 kg N ha-1 in the FCC treatment. This increase was a result of 16% great plant matter N 

uptake in the FCC treatment compared to the FN treatment; however, the FCC treatment resulted 

in a <1% decrease in grain N uptake compared to the FN treatment. Total crop biomass 

production was 4% greater in the SN treatment compared to the SCC treatment, with a 1% 

increase in plant matter biomass production and 6% increase in grain biomass production. Total 
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N uptake measured 356.33 kg N ha-1 in the SN treatment and 336.51 kg N ha-1 in the SCC 

treatment, corresponding to 6% greater total N uptake in the SN treatment compared to the SCC 

treatment. This increase was a result of 7% greater plant matter N uptake and 5% greater grain N 

uptake in the SN treatment compared to the SCC treatment. When comparing the two CC 

treatments, the FCC treatment compared to the SCC treatment resulted in 2%, 6%, and 4% 

greater R8 plant biomass, R8 grain biomass, and R8 total biomass production, respectively. The 

FCC treatment also had 11% greater plant matter N uptake, 5% greater grain N uptake and 5% 

greater total N uptake relative to the SCC treatment. 

Cash Crop Grain Yield 

For corn crop grown during the 2014 – 2015 season, while not significant, the SN 

treatment resulted in 3% greater yield relative to the FN treatment, measuring 13.19 Mg ha-1 and 

12.76 Mg ha-1, respectively. This indicates that spring dominated N application systems have the 

potential to increase corn grain yields relative to fall dominated N application systems. Previous 

studies have concluded that changing N applications from the fall to the spring can result in as 

much as 7% increases in corn grain yield (Randall et al., 2003; Vetsch and Randall, 2004; 

Randall and Vetsch, 2005). There was no significant difference observed when comparing the 

FCC treatment to the FN treatment, with yields of 12.74 Mg ha-1 and 12.76 Mg ha-1, 

respectively; however, there was a significant (df=4 F=339.97 P<0.0001) 7% decrease in yield 

between the SN and SCC treatments with corresponding yields of 13.19 Mg ha-1 and 12.28 Mg 

ha-1. These results indicate that the introduction of CC into fall or spring dominated N 

application systems have the potential to result in neutral or negative impacts on corn grain 

yields. There has been a vast amount of research conducted on the impact of CC on yields of the 

following cash crops, in which the overwhelming results were that cash crop yields following 
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winter CC we equal to or greater than yields observed on non-CC fields (Deppe 2016; O’Reilly 

et al., 2011, 2012; Frye et al., 1985; Sainju et al., 2003; Belfry et al., 2016; Miguez and Bollero 

2005; Reese et al., 2014; Ketterings et al., 2015). However, in comparison to the previous studies 

that demonstrated neutral or positive impacts of CC on cash crop yields, others have determined 

that the impact of CC on cash crop yields is either neutral or negative with decreases attributed to 

poor CC establishment and potential soil property differences, as well as, possible cereal rye 

allelopathic effects (Moore et al., 2014; Olson et al., 2010; Deppe 2016; Pantoja et al., 2015; 

Raimbault et al., 1990, 1991; Johnson et al., 1998). While not significant, there was a 4% 

difference in grain yield when comparing the FCC and SCC treatments, with corresponding 

yields of 12.74 Mg ha-1 and 12.28 Mg ha-1. 

 A study conducted in Lincoln, Nebraska determined that corn grain yields decreased 

with higher than average temperatures in the months of June and July and increased precipitation 

between March, April, and May; however, corn yield showed increases with higher than average 

precipitation in august and early-September (Wilhelm and Wortmann, 2004). Coinciding with 

the study from Nebraska, Thompson (1986) determined that highest corn yields are associated 

with average June temperatures and below average temperatures in July and August, as well as, 

average pre-to-early season rainfall and increased precipitation in July and August. Muchow et 

al., (1990) determined that high corn yield is associated with low temperature and high solar 

radiation, concluding that biomass accumulation is directly proportional to radiation interception, 

and that grain yield is directly proportional to biomass production. The climatic data collected 

during this study revealed temperatures lower than the 30-year regional average during the 

months of June and July, and increased precipitation during July and August relative to the 30-

year regional average; however, pre-to-early season precipitation for the months of March, April, 
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and May resulted in 47.9 mm less than the 30-year regional average. These results indicate that, 

besides lower than average pre-to-early season precipitation, climatic conditions during the 2015 

corn season were ideal for high corn grain yields. Close to ideal conditions for corn grain yields 

also indicates that any substantial differences in corn grain yield amongst treatments is likely due 

to factors other than climatic conditions. 

The 2016 soybean cash crop resulted in zero significant differences for crop yield 

amongst any of the treatments. Despite the lack of significant differences in crop yield, there was 

a notable biological trends in the soybean yield reminiscent of those observed in the soybean 

plant biomass and N uptake results. The SN treatment which yielded 4.07 Mg ha-1 resulted in 3% 

greater grain yield compared to the FN treatment which had a measured yield of 3.96 Mg ha-1. 

The introduction of CC prior to soybean growth resulted in decreased yields for both the fall and 

spring dominated N application systems. The FN treatments recorded 5% greater yields than the 

FCC treatments, with measured grains yields of 3.96 Mg ha-1 and 3.77 Mg ha-1, respectively. The 

SN treatment had a measured grain yield of 4.07 Mg ha-1 corresponding to a 4% increase over 

the SCC treatment which measured 3.90 Mg ha-1. When exploring the coupled effect of CC and 

N application timing, it was observed that the SCC treatment resulted in 3% greater grain yields 

relative to the FCC treatment. 

Wilhelm and Wortmann (2004), as well as, Yamoah (1998) determined that soybean 

yields decrease with increased late-summer temperatures, especially in July and August. 

Generally, the rate at which soybeans develop increases as temperature increases; however, 

increased rates of development lead to shorter durations at various growth stages such as pod 

elongation and seed fill (Hodges and French, 1985; Sinclair et al., 1991). Increased temperatures 

decreasing the time the soybean plant spends at critical growth stages such as pod elongation and 
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seed fill, is another indicator of potential climatic impacts on soybean production. Generally 

water stress is most pronounced in soybeans during the pod fill stage following full bloom, and 

increased water stress during flowering can induce shorter flowering periods with some of the 

flowers being aborted resulting in fewer flowers, pods, and seeds (Doss et al., 1974; Sionit and 

Dramer, 1977). This climatic data indicates that the 2016 soybean crop was grown is close to 

ideal conditions to achieve optimal yields. 

Conclusion 

The results of this study indicate that CC performance in terms of aboveground biomass 

production and N uptake capacity can be affected by variations in weather conditions. Cool and 

dry environmental conditions result in poor daikon radish growth, while warm and wet 

conditions promote increased daikon radish aboveground biomass production and N 

sequestration. We demonstrated the capacity of CC to sequester and secure 29-61 kg N ha-1 

within its aboveground biomass. However, there is a dearth of knowledge relating to the release 

of this nitrogen from the CC biomass, and whether it aligns with times of critical N requirements 

for the following cash crop. Therefore, research correlating N mineralization from CC biomass 

to critical growth stages of cash crops is required for both fall and spring N application systems. 

Additionally, research investigating the uptake and release of phosphorus (P) and potassium (K) 

by CC, and how this relates to cash crop P and K uptake and resultant grain yields should be 

conducted.  

This research also demonstrated that introducing winter CC into a corn-soybean rotation 

in central Illinois resulted in a neutral to negative impacts on resulting cash crop yields. CC have 

been indicated as a practice which could help to reduce agricultures’ over all environmental 

footprint. However, most farm operations operate with the primary objective of profit 
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maximization. Implementing a practice into a current management system that increases overall 

costs to the producer, yet results in equal or lesser overall revenue production, could be observed 

as a deterrent to adoption. This indicates that further research should be conducted on improving 

CC management strategies in order to improve on current cash crop productivity levels; thus, 

giving producers an economic incentive to adapt this environmentally smart practice. 
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CHAPTER IV: COST ANALYSIS OF COVER CROP INCLUSION AND 

ENVIRONMENTAL BENEFITS: A CENTRAL ILLINOIS ON FARM CASE STUDY 

 

Abstract 

The use of cover crops (CC) in row crop agricultural systems has been shown to provide 

numerous environmental benefits along with increasing overall soil health. While the 

environmental benefits of CC are well known, the costs associated with CC inclusion must be 

accounted for before widespread adoption of CC can occur. Therefore, the objective of this study 

is to quantify the environmental benefits observed from CC and determine the potential of those 

benefits to offset the input costs of CC implementation. This experiment used data collected 

between CC planting in 2014 and cash crop harvest in 2016 from an associated study conducted 

at the Illinois State University Nitrogen Management Research Field Station, in Lexington, IL. 

Experimental treatments were fall dominated (70% fall, 30% spring) Nitrogen (N) application 

with and without CC and a spring dominated (20% fall, 80% spring) N application with and 

without CC. The chosen CC for the study was a 92% cereal rye (Secale cereal L.) and 8% daikon 

radish (Raphanus sativus L.) blend, and data were collected for both strip-till corn (Zea mays L.) 

and no-till soybeans (Glycine max L.). Different from existing attempts to model the economic 

value of CC, this model includes input variables that quantify the reduction of N loss through tile 

drainage and the return of N from CC residue after termination. Based upon data that places an 

economic value on reductions in subsurface drainage nitrogen loading, nitrogen mineralization, 

and erosion reductions due to CC there was an average calculated recovery of approximately 

60% of the costs associated with implementing CC into the cropping systems. The average 

composition of recovered costs was 34% from reductions in nitrogen loading to subsurface 
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drainage, 57% from the net mineralization of nitrogen from the CC biomass, and 9% from the 

estimated reduction in erosion. The results of this study have the potential to provide a more 

comprehensive assessment of CC value that will help producers make informed nitrogen and CC 

management decisions.  
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Introduction 

Between the years of 2010 and 2015, there was a national increase of 312% in total CC 

hectares, from 48,393 hectares to 151,157 hectares (CTIC, 2015). This increase comes at a time 

when the connection between agriculture and the hypoxic zone in the Gulf of Mexico has 

become increasingly clear. It has been estimated that Agricultural leaching of nitrogen (loss of 

nitrogen from the soil profile) accounts for approximately 65% of the greater than 1.57 million 

metric tons of nitrogen delivered annually to the Gulf of Mexico (Alexander et al., 2000; 

Robertson and Saad et al., 2013). CC have been identified by the Illinois Nutrient Loss 

Reduction Strategy as key in-field practice to help mitigate the losses of nitrogen from 

agricultural fields (ILNLRS 2015). CC have proven environmental benefits of erosion control, 

improving soil tilth, increasing soil organic matter, and increased water-holding capacity, they 

also have the potential to be used as a nutrient management tool in order to increase overall soil 

fertility (Danso et al., 1991; Odell et al., 1984; Hartwig et al., 2002).  In fact, a survey conducted 

to gauge producer perspective towards CC revealed increased soil health and organic matter, 

reduced soil compaction, reduced soil erosion, nitrogen scavenging, and being a source of 

nitrogen were identified as the top motivations towards CC adoption (CTIC, 2016). While the 

ability of CC to be used as a method of improving water quality and soil health should be 

considered by producers and policy makers, the cost and logistical obstacles associated with CC 

must be accounted for before widespread implementation can occur (Strock et al,. 2004). 

A Conservation Technology Information Center survey revealed that the top barriers to 

CC adoption amongst producers are the costs of planting and managing the CC, the cost of the 

CC seed itself, and the lack of measurable economic returns following implementation (CTIC, 

2015). A lack of measurable economic returns being identified as a top barrier to CC adoption is 
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a concern, as most farm operations operate with the primary objective of profit maximization. To 

our knowledge, there has been a lack of research concerning the value of measureable CC 

environmental benefits. With profit maximization the primary objective of many producers, there 

is a great need for research to be conducted on the valuation of CC environmental benefits and 

how they relate to the recovery of CC implementation costs. 

With CC being recognized as one of the most effective in-field practices in helping 

reduce the impact of agriculture on the hypoxic zone in the Gulf of Mexico, it is important to 

begin breaking down the barrier of economic risk and benefit if widespread adoption of the 

practice is going to occur. Previous attempts at estimating the economic risk and benefits of CC 

have generally included assigning value to agronomic factors such as changes in soil organic 

matter, erosion, compaction and added nutrients (Pratt et al., 2014; USDA-NRCS, 2014). 

Previous studies have only accounted for added nutrients from leguminous CC species and do 

not account for the return of scavenged nutrients from the CC biomass of grass or brassica 

species. Other methods of determining CC cost recovery include the removal of crop stover to be 

sold for the purposes of bioenergy production, in an effort to offset the input costs associated 

with CC (Pratt et al., 2014). 

CC represent the best management practice (BMP) with the lowest annual cost per 

hectare when compared to constructed wetlands and two-stage ditches; but, over 50 years, CC 

represent the lest cost-effective BMP in terms of cost per kilogram of N removed from surface 

water sources (Roley et al., 2016). Of all the practices mentioned in the ILNLRS, CC represent 

the only practice with potential to not only reduce nitrogen losses, but recycle nitrogen to the 

cropping system. This would allow producers to utilize nitrogen that would have otherwise been 

lost to the atmosphere through denitrification with constructed wetlands, woodchip bioreactors or 
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two-stage ditches. While constructed wetlands, woodchip bioreactors, and two-stage ditches are 

efficient practices at reducing the nitrogen load to surface waterways, they represent a long-term 

commitment which requires up to 5% of the land for which they are implemented to be removed 

from production. CC represent an in-field practice that require only short-term commitments 

from producers, as they are planted and removed each year and require zero land to be removed 

from production(Roley et al., 2016; D’Ambrosio et al., 2015; Christianson and Helmers, 2011). 

Thus, CC may be a more attractive option over other BMPs for producers looking to implement 

environmentally friendly practices into their operations.  

While CC have demonstrated the potential to provide various environmental benefits 

within cropping systems, there is a dearth of knowledge regarding the value of these 

environmental benefits in relation to the costs of including CC in a cropping system. Therefore, 

the objectives of this study are I) to determine and assign an economic value to the perceived 

environmental benefits of cover crops, and II) determine the potential of the environmental 

benefits of cover crops to recover the costs of cover crop implementation. 

 

Materials and Methods 

This study was conducted in Lexington, Illinois at the Illinois State University Nitrogen 

Management Research Farm, also known as the Tile Drainage Site (TDS). The predominant soil 

types found within the approximately 10 hectare (25 acre) field are Drummer and El Paso silty 

clay loams, as well as Hartsburg silty clay loam, all of which are poorly drained Mollisols 

containing a slope of 0-2%. The cropping history for the Nitrogen Management Research Farm 

includes an 8 year rotation of strip-tilled corn (Zea mays L.) and no-till soybeans (Glycine max 

L.), which are harvested and sold for grain. This experiment was a continuation of these 
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practices. The site was divided into fifteen individually tile drained plots (1.6 acre, 0.648 ha), 

each possessing its own controlled drainage structure and tile water monitoring systems. The N 

management strategies were to apply a total rate of 224 kg N ha-1 across various N application 

timings. The N rate for this study was the suggested MRTN (Maximum Return to Nitrogen) 

value of 224 kg N ha-1 for the central Illinois region as calculated by the Iowa State University N 

rate calculator. The plots were arranged in a complete randomized block design with three 

replications of each experimental treatment. The experimental treatments for this site included: 

- Fall Dominated ( 68% fall, 32% spring) N application system without CC (FN) 

- Fall Dominated ( 68% fall, 32% spring) N application system with CC (daikon radish 

(Raphanus sativus L.) and cereal rye (Secale cereal L.) blend) (FCC) 

- Spring Dominated (18% fall, 82% spring) N application System without CC (SN) 

- Spring Dominated (18% fall, 82% spring) N application system with CC (daikon 

radish (Raphanus sativus L.) and cereal rye (Secale cereal L.) blend). (SCC) 

All valuations set forth in this study have been converted to year January 2014 dollars 

using the consumer price index inflation calculator available through the Bureau of Labor 

Statistics, which uses the consumer price index for all urban consumers (CPI-U) as its basis for 

calculation. 

Cover Crop Costs  

Variables that contribute to CC establishment costs include seed cost, seeding rate and 

seed application cost. Data relating to the cost of CC seed was obtained from the seed distributor, 

while the seed application cost was obtained from receipts relating to the application of the CC 

seed. CC for this study were interseeded into standing cash crops at the manufacturer suggested 

broadcast rate of 84 kg ha-1 using a Hagie STS12 modified with an air seeding box.  CC 
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establishment costs were calculated by obtaining the price per kilogram of seed and multiplying 

by the seeding rate, then adding the cost of seed application (equation 1). 

Equation 1. 

𝐸𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ𝑚𝑒𝑛𝑡 𝐶𝑜𝑠𝑡 $ ℎ𝑎−1  = (𝑠𝑒𝑒𝑑 𝑐𝑜𝑠𝑡 $ 𝑘𝑔−1 × 𝑠𝑒𝑒𝑑𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 𝑘𝑔 ℎ𝑎−1) + 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 $ ℎ𝑎−1 

Three factors were considered when calculating the cost of terminating the CC including: 

the cost of herbicide, application rate of herbicide, and application cost of the herbicide. Data 

relating to the termination of CC including cost of herbicide, application rate, and application 

cost was obtained from the collaborating farmer. To calculate the total termination costs, the 

herbicide cost per liter multiplied by the herbicide rate in liters per hectare was added to the 

application cost per hectare (equation 2). 

Equation 2. 

𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 $ ℎ𝑎−1 = (ℎ𝑒𝑟𝑏𝑖𝑐𝑖𝑑𝑒 𝑐𝑜𝑠𝑡 $ 𝐿−1 × ℎ𝑒𝑟𝑏𝑖𝑐𝑖𝑑𝑒 𝑟𝑎𝑡𝑒 𝐿 ℎ𝑎−1) + 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 $ ℎ𝑎−1  

While the direct costs of establishment and termination must be accounted for when 

calculating the total costs of CC implementation, the indirect costs incurred through the impact 

on cash crop yields following the CC must also be considered. To calculate the impact of CC on 

cash crop yields, the observed yields from the FN and SN treatments were subtracted from the 

observed yields of the FCC and SCC treatments, respectively. This was then multiplied by the 

price per mega gram of grain in order to determine a value for the difference in cash crop yield 

following CC inclusion (equation 3). The price for grain was obtained from the collaborating 

farmer on a per bushel basis, and converted to price per mega gram. A positive result indicates 

that the use of CC increased cash crop yield, while a negative results indicates that the CC 

decreased cash crop yields. 

Equation 3. 

𝑌𝑖𝑒𝑙𝑑 𝐶𝑜𝑠𝑡 $ ℎ𝑎−1 = (𝐶𝐶 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑀𝑔 ℎ𝑎−1 − 𝑁𝑜𝑛𝐶𝐶𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑀𝑔 ℎ𝑎−1) × 𝑝𝑟𝑖𝑐𝑒 𝑝𝑒𝑟 𝑚𝑒𝑔𝑎𝑔𝑟𝑎𝑚 $ 
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In order to determine the total cost of including CC into a crop rotation the three 

components that contribute to the cost of CC implementation must be considered. To do so, the 

cost per hectare for establishment, termination, and yield changes were added together to 

calculate the total CC cost per hectare (equation 4). 

Equation 4. 

𝑇𝑜𝑡𝑎𝑙 𝐶𝐶 𝐶𝑜𝑠𝑡 $ ℎ𝑎−1 = 𝑒𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ𝑚𝑒𝑛𝑡 𝑐𝑜𝑠𝑡𝑠 $ ℎ𝑎−1 + 𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡𝑠 $ ℎ𝑎−1 ± 𝑦𝑖𝑒𝑙𝑑 𝑐𝑜𝑠𝑡 $ ℎ𝑎−1 

Nitrogen Valuation 

 CC benefits were measured using the as-applied value per kilogram of inorganic nitrogen 

fertilizer; however, fall-applied diammonium phosphate, fall-applied anhydrous ammonia with 

nitrification inhibitor (FAA), and spring-applied anhydrous ammonia (SAA) were all used at 

varying rates as inorganic sources of nitrogen. Therefore, the per-kilogram value of nitrogen for 

each of the three nitrogen sources had to be calculated before the per-kilogram value of nitrogen 

for the total application could be determined. In order to calculate the value per kilogram of 

nitrogen for each nitrogen source, the price per metric ton (1,000 kg) of fertilizer was divided by 

the kilograms of nitrogen in one metric ton of the fertilizer source. The price per U.S. ton for 

each of the three fertilizer sources was obtained from the collaborating farmer and converted to 

price per metric ton. The kilograms of nitrogen per metric ton of inorganic fertilizer is calculated 

by multiplying the percent nitrogen in the fertilizer source by 1,000 kilograms (equation 5). 

 

Equation 5. 

$ 𝑘𝑔−1 𝑁 𝑓𝑟𝑜𝑚 (𝑁 𝑆𝑜𝑢𝑟𝑐𝑒) =
𝑝𝑟𝑖𝑐𝑒 𝑝𝑒𝑟 𝑚𝑒𝑡𝑟𝑖𝑐 𝑡𝑜𝑛 𝑜𝑓 𝑓𝑒𝑟𝑡𝑖𝑙𝑖𝑧𝑒𝑟 𝑠𝑜𝑢𝑟𝑐𝑒

% 𝑁 𝑖𝑛 𝑓𝑒𝑟𝑡𝑖𝑙𝑖𝑧𝑒𝑟 𝑠𝑜𝑢𝑟𝑐𝑒 × 1,000 𝑘𝑖𝑙𝑜𝑔𝑟𝑎𝑚𝑠 
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 After determining the value per kilogram from each nitrogen source, it is necessary to 

determine the total value of each fertilizer source applied on a per hectare basis to each 

treatment. To do this, the value per kilogram of nitrogen from each fertilizer source was 

multiplied by the application rate of each fertilizer source for each of the treatments (equation 6). 

Equation 6. 

$ ℎ𝑎−1 (𝑁 𝑆𝑜𝑢𝑟𝑐𝑒) = $ 𝑘𝑔−1𝑁 𝑓𝑟𝑜𝑚 (𝑁 𝑆𝑜𝑢𝑟𝑐𝑒) × 𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 𝑜𝑓 (𝑁 𝑆𝑜𝑢𝑟𝑐𝑒)  

To determine the total value per kilogram of applied nitrogen within each treatment, the $ 

ha-1 for each N source and the additional application costs associated with fall and spring 

anhydrous ammonia are summed and then divided by the total kilograms of nitrogen applied to 

the treatment. 

Equation 7. 

$ 𝑘𝑔−1 𝐴𝑝𝑝𝑙𝑖𝑒𝑑 𝑁 =  
$ ℎ𝑎−1 𝐷𝐴𝑃 + $ ℎ𝑎−1 𝐹𝐴𝐴 + $ ℎ𝑎−1 𝑆𝐴𝐴 + $ ℎ𝑎−1 𝑆𝐴𝐴 𝐴𝑝𝑝. +$ ℎ𝑎−1 𝐹𝐴𝐴 𝐴𝑝𝑝.

𝑇𝑜𝑡𝑎𝑙 𝑘𝑔 𝑁 𝑎𝑝𝑝𝑙𝑖𝑒𝑑 𝑝𝑒𝑟 ℎ𝑒𝑐𝑡𝑎𝑟𝑒
 

Subsurface Drainage Nitrogen Loading  

 The subsurface drainage system at this site was monitored over the same time period as 

this case study during a companion study investigating the efficacy of CC to impact the nutrient 

load leaving agricultural fields through artificial drainage systems (Ruffatti, 2016).  The time 

period used to examine the impact of CC on subsurface drainage nitrogen loading was from the 

planting of one CC to the planting of the next CC (generally, September through August), 

defined as a CC year (Ruffatti, 2016). Teledyne Isco 6712 automated water sampling units were 

used to tap into the individual subsurface drainage systems for each experimental plot in order to 

collect leachate samples following rainfall events. These samples were filtered and submitted for 

colorimetric analysis using a Lachat flow injection analysis instrument to determine nitrate and 

ammonia concentrations. Using these concentrations, the total load in kilograms per hectare of 
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nitrogen leaving the field was determined for each plot. In order to determine the environmental 

benefit of CC, the total load of the CC treatments were subtracted from the non-CC treatments, 

thus determining the overall reduction in nitrogen loading to subsurface drainage systems due to 

the inclusion of CC into a crop rotation (equation 8). 

Equation 8. 

𝑁 𝐿𝑜𝑎𝑑𝑖𝑛𝑔 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑘𝑔 𝑁 ℎ𝑎−1 = 𝑇𝑜𝑡𝑎𝑙 𝑙𝑜𝑎𝑑 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝐶𝐶 𝑘𝑔 𝑁 ℎ𝑎−1 − 𝑇𝑜𝑡𝑎𝑙 𝑙𝑜𝑎𝑑 𝑤𝑖𝑡ℎ 𝐶𝐶 𝑘𝑔 𝑁 ℎ𝑎−1 

 While understanding the environmental impact of CC on subsurface drainage nutrient 

loading is of utmost importance, the objective of this portion of the study was to determine the 

economic value of this environmental impact. To do so, a value must be placed on the nitrogen 

being retained in the field due to CC relative to the non-CC treatments. Using the assumption 

that nitrogen leaving the field through the subsurface drainage system is nitrogen that was 

applied as inorganic fertilizer, the value per kilogram of applied nitrogen for each experimental 

treatment is assigned. Therefore, the total economic value of the observed reduction in nitrogen 

loading due to CC is equal to the reduction in nitrogen load in kilograms per hectare between the 

non-CC and CC treatments multiplied by the value per kilogram of applied nitrogen for each 

treatment (equation 9). 

Equation 9. 

𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑁 𝑙𝑜𝑎𝑑𝑖𝑛𝑔 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 $ ℎ𝑎−1 = 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑖𝑛 𝑁 𝑙𝑜𝑎𝑑𝑖𝑛𝑔 𝑘𝑔 ℎ𝑎−1 × $ 𝑘𝑔−1 𝑎𝑝𝑝𝑙𝑖𝑒𝑑 𝑁 

Cover Crop Nitrogen Uptake and Return 

CC sampling occurred in both the fall prior to daikon radish winter termination and the 

spring prior to chemical termination of the cereal rye in order to document aboveground biomass 

production and nitrogen uptake for each CC species. Within each treatment, two one-meter-

square quadrants were randomly chosen and the above ground CC biomass was collected in 

order to create a representative sample for each treatment. This sampling technique is a modified 
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version of Dean and Weil’s method developed in 2009 (Dean and Weil, 2009). Samples were 

collected from all plots containing CC. The CC biomass samples were oven dried at 60 °C to 

determine the dry weight of each sample and used to calculate total aboveground biomass 

production. To be used in determining nitrogen return from the CC, 100 g of dried biomass was 

retained, while the remaining dry biomass was ground to pass through a 1-mm sieve.  The dried 

and ground aboveground CC biomass was analyzed for percent total nitrogen using a dry 

combustion instrument. The percent total nitrogen was then multiplied by total CC biomass in 

order to determine total CC nitrogen uptake (kg ha-1). 

 The retained unground CC biomass was used in the completion of a litter bag study in 

order to track the return of absorbed nitrogen from the CC residue to the soil profile. The 100 

grams of biomass was evenly distributed between 10 mesh litter bags which were then placed 

randomly throughout the corresponding plots from which the biomass originated. The litterbags 

were sampled throughout the season and submitted for dry combustion analysis in order to track 

the release of nitrogen from the CC biomass. This allowed for the determination of 

mineralization factors for the CC species, which in turn allows us to determine N return from the 

CC to the soil profile on a per hectare basis. 

 Gross mineralization is the calculation of all nitrogen returned from the CC biomass on a 

per hectare basis. To attain this value, the total kg N ha-1 for each CC species (cereal rye (CR) 

and daikon radish (DR)) are multiplied by their respective mineralization factors (minF) and then 

summed (equation 10). 

Equation 10. 

𝐺𝑟𝑜𝑠𝑠 𝑀𝑖𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑘𝑔 𝑁 ℎ𝑎−1 = (𝐶𝑅 𝑘𝑔 𝑁 ℎ𝑎−1 × 𝐶𝑅 𝑚𝑖𝑛𝐹) + (𝐷𝑅 𝑘𝑔 𝑁 ℎ𝑎−1 × 𝐷𝑅 𝑚𝑖𝑛𝐹) 

 It is important to ensure that N mineralized from the CC residue is only accounted for 

once, and thus the reduction in N loading through the subsurface drainage system must be 
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subtracted from the value calculated for gross mineralization, as it is assumed that the N loading 

reduction is a result of CC N uptake. For the purposes of this study, this value will be referred to 

as net mineralization (equation 11). 

Equation 11. 

𝑁𝑒𝑡 𝑀𝑖𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑘𝑔 𝑁 ℎ𝑎−1 = 𝐺𝑟𝑜𝑠𝑠 𝑀𝑖𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑘𝑔 𝑁 ℎ𝑎−1 − 𝑁 𝐿𝑜𝑎𝑑𝑖𝑛𝑔 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑘𝑔 𝑁 ℎ𝑎−1 

 To place value to the mineralized nitrogen from the CC biomass, the net mineralization 

of nitrogen in kilograms of N per hectare is multiplied by the value per kilogram of applied 

nitrogen for each respective treatment (equation 12). 

Equation 12. 

𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑛𝑒𝑡 𝑚𝑖𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 $ ℎ𝑎−1 = 𝑁𝑒𝑡 𝑚𝑖𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑘𝑔 𝑁 ℎ𝑎−1 × $ 𝑘𝑔−1 𝑎𝑝𝑝𝑙𝑖𝑒𝑑 𝑁 

RUSLE2 Erosion Estimation 

 Erosion was estimated using the downloadable RUSLE2 program available through the 

natural resources conservation service website. A custom crop rotation was built using the 

rotation builder tool within the program to match that used by the farmer at our experimental 

site. CC were built into the rotation by following the guidelines within the RUSLE2 CC training 

manual. The program estimates erosion reduction by comparing a crop rotation with CC to a 

crop rotation without CC. The results of the RUSLE2 program give the estimated erosion 

reduction for a corn-soybean crop rotation with CC before each cash crop. Therefore, the 

estimated erosion reduction must be divided by two to determine the annual estimated erosion 

reduction from the use of CC (equation 13). 

Equation 13. 

𝑡𝑜𝑛𝑛𝑒𝑠 𝑜𝑓 𝑠𝑜𝑖𝑙 ℎ𝑎−1𝑦𝑟−1 =
𝑒𝑟𝑜𝑠𝑖𝑜𝑛 𝑛𝑜 𝐶𝐶 𝑡𝑜𝑛𝑛𝑒𝑠 ℎ𝑎−12𝑦𝑟−1 − 𝑒𝑟𝑜𝑠𝑖𝑜𝑛 𝑤𝑖𝑡ℎ 𝐶𝐶 𝑡𝑜𝑛𝑛𝑒𝑠 ℎ𝑎−12𝑦𝑟−1

2𝑦𝑟
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 The value per tonne of eroded soil was determined using a method developed in a United 

States Department of Agriculture Economic Research Service (USDA-ERS) study conducted by 

Hansen and Ribaudo (2008). The study determined a method for valuing a tonne of soil based 

upon its on-site and off-site cost and takes into account wind and water erosion and changes in 

soil productivity. The USDA-ERS also provides a database with the on-site and off-site costs of 

soil erosion for each county in the United States. The value per tonne of eroded soil used in this 

study was obtained by using the county specific values for the on-site and off-site costs of soil 

erosion and placing them into the equation on page two of the publication by Hansen and 

Ribaudo (2008). To obtain the total value of the estimated erosion reduction from the use of CC, 

the average annual erosion reduction was multiplied by the value per tonne of eroded soil 

obtained from the USDA-ERS (equation 14). 

Equation 14. 

𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑒𝑟𝑜𝑠𝑖𝑜𝑛 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 $ ℎ𝑎−1𝑦𝑟−1 = 𝑒𝑟𝑜𝑠𝑖𝑜𝑛 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑡𝑜𝑛𝑛𝑒𝑠 𝑠𝑜𝑖𝑙 ℎ𝑎−1𝑦𝑟−1 × $ 𝑡𝑜𝑛𝑛𝑒 𝑠𝑜𝑖𝑙−1 

Cover Crop Cost Recovery 

 CC cost recovery is calculated by accounting for all costs associated with implementing 

CC, and the economic value of all environmental benefits associated with the CC. This value is 

expressed as a percentage and is calculated by summing the total values per hectare for N 

loading reduction (NLR), net CC N mineralization (NNM), and erosion reduction (ER), and 

dividing by the total CC costs per hectare. This is then multiplied by 100 to obtain a percentage 

(equation 15). 

 

Equation 15. 

% 𝐶𝐶 𝐶𝑜𝑠𝑡 𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 =
𝑁𝐿𝑅 $ ℎ𝑎−1 + 𝑁𝑁𝑀 $ ℎ𝑎−1 + 𝐸𝑅 $ ℎ𝑎−1

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑣𝑒𝑟 𝐶𝑟𝑜𝑝 𝐶𝑜𝑠𝑡𝑠 $ ℎ𝑎−1
× 100 
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Results 

Cover Crop Implementation Costs 

In the 2014 CC – 2015 cash crop season, the price per kilogram of seed for our CC 

mixture was $1.04, and it was seeded at a rate of 84 kilograms per hectare. The total cost for CC 

seed was $87.36 per hectare. The cost to apply the seed using a Hagie STS12 highboy 

interseeder was $29.65 per hectare. When the seed cost was added to the application cost, the 

result was a total establishment cost of $117.01 per hectare (Table B-1). Termination was a result 

of glyphosate being applied at a rate of 2.34 liters per hectare at a cost of $6.85 per liter, resulting 

in a total chemical cost of $16.03 per hectare. There was an application cost for the glyphosate of 

$12.36 per hectare. Therefore, the total termination cost, accounting for the chemical cost and 

application cost, for this year was equal to $28.39 per hectare (Table B-2). Total CC costs 

differentiated only in the observed yield drag of the cash crop that followed the CC. The FCC 

treatment yielded 0.02 Mg less than the FN treatment, while the SCC treatment yielded 0.91 Mg 

less than the SN treatment (Table B-3). At a value of $156.89 Mg-1, this equates to an additional 

cost of $3.14 and $142.77 for the FCC and SCC treatments, respectively (Table B-4). When 

accounting for all of the components associated with implementing CC, the calculated total CC 

costs for the FCC and SCC treatments were $148.54 ha-1 and $288.17 ha-1, respectively (Table 

B-5). 

In the 2015 CC – 2016 cash crop season, the cost for the CC seed remained $1.04 and 

was again seeded at a rate of 84 kg ha-1, resulting in a total CC seed cost of $87.36 ha-1. The cost 

for interseeding with the Hagie STS12 was slightly lower at $29.61 ha-1. The total calculated 

establishment costs for the year were $116.97 ha-1 (Table B-1). Glyphosate was used to terminate 

the CC at a rate of 2.34 liters per hectare at a cost of $6.12 per liter, resulting in a total chemical 
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cost of $14.32 per hectare. The cost for chemical application was $12.35 per hectare. When 

adding the chemical cost to the chemical application cost, the total calculated termination cost 

was equal to $26.67 per hectare (Table B-2). Observed yield drags resulted in additional costs 

associated with implementing CC. The FCC and SCC treatments resulted in 0.19 and 0.17 Mg 

lower yield when compared to the FN and SN treatments, respectively (Table B-3). Valued at 

$344.31 Mg-1, the additional costs associated with implementing CC was equal to $65.42 and 

$58.53 for the FCC and SCC treatments, respectively (Table B-4). Accounting for establishment, 

termination, and yield change costs, the total cost of implementing CC for this year was equal to 

$209.06 ha-1 and $202.17 ha-1 for the FCC and SCC treatments, respectively (Table B-5). 

Nitrogen Valuation 

 Fall diammonium phosphate (DAP) was purchased at a cost of $639.12 per metric ton 

including application. Since one metric ton is equivalent to 1,000 kilograms and DAP is 

comprised of 18% nitrogen, this allows us to determine that one metric ton of DAP contains 180 

kilograms of nitrogen. Thus, the price per kilogram of N for DAP is equal to $639.12 tonne-1 

DAP divided by 180 kg N in DAP, or $3.55 kg-1 N from DAP. Fall anhydrous ammonia with a 

nitrification inhibitor was purchased at a cost of $960.77 per metric ton. Anhydrous ammonia is 

an inorganic fertilizer containing 82% nitrogen, therefore one metric ton of anhydrous ammonia 

contains 820 kilograms of nitrogen. Accounting for the N content in the fertilizer source the price 

per kilogram of nitrogen from the fall anhydrous ammonia is equivalent to $960.77 per metric 

ton divided by 820 kilograms of N per metric ton, or $1.17 kg-1 N from fall anhydrous ammonia. 

Spring anhydrous ammonia was purchased at a cost of $845.82 per metric ton, therefore the price 

per kilogram of nitrogen from spring anhydrous ammonia is equal to the price per metric ton of 

fertilizer divided by the N content of the fertilizer which is equal to 820 kg N per metric ton. The 
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calculated price per kilogram of nitrogen for spring anhydrous ammonia was $1.03 kg-1 N (Table 

B-6). 

 In order to determine the total value of fertilizer per hectare, the value per kilogram of 

each fertilizer source was multiplied by the application rate of each source for each treatment. 

The fall dominated nitrogen management treatment received 40 kg N ha-1 from DAP at a cost of 

$3.55 kg-1 N DAP, for a total DAP cost per hectare of $142.00 ha-1. Fall anhydrous ammonia 

was applied to this treatment at a rate of 112 kg N ha-1 from fall anhydrous ammonia at a cost of 

$1.17 kg-1 N, for a total fall anhydrous ammonia cost of $131.04 ha-1. In the spring, a second 

anhydrous ammonia application occurred at a rate of 72 kg N ha-1 valued at $1.03 kg-1 N, 

equaling a total cost for spring anhydrous ammonia of $74.16 ha-1. The fall nitrogen management 

treatment resulted in a calculated total value of fertilizer of $347.20 ha-1 (Table B-7). 

The spring nitrogen management treatments received 40 kg N ha-1 from DAP. Valued at 

$3.55 kg-1 N, there was a total DAP cost of $142.00 ha-1. The spring nitrogen management 

treatments received 0 kg N ha-1 from fall anhydrous ammonia, however the toolbar which 

doubles as a strip tillage implement was still run through the plots, and thus the cost of operating 

the equipment in the plots was still considered. Spring anhydrous ammonia accounted for 184 kg 

N ha-1 of the total N application for the spring nitrogen management treatments. Valued at $1.03 

kg-1 N, there was a total cost for spring anhydrous ammonia of $189.52 ha-1. Accounting for all 

applications of N there was a calculated total cost for N fertilizer of $331.32 ha-1 within the 

spring nitrogen management treatments (Table B-9). 

 Associated with the application of anhydrous ammonia in both the fall and spring is the 

cost connected to the equipment used in the application of the fertilizer. The cost associated with 

operating the tractor to pull the application toolbar including fuel and labor is equal to $30.15 ha-
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1. Since the toolbar was pulled through all plots during both the fall and spring anhydrous 

ammonia application, the application cost must be accounted for twice. Therefore, an additional 

$60.30 ha-1 application was added to the total value of fertilizer per hectare. 

 In both the fall and spring dominated nitrogen management treatments, there was a total 

of 224 kg N ha-1 applied. To calculate the total value per kilogram of applied nitrogen the total 

value of fertilizer is added to the anhydrous ammonia application equipment cost, then divided 

by the total kilograms of nitrogen applied. The value per kilogram of applied nitrogen in the fall 

nitrogen management system is equal to $347.20 ha-1 for applied nitrogen plus $60.30 ha-1 for 

anhydrous ammonia equipment operation divided by the total 224 kg N ha-1 applied. The 

calculated total value per kilogram of applied nitrogen in the fall nitrogen management 

treatments is $1.82 kg-1 N (Table B-8). The spring nitrogen management treatments had a total 

value for applied fertilizer of $331.32 ha-1. Added to the anhydrous ammonia application 

equipment cost of $60.30 ha-1, the spring nitrogen management treatments had a total N fertilizer 

cost of $391.62 ha-1. Dividing the total cost for fertilizer per hectare by the total application rate 

of 224 kg N ha-1, resulted in a value of $1.75 kg-1 N for the spring nitrogen management 

treatments (Table B-10). 

Economic Value of Cover Crop Environmental Benefits 

 In both years of this study, the introduction of CC into both the FN and SN management 

systems resulted in reduced nitrogen loading in the subsurface drainage system relative to the 

non-CC plots of the same management system. In the 2014 CC – 2015 cash crop season, the FN 

treatment lost 54.09 kg N ha-1 through the subsurface drainage system, while the FCC treatment 

lost 39.29 kg N ha-1. This equated to a 14.80 kg N ha-1 reduction in subsurface drainage N 

loading due to the use of CC (Table B-11). With a value of $1.82 kg-1 placed on nitrogen applied 
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to the fall dominated nitrogen management system, the reduction in N loading due to CC resulted 

in a total economic value of $26.94 ha-1 associated with the FCC treatment (Table B-12). In the 

same season, the SCC treatment lost 38.62 kg N ha-1 compared to the SN treatment that lost a 

total of 44.58 kg N ha-1. This reduction in N loading through the subsurface drainage system in 

the spring dominated nitrogen management system due to CC was equivalent to 5.96 kg N ha-1 

(Table B-11). A value of $1.75 kg-1 was placed on nitrogen applied to the spring dominated 

nitrogen management system, thus the observed reduction in N loading due to CC within this 

treatment resulted in a total economic value of $10.43 ha-1 (Table B-12). 

 In the 2015 CC – 2016 cash crop season, much like the previous year, substantial 

reductions in nitrogen loading through the subsurface drainage system were observed in both the 

fall and spring dominated nitrogen management systems.  There was a total reduction in N 

loading through subsurface drainage of 26.91 kg N ha-1 between the FN and FCC treatments, 

which had measured losses of 47.67 kg N ha-1 and 20.76 kg N ha-1, respectively (Table B-11). 

That reduction, valued at the $1.82 kg-1 for N applied to the fall dominated nitrogen management 

treatment, resulted in a total economic value of $48.98 ha-1 (Table B-12). There was an observed 

loss of 72.26 kg N ha-1 through the drainage system in the SN treatment compared to just 26.01 

kg N ha-1 in the SCC treatment, resulting in a 46.25 kg N ha-1 reduction in N loading due to the 

addition of CC into the crop rotation (Table B-11). Valued at $1.75 kg-1, the reduction in N 

loading within the spring dominated nitrogen management system, represents a total economic 

value of $80.94 ha-1 (Table B-12). 

 According three sites years of study, it was determined that on average 100% of the N 

within the daikon radish biomass and 95% of the N within the cereal rye biomass is mineralized 

prior to cash crop physiological maturity. The high percentage of mineralized nitrogen from the 
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cereal rye biomass could be explained by the low observed C:N ratio of the biomass. The cereal 

rye in this study was chemically terminated prior to stem elongation, when the C:N ratio begins 

to rapidly increase, resulting in a C:N ratios ranging from 13:1 to 17:1. Nitrogen Mineralization 

is promoted when C:N ratios are 24:1 or less; thus, the low C:N ratios observed in our cereal rye 

biomass explain the high percentage of nitrogen mineralization from the biomass. When 

calculating total N return from the CC the spring cereal rye N uptake is multiplied by a 

mineralization factor of 0.95 and then the fall daikon radish N uptake multiplied by a 

mineralization factor of 1 is added. It is important to ensure that N mineralized from the CC 

residue is only accounted for once, and thus the reduction in N loading through the subsurface 

drainage system must be subtracted from the value calculated for total N return, as it is assumed 

that the reduction is a result of CC N uptake. 

 In the 2014 CC – 2015 cash crop season, the fall CC sampling revealed a total N content 

in the daikon radish of 5.72 kg N ha-1 and 5.37 kg N ha-1 for the FCC and SCC treatments, 

respectively. The cereal rye biomass sampled in the spring prior to chemical termination from 

the FCC and SCC treatments had sequestered 61.47 kg N ha-1 and 45.58 kg N ha-1, respectively. 

After multiplying the N uptake for each species from the FCC treatment by its respective 

mineralization factor, it was determined that a gross mineralization of 64.12 kg N ha-1 from the 

CC in the FCC treatment had occurred (Table B-13). In order to ensure that the N being returned 

to the soil profile from the CC biomass is only accounted for once, we must determine a net 

mineralization value by subtracting the N loading reduction from the gross mineralization value 

for each of the respective treatments. In the case of the FCC treatment, this is 64.12 kg N ha-1 

minus 14.80 kg N ha-1, which equates to a net mineralization of CC biomass N of 49.32 kg N ha-

1. The mineralized N from the FCC treatment valued at $1.82 kg-1 of N applied to the fall 
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dominated nitrogen management treatments, equates to a total economic value of $89.76 ha-1 

(Table B-14). The SCC treatment was determined to have a gross mineralization of 48.67 kg N 

ha-1 after accounting for the correct mineralization factor of each CC species (Table B-13). A 

calculated net mineralization of 42.71 kg N ha-1 for the SCC treatment was determined after 

subtracting the N loading reduction of 5.96 kg N ha-1 from the treatments calculated gross 

mineralization. Valued at $1.75 kg-1 of applied N for the spring dominated nitrogen management 

treatment, the calculated net mineralization for the SCC treatment is equivalent to a total 

economic value of $74.74 ha-1 (Table B-14). 

 The fall CC sampling for the 2015 CC – 2016 cash crop season revealed a daikon radish 

N content for the FCC and SCC treatments of 32.17 kg N ha-1 and 36.40 kg N ha-1, respectively. 

Following the sampling of the CC prior to spring chemical termination, it was determined that 

the cereal rye biomass had a total N content of 29.05 kg N ha-1 and 33.72 kg N ha-1 for the FCC 

and SCC treatments, respectively. After accounting for the correct mineralization factor of each 

CC species, it was determined that the FCC treatment had a gross N mineralization of 59.77 kg 

N ha-1 (Table B-13). Accounting for the observed N loading reduction for the FCC treatment of 

26.91 kg N ha-1, a net N mineralization of 32.86 kg N ha-1 was calculated for the FCC treatment. 

Valued at $1.82 kg-1 of N applied to the fall dominated nitrogen management treatment, the net 

mineralized CC N within the FCC treatment was equivalent to an economic value of $59.80 ha-1 

(Table B-14). Gross N mineralization for the SCC treatment, after accounting for each species N 

content and corresponding mineralization factor, was determined to be 68.43 kg N ha-1 (Table B-

13). However, taking into account the N loading reduction of 46.25 kg N ha-1 for the SCC 

treatment, the calculated net N mineralization for the SCC treatment was revealed to be 22.18 kg 

N ha-1. The calculated net mineralization, valued at $1.75 kg-1 of N applied to the spring 
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dominated nitrogen management treatments, equates to a total economic value of $38.82 ha-1 

(Table B-14). 

 The calculated average erosion for our site as determined by the RUSLE2 program was 

1.46 metric tons per hectare per year for the non-CC treatments and 0.25 metric tons per hectare 

per year for the treatments including CC. This is equivalent to a total reduction of 1.21 metric 

tons per hectare per year due to the inclusion of CC (Table B-15). Using data from the USDA 

ERS it was determined that the value per metric ton of soil was equal to $9.20 per metric ton. 

The calculated value for the reduction in erosion due to CC inclusion was equal to $11.13 per 

hectare per year (Table B-16).  

Cover Crop Cost Recovery 

 In the 2014 CC – 2015 corn year, the total costs incurred for implementing CC was 

$148.54 ha-1 and $288.17 ha-1  for the FCC and SCC treatments, respectively. The total 

economic value of the measurable environmental benefits of CC for the FCC and SCC 

treatments were equal to $127.83 ha-1 and $96.30 ha-1 (Table B-17). The value of the 

environmental benefits resulted in 86.1 and 33.4% recovery of the CC implementation cost for 

the FCC and SCC treatments, respectively (Table B-18). Within the FCC treatment, N loading 

reductions accounted for 21.1% of the total recovered cost, net mineralization represented 70.2% 

of the total recovered costs, and erosion reductions corresponded to 8.7% of the recovered costs 

of CC implementation. The composition of recovered costs within the SCC treatment was 10.8% 

from N loading reductions, 77.6% from CC N mineralization, and 11.6% from erosion reduction 

(Table B-19). 

 The total cost of implementing CC into the crop rotation for the 2015 CC – 2016 soybean 

year were $209.06 ha-1 and $202.17 ha-1 for the FCC and SCC treatments, respectively. The 
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environmental benefits observed from the CC resulted in a total economic value for the FCC and 

SCC treatments of $119.91 ha-1 and $130.89 ha-1, respectively (Table B-18). The resulting 

recovery of CC implementation cost due to the value of observed environmental benefits is equal 

to 57.4 and 64.7% for the FCC and SCC treatments, respectively (Table B-21). Nitrogen loading 

reductions accounted for 40.8% of the total recovered costs of CC implementation in the FCC 

treatment, while net CC mineralization and erosion reduction corresponded to 49.9 and 9.3% of 

the total recovered costs, respectively. In the SCC treatment, nitrogen loading reductions 

composed 61.8% of the total recovered costs of CC implementation, with net CC mineralization 

representing 29.7% and erosion reduction equaling 8.5% of the total recovered costs (Table B-

22). 

Discussion 

With CC being recognized as one of the most effective in-field adaptive management 

practices to reduce the impact of agriculture on the hypoxic zone in the Gulf of Mexico, it is 

important to begin breaking down the barriers to widespread adoption of the practice (ILNLRS, 

2014). Producers understand the various environmental benefits that CC can provide and have 

identified these benefits as key motivators for CC adoption. However, these same producers 

acknowledged that the costs associated with CC adoption, along with no measureable economic 

return are key deterrents to adoption of this environmentally smart practice (CTIC 2015, 2016). 

Our study found that there are short-term recovery variables associated with CC conservation 

and release of N that have the potential to increase the annual value of CC to producers. 

We determined that the total CC costs for this study ranged from $148.54 ha-1 to $288.17 

ha-1; however, the high variability in in total CC costs can be explained by the variability in yield 

reductions of the cash crop the CC inclusion. When removing the costs associated with changes 
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in yield, the total costs associated with CC establishment and termination ranged from $143.64 

ha-1 to $145.40 ha-1. We also determined that the total value of benefits from a combination of 

erosion reduction, mineralization of CC N, and subsurface drainage N loading reduction ranged 

from $96.30 ha-1 to $130.89 ha-1.   

The net benefit of CC at our site ranged from a net loss of $20.71 ha-1 to a net loss of 

$191.87 ha-1. The largest portion of these losses were a result of yield decreases in the cash crop 

following the CC. If the yields are assumed to remain constant between the CC and non-CC 

treatments resulting in a yield change cost of zero, the percent CC cost recovery ranges from 

66.2% to 91.1%. In this situation, the net benefits of CC range from a net loss of $12.75 ha-1 to a 

net loss of $49.10 ha-1 (Table B-20; Table B-23). 

A study conducted by Pratt et al. (2014) across 24 farms in Indiana focused on estimating 

the costs and benefits of CC. They also examined the removal of corn stover for bioenergy 

production as a method of supplementing the value of CC agronomic benefits for CC cost 

recovery. This study valued four categories of agronomic benefits associated with CC I) added 

nutrient content, II) increased soil organic matter, III) reduced soil compaction, and IV) reduced 

soil erosion. They also estimated the net economic benefit to producers following the removal of 

corn stover for the purposes of bioenergy production as a method of CC implementation cost 

recovery.  

Conversely, this study attempted to examine the costs and benefits of CC through a blend 

of agronomic and environmental factors. This study and the study conducted by pratt et al. 

(2014) both took into account added nutrients from the CC and changes in soil erosion. 

However, unlike the study conducted by Pratt et al. which used average values for CC N 

additions provided through the Midwest Cover Crop Council, this study measured of the actual 
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uptake and return of nitrogen from the biomass of the CC in our mixture. Also unlike the Pratt et 

al. study which assumed that the producers’ fertilization would be adjusted by the assumed 

nutrient credit of the CC mix, we assumed that producers would maintain their current 

fertilization practices and that N mineralized from CC biomass was essentially treated as another 

N application. This study did not account for changes in soil compaction or soil organic matter, 

but rather focused on the environmental impact CC have on N loading through subsurface 

drainage systems. The model used in this study also accounted for changes in cash crop yields 

following CC.  

Pratt et al. (2014) determined that total CC costs ranged from $81.76 ha-1 to $172.50 ha-1 

with the variability being accounted for by the seed cost and seeding rates of the different CC 

species used. Comparatively, the total CC costs when yield change costs were removed ranging 

from $143.64 ha-1 to $145.40 ha-1 were in the middle of the range observed by Pratt et al., (Pratt 

et al., 2014). In the study conducted by Pratt et al. (2014), total on-site agronomic benefits of CC 

were found to range from $91.45 ha-1 to 192.07 ha-1. They found that agronomic benefits were 

highly influenced by the estimated added and scavenged nitrogen, and determined that 

agronomic benefits ranged from $74.72 ha-1 to $134.62 ha-1 with the valuation of the N credit 

removed. The results of our study which determined the value of CC environmental benefits to 

range from $96.30 ha-1 to $130.89 ha-1 are very comparable to the results from Pratt et al., (2014) 

whether they accounted for the nitrogen credit or not. 

Following a cost benefit analysis, Pratt et al. (2014) determined that the on-site net 

benefit of CC ranged from a net loss of $11.09 ha-1 to a net benefit of $87.32 ha-1. They further 

determined that a producer could remove greater amounts of crop stover to be sold for the 

purposes of bioenergy production when using covers crops, and net-benefits can range from a net 
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loss of $3.78 ha-1 to a net benefit of $249.52 ha-1 dependent upon stover price. In comparison, the 

results of the cost benefit analysis conducted in this study demonstrate that the environmental 

benefits of CC cannot offset 100% of the CC implementation costs and result in net economic 

losses. Pratt et al., (2014) used increased soil organic matter as a measure of increased cash crop 

grain yields, thus only accounted for increases in yield. Whereas, this study used actual cash crop 

grain yields and accounted for decreased grain yields as an additional cost, which could explain 

the discrepancy in net CC benefits between the two studies. 

The Net losses observed over the duration of our study could potentially be corrected 

through several methods. First, changes as a result of CC use in factors such as soil organic 

matter, soil compaction, surface and subsurface phosphorus losses, and losses of nitrogen 

through denitrification could be valued and accounted for in the model as CC benefits. Second, 

seeding rates could be adjusted and thus the overall establishment costs would be reduced as a 

result of reduced seed costs. Lastly, nutrient management strategies could be developed that keep 

overall operational costs consistent, but lead to increased cash crop yields following CC. 

The greatest impact of this research could be on future policy regarding subsidies 

provided to producers who implement BMPs, such as CC, woodchip bioreactors, and two-stage 

ditches, into their operations. Currently, cost sharing programs, such as the environmental quality 

incentives program, exist that help alleviate the added costs incurred by producers who 

implement CC. However, the question that exists is how much of the cost of CC needs to be 

subsidized in order to incentivize producers to implement this environmentally friendly practice. 

The continuation of this study culminating in a long-term average representing the cost recovery 

of CC implementation could potentially guide policy makers through decision making processes 

concerning CC subsidies.  
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Conclusion 

 The economic value of CC environmental benefits as revealed through the results of this 

study could help justify the inclusion of CC into existing crop rotations. The economic value of 

erosion reduction, nitrogen mineralization, and reduced subsurface nitrogen loading can account 

for 33.4 – 86.1% of the costs to implement CC. We determined that an average of just 61% of 

the initial CC costs can be recovered by placing economic value to the observed environmental 

benefits of CC. However, there is a potential for this percentage to substantially increase with the 

evolution of cropping and management strategies for rotations that include CC. Results also 

indicate that a large proportion of initial CC costs is a result of yield losses observed in the 

subsequent cash crop. Therefore, additional research should be conducted on nutrient 

management strategies aimed at maintaining or increasing cash crop yields following a CC. 

The average composition of recovered costs was 34% from reductions in nitrogen loading 

to subsurface drainage, 57% from the net mineralization of nitrogen from the CC biomass, and 

9% from the estimated reduction in erosion. The high proportion of recovered costs coming from 

CC biomass mineralization indicates that further research should be conducted on determining 

the nitrogen content of grass CC through a method that producers could easily adopt into their 

practices. This would allow for producers to better estimate the nitrogen contribution of grass CC 

within a cropping system.  
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CHAPTER V: CONCLUSION 

 

The examination of short-term weather data collected during the 2014 and 2015 cover 

crop (CC) growing seasons demonstrates that air temperature and precipitation have a greater 

influence on annual CC growth compared to other variables such as nitrogen management or 

previous cash crop. Differences in average ambient air temperature and total precipitation 

between the two CC growing seasons had measureable impacts on fall biomass production and N 

sequestration, as well as, the date of daikon radish winter termination. The 2014 CC season 

recorded lower than average ambient air temperatures and total precipitation, while the 2015 CC 

season had greater than average ambient air temperatures and total precipitation.  Winter 

termination of the daikon radish occurred in mid-to-late November during the 2014 CC season 

compared to an early January winter termination date in the 2015 CC season. This equates to 

approximately 1-1.5 months of extra growth for the daikon radish in the 2015 CC growing 

season relative to the 2014 CC growing season, which can be attributed to the considerably 

warmer ambient air temperatures and higher precipitation totals of the 2015 CC season compared 

to the 2014 CC growing season. Below average ambient air temperature and total precipitation 

during the 2014 CC growing season resulted in 76 and 82% less biomass production with 80 and 

76% less N uptake in the FCC and SCC treatments compared to the 2015 CC growing season, 

respectively. 

The introduction of a CC into both the fall and spring dominated nitrogen management 

systems resulted in greater corn biomass production and nitrogen uptake through the V12 growth 

stage; however, at physiological maturity the treatments with CC resulted in less total biomass 

and nitrogen uptake than the treatments without CC. Corn grain yields were not significantly 
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affected when CC were introduced into the fall dominated nitrogen management system; 

however, within the spring dominated nitrogen management system there was demonstrated 

potential for significantly decreased corn grain yields following the introduction of CC. In the 

soybean phase of the crop rotation, increased biomass production and nitrogen uptake was 

observed through soybean growth stage R2 when CC were present. However, the introduction of 

CC did not significantly impact crop biomass production or nitrogen at any growth, and no 

significant differences were observed in soybean grain yields amongst any of the experimental 

treatments. 

 The results of the cost benefit analysis conducted over the two years of this study suggest 

that environmental CC benefits of subsurface drainage nitrogen load reductions, net nitrogen 

mineralization, and erosion reduction can recover 33.4% to 86.1% of CC implementation costs. 

While the results across all treatments over two years indicate an average of just 61% of the 

initial CC costs being recovered by placing economic value to the observed environmental 

benefits of CC, there is a potential for this percentage to substantially increase with the evolution 

of cropping and management strategies for rotations that include CC. Results of the cost benefit 

analysis demonstrated that a substantial portion of the total costs associated with CC were 

attributed to losses in revenue due to decreases in grain yield in the cash crop following CC. 

Therefore, research aimed at maintaining or increasing cash crop grain yields following CC 

should be conducted. 

 Results of the cost benefit analysis revealed that net nitrogen mineralization provided the 

largest contribution towards the recovery of CC implementation costs, followed by subsurface 

drainage nitrogen loading reductions, with erosion reduction accounting for the smallest portion 

of recovered costs. With such a high proportion of CC cost recovery coming from the net 
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mineralization of nitrogen from the biomass of CC, there is a need for research aimed at 

determining the timing of nitrogen release from the CC biomass and its availability to the 

following cash crop. There is also a need for research aimed at developing producer friendly 

methods of determining the nitrogen content of all CC species which could be easily adapted into 

existing operations. This would allow for producers to better estimate the contribution of 

nitrogen from CC to the cropping system, and potentially adjust their applied nitrogen rates.   

 Currently, the state of Illinois does not regulate the use of CC or the timing and rate of 

nitrogen fertilizer applications; however, this could easily change if the goals set forth in the 

Illinois Nutrient Reduction Strategy (ILNLRS) are not met in a timely manner. Illinois, along 

with many other states, offers cost sharing programs to producers who choose to implement best 

management practices into their farming operations. These cost sharing options could help 

alleviate some of the implementation costs associated with best management practices but may 

not cover the whole costs. However, the results of this study could provide producers, and policy 

makers alike, the knowledge that valuing CC environmental benefits could help offset 

implementation costs not covered through governmental cost sharing programs. While studies 

have shown that the use of CC and split applications of nitrogen (50% or greater applied nitrogen 

in the spring) can help achieve the nutrient loading reduction set forth in the ILNLRS, it will take 

evidence of an economic benefit before producers will voluntarily change their farming practices 

without a form of economic assistance. 
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APPENDIX A: TABLES AND FIGURES FOR CHAPTER III 

 

Table A-1 

Average Monthly Ambient Air Temperatures Years 2014, 2015, 2016 

 Average Ambient Air Temperature (°C) 

Year 2014 2015 2016 30-Year Average 

January -8.9 -4.6 -3.6 -3.8 

February -9.0 -8.3 -0.4 -2.1 

March -0.4 2.5 7.7 4.3 

April 10.5 11.4 10.5 10.9 

May 17.1 18.0 16.6 17.1 

June 22.3 21.5 23.2 22.2 

July 20.7 22.3 23.2 23.9 

August 23.0 21.2 23.2 22.9 

September 17.7 20.3 20.5 18.8 

October 11.3 12.2 14.6 12.0 

November 0.6 7.0 7.3 4.9 

December -0.1 4.2 -2.4 -1.8 

Note: Average monthly ambient air temperatures for the years of 2014, 2015, and 2016. Values 

in bold represent the time period of this study. 
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Table A-2 

Total Monthly Precipitation Years 2014, 2015, 2016 

 Total Precipitation (mm) 

Year 2014 2015 2016 30-Year Average 

January 22.4 39.9 15.7 57.5 

February 19.6 13.7 19.1 51.8 

March 42.2 22.4 74.7 63.3 

April 59.4 60.2 67.1 90.7 

May 64.8 131.6 102.9 108.1 

June 188.7 179.1 102.4 100.5 

July 86.6 139.2 157.0 98.3 

August 57.4 104.1 153.4 94.2 

September 98.8 69.1 78.5 83.4 

October 104.1 45.7 42.9 86.1 

November 41.9 100.1 66.0 78.2 

December 20.1 151.6 21.6 60.6 

Note: Total monthly precipitation for the years of 2014, 2015, and 2016. Values in bold represent 

the time period of this study. 
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Table A-3 

Cover Crop Biomass Production ANOVA Table 

Source of Variation DF F Value Pr > F 

Treatment 1 0.99 0.3590 

Block 2 0.05 0.9518 

Date 3 129.17 <0.0001 

Treatment*Date 3 5.16 0.0424 

Treatment*Block 2 3.84 0.0842 

Block*Date 6 12.74 0.0034 

Error 6   

Note: ANOVA table depicts the response variable (cover crop biomass production) and 

probability values for each source of variation 

 

Table A-4 

Cover Crop Nitrogen Uptake ANOVA Table 

Source of Variation DF F Value Pr > F 

Treatment 1 0.02 0.8808 

Block 2 0.10 0.9080 

Date 3 22.82 0.0011 

Treatment*Date 3 2.99 0.1178 

Treatment*Block 2 2.25 0.1867 

Block*Date 6 3.83 0.0635 

Error 6   

Note: ANOVA table depicts the response variable (cover crop nitrogen uptake) and probability 

values for each source of variation 
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Figure A-1. Cover crop biomass production (kg  ha-1) by experimental treatment at both the fall 

and spring sampling dates for both cover crop seasons. Different letters indicate significant 

differences between treatments across all sampling dates at an alpha level of 0.05 according to a 

least square means tukey comparison lines test.  Error bars represent standard error. 
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Figure A-2. Cover crop nitrogen uptake (kg N ha-1) by experimental treatment at both the fall 

and spring sampling dates for both cover crop seasons. Error bars represent standard error. 
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Table A-5 

Corn Growth stage V6 Biomass ANOVA Table 

Source of Variation DF F Value Pr > F 

Treatment 4 0.67 0.6292 

Block 2 1.04 0.3973 

Error 8   

Note: ANOVA table depicts the response variable (corn growth stage V6 biomass) and 

probability values for each source of variation. 

 

Table A-6 

Corn Growth Stage V12 Biomass ANOVA Table 

Source of Variation DF F Value Pr > F 

Treatment 4 2.23 0.1848 

Block 2 0.26 0.7795 

Error 8   

Note: ANOVA table depicts the response variable (corn growth stage V12 biomass) and 

probability values for each source of variation. 

 

Table A-7 

Corn Growth Stage VT Biomass ANOVA Table 

Source of Variation DF F Value Pr > F 

Treatment 4 1.36 0.3284 

Block 2 4.66 0.0456 

Error 8   

Note: ANOVA table depicts the response variable (corn growth stage VT biomass) and 

probability values for each source of variation. 
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Table A-8 

Corn Growth Stage R6 Biomass ANOVA Table 

Source of Variation DF F Value Pr > F 

Treatment 4 2.58 0.1179 

Block 2 2.11 0.1831 

Error 8   

Note: ANOVA table depicts the response variable (corn growth stage R6 biomass) and 

probability values for each source of variation. 
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Figure A-3. Corn biomass production (kg ha-1) by crop growth stage collected during the 2015 

corn season. The error bars represent the standard error. 
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Table A-9 

Corn Growth Stage R6 Plant Matter Biomass ANOVA Table 

Source of Variation DF F Value Pr > F 

Treatment 4 1.70 0.2423 

Block 2 1.90 0.2110 

Error 8   

Note: ANOVA table depicts the response variable (corn growth stage R6 plant matter biomass) 

and probability values for each source of variation. 

 

Table A-10 

Corn Growth Stage R6 Cob Biomass ANOVA Table 

Source of Variation DF F Value Pr > F 

Treatment 4 2.20 0.1594 

Block 2 1.57 0.2663 

Error 8   

Note: ANOVA table depicts the response variable (corn growth stage R6 cob biomass) and 

probability values for each source of variation. 

 

Table A-11 

Corn Growth Stage R6 Grain Biomass ANOVA Table 

Source of Variation DF F Value Pr > F 

Treatment 4 3.27 0.0721 

Block 2 2.19 0.1742 

Error 8   

Note: ANOVA table depicts the response variable (corn growth stage R6 grain biomass) and 

probability values for each source of variation. 
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Figure A-4. Corn Biomass Production (kg ha-1) for the growth stage R6 subsamples collected 

during the 2015 corn season. The error bars represent standard error. 
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Table A-12 

Corn Growth Stage V6 Nitrogen Uptake ANOVA Table 

Source of Variation DF F Value Pr > F 

Treatment 4 2.07 0.1775 

Block 2 0.58 0.5838 

Error 8   

Note: ANOVA table depicts the response variable (corn growth stage V6 Nitrogen Uptake) and 

probability values for each source of variation. 

 

Table A-13 

Corn Growth Stage V12 Nitrogen Uptake ANOVA Table 

Source of Variation DF F Value Pr > F 

Treatment 4 31.33 <0.0001 

Block 2 2.39 0.1573 

Error 8   

Note: ANOVA table depicts the response variable (corn growth stage V12 Nitrogen Uptake) and 

probability values for each source of variation. 

 

Table A-14 

Corn Growth Stage VT Nitrogen Uptake ANOVA Table 

Source of Variation DF F Value Pr > F 

Treatment 4 1.71 0.2632 

Block 2 3.01 0.1241 

Error 8   

Note: ANOVA table depicts the response variable (corn growth stage VT Nitrogen Uptake) and 

probability values for each source of variation. 
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Table A-15 

Corn Growth Stage R6 Nitrogen Uptake ANOVA Table 

Source of Variation DF F Value Pr > F 

Treatment 4 2.53 0.1226 

Block 2 1.42 0.2974 

Error 8   

Note: ANOVA table depicts the response variable (corn growth stage R6 Nitrogen Uptake) and 

probability values for each source of variation. 
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Figure A-5. Corn nitrogen uptake (kg N ha-1) by growth stage collected during the 2015 corn 

season. Different letters indicate significant differences between treatments within a growth stage 

at an alpha level of 0.05 according to Ryan’s multiple comparisons test.  Error bars represent 

standard error. 
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Table A-16 

Corn Growth Stage R6 Plant Matter Nitrogen Uptake ANOVA Table 

Source of Variation DF F Value Pr > F 

Treatment 4 1.73 0.2367 

Block 2 1.29 0.3281 

Error 8   

Note: ANOVA table depicts the response variable (corn growth stage R6 plant matter Nitrogen 

Uptake) and probability values for each source of variation. 

 

Table A-17 

Corn Growth Stage R6 Plant Cob Nitrogen Uptake ANOVA Table 

Source of Variation DF F Value Pr > F 

Treatment 4 3.03 0.0853 

Block 2 0.41 0.6764 

Error 8   

Note: ANOVA table depicts the response variable (corn growth stage R6 Cob Nitrogen Uptake) 

and probability values for each source of variation. 

 

Table A-18 

Corn Growth Stage R6 Grain Nitrogen Uptake ANOVA Table 

Source of Variation DF F Value Pr > F 

Treatment 4 2.69 0.1090 

Block 2 1.56 0.2672 

Error 8   

Note: ANOVA table depicts the response variable (corn growth stage R6 Grain Nitrogen 

Uptake) and probability values for each source of variation. 
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Figure A-6. Corn nitrogen uptake (kg N ha-1) for the growth stage R6 subsamples collected 

during the 2015 corn season. Error bars represent standard error. 
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Figure A-19 

Soybean Growth Stage V4 Biomass ANOVA Table 

Source of Variation DF F Value Pr > F 

Treatment 4 1.61 0.2848 

Block 2 0.54 0.6013 

Error 8   

Note: ANOVA table depicts the response variable (soybean growth stage V4 biomass) and 

probability values for each source of variation. 

 

Figure A-20 

Soybean Growth Stage R2 Biomass ANOVA Table 

Source of Variation DF F Value Pr > F 

Treatment 4 0.36 0.8378 

Block 2 0.16 0.8558 

Error 8   

Note: ANOVA table depicts the response variable (soybean growth stage R2 biomass) and 

probability values for each source of variation. 

 

Figure A-21 

Soybean Growth Stage R4 Biomass ANOVA Table 

Source of Variation DF F Value Pr > F 

Treatment 4 1.00 0.4206 

Block 2 1.44 0.2923 

Error 8   

Note: ANOVA table depicts the response variable (soybean growth stage R4 biomass) and 

probability values for each source of variation. 
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Table A-22 

Soybean Growth Stage R8 Biomass ANOVA Table 

Source of Variation DF F Value Pr > F 

Treatment 4 0.06 0.9927 

Block 2 4.34 0.0528 

Error 8   

Note: ANOVA table depicts the response variable (soybean growth stage R8 biomass) and 

probability values for each source of variation. 
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Figure A-7. Soybean biomass production (kg ha-1) by crop growth stage collected during the 

2016 soybean season. Error bars represent the standard error. 
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Table A-23 

Soybean Growth Stage R8 Plant Matter Biomass ANOVA Table 

Source of Variation DF F Value Pr > F 

Treatment 4 0.03 0.9976 

Block 2 4.68 0.0452 

Error 8   

Note: ANOVA table depicts the response variable (soybean growth stage R8 plant matter 

biomass) and probability values for each source of variation. 

 

Table A-24 

Soybean Growth Stage R8 Grain Biomass ANOVA Table 

Source of Variation DF F Value Pr > F 

Treatment 4 0.18 0.9399 

Block 2 3.71 0.0725 

Error 8   

Note: ANOVA table depicts the response variable (soybean growth stage R8 grain biomass) and 

probability values for each source of variation. 
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Figure A-8. Soybean biomass production (kg ha-1) for the growth stage R8 subsamples collected 

during the 2016 soybean season. Error bars represent standard error. 
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Table A-25 

Soybean Growth Stage V4 Nitrogen Uptake ANOVA Table 

Source of Variation DF F Value Pr > F 

Treatment 4 0.76 0.5820 

Block 2 0.37 0.7005 

Error 8   

Note: ANOVA table depicts the response variable (soybean growth stage V4 nitrogen uptake) 

and probability values for each source of variation. 

 

Table A-26 

Soybean Growth Stage R2 Nitrogen Uptake ANOVA Table 

Source of Variation DF F Value Pr > F 

Treatment 4 0.25 0.9036 

Block 2 0.06 0.9416 

Error 8   

Note: ANOVA table depicts the response variable (soybean growth stage R2 nitrogen uptake) 

and probability values for each source of variation. 

 

Table A-27 

Soybean Growth Stage R4 Nitrogen Uptake ANOVA Table 

Source of Variation DF F Value Pr > F 

Treatment 4 0.92 0.4832 

Block 2 1.26 0.3351 

Error 8   

Note: ANOVA table depicts the response variable (soybean growth stage R4 nitrogen uptake) 

and probability values for each source of variation. 
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Table A-28 

Soybean Growth Stage R8 Nitrogen Uptake ANOVA Table 

Source of Variation DF F Value Pr > F 

Treatment 4 0.10 0.9804 

Block 2 1.95 0.2047 

Error 8   

Note: ANOVA table depicts the response variable (soybean growth stage R8 nitrogen uptake) 

and probability values for each source of variation. 
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Figure A-9. Soybean nitrogen uptake (kg N ha-1) by crop growth stage collected during the 2016 

soybean season. Error bars represent the standard error. 
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Table A-29 

Soybean Growth Stage R8 Plant Matter Nitrogen Uptake ANOVA Table 

Source of Variation DF F Value Pr > F 

Treatment 4 0.15 0.9587 

Block 2 2.43 0.1501 

Error 8   

Note: ANOVA table depicts the response variable (soybean growth stage R8 plant matter 

nitrogen uptake) and probability values for each source of variation. 

 

Table A-30 

Soybean Growth Stage R8 Grain Nitrogen Uptake ANOVA Table 

Source of Variation DF F Value Pr > F 

Treatment 4 0.11 0.9756 

Block 2 1.78 0.2287 

Error 8   

Note: ANOVA table depicts the response variable (soybean growth stage R8 grain nitrogen 

uptake) and probability values for each source of variation. 
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Figure A-10. Soybean nitrogen uptake (kg N ha-1) for the growth stage R8 subsamples collected 

during the 2016 soybean season. Error bars represent standard error. 
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Table A-31 

Corn Grain Yield ANOVA Table 

Source of Variation DF F Value Pr > F 

Treatment 4 339.97 <0.0001 

Block 2 1.80 0.2263 

Error 8   

Note: ANOVA table depicts the response variable (corn grain yield) and probability values for 

each source of variation. 

 

Table A-32 

Soybean Grain Yield ANOVA Table 

Source of Variation DF F Value Pr > F 

Treatment 4 1.42 0.3125 

Block 2 4.63 0.0463 

Error 8   

Note: ANOVA table depicts the response variable (soybean grain yield) and probability values 

for each source of variation. 
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Figure A-11. Corn Grain Yield (Mg ha-1) for each treatment collected during the 2015 corn 

season. Different letters indicate significant differences between treatments within a growth stage 

at an alpha level of 0.05 according to Ryan’s multiple comparisons test. Error bars represent 

standard error. 
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Figure A-12. Soyean Grain Yield (Mg ha-1) for each treatment collected during the 2016 

Soybean season. Error bars represent standard error. 
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APPENDIX B: TABLES AND FIGURES FOR CHAPTER IV 

Table B-1 

Cover Crop Establishment Costs 

 2014 Cover Crop Season 2015 Cover Crop Season 

Seed Cost ($ kg-1) 1.04 1.04 

Seeding Rate (kg ha-1) 84 84 

Seed Application Cost ($ ha-1) 29.65 29.61 

Total Establishment Cost ($ ha-1) 117.01 116.97 

Note: This table represents the breakdown of cover crop establishment costs for the cover crops 

planted in both 2014 and 2015. 

 

Table B-2 

Cover Crop Termination Costs 

 2014 Cover Crop Season 2015 Cover Crop Season 

Chemical Cost ($ L-1) 6.86 6.12 

Chemical Application Rate (L ha-1) 2.34 2.34 

Chemical Application Cost ($ ha-1) 12.36 12.35 

Total Termination Costs ($ ha-1) 28.39 26.67 

Note: This table represents the breakdown of cover crop termination costs for the cover crops 

planted in both 2014 and 2015. 
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Table B-3 

Cover Crop Impact on Cash Crop Grain Yield 

Treatment 
2015 Corn 

(Mg ha-1) 

Difference 

(Mg ha-1) 

2016 Soybean 

(Mg ha-1) 

Difference 

(Mg ha-1) 

FN 12.76 
-0.02 

3.96 
-0.19 

FCC 12.74 3.77 

SN 13.19 
-0.91 

4.07 
-0.17 

SCC 12.28 3.90 

Note: This table represents the difference in grain yield between the non-cover crop treatments 

and the cover crop treatments for both the 2015 corn and 2016 soybeans. 

 

Table B-4 

Cost of Cash Crop Grain Yield Change Following Cover Crops 

 2014 Cover Crop Season 2015 Cover Crop Season 

 FCC SCC FCC SCC 

Yield Impact (Mg ha-1) -0.02 -0.91 -0.19 -0.17 

Yield Value ($ Mg-1) 156.89 156.89 344.31 344.31 

Total Yield Impact Cost ($ ha-1) 3.14 142.77 65.42 58.53 

Note: This table represents the value of observed yield changes between the non-cover crop and 

cover crop treatments. If the yield change is negative the value is added to the total cover crop 

costs. If the yield change is positive, the value is subtracted from the total cover crop costs. 
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Table B-5 

Total Cover Crop Costs 

 2014 Cover Crop Season 2015 Cover Crop Season 

 FCC SCC FCC SCC 

Total Establishment Cost ($ ha-1) 117.01 117.01 116.97 116.97 

Total Termination Cost ($ ha-1) 28.39 28.39 26.67 26.67 

Total Yield Impact Cost ($ ha-1) 3.14 142.77 65.42 58.53 

Total Cover Crop Cost ($ ha-1) 148.54 288.17 209.06 202.17 

Note: This table represents the total cover crop costs for both the fall and spring dominated 

nitrogen management systems for both years of the study. The composition of total cover crop 

costs is also represented. 

 

Table B-6 

Valuation of Nitrogen from each Nitrogen Source 

Fertilizer Source $ Tonne-1 Fertilizer kg N Tonne-1 Fertilizer $ kg-1 N 

Fall Diammonium Phosphate 639.12 180 3.55 

Fall Anhydrous Ammonia 960.77 820 1.17 

Spring Anhydrous Ammonia 845.82 820 1.03 

Note: This table represents the value per kilogram of nitrogen from each of the three separate 

sources used in this study. 
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Table B-7 

Fall Dominated Nitrogen Management System Fertilizer Application Rates and Total Cost 

 $ kg-1 N kg N ha-1 $ ha-1 

Fall Diammonium Phosphate 3.55 40 142.00 

Fall Anhydrous Ammonia 1.17 112 131.04 

Spring Anhydrous Ammonia 1.03 72 74.16 

Total  224 347.20 

Note: This table represents the applications rates and total value of nitrogen applied from each of 

the three nitrogen sources within the fall dominated nitrogen management system. Also 

represented is the total value of applied nitrogen for the fall dominated nitrogen management 

system. 

 

Table B-8 

Value per Kilogram of Nitrogen Applied to Fall Dominated Nitrogen Management System 

Value of Applied Fertilizer ($ ha-1) 347.20 

Spring Anhydrous Ammonia Application ($ ha-1) 30.15 

Fall Anhydrous Ammonia Application ($ ha-1) 30.15 

Total Nitrogen Applied (kg N ha-1) 224 

Value of Nitrogen Applied ($ kg-1 N) 1.82 

Note: This table represents the average value per kilogram of nitrogen applied within the fall 

dominated nitrogen management system. 
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Table B-9 

Spring Dominated Nitrogen Management System Fertilizer Application Rates and Total Cost 

 $ kg-1 N kg N ha-1 $ ha-1 

Fall Diammonium Phosphate 3.55 40 142.00 

Fall Anhydrous Ammonia 1.17 0 0.00 

Spring Anhydrous Ammonia 1.03 184 189.52 

Total  224 331.32 

Note: This table represents the applications rates and total value of nitrogen applied from each of 

the three nitrogen sources within the spring dominated nitrogen management system. Also 

represented is the total value of applied nitrogen for the fall dominated nitrogen management 

system. 

 

Table B-10 

Value per Kilogram of Nitrogen Applied to Spring Dominated Nitrogen Management System 

Value of Applied Fertilizer ($ ha-1) 331.32 

Spring Anhydrous Ammonia Application ($ ha-1) 30.15 

Fall Anhydrous Ammonia Application ($ ha-1) 30.15 

Total Nitrogen Applied (kg N ha-1) 224 

Value of Nitrogen Applied ($ kg-1 N) 1.75 

Note: This table represents the average value per kilogram of nitrogen applied within the spring 

dominated nitrogen management system. 
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Table B-11 

Subsurface Drainage System Nitrogen Loading Reduction 

 2014 Cover Crop – 2015 Corn Season 2015 cover crop – 2016 Soybean Season 

Treatment 
Total N Load 

 (kg N ha-1) 

Difference 

(kg N ha-1) 

Total N Load 

(kg N ha-1) 

Difference 

(kg N ha-1) 

FN 54.09 
14.80 

47.67 
26.91 

FCC 39.29 20.76 

SN 44.58 
5.96 

72.26 
46.25 

SCC 38.62 26.01 

Note: This table represents the change in subsurface drainage nitrogen loading between the non-

cover crop and cover crop treatments for both years of the study. 

 

Table B-12 

Subsurface Drainage System Nitrogen Loading Reduction Valuation 

 2014 Cover Crop – 2015 Corn Season 2015 Cover Crop – 2016 Soybean Season 

Treatment 

N Load 

Reduction 

(kg N ha-1) 

$ kg-1 N 

Total N Load 

Reduction 

($ ha-1) 

N Load 

Reduction 

(kg N ha-1) 

$ kg-1 N 

Total N Load 

Reduction 

($ ha-1) 

FCC 14.80 1.82 26.94 26.91 1.82 48.98 

SCC 5.96 1.75 10.43 46.25 1.75 80.94 

Note: This table represents the value of subsurface drainage nitrogen loading reductions between 

the non-cover crop and cover crop treatments for both years of the study 
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Table B-13 

Gross Cover Crop Nitrogen Mineralization 

Treatment 

Daikon Radish 

N Content 

(kg N ha-1) 

Mineralization 

Factor 

Cereal Rye 

N Content 

(kg N ha-1) 

Mineralization 

Factor 

Gross N 

Mineralization 

(kg N ha-1) 

 2014 Cover Crop – 2015 Corn Season 

FCC 5.72 1.00 61.47 0.95 61.42 

SCC 5.37 1.00 45.58 0.95 48.67 

 2015 Cover Crop – 2016 Soybean Season 

FCC 32.17 1.00 29.05 0.95 59.77 

SCC 36.40 1.00 33.72 0.95 68.43 

Note: This table represents the nitrogen content of daikon radish and cereal rye within each 

nitrogen management system across both years of the study. Mineralization factors used to 

calculate gross mineralization were obtained through three site years of a cover crop litter bag 

study. 

 

Table B-14 

Net Cover Crop Nitrogen Mineralization and Valuation 

Treatment 

Gross N 

Mineralization 

(kg N ha-1) 

Subsurface N 

Load Reduction 

(kg N ha-1) 

Net 

Mineralization 

(kg N ha-1) 

$ kg-1 N 

Total Net N 

Mineralization 

Benefit 

($ ha-1) 

 2014 Cover Crop – 2015 Corn Season 

FCC 61.42 14.80 49.32 1.82 89.76 

SCC 48.67 5.96 42.71 1.75 74.74 

 2015 Cover Crop – 2016 Soybean Season 

FCC 59.77 26.91 32.86 1.82 59.80 

SCC 68.43 46.25 22.18 1.75 38.82 

Note: This table represents the total benefit of net nitrogen mineralization within both 

experimental treatments across both years of the study. Net nitrogen mineralization is calculated 

by subtracting subsurface nitrogen load reductions from gross nitrogen mineralization. 
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Table B-15 

Erosion Reduction Estimation from RUSLE2 Program 

Treatment 

2 Year 

Erosion Estimation 

(Tonnes ha-1) 

2 Year 

Erosion Reduction 

(Tonnes ha-1) 

Annual 

Erosion Reduction 

(Tonnes ha-1 yr-1) 

FN 2.92 
2.42 1.21 

FCC 0.50 

SN 2.92 
2.42 1.21 

SCC 0.50 

Note: This table represents the annual estimated erosion reduction between the non-cover crop 

and cover crop treatments as calculated by the RUSLE2 program. 

 

Table B-16 

Erosion Reduction Estimation Valuation 

Treatment 

Annual 

Erosion Reduction 

(Tonnes ha-1 yr-1) 

Value of Soil 

($ Tonne-1) 

Total Reduction Value 

($ ha-1 yr-1) 

FCC 1.21 9.20 11.13 

SCC 1.21 9.20 11.13 

Note: This table represents that total benefit of the annual estimated erosion reduction. The value 

per tonne of soil was obtained from the United States Department of Agriculture Economic 

Research Service. 

 

  



135 

Table B-17 

Total Cover Crop Benefit Value 

Treatment 

Subsurface N 

Load Reduction 

($ ha-1) 

Net N Mineralization 

($ ha-1) 

Erosion Reduction 

($ ha-1) 

Total Cover Crop 

Benefits 

($ ha-1) 

 2014 Cover Crop – 2015 Corn Season 

FCC 26.94 89.76 11.13 127.83 

SCC 10.43 74.74 11.13 96.30 

 2015 Cover Crop – 2016 Soybean Season 

FCC 48.98 59.80 11.13 119.91 

SCC 80.94 38.82 11.13 130.89 

Note: This table represents the total benefits of cover crops obtained by adding the total benefits 

of subsurface drainage nitrogen loading reduction, net nitrogen mineralization, and erosion 

reduction. 
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Table B-18 

Cover Crop Cost Recovery 2014 Cover Crop – 2015 Corn Season With Actual Yield 

2014 Cover Crop – 2015 Corn Season 

Variable FCC SCC 

Total Establishment Cost ($ ha-1) 117.01 117.01 

Total Termination Cost ($ ha-1) 28.39 28.39 

Total Yield Impact Cost ($ ha-1) 3.14 142.77 

Total Cover Crop Cost ($ ha-1) 148.54 288.17 

Subsurface N Load Reduction ($ ha-1) 26.94 10.43 

Net N Mineralization ($ ha-1) 89.76 74.74 

Erosion Reduction ($ ha-1) 11.13 11.13 

Total Cover Crop Benefits ($ ha-1) 127.83 96.30 

Net Cover Crop Benefit ($ ha-1) -20.71 -191.87 

Percent Cover Crop Cost Recovery 86.1 33.4 

Note: This table represents the net benefit of cover crop inclusion and percent cover crop cost 

recovery for both experimental treatments within the 2014 cover crop – 2015 corn season. Net 

benefits are calculated by subtracting total cover crop costs from total cover crop benefits. 

Percent cover crop cost recovery is calculated by dividing total cover crop benefits by total cover 

crop costs.  
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Table B-19 

2014 Cover Crop – 2015 Corn Season Total Cover Crop Cost Recovery Composition  

2014 Cover Crop – 2015 Corn Season 

Variable FCC SCC 

Total Percent Cover Crop Cost Recovery 86.1 33.4 

Percent Coverage From Subsurface N Load Reduction 21.1 10.8 

Percent Coverage From Net N Mineralization 70.2 77.6 

Percent Coverage From Erosion Reduction 8.7 11.6 

Note: This table represents the composition of recovered costs as percentages of the total 

recovered costs for both experimental treatments within the 2014 cover crop – 2015 corn season. 

 

Table B-20 

Cover Crop Cost Recovery 2014 Cover Crop – 2015 Corn Season With Constant Yield 

2014 Cover Crop – 2015 Corn Season 

Variable FCC SCC 

Total Establishment Cost ($ ha-1) 117.01 117.01 

Total Termination Cost ($ ha-1) 28.39 28.39 

Total Yield Impact Cost ($ ha-1) 0.00 0.00 

Total Cover Crop Cost ($ ha-1) 145.40 145.40 

Subsurface N Load Reduction ($ ha-1) 26.94 10.43 

Net N Mineralization ($ ha-1) 89.76 74.74 

Erosion Reduction ($ ha-1) 11.13 11.13 

Total Cover Crop Benefits ($ ha-1) 127.83 96.30 

Net Cover Crop Benefit ($ ha-1) -17.57 -49.10 

Percent Cover Crop Cost Recovery 87.9 66.2 

Note: This table represents the net benefit of cover crop inclusion and percent cover crop cost 

recovery assuming constant grain yields for both experimental treatments within the 2014 cover 

crop – 2015 corn season. Net benefits are calculated by subtracting total cover crop costs from 

total cover crop benefits. Percent cover crop cost recovery is calculated by dividing total cover 

crop benefits by total cover crop costs. 
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Table B-21 

Cover Crop Cost Recovery 2015 Cover Crop – 2016 Soybean Season With Actual Yield 

2015 Cover Crop – 2016 Soybean Season 

Variable FCC SCC 

Total Establishment Cost ($ ha-1) 116.97 116.97 

Total Termination Cost ($ ha-1) 26.67 26.67 

Total Yield Impact Cost ($ ha-1) 65.42 58.53 

Total Cover Crop Cost ($ ha-1) 209.06 202.17 

Subsurface N Load Reduction ($ ha-1) 48.98 80.94 

Net N Mineralization ($ ha-1) 59.80 38.82 

Erosion Reduction ($ ha-1) 11.13 11.13 

Total Cover Crop Benefits ($ ha-1) 119.91 130.89 

Net Cover Crop Benefit ($ ha-1) -89.15 -71.28 

Percent Cover Crop Cost Recovery 57.4 64.7 

Note: This table represents the net benefit of cover crop inclusion and percent cover crop cost 

recovery for both experimental treatments within the 2015 cover crop – 2016 soybean season. 

Net benefits are calculated by subtracting total cover crop costs from total cover crop benefits. 

Percent cover crop cost recovery is calculated by dividing total cover crop benefits by total cover 

crop costs. 

 

Table B-22 

2015 Cover Crop – 2016 Soybean Season Total Cover Crop Cost Recovery Composition  

2015 Cover Crop – 2015 Soybean Season 

Variable FCC SCC 

Total Percent Cover Crop Cost Recovery 57.4 64.7 

Percent Coverage From Subsurface N Load Reduction 40.8 61.8 

Percent Coverage From Net N Mineralization 49.9 29.7 

Percent Coverage From Erosion Reduction 9.3 8.5 

Note: This table represents the composition of recovered costs as percentages of the total 

recovered costs for both experimental treatments within the 201 cover crop – 2016 soybean 

season. 
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Table B-23 

Cover Crop Cost Recovery 2014 Cover Crop – 2015 Corn Season With Constant Yield 

2015 Cover Crop – 2016 Soybean Season 

Variable FCC SCC 

Total Establishment Cost ($ ha-1) 116.97 116.97 

Total Termination Cost ($ ha-1) 26.67 26.67 

Total Yield Impact Cost ($ ha-1) 0.00 0.00 

Total Cover Crop Cost ($ ha-1) 143.64 143.64 

Subsurface N Load Reduction ($ ha-1) 48.98 80.94 

Net N Mineralization ($ ha-1) 59.80 38.82 

Erosion Reduction ($ ha-1) 11.13 11.13 

Total Cover Crop Benefits ($ ha-1) 119.91 130.89 

Net Cover Crop Benefit ($ ha-1) -23.73 -12.75 

Percent Cover Crop Cost Recovery 83.5 91.1 

Note: This table represents the net benefit of cover crop inclusion and percent cover crop cost 

recovery assuming constant grain yields for both experimental treatments within the 2015 cover 

crop – 2016 soybean season. Net benefits are calculated by subtracting total cover crop costs 

from total cover crop benefits. Percent cover crop cost recovery is calculated by dividing total 

cover crop benefits by total cover crop costs. 
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