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CREATING A SCALING RELATIONSHIP BETWEEN PEAK DISCHARGE AND 

DRAINAGE AREA TO IDENTIFY TILE DRAINAGE INPUTS INTO AN  
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Tile drains have been shown to contribute to high levels of nitrate in agricultural streams. 

Locations of tile drains on a watershed scale, however, are often unknown due to tile drains 

being located on many separate parcels of private property. This study evaluates the ability of a 

methodology, using scaling relationships between discharge and drainage area, for locating areas 

of large tile drainage contribution to Money Creek, in McLean County, Illinois.  Additionally, 

this study examines the difference in scaling relationships and physical stream hydrology 

between tileflow and no-tileflow conditions.  Eight stream sites were created in the watershed, 

that recorded stage every 15 minutes.  The drainage area of each stream site was calculated in 

ArcGIS.  Hydrographs were created from rating curves that were developed for each site, and 

used to create scaling relationships between peak discharge and drainage area for 21 storms 

throughout the study period.   

Overall, this method was not effective for detecting tile drain input into Money Creek, 

because there were no major differences in the outliers of the scaling relationships between the 

tileflow and no-tileflow periods.  The scaling exponent means between the tileflow and no-

tileflow period were statistically different.  This is likely due to, factors that other studies have 

shown to cause regional differences in scaling exponents (evapotranspiration, soil moisture 



storage, and sunshine) are causing seasonal differences in the scaling exponent within the Money 

Creek watershed.  Additionally, this study observed double peaks in storm hydrographs, which 

were interpreted as being caused from the difference in runoff generation timing between 

overland flow and tile drainage. 
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CHAPTER I: INTRODUCTION 

Framing the Problem 

The Midwestern United States is a region of intense agricultural production, and nonpoint 

source pollution of waterbodies is a continual problem.  Non-point source pollution comes from 

many diffuse sources, while point source pollution comes from a known discrete entity.  The 

relative lack of nonpoint source reduction, as compared to point source reduction, has put much 

focus on water quality improvement in agricultural areas (Brown and Froemke, 2012).  The 

application of nitrogen fertilizer has greatly increased yields; an estimated 40-60% of United 

States crop yield is attributed to fertilizer application (Stewart et al, 2005).  Unfortunately, this 

fertilizer is the major supplier of nonpoint source pollution to water bodies in these same 

agricultural areas (David et al, 1997).  

Nitrate 

In particular, nitrogen, in the form of nitrate (NO3-), is a major environmental concern 

(Ikenberry et al., 2014; Kladivko et al., 2004).  High nitrate concentrations in an agricultural 

stream degrades overall stream quality (Randall et al., 2008).  Agricultural streams often flow 

into reservoirs or larger streams that supply drinking water to local communities.  These 

communities struggle to provide water to their citizens that measures below the EPA nitrate 

standard of 10 mg/L nitrate nitrogen or NO3- N (Hatfield and Follett, 2008; Ikenberry et al., 

2014).  Excess levels of nitrate can lead to methemoglobinemia (blue baby syndrome), which 

leads to newborns not having enough oxygen circulating through their blood streams (Powlson et 

al., 2008).  High nitrate levels in Midwestern streams also drain through the Mississippi River 

system and contribute to the hypoxic zone in the Gulf of Mexico (Williams et al., 2015). The 

hypoxic zone is the result of increased nitrate concentrations, which cause algal blooms.  The 
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decomposition of these massive algal blooms, in turn, leads to anoxic conditions in large sections 

of the Gulf of Mexico (David et al., 2010).  The hypoxic zone is detrimental to the ecology and 

fishing industry in the Gulf of Mexico (Breitburg, 2002).  Indeed, Ocean hypoxic zones are not 

limited to the Gulf of Mexico, and exist in many parts of the world where major river systems 

enter an ocean (Tiemeyer et al., 2010).   In short, high concentrations of nitrate in agricultural 

streams have negative effects on local, regional and international scales. 

Tile Drains 

Although tile drains have improved the drainage of naturally poorly drained soils and 

allow for the exemplary crop growth, they exacerbate the problem of poor water quality in 

agricultural streams (Skaggs et al. 1994; Ikenberry et al., 2014).  Nitrate dissolves into water on 

fields, infiltrates into tile drains and rapidly shuttles to streams.  The swift removal of nitrate 

from fields allow biogeochemical processes that aid in denitrification to be largely bypassed.  

Biogeochemical processes are bypassed due to short water residence times in artificially drained 

soils and the inert biochemical nature of enclosed drainage pipes (Billy et al. 2011).  Many best 

management practices (BMPs), such as riparian buffer zones, have been implemented in 

agricultural regions to reduce nitrate pollution in waterways.  Unfortunately, tile drains often 

override these BMPs.  In the Mackinaw River watershed in Illinois, for example, riparian buffer 

zones and strip-tillage were bypassed due to tile drainage (Lemke et al., 2011).  Conservation 

practices that intercept and increase residence times of water need to be implemented to reduce 

nitrate loads (Lemke et al., 2011). 

Locating Tile Drains 

The first step in implementing conservation practices that intercept and increase 

residence times of tile drainage water is locating tile drains.  Unfortunately, little is known of 
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their location.  In Illinois, tile drains are located on private property and cannot be publically 

accessed or accounted for.  Indeed, many farmers do not know specifically where tile drains are 

located on their property because the drains were installed decades ago and their location was not 

recorded during installation.  Currently, aerial photography is used for broad surveys, but this 

method is often unsuccessful because high-resolution images during proper tile viewing 

conditions are commonly unavailable (Sugg, 2007).  The objective of this study is to locate areas 

in a stream that might have large tile drainage contributions and that would be potentially good 

areas to implement effective conservation practices.  The capability of a new methodology for 

locating areas of large tile drainage contributions, using scaling relationships, will be evaluated.  

Additionally, this study aims to observe the effects of tile drains on physical stream hydrology.    

Scaling Relationships 

A scaling relationship is the dependence of a catchment hydrologic property on 

catchment area.  Scaling relationships can be used to examine how catchment area effects 

physical properties of streams (Powlson et al., 2008).  Discharge is fundamental variable used in 

hydrology because it tells us how much water flows through a stream.  Specifically, peak is often 

used because large loads of nitrate often move through streams during these high flow events 

(Christianson and Harmel, 2015; Billy et al., 2008).  Creating a rating curve is a common 

procedure used to identify peak discharge (Ogden and Dawdy, 2003).  Once peak discharges 

throughout a stream are calculated, they can be compared to each respective drainage area to 

create a scaling relationship.   

When peak discharge vs. drainage area scaling relationships are graphed, the regressed 

exponent known as the scaling exponent (θ) can be calculated (Fig. 1).  Simple, or linear, scaling 

relationships are represented by the equation: Qp=αAθ where Qp is the peak discharge, A is the 
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drainage area, θ is the scaling exponent (slope of the best fit line), and α is the y-intercept of the 

best fit line (Furey and Gupta, 2005; Lee et al., 2008).  θ and α can be thought of as measures 

that exhibit the extent that a basin prevents runoff from entering its stream (Goodrich et al, 

1997). Scaling exponent values typically lie between 0.5 and 1, with a value of 1 representing 

surface area increasing evenly with discharge throughout the stream (Alexander, 1972).  Most 

streams have a scaling exponent near 0.8 (Medhi and Tripathi, 2015).     

Galster (2007) analyzed five major rivers throughout the United States and found that the 

scaling exponent can vary for different rivers systems.  The scaling exponent is below 1 when a 

river has proportionally less water being added in the downstream section than the upstream 

area. Greater slope and elevation in the headwaters of a watershed generally result in more runoff 

being delivered to a river than in the downstream section of the river, causing the scaling 

exponent to typically be less than one (Galster, 2007).  

Rivers in areas subject to glacial drift have been observed to have lower scaling 

exponents.  For example, the Wabash river, which drains Indiana and eastern Illinois, has a 

scaling exponent of only 0.65 (Galster, 2007).   While the mechanism for this is not fully 

understood, it is speculated that poorly integrated channel networks are responsible (Gupta and 

Waymire, 1998).  Goodwin Creek in Northern Mississippi was found to obey a simple, or linear, 

scaling relationship because there was relatively uniform precipitation across the small 21.2 km2 

basin (Ogden and Dawdy, 2003).  On the contrary, Walnut Gulch, in southeastern Arizona (1480 

km2), was found to become less linear with increasing area (Goodrich et al., 1997).  This is 

consistent with the literature, which shows that linearity and the scaling exponent decrease with 

increasing drainage area and aridity (Alexander, 1972).  No research has focused on an 

examination of small tile-drained watersheds in the Midwest.  As highlighted by the previously 
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mentioned studies, there is abundant research pertaining to the controls on variance in the scaling 

exponent as a whole, while there is limited research on why particular gauging stations may plot 

above or below the scaling exponent.   

 

 

Figure 1.  Four different rain events in the Komarovka River represented by peak discharge vs. 

drainage area scaling relationships.  Θrec represents the scaling exponent (θ).  Taken from Lee et 

al., 2008. 

 

 

 

Although individual gauging points in a stream can vary with regard to where they plot 

within the scaling relationship, the scaling exponent remains invariant with changes in drainage 

areas (Lee et al., 2008).  Lee et. al. (2008) used a kinematic wave-geomorphologic instantaneous 

unit hydrograph (KW-GIUH) modeling to create a continuous set of discharge data throughout 
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the Komarovka River, in southern Russia.  They found that sudden fluxes of water, such as 

tributaries, will cause a transition break that deviates from the scaling exponent (Lee et al 2008).  

In agricultural watersheds, many first and second orders streams have been replaced by tile 

drainage, which often cuts across natural drainage divisions (Blann et al., 2009).  This study will 

examine if points plot above the scaling exponent in agricultural streams, and if these points 

represent areas of large tile drain influx into the main steam. 

Double Peaks 

A number of studies have investigated the phenomenon of double peaks storms events 

within hydrographs.  The geography of the streams that display double peaks and the cause of 

the double peaks vary.  The Slapton Woods Catchment in Devon, UK displayed a double peak 

due to differences in timing between overland flow and subsurface flow (Birkinshaw, 2008).  

Subsurface flow only produced double peaks during the wet season, when the basin was “wetted 

up”.  The study interpreted subsurface flow to be moving horizontally between the soil and 

bedrock interface.  

 An additional study developed a hydrologic model that could simulate double peaks in 

streams (Yang et al., 2015).  The model focused on two watersheds.  The first watershed was the 

Onondaga Creek watershed in Syracuse, NY, a 285 km2 watershed that displayed double peaks 

due to an urban downstream area that produced an initial hydrograph peak from overland flow 

over impervious surfaces and a forested upper watershed that produced a slower secondary peak 

through subsurface flow.  The second watershed was the Williams Creek watershed in Missouri.  

This watershed was a 19.7 km2 forested watershed, which only displayed double peaks during 

extreme rainfall events when the soil became over-saturated.  This created a large component of 

overland flow and a large component of subsurface flow with corresponding double peaks.  
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Other studies have found subsurface flow through fractured bedrock (Onda et al., 2001), 

and conduit-driven flow through karst watersheds (Hirose et al., 1994; Lakey and Krothe, 1996) 

can produce storm event hydrographs with double peaks.  Though the mechanism for double 

peaks vary by watershed, the common denominator is an initial fast peak through overland flow 

and a slower secondary peak through subsurface flow.  No studies have specifically focused on 

double peaks in regions with a high prevalence of tile drainage, but the literature suggests that 

tile drainage, through the concept of subsurface flow, is a viable mechanism for double peaks in 

hydrographs.  

Study Area 

This study is located in the upper watershed of Money Creek, in central Illinois.  The 

surface is covered in Wisconsin age glacial till (Patterson et al., 2003).  The upstream section of 

the study area is the Batestown Till Member of the Wedron Formation, a gray silty till that 

oxidizes to olive brown.  The downstream area of the study area is the Snider Till Member of the 

Wedron Formation, a gray silty clayey till with a coarse blocky structure.  One small locality is a 

kame and is part of the Wasco Member of the Henry Formation, unevenly sorted sand and gravel 

with irregularly bedded lenses of silt and till.  Land cover is dominated by corn and soybean 

agriculture.  The study area focuses on the upper 55% of the watershed and encompasses a 

drainage area of 77.2 km2 (Fig. 2).   

 Money Creek is the tributary of Lake Bloomington, which serves as the water supply for 

the City of Bloomington, Illinois.  Due to high loads of nitrate from Money Creek, Lake 

Bloomington periodically has nitrate concentrations above the EPA limit.  During these times, 

the City of Bloomington dilutes Lake Bloomington’s water with water piped in from nearby 

Lake Evergreen.  This adds an extra cost and burden to water purification for the City.  Due to 
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the extra costs associated with high nitrate levels, the city is interested in understanding where 

large fluxes of water or nitrate enter the watershed.  The City of Bloomington has limited 

resources for implementing best management practices, which can reduce nitrate levels in Lake 

Bloomington.  If large fluxes of water or nitrate entering Money Creek can be identified, then the 

city can more efficiently use their resources to target these important areas and reduce nitrate 

loads entering Lake Bloomington.  This same methodology could be applied to other areas 

throughout the Midwest to locate target zones for best management practices in nutrient 

reduction. 

 

 

Figure 2.  Study region with the eight sampling site locations. 
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Research Questions: 

 Primary Question: Is there a difference in scaling relationships between tileflow 

and no-tileflow conditions? 

There will likely be differences in the scaling relationships between tileflow and no-

tileflow conditions.  The peak discharge for each sampling location will likely be less due to the 

increased evapotranspiration that occurs during no-tileflow conditions.  Well-established field 

crops allow for greater transpiration, and greater temperatures allow for greater evaporation later 

in the season during no-tileflow conditions.  Decreased precipitation during the later summer and 

fall then the late spring and early summer also leads to decreased peak discharge during no-

tileflow conditions.  There is also a possibility for the scaling exponent to change between 

tileflow and no-tileflow conditions.  Outliers in the tileflow scaling relationship could disappear 

when large sections of tile drain input cease during no-tileflow conditions. 

Secondary Question: Is there a difference in hydrologic characteristics between tileflow 

and no-tileflow conditions?    

Hydrographs in agricultural streams could potentially exhibit dual or extended peaks due 

to differences in timing between when overland flow and tile drainage enters the creek.  These 

characteristics could be present during tileflow conditions, but would be expected to disappear 

during no-tileflow conditions.  
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CHAPTER II: METHODOLOGY 

Site Selection  

I selected eight sites for this study.  This number provides a balance between producing 

adequate data and spatial resolution for the study, while still being a manageable number of sites 

to monitor in one sampling trip.  All of the sites selected were in the upper watershed of Money 

Creek, east of Bloomington, Illinois.  This section of creek has lower discharge and therefore I 

am more likely to be able to pick up signals of water flux into the stream.  This section also has 

few tributaries because of the abundance of tile drainage, which means the chance of a flux being 

introduced through a tributary is greatly reduced.  For ease of access, all sites are located where a 

road crosses or runs along the creek.  In short, I examined all potential sites in a site selection trip 

and choose the final eight sampling locations based on accessibility, location in the watershed, 

and how evenly the site was spaced between other sites in the watershed (Fig. 3).  The drainage 

area increases from 6.1 km2 to 77.1 km2 between the first site and final site, which is over an 

order of magnitude (Table 1).  This ensures that there is a least one log-cycle and therefore an 

appropriate degree of scaling. 
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Figure 3. Study region with the eight sampling stream site locations and the Money Creek 

watershed outlined.  Each site's watershed represents additional drainage that is not included the 

previous site’s drainage area. 
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Table 1 

Table Describing Site Locations 

Site # Drainage Area Location Township Easting and Northing  

Site 1 6.4 Km2 

County Rd 1300 N and 

 N 3000 East Rd Arrowsmith, IL Dawson 356885, 4481438 m 

Site 2 11.8 Km2 N 2850 East Rd Ellsworth, IL Dawson 354471, 4482051 m 

Site 3 18.9 Km2 N 2700 East Rd Ellsworth, IL Dawson 352072, 4482899  m 

Site 4 22.2 Km2 N 2600 East Rd Cooksville, IL Blue Mound 350442, 4483458 m 

Site 5 32.4 Km2 E 1500 North Rd Cooksville, IL Blue Mound 347704, 4484951 m 

Site 6 40.3 Km2 E 1600 North Rd Normal, IL Towanda 346420, 4486620 m 

Site 7 48.5 Km2 County Rd 2300 E Normal, IL Towanda 345311, 4488065 m 

Site 8 77.2 Km2 County Rd 1800 N Towanda, IL Towanda 342219, 4490322 m 

 

Note. Table showing the drainage area, location, township within McLean County, Illinois, and 

easting and northing of each site. 

 

 

 

Site Descriptions 

Site 1 is a drainage ditch that forms the beginning of Money Creek; Three large (0.75-1 

meter diameter) tile drains enter this ditch which drains the uppermost 6.4 km2 of the watershed 

(Fig. 4).  Site 2 is in a channelized section of the stream.  Despite this, the stream exhibits natural 

characteristics such as braided sections within the stream channel.  Site 3 is similar to Site 2, 

except further downstream.  Site 4 is the first area of the stream where the stream changes from 

multiple braided sections throughout the channel to a single channelized flow path.  Site 5 is the 

first site where the stream becomes noticeably larger and wider than previous sections.  Site 6 is 
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similar to Site 5 further downstream.  Site 7 is a pooled section where the stream is deeper and 

has slower velocities than many other parts of the stream.  Site 8 is the furthest downstream site 

and the only site that is not channelized, modified, or closely bordered by agricultural fields.  

This section has a natural meandering stream pattern and savanna and pasture surround it. 

Once I selected sites, I completed work permits.  Work permits were attained through 

different governmental entities based on who had jurisdiction for a particular road, and therefore 

the public right of way, where a study site was located.  I received a work permit for Site 7 

through IDOT, Sites 2 and 4 through the McLean County Highway department, Sites 1 and 3 

through Tim Bane (Dawson Township Highway Road Commissioner),  Site 5 through Joe 

Wissmiller (Blue Mound Township Highway Road Commissioner), and Sites 6 and 8 through 

Mike Fish (Towanda Township Highway Road Commissioner).  The McLean County Soil and 

Water Conservation District helped identify landowners with property adjacent to the sampling 

locations and mailed a flyer that explained the project and included contact information.  I signed 

a waiver for the property owner adjacent to Site 8.  
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I installed HOBO MX pressure transducers at the eight different sampling locations along 

Money Creek.  At each site, the sensing end of the pressure transducer was secured in a PVC 

stilling well. The wiring was run through conduit to an onshore PVC unit that housed the logging 

end of the pressure transducer and protected the electronic components from the elements (Figs. 

5 & 6).    

 

 
 

Figure 5.  The PVC Stilling well (in the stream) connected by conduit to the onshore PVC Unit.  

I secured both ends to metal posts. 
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Figure 6.  The onshore PVC Unit that houses the logging end of the pressure transducer. 

 

 

 

Data Collection 

Automated Depth Sensors 

The pressure transducers record stage and temperature measurements every 15 minutes 

(Fig. 7).  Site 1 was installed and deployed on May 17th  2016, Sites 6-8 on May 18th  2016, 

while sites 2-5 on May 19th  2016.  HOBO Rain gauges were installed at each station on 

September 23rd 2016.  Staff gauges were installed at sites 3-8 on September 2nd , 2016, and at 

sites 1-2 on December 14th, 2016. 
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Figure 7.  HOBO MX pressure transducer: Used to measure stream depth and temperature. The 

sensing end (right side) connected by wiring to the logging end (left side) of the pressure 

transducer. 

 

 

 

Manual Discharge Measurements 

I used a SonTek Flowtracker ADV to take discharge measurements approximately twice 

a week at my sampling locations from May 20th until August 26th, 2016, and approximately 

once a week from August 29th until November 4th (Fig. 8).      

 

 

 

Figure 8. Timeline with sampling dates for discharge measurements.  Timeline is not to scale. 

 

 

 

Each stream site had a set number of points where discharge measurements were taken 

across the profile of the stream (Table 2).  Sites that were further downstream had more 

discharge measurement points, because the stream channels themselves were wider and more 
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discharge measurement points were required to capture the range of velocities and depths 

through the stream cross-section (Fig. 4). 

 

Table 2 

Number of Discharge Measurement Points used at Each Site 

Site 1 Site 2 Site  3 Site 4 Site 5 Site 6 Site 7 Site 8 

5 5 5 5 8 8 10 10 

 

 

 

Originally, Site 1 only had three discharge measurement points.  This number was 

increased to five after I found that three discharge measurement points were not enough to 

provide an accurate discharge measurement; the data collected using the three discharge 

measurement points was not used in calculating the rating curves.  Data from May 20th-June 

17th at site 2 was not used in the rating curve because the section of stream that was used to take 

discharge measurements was overgrown with macrophytes, which caused inaccurate velocity 

measurements.  After June 17th, a section of stream, approximately 15 meters downstream was 

used to take discharge measurements at site 2 because it contained fewer macrophytes.  

During sampling, a measuring tape was stretched across the stream and the SonTek 

Flowtracker was used to take a depth and velocity measurement at each discharge measurement 

point across the stream.  The velocity reading was a 30-second average taken at 6/10ths of the 

water column depth at each point.  All measured values were recorded in a notebook.  The 

Flowtracker electronically-calculated discharge was used in most cases, except in a few instances 

where Excel was used to manually calculate discharge based on the data from the notebook.  The 

mid-section method was used to calculated discharge.  Data was collect in an array of stream 

flow conditions, ranging from baseflow to stormflow, in order to produce an accurate rating 
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curve for each site.  During excessively high flow events, when the stream was too deep to wade 

in, I used a bridgeboard and winch with a sigma portable velocity meter to collect discharge 

values. During high flow, discharge was taken at evenly spaced 1.8-meter intervals that 

correspond to steel posts along the side of each bridge guardrail.    

Precipitation Data 

I collected precipitation data from September 23, 2016 through January 21, 2017.  I 

deployed Rainwise tipping-bucket rain gauges at each of the eight sites, but discarded the data 

from Site 3 because it only made measurements during installation and removal.  I attached the 

rain gauges, approximately 1.2 meters above the ground to posts that house the logging end of 

the pressure transducer (Fig. 9).  The rain gauge at site 5 was clogged with sediment on January 

21, 2017, so measured precipitation values are likely artificially low in December and January.  

This study did not use publically available Bloomington airport precipitation data from before 

September 23, because that data does not provide the necessary spatial or temporal resolution 

needed for analysis of individual stream sites. 
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Figure 9. Rain gauge setup used at each site.  I attached Rain gauge to the post that houses the 

logging end of the pressure transducer. 

 

 

                                                                                    

GIS Calculations 

 I used ArcGIS to calculate the drainage area of each stream site, which I later used in the 

scaling relationships.  I used the hydrology tools in ArcGIS with a ten-meter digital elevation 

model (DEM) from the United States Geological Survey to calculate each site’s drainage area.  I 

projected a DEM of the study area to NAD_1983_stateplane_Illinois_East (Fig 10).  Next, I used 

the fill tool to fill in erroneous basins within the DEM that could potentially cause errors when 

calculating watersheds.  I computed a flow direction raster, which shows which way water would 

flow for each cell within the DEM. Afterwards, I used the flow accumulation tool to calculate 

how many cells (drainage area) drains into each unit cell.   

 I used the editor toolbar to digitize each of my stream sites as a point.  With the flow 

accumulation raster and each stream site as inputs, I used the snap pour point tool to attach each 

stream station to a nearby cell that has the highest drainage area.  This ensures that each station is 
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finding the drainage area of Money Creek at that location, rather than the drainage area of a 

nearby shoreline. I then input the flow direction raster and snap pour point raster into the 

watershed tool to find the subwatershed, of each stream site.  Next, I converted the watershed to 

a Shapefile, and I used the calculate geometry option within the attribute table to calculate the 

drainage area of each stream site.   
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Figure 10.  A flow chart that outlines the process taken in ArcGIS to calculate the drainage area 

of each stream site. 
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Data Analysis 

Rating Curves 

I plotted manual discharge measurements against their corresponding electronically 

collected stage value to produce a rating curve for each of the eight sites (Figs. 11-20).  Sites 2 

and 7 have multiple rating curves, one for before July 25th, 2016 and one for afterwards, due to a 

storm that changed the streambed cross-sections and invalidated the original rating curves for all 

measurements afterwards (Table 3).  I log-transformed the data used in the linear regressions for 

Sites 1, 2 (July 25th - January 21st), 3, 5, 6, and 7 to be able to produce a linear model with an R2 

value.  These model’s slopes and y-intercepts were then transformed to produce the power 

functions seen in these site’s rating curves.  I did not manipulate the data for Sites 2 (May 19th -

July 25), 4, and 8 because these data were naturally linear.  I used these rating curves to calculate 

the discharge values used the hydrographs. 

 

Table 3 

Summary Table for Rating Curves 

Site Date Range Measurements Slope Intercept R2 Transformation 

1 May 17 - January 21 21 2.534 -0.053 0.946 logged 

2 May 19 - July 24 10 0.459 -0.171 0.99 none 

2 July 25 - January 21 20 2.257 -0.1 0.925 logged 

3 May 19 - January 21 28 2.176 0.01 0.948 logged 

4 May 19 - January 21 25 1.209 -0.488 0.961 none 

5 May 19 - January 21 26 3.568 -0.055 0.961 logged 

6 May 18 - January 21 24 2.32 0.203 0.982 logged 

7 May 18 - July 24 17 1.564 0.129 0.97 logged 

7 July 25 - January 21 10 1.469 0.373 0.947 logged 

8 May 18 - January 21 25 2.734 -0.648 0.973 none 

 

Note. The table displays the site, date range, number of measurements, slope, intercept, R2 value, 

and data transformation type for each rating curve used. 
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Figure 11.  Rating Curve for Site 1. 

 

Figure 12.  Rating Curve for Site 2.  This rating curve applies from the beginning of the study 

until July 25. 



25 

 

Figure 13.  Rating Curve for Site 2.  This rating curve applies from July 25 through the end of 

the study. 

 

Figure 14.  Rating Curve for Site 3. 
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Figure 15.  Rating Curve for Site 4. 

 

Figure 16.  Rating Curve for Site 5. 
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Figure 17.  Rating Curve for Site 6.   

 

Figure 18.  Rating Curve for Site 7. 
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Figure 19.  Rating Curve for Site 7.  This rating curve applies from July 25 through the end of 

the study. 

 

Figure 20.  Rating Curve for Site 8. 
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Tileflow and No-tileflow Period Determination 

I determined the no-tileflow period based on a combination of hydrograph and tile drain 

observation datasets from this study, as well as datasets from other researchers working in the 

same region.  I used Ben Bruening’s tile drain discharge datasets, and Luke Lampo’s nitrate 

concentration dataset.  The hydrograph datasets from this study showed a recession of baseflow 

during the end of June and beginning of July; baseflow remained low until after Storm 14 on 

September 14, where baseflow remained above levels seen in the previous few months.  Ben’s 

tile drain datasets, which were from the Money Creek watershed, showed a sudden drop in 

discharge during the beginning of July and appeared to remain low until September 15, when 

discharge increased again.  Luke Lampo’s data showed nitrate concentration data from the 

neighboring Six Mile Creek watershed.  Initially, the concentration of nitrate was above 10 mg/l, 

until July 7 when the concentration dropped below 10 mg/l.  The concentrations decreased, until 

September when they gradually began to increase again.  There was a surprising amount of 

correspondence between these three separate datasets.  By amalgamating information from all 

three, I determined a no-tileflow period of July 7 – September 15.  I designated May 19th - July 7 

the early summer tileflow period, and the period after September 15, the fall / winter tileflow 

period. 

Mean Baseflow Scaling Relationship Calculations 

I created three mean baseflow scaling relationships: early summer tileflow period (~May 

18- July 7), summer no-tileflow period (July 7 – September 15), and fall / winter tileflow period 

(September 15 – January 21).  For each respective period, I took the log of the mean discharge 

value of baseflow for each site over that period and plotted it against the log of that respective 

station’s drainage area.  I delineated between baseflow and stormflow by classifying the start of 
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the rising limb through the end of the storm period as stormflow; the remaining time was 

designated baseflow.  To calculate the end of the stormflow period I used the equation, T=D0.2, 

where T is time from peak discharge in days, and D is the drainage area in miles. 

Double Peak Determination 

I created storm event hydrographs that focused on each individual storm for every stream 

gauging station throughout the study to look for double or extended peaks in the hydrographs.  

Hydrographs with a bimodal pattern were considered a double peak, while hydrographs with a 

peak or falling limb that expectantly plateaus in its regression towards baseflow was considered 

an extend peak.  Admittedly, observing extended peaks is a qualitative and somewhat subjective 

task, so I attempted to be uniform in applying my criteria for an extend peak across the entire 

span of the dataset.  I plotted sites that had hydrographs with a double peak or an extended peak 

on a summary table to show patterns across the dataset.  
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CHAPTER III: RESULTS 

Hydrographs 

I used the measured stage data and rating curves to produce hydrographs for each of the 

eight sites in the watershed (Figs. 21-28).  The hydrographs span the length of the stage 

measurements (May 17th – January 21st), except for Site 5, which only extends until November 

23rd, when a storm caused the stream channel cross-section to change and invalidate the rating 

curve for all subsequent measurements.  

 Twenty-one storms occurred throughout the watershed, during the study period.  There 

are other minor events, but they do not display a rising and falling limb across the entire 

watershed. For example, storm 2, between Storm 1 and 3, exists in the upper watershed, but does 

not extend throughout the entire watershed (Fig. 21).  Storm 3 was the largest storm event of the 

study period for Sites 1,3,4,5, and 6.  Storm 8 was the largest for Sites 2 and 7, while Storm 1 

was the largest for Site 8.  Storm 8 occurred during the no-tileflow period, while Storm 3 and 6 

occurred during the tileflow period.  While the magnitude of discharge of each storm event 

varies at each stream site, there is consistency in the fact that large discharge storm events often 

have high discharge across the entire watershed, and small discharge events often have low 

discharge across the entire watershed. 
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Figure 21.  Hydrograph of Site 1.  Numbers represent storm events. 

 

Figure 22.  Hydrograph of Site 2.  Numbers represent storm events. 
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Figure 23.  Hydrograph of Site 3.  Numbers represent storm events. 

 

Figure 24.  Hydrograph of Site 4.  Numbers represent storm events. 
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Figure 25.  Hydrograph of Site 5.  Numbers represent storm events.  Limited data available. 

 

Figure 26.  Hydrograph of Site 6.  Numbers represent storm events. 
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Figure 27.  Hydrograph of Site 7.  Numbers represent storm events. 

 

Figure 28.  Hydrograph of Site 8.  Numbers represent storm events. 
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Precipitation Data 

Precipitation data is available from September 23 – January 21, for all sites except 3, 

which did not properly record data.  I plotted the precipitation data as the daily sum of 

precipitation throughout the study period plotted on a bar graph (Figs. 29-35).  The largest 

recorded rain event varied by site (Table 4).  Storm 17 had the largest precipitation for Sites 1-2, 

Storm 18 was the largest precipitation for Sites 5 and 8, while Storm 16 had the largest 

precipitation for Site 5-6 and 8.  The largest total recorded precipitation amount for any storm at 

an individual site was for Storm 16 at Site 5, which had 4.064 cm of precipitation. The smallest 

precipitation event was Storm 21, except for Site 5 where Storm 19 produced no measurable 

precipitation.   

While some storms produced larger or smaller precipitation totals across the entire study 

area, the data does show spatial heterogeneity.  For example, recorded precipitation nearly triples 

between Sites 1-4 for Storm 15.  A final similarity seen in the data is that many of the storms 

spanned more than a single day.   
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Table 4 

Rain Gauge Records for each Storm 

  Storm 

15 

Storm 

16 

Storm 

17 

Storm 

18 

Storm 

19 

Storm 

20 

Storm 

21 

Storm 

22 

Date 10/6/16 10/7/16 10/8/16 10/9/16 10/10/16 10/11/16 10/12/16 10/13/16 

Site 1 1.07 3.02 3.07 3.00 1.12 2.16 0.74 1.73 

Site 2 1.96 2.72 3.94 3.05 1.02 2.24 0.71 2.06 

Site 4 3.05 3.43 1.68 3.86 0.43 1.93 0.20 0.89 

Site 5 1.80 4.06 1.47 1.17 0.00 0.03 0.23 0.20 

Site 6 1.35 3.89 2.57 3.40 1.12 1.70 0.66 1.22 

Site 7 1.22 3.12 2.21 3.66 0.99 1.63 0.79 0.99 

Site 8 1.91 2.72 2.06 2.44 0.94 1.91 0.74 1.30 

 

Note. Table includes the precipitation (in cm) for each storm.  The storm date is the date the 

precipitation associated with the storm began.  Rain gauge data are unavailable for storms before 

9-23-16 

 

 

 

 

Figure 29.  Precipitation data at Site 1.  The numbers represent storm events during this period.  
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Figure 30.  Precipitation data at Site 2.  The numbers represent storm events during this period. 

 

Figure 31.  Precipitation data at Site 4.  The numbers represent storm events during this period. 
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Figure 32.  Precipitation data at Site 5.  The numbers represent storm events during this period. 

 

Figure 33.  Precipitation data at Site 6.  The numbers represent storm events during this period. 
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Figure 34.  Precipitation data at Site 7.  The numbers represent storm events during this period. 

 

Figure 35.  Precipitation data at Site 8.  The numbers represent storm events during this period. 
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Peak Discharge Scaling Relationships 

I created a peak discharge scaling relationship for each of the 21 storms that produced 

hydrograph runoff events at all eight sites (Figs. 36-56).  Storm 2 does not have a scaling 

relationship because it did not produce rises in the hydrograph for every site. For each storm 

event, I applied a linear model between the log-transformed maximum discharge and the 

corresponding logged drainage area of each site.   

Each scaling relationship graph displays its regression equation, R2 value, and scaling 

exponent (c-value) (Table 5).  The average R2 value was 0.86.  The maximum scaling exponent 

throughout the study was Storm 7 with a value of 1.576, while the minimum was Storm 10 with 

a value of 0.556.  The mean scaling exponent of 11 storms from the tileflow period (both the 

early summer and fall/winter tileflow periods) was 1.109, while the mean from nine storms 

during no tileflow was 0.86 (Table 5).  I excluded the scaling exponent from Storm 3 because the 

regression failed an F-test. 

 I conducted a Wilcoxon-Mann-Whitney Test to assess whether the means of the scaling 

exponent between tileflow and no-tileflow periods were statistically different.  The no-tileflow 

scaling exponent group failed a Shapiro-Wilk test for normality (p-value= 0.040).  Therefore, I 

conducted a Wilcoxon-Mann-Whitney test; this test is the equivalent of a t-test, but used for data 

that does not follow a normal distribution.  The null hypothesis was rejected and the sample 

means between the tileflow and no-tileflow periods were deemed statistically different (p-value= 

0.038). 
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Table 5 

Summary Table for Parameters in the Peak Discharge Scaling Relationships 

 

 

Note. Table showing the C-value (slope), Y-intercept, and R2 value for each peak discharge 

scaling relationship. 

 

C-value Y-intercept R2 

Storm 1 1.466 -6.407 0.872 

Storm 3 0.647 -2.413 0.339 

Storm 4 0.793 -4.221 0.971 

Storm 5 0.932 -4.64 0.918 

Storm 6 1.221 -5.92 0.955 

Storm 7 1.576 -7.54 0.898 

Storm 8 0.902 -3.717 0.875 

Storm 9 0.668 -2.847 0.906 

Storm 10 0.556 -2.843 0.923 

Storm 11 0.874 -4.226 0.874 

Storm 12 0.664 -3.012 0.959 

Storm 13 0.6 -2.756 0.853 

Storm 14 0.678 -3.29 0.93 

Storm 15 1.553 -7.441 0.939 

Storm 16 0.952 -4.233 0.809 

Storm 17 0.761 -3.742 0.772 

Storm 18 1.106 -4.9 0.849 

Storm 19 1.009 -5.003 0.919 

Storm 20 0.996 -4.67 0.846 

Storm 21 1.134 -5.523 0.919 

Storm 22 1.127 -5.084 0.862 
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Figure 36.  Peak discharge scaling relationship for Storm 1 (~ 5/29/16).  Error bars represent the 

upper and lower limit of the 95% confidence interval for that point’s calculated discharge value. 

 

Figure 37.  Peak discharge scaling relationship for Storm 3 (~ 6/14/16).  Error bars represent the 

upper and lower limit of the 95% confidence interval for that point’s calculated discharge value. 
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Figure 38.  Peak discharge scaling relationship for Storm 4 (~ 6/22/16).  Error bars represent the 

upper and lower limit of the 95% confidence interval for that point’s calculated discharge value. 

 

Figure 39.  Peak discharge scaling relationship for Storm 5 (~ 7/6/16).  Error bars represent the 

upper and lower limit of the 95% confidence interval for that point’s calculated discharge value. 
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Figure 40.  Peak discharge scaling relationship for Storm 6 (~ 7/14/16).  Error bars represent the 

upper and lower limit of the 95% confidence interval for that point’s calculated discharge value. 

 

Figure 41.  Peak discharge scaling relationship for Storm 7 (~ 7/14/16).  Error bars represent the 

upper and lower limit of the 95% confidence interval for that point’s calculated discharge value. 
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Figure 42.  Peak discharge scaling relationship for Storm 8 (~ 7/25/16).  Error bars represent the 

upper and lower limit of the 95% confidence interval for that point’s calculated discharge value. 

 

Figure 43.  Peak discharge scaling relationship for Storm 9 (~ 8/16/16).  Error bars represent the 

upper and lower limit of the 95% confidence interval for that point’s calculated discharge value. 
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Figure 44.  Peak discharge scaling relationship for Storm 10 (~ 8/21/16).  Error bars represent 

upper and lower limit of the 95% confidence interval for that point’s calculated discharge value. 

 

Figure 45.  Peak discharge scaling relationship for Storm 11 (~ 8/24/16).  Error bars represent 

upper and lower limit of the 95% confidence interval for that point’s calculated discharge value. 
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Figure 46.  Peak discharge scaling relationship for Storm 12 (~ 8/27/16).  Error bars represent 

upper and lower limit of the 95% confidence interval for that point’s calculated discharge value. 

 

Figure 47.  Peak discharge scaling relationship for Storm 13 (~ 9/8/16).  Error bars represent the 

upper and lower limit of the 95% confidence interval for that point’s calculated discharge value. 
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Figure 48.  Peak discharge scaling relationship for Storm 14 (~ 9/14/16).  Error bars represent 

upper and lower limit of the 95% confidence interval for that point’s calculated discharge value. 

 

Figure 49.  Peak discharge scaling relationship for Storm 15 (~ 10/6/16).  Error bars represent 

upper and lower limit of the 95% confidence interval for that point’s calculated discharge value. 
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Figure 50.  Peak discharge scaling relationship for Storm 16 (~11/3/16).  Error bars represent the 

upper and lower limit of the 95% confidence interval for that point’s calculated discharge value. 

 

Figure 51. Peak discharge scaling relationship for Storm 17 (11/23/16).  Error bars represent 

upper and lower limit of the 95% confidence interval for that point’s calculated discharge value. 
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Figure 52. Peak discharge scaling relationship for Storm 18 (~ 11/28/16).  Error bars represent 

upper and lower limit of the 95% confidence interval for that point’s calculated discharge value. 

 

Figure 53.  Peak discharge scaling relationship for Storm 19 (~ 12/26/16).  Error bars represent 

upper and lower limit of the 95% confidence interval for that point’s calculated discharge value. 
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Figure 54.  Peak discharge scaling relationship for Storm 20 (~ 1/3/17).  Error bars represent the 

upper and lower limit of the 95% confidence interval for that point’s calculated discharge value. 

 

Figure 55.  Peak discharge scaling relationship for Storm 21 (~ 1/17/17).  Error bars represent 

upper and lower limit of the 95% confidence interval for that point’s calculated discharge value. 
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Figure 56.  Peak discharge scaling relationship for Storm 22 (~ 1/20/17).  Error bars represent 

upper and lower limit of the 95% confidence interval for that point’s calculated discharge value. 

 

Mean Baseflow Scaling Relationships 

The C-values (slopes) for the mean baseflow scaling relationship ranged from 0.930 – 

1.112 (Table 6).  They were smaller than the C-values found during the peak discharge scaling 

relationships.  The average R2 was 0.96.  Overall, R2 values were larger than in the peak 

discharge scaling relationships (Figs. 57-59).  

 

 

 

 

 

 

 

 

 

 

 



54 

Table 6 

Summary Table for Parameters in the Mean Baseflow Discharge Scaling Relationships 

 

Condition Dates C-value Y-intercept R2 

Early Summer tileflow May 17 - July 6 0.996 -4.997 0.978 

Summer no-tileflow July 7 - September 14 0.93 -5.09 0.959 

Fall and Winter tileflow September 15 - January 21 1.112 -5.87 0.954 

 

Note. Table showing the tile condition, date range, C-value (slope), y-intercept, and R2 value 

associated with each mean baseflow scaling relationship. 

 

 

 

 

 

Figure 57.  Mean Baseflow Scaling relationship for the early summer tileflow period (May 18 – 

July 7). 
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Figure 58.  Mean Baseflow Scaling relationship for the no-tileflow period (July 7 – September 

15). 

 

Figure 59.  Mean Baseflow Scaling relationship for the fall and winter tileflow period 

(September 15 – January 21). 
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Scaling Relationship Summary Tables  

I compiled Information from both the peak discharge scaling relationships and the mean 

baseflow scaling relationships on a summary table to look for patterns (Table 7-9).  The first 

table represents the early summer tileflow period, the second represents the summer no-tileflow 

period, and the third represents the fall and winter tileflow period.  Every storm has an outlier.  

There were a total of 42 outliers, 24 upper outliers and 18 lower outliers.  

Overall, there did not appear to be a pattern where a site was often an outlier during 

tileflow and rarely an outlier during no-tileflow.  However, Site 3 was occasionally an upper 

outlier during the tileflow period (five times) and somewhat frequently a lower outlier during the 

no-tileflow period (four times).  Additionally, Site 5 was regularly an upper outlier for the 

majority of the study period, until Storm 17 when it was subsequently a lower outlier from then 

on.  Finally, it is worth noting that there is limited overlap between outliers that occurred during 

baseflow conditions and outliers that occurred during storm events.  

 

Table 7 

Summary Table for Outliers to Scaling Relationships during the Early Summer Tileflow Period 

    Baseflow Storm 1 Storm 3 Storm 4 Storm 5 

Site 1 

     Site 2 

  

- 

  Site 3 

 

+ + + 

 Site 4 + 

    Site 5 

 

+ + + - 

Site 6 - 

    Site 7 

     Site 8 

    

+ 

 

Note. Baseflow represents the mean baseflow scaling relationship, as opposed to a specific 

storm. Upper outliers are represented by a +, while lower outliers are represented by a -. 
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Table 8 

Summary Table for Outliers to Scaling Relationships during the Summer No-tileflow Period 

  Baseflow 

Storm 

6 

Storm 

7 

Storm 

8 

Storm 

9 

Storm 

10 

Storm 

11 

Storm 

12 

Storm 

13 

Storm 

14 

Site 1 

          Site 2 + 

        

+ 

Site 3 - 

 

+ 

  

- - - 

  Site 4 

       

- 

  Site 5 

 

+ 

 

+ + 

  

+ + 

 Site 6 - 

         Site 7 

 

- - 

       Site 8 

            

Note. Baseflow represents the mean baseflow scaling relationship, as opposed to a specific 

storm. Upper outliers are represented by a +, while lower outliers are represented by a -. 

 

 

Table 9 

Summary Table for Outliers to Scaling Relationships during the Summer No-tileflow Period 

  

Baseflo

w 

Storm 

15 

Storm 

16 

Storm 

17 

Storm 

18 

Storm 

19 

Storm 

20 

Storm 

21 

Storm 

22 

Site 1 

         Site 2 + 

  

+ 

 

+ 

 

+ 

 Site 3 - 

 

+ 

     

+ 

Site 4 

         Site 5 

 

+ + - - - - - - 

Site 6 

         Site 7 

         Site 8 

          

 Note. Baseflow represents the mean baseflow scaling relationship, as opposed to a specific 

storm. Upper outliers are represented by a +, while lower outliers are represented by a -. 
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Summary Table for Double and Extended Peaks 

Double peaks on hydrographs were observed (Fig. 60).  Throughout the study period 

36.9%, or 62, of 168 site-specific storm hydrographs had double or extended peaks (Tables 10-

12).  Double and extended peaks were common throughout the entire study period and do not 

appear to be limited to one season.  Eight occurred in the early summer tileflow period, 29 

occurred in the summer no-tileflow period, and 25 occurred in the fall and winter tileflow period.  

All storms except 1, 12, 14, and 20 had at least one site with a double peak.  Double and extend 

peaks occurred during both small and large storms.  In summary, double peaks occurred 

throughout all seasons and storm sizes.   

 

 

 

 

Figure 60.  An example of a double peak at Site 2 during Storm 21. 
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Table 10 

Summary Table for Double and Extended Peaks in the Early Summer Tileflow Period 

  storm 1 storm 3 storm 4 storm 5 

site 1 

 

x x 

 site 2 

    site 3 

 

x 

 

x 

site 4 

 

x 

 

x 

site 5 

   

x 

site 6 

   

x 

site 7 

    site 8 

     

Note.  Each column represents a different storm and each rows represent one of the eight sites. 

An X represents an observed double or extended peak. 

 

 

Table 11 

Summary Table for Double and Extended Peaks in the Summer No-tileflow Period 

  

storm 

6 

storm 

7 

storm 

8 

storm 

9 

storm 

10 

storm 

11 

storm 

12 

storm 

13 

storm 

14 

site 1 

 

x 

 

x 

   

x 

 site 2 

   

x 

     site 3 x x x 

  

x 

 

x 

 site 4 x 

   

x x 

 

x 

 site 5 x 

   

x 

  

x 

 site 6 x 

   

x 

  

x 

 site 7 x x 

  

x x 

 

x 

 site 8 x x 

  

x x 

 

x 

   

Note.  Each column represents a different storm and each rows represent one of the eight sites. 

An X represents an observed double or extended peak. 
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Table 12 

Summary Table for Double and Extended Peaks in the Fall and Winter Tileflow Period 

  

storm 

15 

storm 

16 

storm 

17 

storm 

18 

storm 

19 

storm 

20 

storm 

21 

storm 

22 

site 1 x x x 

   

x x 

site 2 

   

x 

  

x x 

site 3 

 

x 

 

x 

  

x x 

site 4 

 

x 

    

x 

 site 5 

 

x 

    

x 

 site 6 

 

x 

    

x 

 site 7 

 

x 

  

x 

 

x 

 site 8 x x 

  

x 

 

x 

   

Note.  Each column represents a different storm and each rows represent one of the eight sites. 

An X represents an observed double or extended peak. 
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CHAPTER IV: DISCUSSION 

Outliers in the Peak Discharge Scaling Relationships 

An outlier that lies above the scaling relationship represents a site that is receiving 

proportionally more water than expected, based on that site’s drainage area.  A potential reason 

that a site could be receiving more water than expected in this system is that tile drains may be 

contributing water from crops fields that cross natural drainage divides.  If a site is consistently 

an upper outlier during tileflow season, but not an upper outlier when this extra input of water 

stops during no-tileflow season, then the stream section just upstream of that site likely has a 

large input of discharge from tile drains.  

Overall, there did not appear to be a pattern where a site was often an outlier during 

tileflow and rarely an outlier during no-tileflow (Tables 8-10).  From these data, it was not clear 

if tile drain input affected Money Creek’s hydrology.  The method of looking at outliers within 

scaling relationships did not appear to be effective at detecting tile drain input.  I suspect this is 

because the error associated with creating hydrographs is inherently too large to detect the 

amount of water that tile drains add to the stream.  For example, despite the all of the rating 

curves having R2 values of 0.92 or greater, the error bars on the scaling relationships still tend to 

be large (Figs. 36-56).    

Additionally, this method relies on the assumption that the area directly upstream of an 

upper outlier has a very large input of discharge from tile drains, while the other sites have 

minimal discharge added from tile drains.  In reality, tile drains are likely widely distributed 

throughout the watershed (an estimated 52%-82% of McLean County is tile drained) (Sugg, 

2007), essentially negating the effective that tile drains have on any one individual site.   
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A remote sensing project, separate from this thesis, looked at tile drainage within the 

Money Creek Watershed (Appendix A).  The project used shortwave bands (Band 5) of Landsat-

5 and Landsat-7 satellite imagery to look at how effectively soil in the watershed was drained 

after a series of storms from April 3rd-7th, 2003, with the implication that soils that were well 

drained represent farm fields with tile drainage.  The figure is the result of image differencing, 

comparing an image on April 11th to an image before the storms on April 2nd. Red areas on the 

image represent locations that likely have tile drainage, blue represents poor drainage or areas 

without tile drainage, and white / gray represents areas with moderate drainage.  The image 

shows red throughout the entire watershed, reinforcing the idea that tile drainage is widely 

distributed throughout the entire watershed and not focused in a small region or individual 

stream site.  

A final factor that likely contributed to this method not detecting tile drainage, was that 

there was no control for precipitation in the scaling relationships.  The results showed that there 

was spatial heterogeneity in precipitation (Table 4).  Though precipitation events typically cover 

the entire study area, the precipitation totals vary by site, despite the fact that many sites are less 

than ten kilometers from each other.  For example, recorded precipitation nearly triples between 

Sites 1-4 for Storm 15 (Table 4).  Spatial variation in precipitation totals likely have an effect on 

peak discharge.  If a site receives more precipitation than other nearby sites did, it would likely 

produce a larger peak discharge, thus producing a misleading upper outlier.  The same is possible 

for sites that receive less precipitation and produce a misleading lower outlier.       

Despite there not being any patterns within the outliers suggesting tile drain input, there 

did appear to be a few separate patterns within the summary tables of data.  Site 3 appears to be 

an upper outlier repeatedly during tileflow conditions; it was an upper outlier three times during 
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early summer tileflow and twice during fall tileflow conditions (Table 7-9).  During the no 

tileflow period, it was only above the scaling relationship once, during Storm 7. In the other 

storms during no-tileflow, the site was either not an outlier or an outlier that plotted below the 

scaling relationship.   

It is not clear that tile drain inputs from outside the watershed are discharging into Money 

Creek and contributing to Site 3’s outlier status.  One possible explanation for this is the 

originally speculated conceptual pattern, that a large input of discharge from tile drains was 

entering the creek just upstream of Site 3.  I explored this using ArcGIS to view satellite imagery 

of the area upstream of Site 3 overlain with the watershed boundaries.  Very few fields within 

this section of the watershed extend outside of the watershed, and the area of the sections that 

extend outside the watershed is small in comparison to the size of the rest of the watershed (Fig. 

61).  It is possible that multiple fields could be draining into one large tile main, but I am not able 

to accept or reject this possibility based on the available data.  Field observations during the 

winter when vegetation does not obstruct the view of tile drains, suggests that the area just 

upstream of Site 3 does not have an excessive amount of tile drains as compared to other areas of 

the watershed.  Therefore, a large input of discharge from tile drains directly upstream of Site 3 

is an unlikely explanation for the pattern of outliers that Site 3 displays.  
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Figure 61.  An Aerial image showing the site 3 subwatershed and the western border of the Site 

2 subwatershed.  The creek flows from east to west.  Notice that the total area of fields that exist 

both within and outside of the Site 3 watershed is limited. 

 

 

 

It is unlikely that bias in the rating curve is the reason for the pattern of outliers that Site 

3 displayed.  Another possible explanation for the pattern of outliers at Site 3 is that the Storm 3 

rating curve could potentially overestimate high discharge periods.  However, not all high 

discharge events were associated with outliers at Site 3.  

The outlier patterns of Site 3 could also be from spatial variation in precipitation totals 

across the watershed.  One study in New Mexico found that partial storm coverage of the 
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watershed and rainfall variability resulted in the watershed’s runoff response becoming more 

nonlinear (Goodrich et al, 1997).  An additional study of a small 21.2 km2 watershed in 

Mississippi found that peak discharges and drainage area scaled linearly because precipitation on 

the watershed was relatively uniform and the entire watershed contributed to runoff (Ogden et al, 

2003).  The Money Creek watershed is much larger at 77.1 km2 and has heterogeneous 

precipitation totals associated with each storm across the watershed (Table 4).  Because of this 

heterogeneity, an outlier in the scaling relationship may exist simply because that area of the 

watershed received more or less precipitation, and thus discharge, than other areas. 

Another pattern noticed was that Site 5 was regularly an upper outlier for the majority of 

the year, until Storm 17 (Tables 8-10).  Beginning on Storm 17, Site 5 is always a lower outlier 

for every subsequent storm. For this site, error and bias in the rating curve is a possible reason 

that Site 5 was an upper outlier for the majority of the year.  The Site 5 rating curve 

overestimates discharge for its three highest measured discharge events.  The measured 

discharge values are lower than what the rating curve model predicts them to be, so it would be 

reasonable to predict that storms with higher discharge than the highest measured value would 

also be overestimated (Fig. 16).  All of the storms at Site 5 that had a stage of greater than one 

meter (eight storms) were upper outliers, while only two storms with stage less than one meter 

were an upper outlier (Storms 6 and 15).  This reinforces the idea that Site 5 overestimates large 

discharge events.  The Site 5 rating curve’s inability to accurately predict high discharge events 

was the most likely reason that Site 5 was commonly an upper outlier. 

A stream morphology change that occurred during Storm 17 appears to be the reason that 

Site 5 is a lower outlier for Storm 17, and every subsequent event.  The late November storm, 

which produced 1.4 cm of rain at Site 5, but 3.0cm and 3.9cm at Sites 1 and 2, respectively, 
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appears to have caused a sudden drop in measured stage (Fig. 62).  Signs of beavers have been 

observed in this watershed.  This sudden drop in stage could have been the result of a beaver 

dam that burst downstream during the storm, thus suddenly lowering stage.  Upon visual 

examination, there appeared to be a change in channel morphology from this drop in stage.  The 

pressure transducer, which originally was at the streambed, was now around six inches above the 

surface of the streambed due to scouring.  Originally, the streambed had a mixture of sediment 

near the bottom, now the streambed is just bare clay (Fig. 63 & 64).  Storm 17 converted the area 

just downstream of the recording station from a straight stretch of stream into a ripple section 

with large cobbles and boulders, much of which appears to be from limestone blocks that were 

used to fill the area beneath the bridge during construction (Figs. 64 & 65).       

I compared cross sections of where I measure discharge at Site 5 from before and after 

Storm 17.  The cross-sectional area after Storm 17 had a substantially shallower depth due to 

cobbles and boulders filling in the stream channel.  When the cross-sectional area was measured 

after Storm 17 it had an average depth of 0.2 meters, while at a similar stage before Storm 17 the 

cross section had an average depth of 0.9 meters.  The scoured area just upstream at the pressure 

transducer, likely had an increase in cross-sectional area, which invalidated the rating curve.  All 

subsequent measurements underestimated Site 5’s discharge and caused Site 5 to be a lower 

outlier in all of the peak discharge scaling relationships.  This sudden shift in discharge was 

obvious on all subsequent scaling relationships for this site after the streambed cross-sectional 

change.  It should be noted that the stream banks, and possibly the streambed, just downstream 

of site five was regraded with an excavator to a consistent slope during this period (winter of 

2016 / 2017).  This could have caused this section of stream to be out of morphologic 

equilibrium, thus making it more vulnerable to rapid morphologic changes.  This example 
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demonstrates that hydrologists can use scaling relationships as a supplemental tool to check for 

rating curve shifts due to changes in streambed morphology.  In addition to Site 5, Sites 7 and 2 

also experienced changes in their stream cross-sections during the study.  This displays that 

stream cross-sections changes and scouring occur frequently in this watershed. 

  In summary, the method of looking at outliers within scaling relationships did not 

appear to be effective at detecting tile drain input.  This was likely due to a number of separate 

underlying technicalities and theoretical flaws within the methodology.  Despite not observing 

the expected pattern with the outlier data, there were a couple of patterns within the data (Sites 3 

and 7) as the result of various phenomena. 
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Figure 62.  Stage hydrograph of Site 5 during Storm 17.  The sudden drop in stage is possibly 

the result of a beaver dam that burst downstream during the storm. 

 
 

Figure 63.  Picture of site 5 before storm 17.  Notice the ripple section is not present. 
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Figure 64.  Streambed scouring and bare clay beneath the pressure transducer at Site 5 after 

Storm 17.  Note the transition from the scoured pool section of the stream to the run with larger 

cobbles and boulders. 

 

 
 

Figure 65. The streambed morphology changed after Storm 17.  The storm moved cobbles and 

boulders, from near the pressure transducer and bridge, downstream to the area with ripples.  

This invalidated the rating curve at Site 5 for any measurement after the morphologic change. 



70 

Outliers in the Mean Baseflow Scaling Relationships 

I created three scaling relationships that plotted the drainage area against the mean 

baseflow.  The first scaling relationship is from tileflow conditions during the early summer, the 

second is from no tileflow conditions, and the third is from tileflow conditions during the fall and 

winter (Tables 8-10).  Interestingly, there seems to be limited overlap between outliers that 

occurred during baseflow conditions with outliers that occurred during storm events.  For 

example, the outliers during the early summer tileflow period were Sites 4 and 6.  Neither of 

these were outliers during any of the storm events during that same period.  The two examples of 

overlap between outliers during baseflow conditions and outliers during storm events, is Site 3 in 

the no-tileflow period and Site 3 in the fall / winter tileflow period.  Rating curve bias could be a 

factor in this, but it is difficult to conclude on a reason for why any particular site would be an 

outlier. 

Additionally, the early summer and fall / winter baseflow scaling relationships both have 

more common outliers with the no-tileflow period than they do with each other (Tables 8-10).  

Site 6 is a lower outlier during the early summer tileflow and no-tileflow periods, and Sites 2 and 

3 are outliers during the no-tileflow and fall/winter tileflow season. The two tileflow periods 

share no common outliers.  A potential explanation for this is that the no-tileflow period may be 

representing a transition zone between separate seasons in the watershed, which appear to bear 

particular outliers.   

Coefficients of the Scaling Relationships 

A scaling exponent of one implies that runoff is evenly distributed into a stream 

throughout the watershed.   A scaling exponent of less than one signifies that proportionally less 

runoff is entering the stream in the lower watershed than in the upper watershed, while a scaling 



71 

exponent greater than one signifies that more runoff is entering the stream in the lower watershed 

than in the upper watershed (Galster, 2007).  The scaling exponent means at Money Creek were 

statistically different between tileflow and no-tileflow, 1.109 and 0.86, respectively.  This 

indicates that proportionately less runoff was contributed by the downstream watershed drainage 

area during no-tileflow period storms; while proportionally more discharge was contributed by 

the downstream watershed drainage area during tileflow period storms.   

Overall, these means were both larger than what the literature would suggest.  One study 

found a nationwide range of regional averages to be 0.4 – 0.9, and the region that Money Creek 

exists in was found to have an average of 0.63 (Winton and Criss, 2016).  However, other 

national studies have found wider ranges, such as 0.3 – 1.6 (Kroll et al, 2014).  Though the 

scaling exponent means at Money Creek were surprisingly high, it is important to remember that 

it is just from an individual stream, rather than an average taken across many streams in this 

region. Studies have shown individual streams to have a widely varying scaling exponent for 

each individual storm event (Lee et al, 2009; Galster et al, 2006).   

These high means could potentially be an indication of anthropogenic influence in the 

Money Creek watershed.  Studies have found that it is rare for watersheds to naturally have 

scaling exponents greater than one.  For example, a study of the little Lehigh Creek watershed, a 

254 Km2 watershed in Pennsylvania, had an average scaling exponent of 1.81 (Galster, 2006). 

The scaling exponent was greater than one because the upper part to the watershed was a 

forested region, while the lower part of the watershed was an urban region.  Impervious surfaces 

in the urban region allowed for greater runoff in the lower section of the watershed than the 

forest allowed in the upper region of the watershed, allowing the scaling exponent to become 

larger than one.  The Money Creek watershed used in this study has an almost entirely 
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agricultural land cover, though agricultural land use or tile drainage, could potentially be 

increasing runoff in the lower section of the watershed.   

The Image from a remote sensing project shows that, qualitatively, the lower section of 

the watershed has a greater concentration of red shading, while the upper watershed part of the 

watershed has a greater concentration of blue or white / grey shading (Appendix A).  This 

suggests that the lower section of the watershed has more tile drainage, while the upper 

watershed is more poorly drained.  More tile drainage in the lower watershed would have the 

effect of increasing the scaling exponent value, which corresponds the high scaling exponent 

values seen in this watershed.  The high scaling exponents in the Money Creek Watershed may 

simply be the result of spatial variation of tile drainage throughout the watershed.   

The pattern of scaling exponents seen during storm scaling relationship was similar to the 

mean baseflow scaling relationships as well.   The scaling exponent during tile flow in early 

summer and fall / winter, were 0.996 and 1.112, respectively. The no tileflow scaling exponent 

was 0.93.  These values are more consistent with the literature, as a study found the regional 

average for mean discharge to be 0.98 in Money Creek’s physiographic region (Winton and 

Criss, 2016).  

In summary, the scaling relationship coefficients in Money Creek are higher than 

expected.  This may be the result of a higher concentration of tile drainage in the downstream 

section of the watershed that allows better drainage and more runoff to be transported to the 

stream.   

Patterns in Coefficients during Tileflow and No-tileflow 

A nationwide study of scaling exponents in United States’ rivers, ranging in drainage area 

of 1 km2 - 100,000 km2, found that higher scaling exponents tended to occur in regions with 



73 

limited sunshine and low evapotranspiration, while lower scaling exponents tend to occur in 

regions with abundant sunshine, and high evapotranspiration (Winton and Criss, 2016). The 

tileflow period at Money Creek occurs during times of the year where sunshine and 

evapotranspiration are lower.  The no-tileflow season occurs during the middle of the summer, a 

time of the year that has relatively high sunshine and evapotranspiration, consistent with the 

lower scaling coefficient during this period.     

An additional study of 9,322 gauging stations across the United States showed that the 

scaling exponent is lower when precipitation is lost to soil moisture storage and 

evapotranspiration (Medhi and Tripathi, 2015).  During the no-tileflow period at Money Creek, 

evapotranspiration is higher than precipitation and there is a net loss of soil moisture.  This 

means that precipitation often is evapotranspired or stored in soil before it can reach Money 

Creek, which leads to a lower scaling exponent.  Ultimately, conditions that cause lower scaling 

exponents and no-tileflow conditions likely coincide with the summer, rather than there being a 

causal relationship between no-tileflow periods and lower scaling exponents.  The same factors 

that the literature has shown to cause regional differences in scaling relationships also appear to 

cause seasonal differences in scaling relationships in the Money Creek watershed.  A larger 

dataset with more scaling exponents would be beneficial to provide more confidence in 

interpretations and to gain more insight into the phenomenon that the means between tileflow 

and no-tileflow are statistically different.  

Peak Discharges during Tileflow and No-tileflow 

Peak discharges have the potential to be higher during the tileflow period because 

baseflow is higher during the tileflow period than during the no-tileflow period.  If a section of 

stream has the same magnitude storm event during tileflow as during a no tileflow period, all 
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other variables aside, the tileflow event would have a larger peak discharge, because the starting 

baseflow is larger than during no-tileflow.  The majority of the largest discharge events did occur 

during tileflow periods, but this does not mean that tileflow events unequivocally have higher 

discharge than no tileflow events.  For example, Storm 8 at Site 7, 2.79 m3s-1, occurred during 

the no-tileflow period, yet is the largest discharge event at Site 7 (Fig. 27).  Storm 9, 1.66 m3s-1, 

occurred during the no-tileflow period and was also a large storm event.  If this same magnitude 

of storm occurred in June during the tileflow period, it would have likely exceeded the discharge 

of Storm 1, 1.79 m3s-1, and have been an even larger event.  However, because baseflow is so 

low during the no tileflow period, it is a smaller event than Storm 1.  

There was a shift in baseflow by season in the hydrographs.  This shift particularly stands 

out at Site 7 (Fig. 27).  During the early summer tileflow period, late May and June, baseflow 

was much higher than it was for the rest of the year - around 0.5 m3s-1.  By the end of June, 

baseflow began to rapidly decrease to around 0.2 m3s-1, and the stream quickly entered the no-

tileflow period by July 7.  By the beginning of August, baseflow went to its lowest of the year 

and approached a discharge of zero.  Around September 15, Money Creek re-entered into a 

tileflow period.  Though baseflow was never as high as it was in early June, baseflow remained 

above levels seen in August, despite lengthy periods between storm events. Additionally, 

recession curves after storms were much less steep than those in the no-tileflow period.  

Ultimately, the shift in baseflow throughout the seasons influences the peak discharge of a storm 

event.  Higher baseflow promotes higher peak discharge events.  
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Hydrologic Conditions during Tileflow and No-tileflow  

I hypothesized that double or extended peaks would exist during tileflow season due to 

the differences in timing between when overland flow and tile drainage enters the stream.  

Additionally, I expected that the double and extended peaks would disappear during the no-

tileflow period.  There are many dual peaks and extended peaks throughout the study period 

(36.9%), but these peaks did not appear to be restricted to tileflow conditions (Tables 10-12). 

Besides tile drainage, an additional cause for double peaks in a hydrograph is precipitation 

patterns.  One mechanism for this would be if there were a storm with multiple bouts of rain, 

with a period between the rounds that had no, or much lower intensity of, rain.  Additionally, 

variation in precipitation between different areas in the watershed could cause double peaks or 

extended peaks in a hydrograph.  For example, if an upstream site received very heavy rainfall 

and a downstream site received a much lesser amount of rainfall, the sudden pulse of water from 

the upstream site could create a double peak or extended peak in the hydrograph.  

It is not possible to completely answer this research question due to the lack of 

precipitation data in the watershed.  I did not deploy rain gauges at each site until September 23, 

so it is not possible to determine whether double peaks before that time are precipitation or tile 

drain induced.  Regional precipitation data do not provide the necessary precision needed to 

evaluate site-specific double peaks.  I examined data from these rain gauges to try to identify if 

double or extended peaks from Storms 16 - 22 were from tile drainage or variation in 

precipitation.  The summary table shows that for the period where rain gauge monitoring 

occurred, there were double and extended peaks seen in all storms, except Storm 20 (Table 13).  

Intermittent precipitation and tile drains can explain these double peaks, while some have an 

unknown cause.   
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Intermittent precipitation is one possible explanation for many of the double or extended 

peaks seen.  An example of a double peak caused by intermittent precipitation is the double peak 

seen at Site 1 during Storm 17 (Fig. 66).  The hydrograph shows an initial peak on the morning 

of the 23rd of November.  Afterwards, the discharge starts to decrease slowly.  Six hours later 

the discharge starts to increase and eventually reaches to a second peak.  The pattern seen in the 

hydrograph matches the pattern seen in the precipitation gauges.  The precipitation gauge shows 

an initial event during the night of the 22nd and the early morning of the 23rd (Fig. 67).  There is 

a six-hour gap with minimal precipitation.  A second wave of precipitation begins at 7 am on 

November 23rd. These two rounds of precipitation correspond to the peaks seen in the 

hydrograph.  This leads me to conclude that the double peak seen at Site 1 during Storm 17 was 

the result of an intermittent participation pattern.  Many of the other storm events across all sites 

that have double or extended peaks show a similar correspondence between the hydrograph and 

precipitation data. 
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Figure 66.  Hydrograph of Site 1 during Storm 17. 

 

 
Figure 67.  Hourly Precipitation data for Site 1 during Storm 17. 
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A fascinating phenomenon was observed during this two round storm event. Despite 

getting a similar amount of precipitation during the first and second rounds of precipitation (1.6 

cm and 1.4 cm, respectively) the second round of precipitation caused a much greater increase in 

the hydrograph.  This supports the idea that precipitation that occurs when soil is saturated will 

cause a greater spike in the hydrograph than a similar event that occurs when the soil is 

unsaturated.  The first storm caused a small spike in the hydrograph, but occurred on what was 

presumably unsaturated soil.  The previous major storm event occurred twenty days earlier on 

the 3rd of November.  The unsaturated soil likely collected much of the water and was able to 

dampen the effect that the precipitation had on the hydrograph. Despite the second precipitation 

event being a similar quantity to the first round, it produced a much larger spike in the 

hydrograph, because the previous round of precipitation that occurred six hours earlier had 

saturated the soil.  This meant that most of the precipitation from the second storm was runoff 

that went directly into the stream and caused a much larger spike in the hydrograph.  

During Storm 21 in January, Sites 1-8 exhibited a second small peak or an extended peak 

during the falling limb of the hydrograph.  All eight sites had this same affect and none displayed 

any precipitation that could contribute this second or extended peak.  For example, in the 

hydrograph of Site 2, during the falling limb of the storm on January 18th, there was a small 

sudden increase in discharge until around January 19th, when the falling curve continues to 

decrease (Fig. 68).  The rain gauge data showed the initial precipitation associated with the 

storm, but there was no precipitation on January 18th during the time of the second peak that 

could have caused this increase in discharge (Fig. 69).  This small second peak is probably the 

result of tile drains in the stream.  After the initial surge of water, the hydrograph started to 

recede.  By January 18th precipitation from the storm on January 16th and 17th could have 
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percolated through the glacial till, allowed through unseasonably warm temperatures, and raised 

the head of the groundwater table.  This would causes a sudden increase in the discharge flowing 

through tile drains into the creek.  As the hydrograph recedes to a certain stage the influx of 

discharge from the tile drains cause the discharge in the stream to have a small second peak or to 

flat-line for a period of time. Though baseflow could also be playing a factor in this, it is more 

likely that hydraulic conductivity in the surrounding soil is too low to solely manifest an 

extended peak, and almost certainly not a second peak.  The tile drains act as hydrologic 

“superhighways” that allow groundwater to quickly travel through fields and enter the stream, 

thus causing a double or extended peak.  
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Figure 68.  Hydrograph of Site 2 during Storm 21. 

 

Figure 69.  Hourly Precipitation data for Site 2 during Storm 21. 
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Double peaks caused by intermittent precipitation often occur during the raising limb of 

the storm, while double peaks caused by tile drains often occur during the falling limb.  This is 

likely related to the fact that a second round of precipitation will often cause a larger peak 

discharge than the first round, due to soil being saturated from the first round of precipitation.  

Conversely, water that enters a stream from tile drains will likely enter the stream during the 

falling limb, because tile drain water is slower to enter the stream because it first needs to 

infiltrate the soil (Birkinshaw, 2008).  These properties are why there is the pattern of dual peaks 

from intermittent precipitation often occurring on the rising limb, while dual peaks caused from 

tile drains often occur during the falling limb.  

While most double peaks were explained by intermittent precipitation or tile drains, there 

are five sites during Storm 16 that have a large double peak, and no obvious cause. The falling 

limb of the hydrograph during Storm 16, on November 3rd at 11 a.m., shows a sudden spike in 

the hydrograph and the discharge at Site 4 goes from 0.55 m3s-1 to 0.93 m3s-1 in an hour and a 

half (Fig. 70).  This double peak first appears at Site 3 and translates down through the rest of the 

stream sites.  The last precipitation during this storm event occurs during the evening of 

November 2nd and there is a subsequent 18-hour period without precipitation (Fig. 71), so the 

double peak on Sites 3-8 have no corresponding precipitation.  Tile drains are not likely the 

cause of this double peak, because this peak is so sudden and dramatic, while a double or 

extended peak caused by tile drains would likely be more subtle and would likely not have the 

necessary input of water to cause discharge to increase so drastically and to such large 

magnitude.  Thus, it is possible that there was some large and instantaneous input of water 

between Sites 2 and 3 around 11am on November 3rd, because the double peak does not 

manifest at Site 2 and first occurs at Site 3.  It could possibly be from a dammed drainage ditch 



82 

that was suddenly overtopped and released into the stream.  As the drainage area between Sites 2 

and 3 is entirely agricultural, the sudden pulse of water could have an anthropogenic origin.  

Ultimately, this sudden rise in the hydrograph is not seen during any other storm events, and the 

reason is unclear. 
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Figure 70.  Hydrograph of Site 4 during Storm 16. 

 

 
Figure 71.  Hourly Precipitation data for Site 4 during Storm 16. 
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In Short, double and extended peaks occurred during 36.9% of storms and throughout the 

entire study period.  It was interpreted that the two primary origins of them were intermittent 

precipitation and the lag time of water input associated with the difference in timing between 

overland flow and tile drainage.   

Scaling Relationships in Small Human-modified Streams with Tile Drainage 

This study is unique in that it is the first study to apply scaling relationships to a small 

human-modified stream with tile drainage. Previous hydrologic studies have primarily focused 

on larger streams, and those that focused on smaller streams were located in forested or arid 

regions, rather than an agricultural region.  Despite the uniqueness of this study, Money Creek is 

typical in many regards.  In the Midwest, most rivers are fed through a series of tributaries much 

like Money Creek. These tributaries are small, often modified by humans, and located in 

agricultural regions that employ tile drainage.  Because of the uniqueness of this research, this 

study brought to forefront a number of unique challenges and characteristics of this system.  

Though Money Creek is located in a rural area, it would be misguided to think that it is 

natural or unmodified by humans.  Humans have modified much of the upper section of Money 

Creek into a channelized stream with a trapezoidal cross-section.  This stream channelization in 

conjunction with tile drainage keeps the water table from becoming too high and allows excess 

precipitation to be quickly removed from the system, allowing for optimal crop production.  

An important result of this research was the high frequency of stream scouring and 

changing cross-sections within the stream channel (Sites 2, 5, and 7).  Though this presents a 

challenge in creating robust rating curves, it also highlights an important and surprising 

phenomenon.  General wisdom supports the idea that Money Creek would not have frequent 
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channel scouring or changing stream cross-sections; because it is a small stream within a region 

with little topographic relief, and thus does not have the potential energy required to cause 

frequent scouring or cross-sectional changes.  Human modification through tile drainage and 

stream channelization has produced a very flashy stream because runoff is quickly transported to 

the stream and rapidly moved downstream, thus producing high discharge runoff events that can 

be multiple orders of magnitude larger than baseflow (Figs 21-28).  These large discharge events 

provide the energy necessary to cause scouring and cross-sectional changes in the stream.  

Additionally, a study at Little Kickapoo Creek, a similar stream in the same county as Money 

Creek, found that the streambed was dominated by fine grained sediment, which allowed for a 

more mobile streambed than seen within mountain streams (Peterson et al, 2008). A final aspect 

to consider is that a channelized stream may be out of morphologic equilibrium, and more prone 

to erosion or scouring.  Ultimately, scouring and cross-sectional changes to Money Creek are 

largely the result of human modification.  

Human modification is also responsible for the double peaks from tile drainage observed 

in this study.  Lag-time between overland flow and tile drainage caused these double peaks. 

Ultimately, the origin of this lag time was human modification, thus creating a system that can 

have lag time between overland flow and tileflow, rather than the natural system with would 

have had unimodal runoff.  

The primary focus of this study was looking at peak discharge scaling relationships.  The 

results of the study, such as the double peaks caused from tile drainage, suggest that tile drains 

are most dominant on the recessional limb of the hydrograph.  Therefore, future studies that want 

to examine how tile drains affect stream hydrology should focus on the recessional limb of the 

hydrograph 
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CHAPTER V: CONCLUSION 

 

I created scaling relationships, of discharge and drainage area, for each storm event and 

the mean baseflow of the different tileflow periods during the study.  Overall, this method was 

not effective for detecting tile drain input into Money Creek, because there were not major 

differences in the outliers of the scaling relationships between the tileflow and no-tileflow 

periods.  Patterns in the data suggest that outliers may exist due to heterogeneous precipitation 

patterns.  Additionally, the study shows that streambed morphology in the study region is 

dynamic, as three of eight sites had cross-sectional changes caused from storm events during this 

study.  The scaling relationships proved an effective supplementary tool to detect changes in 

stream-cross sections.    

The scaling exponent means between the tileflow and no-tileflow period were statistically 

different.  This is likely because, factors that studies have shown to cause regional differences in 

scaling exponents (evapotranspiration, soil moisture storage, and sunshine) are causing seasonal 

differences in the scaling exponent within the Money Creek watershed.  Analysis of the 

hydrograph showed that peak discharges have the potential to be higher during the tileflow 

period, because baseflow is higher.  

36.9% of storms had double or extended peaks.  Though a comparison between tileflow 

and no-tileflow was not possible due to limited precipitation data, I observed examples of double 

peaks from intermittent precipitation and tile-drains from available data.    
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APPENDIX A: ADDITIONAL IMAGES 

 

 

Figure A – 1. Map produced through remote sensing project. 
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APPENDIX B: REMOTE SENSING POWER POINT PRESENTATION 
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