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Leishmaniasis, as defined by the Center for Disease Control and Prevention, is a 

neglected tropical disease with 1.6 million new cases reported each year. However, there is yet to 

be safe, effective, and affordable treatments provided to those affected by this disease 

(Leishmaniasis, 2016). Still underappreciated as potential pharmaceutical targets, especially for 

cutaneous leishmaniasis infections, are the two isozymes of secreted acid phosphatase (SAP), 

secreted acid phosphatase 1 (SAP1) and secreted acid phosphatase 2 (SAP2).  These enzymes are 

involved in the survival of the parasite in the sand fly vector, and the prevention of host 

macrophages from forming parasitophorous vacuole and hydrogen peroxide (Fernandez Soares, 

Saraiva, Meyer-Fernandez, Souto-Padron, 2013;M. Baghaei and M. BAGHAEI, 2003). Thus, the 

kinetic behavior of these SAPs is of interest. Vanadium (V5+), specifically the monomeric 

oxyanion orthovanadate (VO4
3-), is reported to be a competitive inhibitor of phosphatases 

(VanEtten, Waymack, Rehkop, 1974; Abbott, Jones, Weinman, Backhoff, McLafferty, 

Knowles,1979; Knowles, 1980; Gressor, Tracey, Stankiewwicz, 1987; Gordon, 1991; Li, Ding, 

Baruah, Crans, Wang, 2008). Orthovanadate serves as a known competitive inhibitor for the 

enzyme inhibition experiments done in the research presented here. The application of electric or 

electromagnetic fields as a medicinal therapeutic is not new (Holden, 2017). The utility of 



applying electric fields for the treatment of leishmaniasis is under studied (Hejazi, Eslami, 

Dalimi, 1972), and the application of electric fields to Leishmania secreted acid phosphatases has 

not yet been reported. The results of such studies using L. tarentolae as a model system, with and 

without the addition of orthovanadate, are reported here. Furthermore, the effect specific electric 

fields have on the kinetic parameters of L. tarentolae SAPs are also reported. 
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 CHAPTER I  

INTRODUCTION 

Leishmania, Leishmaniasis, and Current Treatment Options 

Leishmaniasis is defined by the Center for Disease Control and Prevention as a neglected 

tropical disease carried by the sand fly vector. It affects populations in Asia, India, the Middle 

East, Africa (particularly in the tropical region and North Africa, with some cases elsewhere), 

Central and South America and southern Europe (Leishmaniasis, 2016). No cases of 

leishmaniasis have been reported in Australia or the Pacific islands. This disease is caused by 

any of 20 species of the parasitic protozoan Leishmania (Leishmaniasis, 2016). Leishmaniasis 

presents clinically in three forms: visceral, cutaneous, and mucocutaneous (Leishmaniasis, 

2016). Over 1.6 million new cases of leishmaniasis are reported yearly (Leishmaniasis, 2016), 

and current treatment options include: pentavalent antimony salts, amphotericin B, liposomal 

amphotericin B, ketoconazole, itraconazole, and fluconazole (Leishmaniasis Professionals, 

2016). Treatments can cost from $ 20-$252 USD per day, and treatments can last from 20 days 

to 4 months or longer depending on how long it takes for the lesion to heal (World Health 

Organization Leishmaniasis Treatment Cost, 2017). Leishmania diseases are becoming more 

wide spread, and there are few good drug therapies, thus new directions of treatments should be 

explored. As a consequence of sequencing Leishmania major and Leishmania infantum 

genomes, a large number of potential new drugs targets have been identified (Chawla, 

Madhubala, 2010). These potential drug targets include: the sterol biosynthetic pathway, the 

glycolytic pathway, the purine salvage pathway, nucleotide transporters, purine salvage enzymes, 

the glycosylphosphatidylinositol (GPI) pathway, protein kinases, mitogen-activated protein 

kinases (MAP kinases), proteinases, folate biosynthesis, the glyoxalase system, the trypanothione 
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pathway, topoisomerases, and the hypusine pathway (Chawla, Madhubala, 2010). However, non-

drug treatments affecting these or other potential targets may also be of value in treating 

leishmaniasis. 

Phosphatases 

Phosphatases are hydrolytic enzymes (EC 3.1) that are responsible for the hydrolysis of 

phosphoesters from substrate producing a phosphate and an alcohol (ExPASy, 2016). There are 

three general types of phosphatases; acid phosphatases, neutral phosphatases, and alkaline 

phosphatases (Vincent, Crowder, Averill, 1992; Gani, Wilkie, 1997). These enzymes are 

categorized based upon their pH optimum. Most relevant to this thesis work are acid 

phosphatases. Acid phosphatases are located, in humans, in the cellular components of bone, 

spleen, kidney, liver, intestine, and are also found in the blood (Henneberry, Engel, Grayhack, 

1979). The pathogenesis of Leishmania changes during the life cycle from the amastigote form 

to the promastigote form of the parasite. (Mojtahedi, Clos, Kamali-Sarvestani, 2008). In vitro 

parasites in the stationary phase of their growth curve are more infective to macrophages than are 

parasites in the logarithmic phase (Mojtahedi et al., 2008). It has also been reported that the 

kinetic parameters of secreted acid phosphatases isolated from the in vitro stationary phase of 

Leishmania major change, such that the enzymes have a larger Vmax and a smaller Km compared 

to the logarithmic phase enzyme (Navabi, Soleimanifard, 2015). Leishmania secreted acid 

phosphatases are established to play several roles during the life cycle of the parasite, including: 

aiding in the survival of the parasite in the sand fly alternative host (Fernandes, Soares, Saraiva, 

Meyer-Fernandez, Souto-Padron, 2013), and formation of the parasitophorous vacuole, thus 

preventing macrophages from forming hydrogen peroxide (M. Baghaei, M. BAGHAEI, 2003). 
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Thus, Leishmania secreted acid phosphatases are of interest as potential pharmaceutical targets 

for the treatment of leishmaniasis.  

L. tarentolae Secreted Acid Phosphatase Enzymes 

Secreted acid phosphatase enzymes are defined as proteins with phosphatase activity that 

are released from cells into the medium. In general, they are large molecular weight glycoproteins 

that in some Leishmania species are reported to be up to 70 % (w/w) carbohydrate (Ilg, Stierhof, 

Etges, Adrian, Harbecke, 1991). These proteins have both N- and O- linked sugars. The O-linked 

carbohydrate polymers are reported to be up to 32 repeat units in length (Lippert, Dwyer, Li, 

Olafson, 1999). There are at least two genes reported for Leishmania (Shakariana, Ellisa, 

Mallinsonac, Olafsonb, Dwyera, 1997). Furthermore, it is reported that these enzymes promote 

parasite survival in the sand fly, and promote the formation and evolution of the parasitophorous 

vacuole, in host macrophages, by dephosphorylating macrophage membrane proteins, thus 

preventing macrophage hydrogen peroxide production (M. Baghaei, M. BAGHAEI, 2003). 

Furthermore, the flagellar pocket of Leishmania is specialized, and is the location for the discharge 

of the two different secreted acid phosphatases, the most regularly secreted protein for Leishmania 

major, the human parasite (Isnard, Shio, Oliver, 2012; Fernandes et al., 2013). L. tarentolae, which 

infect reptiles but not humans, have also been shown to secrete acid phosphatases (Mendez, 

Dorsey, McLauchlan, Beio, Turner, Nguyen, Su, Beynon, Friesen, Jones, 2014).  

L. tarentolae  serves as a good model system for the investigation of the two Leishmania 

secreted acid phosphatases for several reasons. First, L. tarentolae are easy to grow, and their 

growth in culture is easily assessed. L. tarentolae do not infect humans, thus are less risky to work 

with. L. tarentolae have utility in the macrophage model system used to assess infectivity. Finally, 

L. tarentolae are sensitive to current treatment options, thus therapeutics that are effective in this 
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model system may also work on the L. major species (Taylor, Munoz, Cedeno, Velez, Jones, 

Robledo, 2010). Furthermore, to test the role of N-linked carbohydrate found on L. tarentolae 

secreted acid phosphatases, cell supernatants containing these enzymes can be incubated with 

PNGase F, a glycosidase. PNGase F is a glycoaminidase, thus cleaving the N-C bond between 

asparagine and N-acetylglucosamines (PNGase F, 2017). These incubations will allow the 

investigation of the role of N-linked carbohydrate in secreted acid phosphatase enzyme activity.   

Electric Fields Applied as a Therapeutic, in General 

Electromagnetic fields are composed of an electric component, and a perpendicular 

magnetic component. When applying an electric field to a biological sample, two types of 

processes may occur: Faradaic or non-Faradaic processes. Faradaic processes are electron 

transfer reactions, where as non-Faradaic process involve reorientation of solvent molecules and 

charges at the electrode surface (Merrill, Bikson, Jefferys, 2005). Electrons move from potentials 

that are more negative to potentials that are more positive. When applying cathodic current 

(negative voltage) to a biological sample, thus making the sample’s potential more positive than 

the electrode, electrons move from the electrode to the sample. Cathodic current (Cat.) is thus 

reductive to the sample. Furthermore, while making the medium of the biological sample more 

negative, the cell potential becomes more positive. The cell potential is relative and is based on 

the charge outside of the cell versus the charge on the inside of the cell. As the exterior of the 

cell becomes more negative, the interior of the cell becomes relatively more positive, thus 

potentially causing depolarization for voltage-gated processes (Biophysics of Membrane 

Potential, 2017). When applying anodic current (positive voltage), the biological sample 

becomes more negative, thus electrons are transferred from the sample to the electrode (Merrill 

et al., 2005). Anodic current (And.) is thus oxidative to the biological sample. Furthermore, 
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while making the medium of the biological sample more positive, the cell potential becomes 

more negative. As the exterior of the cell become more positive, the interior of the cell becomes 

relatively more negative, thus potentially causing hyperpolarization for voltage-gated processes 

(Biophysics of Membrane Potential, 2017). The Food and Drug Administration has approved the 

application of electromagnetic fields, with differential properties, for the following indications: 

electric bone growth stimulators, for the treatment of non-union fractures, failed joint fusion 

following arthrodesis, failed spinal fusion, congenital pseudoarthritis, palliative treatment of 

post-operative edema and pain, and major depressive disorder  (Holden, 2017).  Many of the 

mentioned potential drug targets for the treatment of leishmaniasis have some component that is 

voltage regulated. Some examples include the following. The movement of acetyl-CoA from 

within the mitochondria to the cytoplasm that requires transport of pyruvate across the inner and 

outer mitochondrial membranes. The outer mitochondrial membrane pyruvate transporter is a 

voltage regulated membrane protein (King, 2017). MAP kinases have been reported to be 

regulated by a calcium/calmodulin-dependent protein kinase cascade that is itself regulated by 

secondary messenger Ca2 + (Enslen, Tokumitsu, Stork, Davis, Soderling, 1996). If calcium 

concentrations in cells are affected by the movement of calcium inward through voltage gated 

calcium transporters, these processes will be impacted. The importance of these processes in 

normal cellular metabolism warrant the investigation of their response to the application of an 

electric field for therapeutic treatment of leishmaniasis.  

As a therapeutic, electricity has been applied to L. major in culture, and has been applied 

to two different types of mouse models, Naval Medical Research Institute (NMRI) strain or Bagg 

Albino (BALB/c) strain, for the treatment of pre-existing L. major lesions (Hejazi, Eslami, 

Dalimi, 1972). These authors tested the following conditions: 3, 6, 9, or 12 Volts with current 
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ranging from 0.19-10.65 mA (Direct current). Their in vivo experiments showed that when the 

electrodes were placed 2 cm apart, direct voltages of 3, 6, 9, and 12 volts at various currents 

killed all L. major promastigotes. Furthermore, when the electrodes were 2 cm apart, the 

application of 3 volts for 10 minutes caused the pH to drop from 7 to 4. This drop in pH has 

several physical and chemical implications. First, the drop in pH occurred due to the oxidation of 

water (see equation 1).  

2 H2O (l) � 4 H+ (aq) + 4 e- + O2 (g)       Equation 1. 

Because electrons were removed from water to produce protons (hence the drop to more acidic 

pH), we infer that the driving force for this reaction was the applied voltage. To cause the oxidation 

of water, this applied potential must have been anodic, or positive voltage, in character. Thus, these 

authors investigated the effects of anodic waveforms on L. major.  

Hejazi et al. (1972) treated L. major infected mice with electricity that was applied twice a 

week for three weeks after the inoculation of 4-6 week old mice (NMRI or BALB/c) with L. major 

(106 stationary phase parasites). The diameter of skin lesions was measured as a metric to 

determine the effectiveness of the electrical therapies. The NMRI mice with infection, but with no 

treatment, reached a maximum lesion diameter of ~4 mm and spontaneously healed completely by 

week 10. The NMRI mice with infection and electrical therapeutic (3 V, 0.05 mA for 10 min) 

reached a maximum lesion diameter of 2.5 mm, and were healed completely at 6 weeks. Thus, in 

the NMRI mice, electricity was therapeutic, and lead to remission of lesions with no reoccurrence 

up to 23 weeks (the duration of the study). It should be noted that the control mice were also in 

complete remission at 23 weeks, but their remission took longer to initiate (10 weeks).  The 

BALB/c mice with infection, but with no treatment, reached a maximum lesion diameter of ~16 

mm and were all dead by week 20. The BALB/c mice with infection and electrical therapies (3 V, 
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0.05 mA for 10 min) reached a maximum lesion diameter of ~17 mm, and were still alive at 23 

weeks. The electricity treated mice had lesions the same size as the control from weeks 1-3. At 

week 3 electricity treatment occurred, and the control lesions continued to grow while the treated 

lesions reached a minimum of ~0 mm at week 8. On week 9 the treated lesions began to grow 

linearly, and reached a maximum diameter of ~ 17 mm at week 23, at which point the study ended 

(Hejazi et al., 1972). These data indicate that electricity applied as a therapeutic does have an effect 

on lesion size, but depending on the species of mouse, the lasting effect is different, and thus 

different therapeutic durations may be required. The authors did not speculate on the therapeutic 

mechanism.  

Electric Fields for the Purpose of Affecting L. tarentolae Motility, Clumping, Cell Viability, 

and Secreted Acid Phosphatase Activity 

With this in mind, we propose evaluating the effects of applying electric fields to L. 

tarentolae. We wanted to test the ability of L. tarentolae to secrete acid phosphatases, the 

catalytic activity of secreted acid phosphatases, as well as cell motility (as evaluated by 

microscopy), and cell viability (MTT assay).  We are especially interested in the potential effect 

of the application of an electric field to induce or inhibit the release of secreted acid phosphatase 

from Leishmania since it had reported that Leishmania secreted acid phosphatase (SAP) has an 

important role in the infectivity by Leishmania (Vannier-Santos, Martiny, de Souza, 2002).  

Thus, these data have implications for clinical treatments of cutaneous Leishmania infections. 

Vanadium Background, Vanadium Human Exposure, Vanadium Chemistry and 

Speciation 

Vanadium, element number 23, is found in the soil, water and air, and can enter the 

human body through the lungs or digestive tract (Agency for Toxic Substances and Disease 
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Registry, 2016; Rehder, 2013).  Atmospheric vanadium is found in dust, marine aerosol, and 

volcanic emissions. Air is typically not a large source of vanadium exposure for humans. 

Cigarette smokers are exposed to approximately 4 µg of vanadium per cigarette smoked (Agency 

for Toxic Substances and Disease Registry, 2016). Water and soil are likely the greatest sources 

of vanadium, other than food supplements, that humans are exposed to. Water and soil can 

typically contain 0.04-220 µg/L vanadium (Agency for Toxic Substances and Disease Registry, 

2016). The typical total amount of vanadium in humans is 1 mg (Rehder, 2013). Vanadium is a 

very versatile element and has 5 common oxidation states available, with the vanadium (V) 

oxidation state being the overwhelmingly dominant species in aqueous solution. Vanadium 

forms covalent adducts with oxygen, which produce numerous different species of vanadium in 

its (V) oxidation state as a function of pH (Figure 1, Baes, Mesmer, 1976). 

Speciation of vanadium, specifically decavanadate speciation in acidic media, has been 

investigated (Figure 1, Baes, Mesmer, 1976). It is clear that under acidic conditions, protonation 

status changes either by deprotonation or cation exchange with the medium, and vanadium 

speciation is a function of vanadium concentration, solution pH, and ionic strength of the 

solution (F. Rossotti, H. Rossitti, 1956; Corigliano, Pasquale, 1975). Because of this, vanadium 

speciation, degree of protonation, and degree of proton displacement by cations in solution are 

likely different for solutions of different composition. Therefore, when using decavanadate or 

orthovanadate as inhibitors of phosphatases, it is not always clear what species are present, or 

what species are responsible for inhibition of the enzyme being assayed.  
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Figure 1. Vanadium (V) speciation as a mole fraction of total vanadium present at a given pH, 
over the typical pH scale (0-14) (Baes, Mesmer, 1976). This speciation diagram is for a 0.1 m 
vanadium solution 
 
 

 

Vanadium is a Potential Medicinal Agent as a Phosphatase Inhibitor 

It is well known that oxovanadium species act as phosphatase inhibitors (VanEtten et al., 

1974; Abbott, Jones, Weinman, Bockhoff, McLafferty, Knowles, 1979; Knowles, 1980; Gressor, 

Tracey, Stankiewwicsz, 1987; Gordon, 1991; Li, Baruah, Crans, Wang, 2008;). How vanadium 

acts as a phosphatase inhibitor is thought to be through the action of a vanadium (V) monomeric 

oxyanion, vanadate, mimicking a 5 coordinate high energy intermediate of the transition state 

phosphate, therefore behaving as a competitive inhibitor (Abbott et al., 1979; Knowles, 1980; 

Rehder, 2013). There are numerous crystal structures of phosphatases, with nitrogen-containing, 

oxygen containing, or sulfur-containing active site amino acids, deposited in the Protein Data 

Bank, that have been recently reviewed (McLauchlan, Peters, Willsky, Crans, 2015). These 
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phosphatases function to hydrolyze esters, phosphoesters, and phosphoanhydrides. These crystal 

structures had been soaked with vanadium complexes, the majority of experiments using 

orthovanadate, at pH values ranging from 5.40-8.00. The overwhelming majority of these 

phosphatases, regardless of the type of active site amino acid residues (O, N, or S containing), 

have a monomeric form of vanadium (VO3
2- or VO4

3-) present in the phosphatase active site 

upon solving the crystal structure. It should be noted at the used concentrations of vanadium and 

in this pH range, that di-, tri-, and tetrameric vanadium species are predicted to be the major 

forms of vanadium present, and not the monomeric forms (VO3
2- or VO4

3-) that are reported in 

the enzyme’s active site. Thus, there is a discrepancy between what one might hypothesize about 

the species responsible for inhibition (the major species present is responsible for the inhibition), 

and what one actually finds (a minor species present is responsible for the inhibition). 

Regardless, it is thought that these monomeric species are likely responsible for phosphatase 

inhibition. There is, however, a likely discrepancy between solid state speciation of vanadium 

that occurs under soaking conditions, and aqueous speciation of vanadium that occurs in 

enzymatic assays because crystal dynamic conditions are likely to be different than those of the 

more flexible protein under enzymatic assay conditions in terms of pH, ionic strength, and 

vanadium concentration. Therefore, the species of vanadium present in enzymatic assays cannot 

necessarily be assumed to be the same as the species present after crystal soaking experiments. 

To further stress the importance of speciation, crystallographic soaking studies that used 

metavanadate (50 mM) starting material, under acidic conditions (pH 5.0) produced protein 

crystals of B. stearothermophilus phosphatase with trivanadate, V3O8
2-, located in the putative 

active site, when in fact, the authors had expected to find orthovanadate, VO4
3- (PDB ID 1h2f., 

Rigden, Littlejohn, Henderson, Jedrzejas, 2003).  
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Using acid phosphatase amino acid sequence alignment from rat (APR. norvegicus 

EC3.1.3.2, PDB 1rpt) as a comparative model to Leishmania secreted acid phosphatases, it can 

be seen that there is in fact overlap between the reported vanadate binding residues in the APR. 

norvegicus and the L. mexicana acid phosphatases (SAP1L.mex gene accession number 

Z46969.1 and SAP2L.mex gene accession number Z46970.1). The gray and black highlights are 

the amino acids reported to be in the active site. Gray highlights indicate different amino acids 

between species. Black highlights indicate identical amino acids between species. Using the 

amino acid numbering from APR. norvegicus, the following residues are responsible for 

coordinating vanadate, Arg11, His12, Arg15, Arg79, and His257, and are highlighted in red in 

Figure 2. 

 

 

 
Figure 2. Multiple Sequence Alignment of three acid phosphatases. This sequence alignment was 
completed using Kalign and the BoxShade Server (Kalign, 2016; BoxShade Server, 2017) 
 
 
 

To further investigate the ambiguities of vanadium speciation and phosphatase inhibition, 

we use a previously published model (Baumhardt, Dorsey, McLauchlan, Jones, 2015) for 

comparing competitive enzyme inhibitors to compare decavanadate and orthovanadate as 

inhibitors of L. tarentolae secreted acid phosphatases. These studies can give insight into the 

clinical use of these and other vanadate complexes as anti-Leishmania therapies.  
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Because leishmaniasis is an endemic disease with costly treatment options, and multiple 

cellular targets, including acid phosphatases, here we investigated the effects that electric fields, 

with or without the presence of vanadium complexes, or glycosidase preincubation have on L. 

tarentolae in vitro for the purpose of discovering new, cheap therapeutics for the treatment of 

leishmaniasis. 
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CHAPTER II 

MATERIALS AND METHODOLOGY 

Cell Culture of L. tarentolae and Assessment of Cell Viability by the MTT Viability Assay 

L. tarentolae (ATCC 30143) promastigote cells were sterilely grown in brain heart 

infusion (BHI; 37.0 g/L) supplemented with hemin (10 µM), penicillin (10,000 units/ mL) and 

streptomycin (10 mg/ mL) following a published method (Morgenthaler, Peters, Cedeno, 

Constantino, Edwards, Kamowski, Jones, 2008). L. tarentolae cell viability was assessed by the 

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) viability assay (Mosmann, 

1983). The MTT assay serves as a quantitative measure (A595 nm) of cell mitochondrial 

activity, and therefore indirectly monitors cell viability. Sample absorbance at A595 nm was 

determined with an iMark microplate reader (BioRad Laboratories, Hercules, CA). The BHI 

growth medium alone was considered as a blank value subtracted from the sample absorbance 

(BHI and cells). Results are reported as corrected absorbance (A595 nm/Hr incubation with MTT 

reagent, or A595 nm/Hr incubation with medium only) mean ± standard deviation (SD) for n = 4 

replicates. In all cases where error bars less than 5 % were not shown. In this work, the parasites 

were grown at room temperature in 25 cm2 canted flasks (Corning, Inc.; Product number 

430372). Samples for assessment by MTT assay were collected daily using sterile technique.   

Microscopy of L. tarentolae  

Microscopic analysis of L. tarentolae for motility, shape, and clumping was undertaken. 

The parasites were observed microscopically to monitor the effect of each treatment on the 

parasite. A Jenco International, Inc. (Portland,OR) inverted compound microscope Model CP-

2A1 was used. This microscope can be adjusted to focus on cells at the bottom, middle, or upper 

focal planes of the culture flask which will allows observations of the parasite throughout the 
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culture medium. Images of cells (at 400x magnification) were taken using the camera on the 

Google Pixel cellular phone. Microscopy was performed on all L. tarentolae cell cultures daily.  

Preparation of the L. tarentolae Acid or Alkaline Phosphatase Enzyme Source 

A sample of L. tarentolae  from each stage of the growth curve (lag, log, stationary, and 

senescence) was collected and centrifuged (2000xg, 10 ºC, 10 minutes). The supernatant was 

collected and stored on ice until it was used for acid or alkaline phosphatase enzyme assays. The 

pellet was immediately resuspended in a volume of BHI equal to the volume of supernatant 

collected from that same sample. The pellets were then stored on ice until they were used in acid 

or alkaline phosphatase enzyme assays.  

Secreted Acid or Alkaline Phosphatase Enzyme Assay 

Secreted acid or alkaline phosphatase (SAP) activity was evaluated using para-

nitrophenyl phosphate (pNPP) as substrate following the method of Mendez et al. (2014). This 

assay at room temperature was performed in 1.5 mL polypropylene tubes in a total reaction 

volume of 0.9 mL. Sodium acetate buffer (500 µL, 0.5 M, pH 4.5) was used for acid phosphatase 

assays. Tris-Base (500 µL, 0.5 M, pH 8.3) was used for alkaline phosphatase assays. The enzyme 

source was L. tarentolae cell supernatant or pellet from each phase of the growth curve (300 µL). 

The substrate (5 mg pNPP/1mL buffer), made in sodium acetate buffer (0.5 M, pH 4.5) for acid 

phosphatase assays, or Tris-Base (0.5 M, pH 8.3) for alkaline phosphatase assays was added (100 

µL ) to start the reaction (500 µM final concentration). After room temperature incubation for 23 

hours, the reaction was stopped with addition of 100 µL of 10 M sodium hydroxide, and samples 

were vortexed. Product formation was measured by spectroscopy at A405 nm. BHI was used to 

replace enzyme source for spectrophotometric blanks. Data are reported as absorbance (A405 
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nm) per day in culture. Product (para-nitrophenolate) was calculated from corrected A405 nm/23 

Hr divided by molar absorptivity (18,000 cm-1* M-1) and reported as µM/ 23 Hr. 

Kinetic Enzyme Assay 

The order of addition of material to the kinetic enzyme assay was as follows. Sodium 

acetate buffer (500 µL, 0.5 M, pH 4.5) was used for acid phosphatase assays. The artificial 

substrate, para-nitrophenylphosphate (pNPP), was freshly prepared in buffer, then it was added 

to the assay to give final substrate concentrations of 2.0, 2.6, 3.0, 3.4, 3.7, 4.1, 4.5, 6.0, 8.8, 12.0, 

14.0, 18.0, 150.0, 200.0, 250.0, 300.0, 350.0, 400.0, 450.0, 500.0, 550.0, 1000.0, 2000.0, or 

4000.0 µM. Lastly, log phase L. tarentolae cell supernatant as enzyme source (300 µL) was 

added to the 1.5 mL polypropylene tubes to start the reaction. The final assay volume was 0.9 

mL (n=3). Assays were incubated at room temperature for 23 hours, previously determined to be 

under apparent first order conditions (Mendez et al., 2014), in the dark. To stop the reaction, 

sodium hydroxide (100 µL, 10 M) was added and the samples were vortexed. Product was then 

evaluated by spectroscopy (A405 nm). Spectrophotometric blanks were prepared using the same 

volumes of assay buffer and substrate as experimental samples, but the enzyme source was 

replaced with brain heart infusion medium, the same medium as the supernatant fraction, but not 

exposed to cells. 

Designing Waveforms for the Production of Electric Fields  

Using a comma-separated values (CSV) excel file, the waveforms to be applied to L. 

tarentolae whole cells or cell supernatant were generated. The number of data points (N) is used 

to determine the time resolution (S) of the signal. The resolution of the signal is the time between 

current applications. The larger the number of data points (N), the smaller the resolution (S) is.  
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For these experiments, N = 40,000. The frequency (F), defined as a cycle per second, was then 

used to calculate the period (T) of the waveform. 

T = 1/F          Equation 2 

The period and number of data points were used to calculate the resolution of the signal (S). 

S = T/N          Equation 3 

The excel file contained two columns, one column for time, and the other for the voltage 

that is entered into the waveform generator. Time zero will have a value of 0S. Time 1 will have 

a value of 1S. Time two will have a value of 2S, and so on to fill the 40,000 data points. The 

value of the voltage in the other column was either be zero or four. When the value is equal to 

zero, then zero voltage will be applied. When the value is equal to four, then an input of four was 

sent to the waveform generator (Singlet Function/Arbitrary Waveform Generator) and voltage 

was then generated from the electrode. To determine when the values of voltage are zero or four, 

the period of the waveform (T) was divided by three to generate three equal time points; the 

pulse width (PW), the interphase delay (IPD) and the space between cycles (CS). These three 

values add up to equal the period (T).  

T = 2PW + IPD + CS         Equation 4 

When the period is divisible by three, producing an integer value, the value of CS is equal 

to zero. When the period is not divisible by three, producing a non-integer value, the value of CS 

is the smallest value that will produce a period divisible by three. The following equations are 

also true: 

PW = IPD          Equation 5 

PW = (T-CS)/3         Equation 6 

PW = T/3 if CS = 0         Equation 7 
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To generate Figure 3, a data file containing forty thousand data points, N = 40,000, was 

used. For a frequency of 5000 Hz, F= 5000 s-1, thus T = 1/F, T = 1/5000, T = 2 * 10-4 seconds. 

The resolution was calculated as S = T/N, S = (2*10-4 seconds)/40,000, S = 5*10-9 seconds. The 

time points in the excel file started at zero and grew in increments of 5*10-9 s at each iteration. 

To determine the time of PW, and thus IPD, the period (T = 200 µs) must be divided into three 

equal parts. To do this, CS will have a value of 2 µs. Using equation 5, PW will be determined.  

PW = (T-CS)/3, PW = (200 µs - 2 µs)/3, PW = 66 µs 

PW, as calculated for a symmetric waveform, means the cathodic segment will be 66 µs 

and the anodic segment will be 66 µs. Using equation 4, IPD will be determined.  

IPD = PW, IPD = 66 µs 

 
 

 
Figure 3. A plot of time (µs) vs. voltage (mV) is shown for a symmetric biphasic waveform 
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In an excel file, the following spread sheet was written to generate the waveform in 

Figure 3. From 0-2 µs (The CS), in increments of 0.005 µs (Resolution, S), the voltage input was 

assigned to 0, thus producing 0 mV (CS1). This occupies 400 data points. From 2-68 µs, the 

voltage was assigned to 4, thus producing -180 mV (PWCat). This occupies 13,200 data points. 

From 68-134 µs, the voltage of 0 was assigned, thus producing 0 mV (IPD). This occupies 

13,200 data points. From 134-200 µs, the voltage of 4 was assigned, thus producing 180 mV 

(PWAnd). This occupies 13,200 data points. All 40,000 data points are thus be accounted for. CS2 

immediately follows PWAnd, and will have identical parameters of CS1. CS2 is the space between 

cycle one and cycle two. 

Electrode Tested 

The electrode used was a concentric bipolar electrode from FHC Neuro Micro 

TargetingTM Worldwide. Figure 4 is a model of the general shape of the electric fields that are 

applied to L. tarentolae whole cells or L. tarentolae cell supernatant. 

 
 

 
Figure 4.  Model of the general shape of the electric field that is applied to either L. tarentolae 
whole cells or cell supernatant is shown 
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Parameters of Tested Waveforms 

The waveforms were loaded on to a singlet arbitrary waveform generator. The following 

parameters of the waveform that produces the electric filed were modified using an isolator 

(World Precision Instruments stimulus isolator): frequency (50-10,000 Hz), current (0.1-1.0 

mA), polarity of the waveform (symmetric biphasic, cathodic, or anodic), and exposure time (2.5 

min-12 hours ) to the electric field. A simplified model of the experimental setup is shown in 

Figure 5. 

 
 

 
Figure 5. Simplified experimental model of setup to apply electric fields to L. tarentolae whole 
cells or cell supernatant 
 
 
 

Testing the Acute Effects of Electric Fields on L. tarentolae Growth Curves and Microscopy 

L. tarentolae were transferred from 25 cm2 canted flasks into 24 well plates (Falcon; 0.5 

mL per well), taking care to deliver a consistent number of cells  to each well. Using a singlet 

arbitrary waveform generator coupled to a stimulus isolator, an electrode was applied to these 

cells to expose them to a characterized electric field for a specific amount of time. After 

exposure to the electric field, L. tarentolae were assessed for cell viability by the MTT assay. 

Immediately following the application of an electric field, these cells were monitored by 

microscopy. Results were compared to cells not exposed to the electric field.  



20 
 

Testing the Effects of Electric Fields on L. tarentolae Acid Phosphatase Activity in 

Supernatant or Pellet (Cells), Method 1 

L. tarentolae were collected from the log phase of their growth curve, centrifuged 

(2000xg, 10 min, 10 ºC), and the supernatant was collected. The cell pellet was resuspended in a 

volume of BHI growth medium equal to the volume of supernatant collected. The supernatant or 

pellets were transferred  into a 24-well plate (Falcon, 0.5-2.0 mL per well). Using a singlet 

arbitrary waveform generator coupled to a stimulus isolator, a concentric bipolar electrode was 

applied to these samples to expose them to an electric field, or not (control). The samples 

exposed to the same type of electric fields, or not (control), were pooled and rested on ice until 

they were assessed by the acid phosphatase enzyme assay. The process is outlined in the flow 

diagram below in Figure 6. Data are plotted as percent different from same time control for n=3. 

Data were first evaluated by ANOVA, and those that were significantly different were further 

analyzed. When reporting percent different relative to the same time control, only those data that 

were statistically different in a paired, two-tailed t-test at the 0.05 level were reported.  
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Figure 6. Flow diagram of Method 1. Thus, method 1 allows testing of direct effects of electric 
field on the previously secreted enzyme 
 
 
 

Testing the Effects of Electric Fields on L. tarentolae Acid Phosphatase Activity in 

Supernatant or Pellet (Cells), Method 2 

L. tarentolae were collected from the log phase of their growth curve, and were then 

transferred from culture flasks to 24-well plates (Falcon, 0.5-2.0 mL per well), taking care to 

deliver a consistent number of cells to each well. Using a single arbitrary waveform generator 

coupled to a stimulus isolator (World Precision Instruments), a concentric bipolar electrode was 

applied to these samples to expose the cells an electric field, or not (control). The cells were 

collected. Cells that were exposed to the same type of electric fields or control cells were pooled. 

These pools were centrifuged (2000xg, 10 min, 10 ºC), and the supernatant was collected. The 

cell pellets were resuspended in a volume of BHI equal to the volume of the supernatant 

collected. The samples were rested on ice until they were used in the acid phosphatase enzyme 
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assays. The process is outlined in Figure 7. Data are plotted as percent different from same time 

control for n=3. Data were first evaluated by ANOVA, and those that were significantly different 

were further analyzed. When reporting percent different relative to the same time control, only 

those data that were statistically different in a paired, two-tailed t-test at the 0.05 level were 

reported. 

 
 

 
Figure 7. Flow diagram of Method 2. Thus, method 2 allows assessment of the effect of electric 
field on secretion of acid phosphatase from cells 
 
 
 

Secreted Acid Phosphatase Enzyme Inhibition Assay (Following the Method of Baumhardt 

et al., 2015) 

To determine which form of vanadium is most useful in L. tarentolae secreted acid 

phosphatase enzyme assays, decavanadate or orthovanadate, the method of Baumhardt et al. 

(2015) was used. Using the previously determined kM substrate concentration of 391 µM, the log 

ratio of substrate to total vanadium concentration in the assay was calculated for either 

orthovanadate or decavanadate (as shown in Table 1). This amount of substrate was used as a 
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first approximation of kM from previous work (Mendez et al., 2014) with the same enzyme 

source. 

 
 

Sample log[S]/[I] [Total Vanadium] mM [Decavanadate] mM [Orthovanadate] mM 

1 -2.0 3.91E+01 3.91E+00 3.91E+01 

2 -1.5 1.24E+01 1.24E+00 1.24E+01 

3 -1.0 3.91E+00 3.91E-01 3.91E+00 

4 -0.5 1.24E+00 1.24E-01 1.24E+00 

5 0.0 3.91E-01 3.91E-02 3.91E-01 

6 0.5 1.24E-01 1.24E-02 1.24E-01 

7 1.0 3.91E-02 3.91E-03 3.91E-02 

8 1.5 1.24E-02 1.24E-03 1.24E-02 

9 2.0 3.91E-03 3.91E-04 3.91E-03 

Table 1. The concentrations of vanadium used as either total vanadium, or orthovanadate, or 
decavanadate in each sample. 
 
 
 

Table 1 indicates the relationship between the log of substrate to inhibitor ratio to the 

total moles of vanadium, or the total moles of decavanadate, or the total moles of orthovanadate 

in the assay. It should be noted that for every mole of orthovanadate, there is one mole of 

vanadium. For every mole of decavanadate, there are ten moles of vanadium. Thus, 

orthovanadate was used at ten times the molar concentration of decavanadate, but the total moles 

of vanadium from either compound, in the assay, was the same as listed in Table 1. In all cases 

the concentration of the artificial substrate, para-nitrophenylphosphate (pNPP), is 391 µM.   

The order of addition of material to the assay was as follows. Sodium acetate buffer (0.5 

M, pH 4.5), vanadium as either orthovanadate or decavanadate freshly prepared in assay buffer, 

and enzyme source (300 µL of log phase L. tarentolae cell supernatant) were added to the assay 

and allowed to preincubate at room temperature for 10 minutes. The artificial substrate, para-

nitrophenylphosphate (pNPP) was added to the assay to give final concentrations of 391 µM 
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pNPP. The final assay volume was 0.9 mL. Assays were incubated at room temperature for 23 

hours. To stop the reaction sodium hydroxide (100 µL ,10 M) was added and the samples were 

vortexed. Product was evaluated by spectroscopy at A405 nm. Spectrophotometric blanks were 

prepared using the same volumes of assay buffer, vanadium as either orthovanadate or 

decavanadate, and substrate as experimental samples. The enzyme source was replaced with 

brain heart infusion, the same medium the enzyme was in for kinetic and inhibition assays. Data 

are reported as mean ± standard deviation for n=4 replicates. 

Secreted Acid Phosphatase Enzyme Inhibition Assays with Pretreatment with Eelectric 

Fields Followed by Incubation with and without Orthovanadate (25 µM)  

To test the effect of pretreating L. tarentolae log phase cell supernatant with electric 

fields followed by incubation with orthovanadate (25 µM), supernatant was collected (50 mL) 

from the stationary phase of the growth curve, exposed to electric fields, and then used as the 

enzyme source for end point acid phosphatase assays. This concentration of orthovanadate was 

selected based on the experiments done using the model reported by Baumhardt et al., 2015. This 

concentration of orthovanadate inhibits L. tarentolae secreted acid phosphatase activity, but does 

not completely shut down the enzyme. Thus, if a synergistic effect occurs between orthovanadate 

and electric field application, and is large enough, it can be measured. The order of addition of 

material to the assay was as follows. Sodium acetate buffer (0.5 M, pH 4.5), orthovanadate 

freshly prepared in assay buffer, and enzyme source (300 µL) were added to 1.5 mL 

polypropylene tubes for the assay and allowed to preincubate at room temperature for 10 

minutes. The artificial substrate, para-nitrophenylphosphate (pNPP) was added to the assay to 

give a final concentration of 391 µM pNPP. The final assay volume was 0.9 mL. Assays were 

incubated at room temperature for 23 hours. To stop the reaction sodium hydroxide (100 µL, 
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10 M) was added and the samples were vortexed, and product was evaluated by spectroscopy 

A405 nm. 

Secreted Acid Phosphatase Kinetics Assay with and without the Preincubation with a 

Glycosidase, Followed by Pretreatment with and without Electric Fields 

The L. tarentolae log phase cell supernatant was collected via centrifugation (2000xg, 10 

min, 10 ºC), incubated with the glycosidase PNGase F (10 µL of PNGase F with activity of 10 

U/ µL per 25 mL enzyme pool; Promega Madison, WI) enzyme source for 24 hours at room 

temperature, and then this enzyme pool was used in kinetic assays. The order of addition of 

material to the assay was as follows. Sodium acetate buffer (500 µL, 0.5 M, pH 4.5) was added 

to 1.5 mL polypropylene tubes. The artificial substrate, para-nitrophenylphosphate (pNPP), was 

freshly prepared in buffer, then it was added to the assay to give final substrate concentrations of: 

2.0, 2.6, 3.0, 3.4, 3.7, 4.1, 4.5, 6.0, 8.8, 12.0, 14.0, 18.0, 150.0, 200.0, 250.0, 300.0, 350.0, 400.0, 

450.0, 500.0, 550.0, 1000.0, 2000.0, or 4000.0 µM. Lastly, L. tarentolae cell supernatant as 

enzyme source (300 µL) was added to the 1.5 mL polypropylene tubes. The final assay volume 

was 0.9 mL (n=3). Assays were incubated at room temperature for 23 hours (previously 

determined to be under apparent first order conditions (Mendez et al., 2014), in the dark. To stop 

the reaction, sodium hydroxide (100 µL, 10 M) was added and the samples were vortexed. 

Product was evaluated by spectroscopy (A405 nm). Spectrophotometric blanks were prepared 

using the same volumes of assay buffer and substrate as experimental samples, but the enzyme 

source was replaced with brain heart infusion medium, the same medium as the supernatant 

fraction, but not exposed to cells. 
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CHAPTER III  

RESULTS AND DISCUSSION 

Cell Culture of L. tarentolae and Assessment of Cell Viability by the MTT Viability Assay 

During their growth curve, L. tarentolae respond in a predictable manner to the MTT 

reagent. This predictable and repeatable response is useful as a metric because it gives a context 

for normal L. tarentolae behavior, and serves a reference point from which enzyme pools, whole 

cells or cell supernatant, are collected. Furthermore, knowing what phase of the growth curve 

cells are in is useful because it allows more accurate interpretation of an effective potential 

treatment. Figure 8 shows a typical growth curve with the four characteristic phases of in vitro 

cell growth exhibited by L. tarentolae.  

 
 

 
Figure 8. A typical growth curve for L. tarentolae with the corrected MTT response plotted on 
the Y-axis and the day in culture plotted on the X-axis. The lag phase occurs on days 1-3. The 
log phase occurs on days 4-5. The stationary phase occurs between days 5-6. The senescence 
phase occurs on days 6-8. Each point is the mean ± standard deviation of n=4 replicates 
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Microscopy of L. tarentolae 

During their growth curve, L. tarentolae exhibit typical behavior that is observable by 

light microscopy. During the lag phase (days 1-3), the cells have a distinct, elongated shape, and 

do not clump. The cells exhibit moderate motility, and the cell population does not appear to be 

over crowded (Figure 9). During the log phase (days 4-5), the cells have a distinct, elongated 

shape, and do not clump. The cells exhibit increased motility, and the cell population appears 

significantly more crowded. Cells exhibit no clumping during this phase (Figure 10). During the 

stationary phase (between days 5-6), the shapes of most cells are still distinct and elongated. 

Some cells begin to appear rounded, and the cell population exhibits variable motility. Some 

cells are moving rapidly, while other cells are not moving at all. The cell population still appears 

crowded during the stationary phase. Cells exhibit clumping during the stationary phase. Each 

cell clump contains between 3 and 10 cells (Figure 11). During the senescence phase (days 6-8), 

the shape of cells becomes increasingly more rounded as the culture ages. The cells that appear 

more rounded in shape, also appear to not be moving. The cells that are more elongated are still 

moving, but with decreasingly less rigor. The cell population appears crowded, but the majority 

of cells are rounded and not moving. Little or no clumping is observed during this phase of the 

growth curve (Figure 12).  
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Figure 9. The above image depicts L. tarentolae by microscopy (400X) during the lag phase of 
their growth curve 
 
 
 

 
Figure 10. The above image depicts L. tarentolae by microscopy (400X) during the log phase of 
their growth curve 
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Figure 11. The above image depicts L. tarentolae by microscopy (400X) during the stationary 
phase of their growth curve 
 
 
 

 
Figure 12. The above image depicts L. tarentolae by microscopy (400X) during the senescence 
phase of their growth curve 
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Secreted Acid or Alkaline Phosphatase Enzyme Assay  

Using the growth curve as a reference point, detectable secreted acid phosphatase activity 

tracks with the MTT response up to day 6, as shown in Figure 13. When the cells’ response to 

the MTT reagent decreases, the detectable secreted acid phosphatase activity plateaus (days 6-8). 

Alkaline phosphatase activity in the supernatant was not detectable during any point of the 8 day 

growth curve, as shown in Figure 13.  

 
 

 
Figure 13. Secreted acid (red curve) or secreted alkaline (lime green curve) phosphatase activity 
detected as a function of day in culture. The blue curve is the typical L. tarentolae growth curve 
evaluated by MTT response. Each point is the mean ± standard deviation of n=3 replicates 
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Kinetic Enzyme Assay 

The L. tarentolae log phase supernatant appeared to exhibit Michaelis-Menten type 

enzyme behavior as a response to increasing substrate concentrations (Figure 14). The response 

depicts an apparent first order portion with a large response to increases in substrate 

concentration. This apparent first order response is followed by a decreased response to 

increasing substrate concentration, thus indicating that VMAX is being approached by the enzyme 

pool. A noticeable derivation from the apparent first order trend occurs at 350 µM pNPP 

(indicated by arrow) was, however, suggestive of non-Michaelis-Menten behavior. It should be 

noted that in this work, VMAX data are not corrected for total amount of enzyme present. 

 
 

 
Figure 14. A typical V versus S curve utilizing L. tarentolae log phase supernatant as the enzyme 
source. Each point is the mean ± standard deviation of n=3 replicates 
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The Lineweaver-Burk linear transformation of the Michaelis-Menten curve, that typically 

produces a single line for a single enzyme source, produced two different lines for the L. 

tarentolae log phase supernatant (Figures 15, 16, and 17).  

 
 

 
Figure 15.  A typical Lineweaver-Burk linear transformation using L. tarentolae log phase 
supernatant as the enzyme source. Enzyme 1 is shown in blue circles. Enzyme 2 is shown in red 
triangles. Each point is the mean ± standard deviation of n=3 replicates 
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Figure 16. A typical Lineweaver-Burk linear transformation using L. tarentolae log phase 
supernatant as the enzyme source. This graph only depicts the response of Enzyme 1 with n=12 
points. Each point is the mean ± standard deviation of n=3 replicates 
 
 
 

 
Figure 17. A typical Lineweaver-Burk linear transformation using L. tarentolae log phase 
supernatant as the enzyme source. This graph only depicts the response of Enzyme 2 with n=12 
points. Each point is the mean ± standard deviation of n=3 replicates 
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Enzyme 1 is present and detectable during the course of the entire eight day growth curve 

(Figure 18). The kM value for enzyme 1 changes subtly as a function of day in culture. The VMAX 

value of enzyme 1 changes with culture age (Table 2 and Figure 18). This change, up to day five 

of the L. tarentolae growth curve, is likely due to increasing cell number, and thus increasing 

amount of total secreted enzyme. The apparent disconnect between the number of viable cells 

and calculated VMax value of enzyme 1 that occurs on day 6-8 of the L. tarentolae growth curve 

may be explained in two ways. It could be that enzyme 1 is resistant to being denatured and 

remains active once secreted into the culture medium. It could also be the case that enzyme 1 is 

stored in L. tarentolae whole cells, and is released upon their death, thus leading to a plateau in 

the calculated VMAX value of enzyme 1, due to an approximately constant amount of enzyme 1 

being present in the culture medium.  Incubation of day 8 supernatant with the glycosidase, that 

has recognition for N-linked carbohydrates, noticeably changed experimental kM and VMAX 

values of enzyme 1 relative to the non-glycosidase treated supernatant. The kM decreased by 24.4 

%, and the VMAX increased by 13.5 % (Table 2). 
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Day in culture KM (µM) 
VMAX  

(µM/23 Hr) 

1 1.36E03±1.3E02 54.9±1.1E-01 

2 1.27E03±1.0E02 57.1±1.0E-01 

3 1.11E03±9.1E01 63.3±9.0E-01 

4 1.27E03±9.0E01 69.4±6.1E-01 

5 1.91E03±1.3E02 208±1.0E01 

6 1.56E03±6.0E01 159±7.0 

7 1.10E03±3.0E01 192±9.0 

8 1.28E03±5.0E01 200±8.0 

8 + Glycosidase 968±1.3E02 227±50 

Table 2. The calculated kM and VMAX values for enzyme 1 from L. tarentolae as a function of 
day in culture 

 

 

 

 
Figure 18. A plot of calculated VMAX value (Y-axis) for enzyme 1 as a function of day in culture 
(X-axis). This value is not a simple function of culture age. Each point is the mean ± standard 
deviation of n=3 replicates 
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Enzyme 2 is not detectable during the first two days of the L. tarentolae growth curve, 

but becomes detectable on day 3 and remains detectable through day 8. The kM value for enzyme 

2 remains in the same order of magnitude from days 3-5 of culture. The kM values from days 6-8 

indicating that enzyme becomes less efficient at binding substrate as the culture ages. The VMAX 

value of enzyme 2 remain consistent with culture age until senescence phase (Figure 19). There 

is a large increase in the VMAX value of enzyme 2 on day 7 of culture (Table 3). This change as 

shown in Figure 19 occurs during the senescence phase of the L. tarentolae growth curve, and 

may indicate that the total amount of enzyme 2 in the culture medium increases as cells die. This 

suggests that the majority of enzyme 2 is stored and is secreted upon external stimulus. 

Incubation with a glycosidase drastically increased experimental kM and VMAX values of enzyme 

2. The kM increased by 92.5 %, and the VMAX increased by 93.4 % compared to non-glycosidase 

incubated control. 

 

 

 

 

 

 

 

 

 

 



37 
 

Day in 
Culture 

KM (µM) 
VMAX  

(µM/24 Hr) 

1 Not Detectable Not Detectable 

2 Not Detectable Not Detectable 

3 2.26±7.20E-02 1.40±2.00E-01 

4 6.93±0.42 3.58±0.12 

5 3.35±7.7E-02 3.51±2.9E-01 

6 10.3±8.1E01 2.82±1.9E-01 

7 36.6±1.8 16.2±7.0E-01 

8 24.8±2.3 7.63±8.4E-01 

8 + 
Glycosidase 

331±14 115±17 

Table 3. The calculated kM or VMAX values for enzyme 2 from L. tarentolae as a function of day 
in culture 
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Figure 19. The calculated VMAX (Y-axis) value for enzyme 2 as a function of L. tarentolae day in 
culture (X-axis). Each point is the mean ± standard deviation of n=3 replicates 
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differences is caused by a 50 Hz, 100 µA, anodic electric field (Figure 25). The application of 

this electric field not only caused aggregation of cells, but also caused them to clump. We 

interpret cell clumping as an indication that the cells are stressed.  

 
 

 
Figure 20. L. tarentolae lag phase control cells viewed at 400X magnification 
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Figure 21. L. tarentolae lag phase cells exposed to an electric field (50 Hz, 500 µA, 30 min, 
symmetric biphasic) viewed at 400X magnification. These cells exhibit several large clumps 
(circled areas) 
 
 
 

 
Figure 22. L. tarentolae lag phase cells exposed to an electric field (10,000 Hz, 500 µA, 30 min, 
symmetric biphasic) viewed at 400X magnification. These cells are completely packed into a 
single area 
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Figure 23. L. tarentolae lag phase cells exposed to an electric field (50 Hz, 100 µA, 30 min, 
symmetric biphasic) viewed at 400X magnification. These cells are more concentrated than 
typical L. tarentolae lag phase cells 
 
 
 

 
Figure 24. L. tarentolae lag phase cells exposed to an electric field (50 Hz, 100 µA, 30 min, 
cathodic) viewed at 400X magnification. These cells are more concentrated than typical L. 

tarentolae lag phase cells 
 
 



42 
 

 
Figure 25. L. tarentolae lag phase cells exposed to an electric field (50 Hz, 100 µA, anodic) 
viewed at 400X magnification. The microscopic observations imply that the cells are moving 
toward the electrode during the electrode stimulation 

 

 

 

Testing the Effects of Electric Fields on L. tarentolae Acid Phosphatase Activity in 

Supernatant or Pellet (Cells), Method 1 

In method 1, the L. tarentolae log phase cells are separated, then electric fields (7 

different current conditions, 3 different wave forms, and 2 different frequencies) were applied to 

small volumes (0.5–2.0 mL) of resuspended cell pellets or harvested cell supernatants. The 

samples were then assayed for acid phosphatase activity. For data to be shown, the experimental 

condition must be statistically different from the non-treated control (p < 0.05) in a paired, two 

tailed t-test. The data are plotted as percent different from same time control (Equation 8). A 

positive number means the treatment caused an increase in acid phosphatase activity compared 
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to control. A negative number means the treatment caused a decrease in acid phosphatase 

activity compared to control.  

Equation 8. 

Percent Different = (Experimental Activity – Control Activity)/(Control Activity) * 100 %  

The application of a 50 Hz, cathodic electric field (7 different current conditions) to L. 

tarentolae supernatant or pellet followed by the assessment of acid phosphatase activity resulted 

in measurable effects in both the supernatant and pellet activity that were significantly different 

from their controls. Six out of seven conditions had an effect on supernatant acid phosphatase 

activity, but no consistent trend between current and supernatant activity was observed (Figure 

26). Six out of seven conditions had an effect on pellet acid phosphatase activity, but no 

consistent trend between current and pellet activity was observed (Figure 27). The current 

conditions that affected both the supernatant and pellet acid phosphatase activity were 100, 150, 

200, 250, or 400 µA. The 100, 250, or 400 µA currents caused an increase in supernatant 

activity, and a decrease in pellet activity. The 150 or 200 µA conditions caused an increase in 

both supernatant and pellet activity. All effects on either supernatant or pellet acid phosphatase 

activity were small (< 6 % different than control).  
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Figure 26. The effects of a 50 Hz, cathodic electric field at various current exposures on L. 

tarentolae secreted acid phosphatase are plotted as percent different from same time control 
 
 
 

 
Figure 27. The effects of a 50 Hz, cathodic electric field at various current exposures on L. 

tarentolae cell pellet acid phosphatase are plotted as percent different from same time control 
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activity resulted in measurable effects in both the supernatant and pellet activity that were 

significantly different from their controls. Six out of seven conditions had an effect on 

supernatant acid phosphatase activity, but no consistent trend between current and supernatant 

activity was observed (Figure 28). Five out of seven conditions had an effect on pellet acid 

phosphatase activity, but no consistent trend between current and pellet activity was observed 

(Figure 29). The current conditions that affected both the supernatant and pellet acid phosphatase 

activity were 100, 150, 200, or 400 µA. The 100 or 400 µA currents caused an increase in 

supernatant activity, and a decrease in pellet activity. The 150 µA condition caused an increase 

in both supernatant and pellet activity. The 200 µA condition caused a decrease in both 

supernatant and pellet activity. All effects on either supernatant or pellet acid phosphatase 

activity were small (< 7 % different than control). 

 
 

 
Figure 28. The effects of a 50 Hz, symmetric biphasic electric field at various current exposures 
on L. tarentolae secreted acid phosphatase are plotted as percent different from same time 
control 
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Figure 29. The effects of a 50 Hz, symmetric biphasic electric field at various current exposures 
on L. tarentolae cell pellet acid phosphatase are plotted as percent different from same time 
control 
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a decrease in supernatant activity, but an increase in pellet activity. All effects on either 

supernatant or pellet acid phosphatase activity were small (< 6 % different than control). 

 
 

 
Figure 30. The effects of a 50 Hz, anodic electric field at various current exposures on L. 

tarentolae secreted acid phosphatase are plotted as percent different from same time control 
 
 
 

 
Figure 31. The effects of a 50 Hz, anodic electric field at various current exposures on L. 

tarentolae cell pellet acid phosphatase are plotted as percent different from same time control 
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resulted in measurable effects in both the supernatant and pellet activity that were significantly 

different from their controls. Six out of seven conditions had an effect on supernatant acid 

phosphatase activity (Figure 32). An upward trend was observed between 100-300 µA. Under 

these conditions, more current application resulted in more acid phosphatase activity. Five out of 

seven conditions had a negative effect on pellet activity (Figure 33), suggesting a reciprocal 

trend between current and pellet activity was observed. The 250 or 500 µA conditions led to the 

largest decreases in pellet activity. The current conditions that affected both the supernatant and 

pellet acid phosphatase activity were 100, 150, 250, or 400 µA. All of these conditions caused an 

increase in supernatant activity, and a decrease in pellet activity. In general the effects of a 

10,000 Hz cathodic electric field were substantially larger than the effects of a 50 Hz cathodic 

electric field.  

 
 

 
Figure 32. The effects of a 10,000 Hz, cathodic electric field at various current exposures on L. 

tarentolae secreted acid phosphatase are plotted as percent different from same time control 
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Figure 33. The effects of a 10,000 Hz, cathodic electric field at various current exposures on L. 

tarentolae cell pellet acid phosphatase are plotted as percent different from same time control 
 
 
 

The application of a 10,000 Hz, symmetric biphasic electric field (7 different current 

conditions) to L. tarentolae supernatant or pellet followed by the assessment of acid phosphatase 

activity resulted in measurable effects in both the supernatant and pellet activity that were 

significantly different from their controls. Seven out of seven conditions had an effect on 

supernatant acid phosphatase activity (Figure 34). The application of 100, 150, or 200 µA 

resulted in greater enzyme activation than did the application of 250, 300, 400, or 500 µA. There 
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Figure 34. The effects of a 10,000 Hz, symmetric biphasic electric field at various current 
exposures on L. tarentolae secreted acid phosphatase are plotted as percent different from same 
time control 
 
 
 

 
Figure 35. The effects of a 10,000 Hz, symmetric biphasic electric field at various current 
exposures on L. tarentolae cell pellet acid phosphatase are plotted as percent different from same 
time control 
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in measurable effects in both the supernatant and pellet activity that were significantly different 

from their controls. Seven out of seven conditions had an effect on supernatant acid phosphatase 

activity (Figure 36). Lower current applications resulted in less detectable SAP activity. Higher 

current applications resulted in more detectable SAP activity. There is an apparent threshold 

between 200 and 250 µA, where by more current results in more SAP activity. Six out of seven 

conditions had an effect on pellet acid phosphatase activity (Figure 37). There is an apparent 

trend between 150-400 µA where by applying less current leads to greater deactivation of the 

enzyme activity. The current conditions that affected both the supernatant and pellet acid 

phosphatase activity were 100, 150, 200, 300, 400 or 500 µA. The application of currents 

between 100-400 µA caused an increase in supernatant and a decrease in pellet activity. The 500 

µA condition caused an increase in both supernatant activity and in pellet activity.  

 
 

 
Figure 36. The effects of a 10,000 Hz, anodic electric field at various current exposures on L. 

tarentolae secreted acid phosphatase are plotted as percent different from same time control 
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Figure 37. The effects of a 10,000 Hz, anodic electric field at various current exposures on L. 

tarentolae cell pellet acid phosphatase are plotted as percent different from same time control 
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phosphatase activity (Figure 39), but there was no consistent trend between the current applied 

and the effect on enzyme activity. The current conditions that affected both the supernatant and 

pellet acid phosphatase activity were 100, 300, 400 or 500 µA. The application of 100 µA caused 

an increase in supernatant and a decrease in pellet activity. The application of 300 or 500 µA 

caused a decrease in supernatant activity and an increase in pellet activity. The application of 400 

µA caused an increase in both supernatant and pellet activity.   

 
 

 
Figure 38. The effects of a 50 Hz, cathodic electric field at various current exposures on L. 

tarentolae secreted acid phosphatase are plotted as percent different from same time control 
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Figure 39. The effects of a 50 Hz, cathodic electric field at various current exposures on L. 

tarentolae cell pellet acid phosphatase are plotted as percent different from same time control 
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Figure 40. The effects of a 50 Hz, symmetric biphasic electric field at various current exposures 
on L. tarentolae cell pellet acid phosphatase are plotted as percent different from same time 
control 

 

 

 

The application of a 50 Hz, anodic electric field (7 different current conditions) to L. 

tarentolae whole cells followed by the separation and assessment of acid phosphatase activity 

resulted in measurable effects in both the supernatant and pellet activity that was different from 

their non-treated controls. Two out of seven conditions had an effect on supernatant acid 

phosphatase activity (Figure 41), but there was no consistent trend between the current applied 

and the effect on enzyme activity. Five out of seven conditions had an effect on pellet acid 

phosphatase activity (Figure 42), but there was no consistent trend between the current applied 

and the effect on enzyme activity. The current condition that affected both the supernatant and 

pellet acid phosphatase activity was 400 µA, and this condition caused an increase in both the 

supernatant and pellet activity.  

 

 

 

36.24

-2.43-5.00

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

P
er

ce
n
t 

D
if

fe
re

n
t

Pellet Acid Phosphatase Percent Different than Control

100 uA

500 uA



56 
 

 
Figure 41. The effects of a 50 Hz, anodic electric field at various current exposures on L. 

tarentolae secreted acid phosphatase are plotted as percent different from same time control 

 

 

 

 
Figure 42. The effects of a 50 Hz, anodic electric field at various current exposures on L. 

tarentolae cell pellet acid phosphatase are plotted as percent different from same time control 
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The application of a 10,000 Hz, cathodic electric field (7 different current conditions) to 

L. tarentolae whole cells followed by the separation and assessment of acid phosphatase activity 

resulted in measurable effects in both the supernatant and pellet activity that were significantly 

different from their non-treated controls. Five out of seven conditions had an effect on 

supernatant acid phosphatase activity (Figure 43). An apparent trend exists between 300-500 µA 

where by more current leads to less enzyme activation. Five out of seven conditions had an effect 

on pellet acid phosphatase activity (Figure 44), but there was no consistent trend between the 

current applied and the effect on enzyme activity. The current conditions that affected both the 

supernatant and pellet acid phosphatase activity were 150, 300, or 400 µA. The application of 

150 µA resulted in decreased activity in both the supernatant and pellet. The 300 µA condition 

caused an increase in supernatant activity and in pellet activity. The 400 µA condition caused an 

increase in supernatant activity, but a decrease in pellet activity.  

 

 

 
Figure 43. The effects of a 10,000 Hz, cathodic electric field at various current exposures on L. 

tarentolae secreted acid phosphatase are plotted as percent different from same time control 
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Figure 44. The effects of a 10,000 Hz, cathodic electric field at various current exposures on L. 

tarentolae cell pellet acid phosphatase are plotted as percent different from same time control 
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Figure 45. The effects of a 10,000 Hz, symmetric biphasic electric field at various current 
exposures on L. tarentolae secreted acid phosphatase are plotted as percent different from same 
time control 

 

 

 

 
Figure 46. The effects of a 10,000 Hz, symmetric biphasic electric field at various current 
exposures on L. tarentolae cell pellet acid phosphatase are plotted as percent different from same 
time control 
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 The application of a 10,000 Hz, anodic electric field (7 different current conditions) to L. 

tarentolae whole cells followed by the separation and assessment of acid phosphatase activity 

resulted in measurable effects in both the supernatant and pellet activity that was different from 

their non-treated controls. Four out of seven conditions had an effect on supernatant acid 

phosphatase activity (Figure 47), but there was no consistent trend between the current applied 

and the effect on enzyme activity. Five out of seven conditions had an effect on pellet acid 

phosphatase activity (Figure 48), but there was no consistent trend between the current applied 

and the effect on enzyme activity. The current conditions that affected both the supernatant and 

pellet acid phosphatase activity were 200, 250, 300 or 400 µA. The application of 200 µA caused 

a decrease in supernatant and an increase in pellet activity. The 250 or 400 µA conditions caused 

an increase in both the supernatant activity or pellet activity. The application of 300 µA resulted 

in decreased in both the supernatant or pellet activity.  

 

 

 
Figure 47. The effects of a 10,000 Hz, anodic electric field at various current exposures on L. 

tarentolae secreted acid phosphatase are plotted as percent different from same time control 
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Figure 48. The effects of a 10,000 Hz, anodic electric field at various current exposures on L. 

tarentolae cell pellet acid phosphatase are plotted as percent different from same time control 
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decavanadate is a better inhibitor in one condition (log [S]/[I] = 1.5). Plotting the data in this 

manner assumes that no vanadium speciation occurs. When plotting (Figure 50) L. tarentolae 

secreted acid phosphatase enzyme activity (y-axis) incubated with V10 (red curve) or VO4
3- (blue 

curve) as a function of log [S]/[I] (x-axis), where [I] is total moles of vanadium, there are six 

conditions where decavanadate or orthovanadate resulted in different effects from control and 

each other. These conditions are statistically significant (p < 0.05 in a paired, two-tailed t-test). 

These conditions occur when the log[S]/[I] ratio is equal to -1.5, -1.0, -0.5, 0.0, 0.5, or 1.0. 

Orthovanadate is a better inhibitor in all six of these conditions. Plotting the data in this manner 

attempts to compensate for the uncertainty associated with vanadium speciation and takes into 

account only the total moles of vanadium present. Under this assumption, orthovanadate is 

consistently better at inhibiting secreted acid phosphatase activity, on a mole of vanadium basis 

compared to decavanadate for an enzyme pool collected from L. tarentolae log phase cells.   
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Figure 49. L. tarentolae secreted acid phosphatase enzyme activity (Y-axis) when incubated with 
decavanadate (red curve) or orthovanadate (blue curve) plotted as a function of log [S]/[I] (X-
axis). [I] is either total moles of decavanadate or orthovanadate 
 
 
 

Figure 50. L. tarentolae secreted acid phosphatase enzyme activity (Y-axis) when incubated with 
decavanadate (red curve) or orthovanadate (blue curve) plotted as a function of log [S]/[I] (X-
axis). [I] is total moles of vanadium 
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Secreted Acid Phosphatase Enzyme Inhibition Assays with Pretreatment with Electric 

Fields Followed by Incubation with and without Orthovanadate  

(25 µM or LOG [S]/[I] = 1.19) 

The pretreatment of L. tarentolae log phase supernatant with a 50 Hz, cathodic electric 

field at various current amplitudes resulted in three conditions (150, 200, or 250 µA) that are 

different from control (Figure 51). These three conditions are statistically significant (p < 0.05 

for a paired, two tailed t-test). There is no consistent trend between current and secreted acid 

phosphatase inhibition greater than orthovanadate alone. The synergistic effect (more inhibition) 

of pretreatment with electric field followed by orthovanadate incubation is small. 

 
 

 
Figure 51. The effects, plotted as percent different from control, of pretreating the log phase L. 

tarentolae secreted acid phosphatase enzyme pool with 50 Hz, cathodic electric field at various 
current exposures followed by orthovanadate (25 µM) incubation compared to same time control 
(25 µM orthovanadate exposure only) are shown 
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are significantly different from control (Figure 52). These three conditions are statistically 

significant (p < 0.05 for a paired, two tailed t-test). Under these conditions more current leads to 

greater inhibition compared to orthovanadate only incubation. The synergistic effect of 

pretreatment with electric field followed by orthovanadate incubation is, however, small. 

 

 

 
Figure 52. The effects, plotted as percent different from control, of pretreating the log phase L. 

tarentolae secreted acid phosphatase enzyme pool with 50 Hz, symmetric biphasic electric field 
at various current exposures followed by orthovanadate (25 µM) incubation compared to same 
time control (25 µM orthovanadate exposure only) are shown 
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for a paired, two tailed t-test). There is no apparent trend between current and inhibition. The 

synergistic effect of pretreatment with electric field followed by orthovanadate incubation is 

small. 
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Figure 53. The effects, plotted as percent different from control, of pretreating the log phase L. 

tarentolae secreted acid phosphatase enzyme pool with 50 Hz, anodic electric field at various 
current exposures followed by orthovanadate (25 µM) incubation compared to same time control 
(25 µM orthovanadate exposure only) are shown 
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Figure 54. The effects, plotted as percent different from control, of pretreating the log phase L. 

tarentolae secreted acid phosphatase enzyme pool with 10,000 Hz, cathodic electric field at 
various current exposures followed by orthovanadate (25 µM) incubation compared to same time 
control (25 µM orthovanadate exposure only) are shown 
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Figure 55. The effects, plotted as percent different from control, of pretreating the log phase L. 

tarentolae secreted acid phosphatase enzyme pool with 10,000 Hz, symmetric biphasic electric 
field at various current exposures followed by orthovanadate (25 µM) incubation compared to 
same time control (25 µM orthovanadate exposure only) are shown 

 

 

 

The pretreatment of L. tarentolae log phase supernatant with a 10,000 Hz, anodic electric 

field at various current amplitudes resulted in six conditions (100, 150, 200, 250, 300, or 500 

µA) that are different from control (Figure 56). These six conditions are statistically significant 

(p < 0.05 for a paired, two tailed t-test). There is no apparent trend between current and 

inhibition. The synergistic effect of pretreatment with electric field followed by orthovanadate 

incubation is small, and in the range observed with the 50 Hz, anodic treatment. 
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Figure 56. The effects, plotted as percent different from control, of pretreating the log phase L. 

tarentolae secreted acid phosphatase enzyme pool with 10,000 Hz, anodic electric field at 
various current exposures followed by orthovanadate (25 µM) incubation compared to same time 
control (25 µM orthovanadate exposure only) are shown 
 
 
 

Secreted Acid Phosphatase Kinetics Assay with and without the Preincubation with a 

Glycosidase, Followed by Pretreatment with and without Electric Fields 

The pretreatment of log phase L. tarentolae enzyme pool with the glycosidase, PNGase F, 

resulted in a 5.00 % decrease in the kM value of enzyme 1 compared to control, but no 

statistically significant difference in the VMAX value of enzyme 1 compared to control (Table 4). 

The pretreatment of log phase L. tarentolae enzyme pool with PNGase F resulted in a 36.49 % 

decrease in the kM value of enzyme 2 compared to control, but no statistically significant 

difference in the VMAX value of enzyme 2 compared to control (Table 5). The pretreatment of log 

phase L. tarentolae enzyme pool with PNGase F followed by the application of 10,000 Hz, 100 

µA, anodic electric field resulted in an 8.33 percent decrease in kM value of enzyme 1 compared 

to control, and a 12. 57 increase in the VMAX value of enzyme 1 compared to control. The 
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of 10,000 Hz, 100 µA, anodic electric field resulted in no changes in either kM or VMAX value of 

enzyme 2 that were statistically different compared to control.   

 
 

Conditions kM (µM) 
VMAX  

(µM/23 Hr) 

kM Percent 
different versus 

control 

VMAX Percent 
different versus 

control 

24 Hour 
incubation with 

PNGase F 
0.114 ± 0.030 55.866 ± 1.616 -5.00 

Not statistically 
different from 

control 

24 Hour 
incubation with 

PNGase F 
followed by 30 
min exposure to 
10,000 Hz, 100 

µA, anodic 
electric field 

0.130 ± 0.011 62.500 ± 1.937 -8.33 12.57 

Table 4. Enzyme 1 kinetic parameters kM and VMAX under different conditions compared to 
control. Negative percentages indicate a decrease in value compared to control. Positive 
percentages indicate an increase in value compared to control 
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Conditions kM (µM) 
VMAX 

(µM/23 Hr) 

kM Percent 
different versus 

control 

VMAX Percent 
different versus 

control 

24 Hour 
incubation with 

PNGase F 

1.480 E-04 ± 
0.033 E-04 

 
30.647 ± 0.688  -34.69 

Not statistically 
different from 

control 

24 Hour 
incubation with 

PNGase F 
followed by 30 
min exposure to 
10,000 Hz, 100 

µA, anodic 
electric field 

4.926 E-04 ± 
2.440 E-04 

33.818 ± 1.891  
Not statistically 
different from 

control 

Not statistically 
different from 

control 

Table 5. Enzyme 2 kinetic parameters kM and VMAX under different conditions compared to 
control. Negative percentages indicate a decrease in value compared to control. Positive 
percentages indicate an increase in value compared to control 
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CHAPTER IV 

CONCLUSIONS AND FUTURE WORK 

Cell Culture and Microscopy of L. tarentolae and Assessment of Cell Viability by the MTT 

Assay 

Using L. tarentolae promastigotes as a model system to probe potential Leishmania 

therapeutics continues to prove itself useful, especially in the context of this work. The capacity 

for these cells to be easily grown, assessed by multiple metrics (MTT assay and microscopy), 

and their predictable behavior make them a valuable tool as a model system.  

Secreted Acid or Alkaline Phosphatase Enzyme Assay 

Secreted acid phosphatase activity for L. tarentolae supernatant is detectable on all eight 

days of a typical L. tarentolae growth curve. Because the log phase is likely the most relevant 

phase to the Leishmania infection cycle, log phase whole cells or cell supernatant should be used 

in all future studies for this work. Secreted alkaline phosphatase activity is not detectable on any 

of the eight days of the L. tarentolae growth curve. Therefore, secreted alkaline phosphatase 

activity should not be assayed in any future studies of this work.  

Kinetic Enzyme Assay 

Supernatant enzyme source collected from L. tarentolae log phase cells gives an apparent 

typical Michaelis-Menten type response to increasing substrate concentrations. However, the 

Lineweaver-Burk linear transformation of the V versus S curve of the L. tarentolae log phase 

supernatant produced two straight lines (Figures 15, 16, and 17). Thus, two enzymes with 

different kM or VMAX values are detectable in the L. tarentolae log phase cell supernatant 

(Figures 18 and 19, and Tables 2 and 3) using this kinetic approach. These kinetic data correlate 

with the gene data indicating two separate enzymes as reported by Shakariana et al., 1997. 
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Enzyme 1 has a larger kM and larger VMAX (Table 2) than enzyme 2. Enzyme 2 has a smaller kM 

and smaller VMAX (Table 3) than enzyme 1. Enzyme 1 binds substrate less effectively than 

enzyme 2, but enzyme 1 makes product at a larger velocity than enzyme 2. The capacity of 

enzyme 1 to be detected on all eight days of the L. tarentolae growth curve suggests this enzyme 

may play a role beyond that of aiding in survival of the parasite in the sand fly or aiding in 

human infectivity. The inability for enzyme 2 to be detected on days one and two  of the L. 

tarentolae growth curve, followed by its lower VMAX value on days three to six, then a large 

apparent increase in VMAX as the culture appears to enter the senescence phase (Figure 19, Day 

7) suggests that enzyme 2 may be stored and released for a specific function. This interpretation 

assumes VMAX is only increasing because the concentration of enzyme 2 is increasing, and that 

VMAX is equal to k2[Etotal] for a Michaelis-Menten type enzyme.  

Testing the Acute Effects of Electric Fields on L. tarentolae Growth Curves and Microscopy 

L. tarentolae MTT response was unaffected by treatment with any of the tested electric 

fields. However, the cells do appear to respond to electric fields since L. tarentolae cell clumping 

is differentially affected by electric field frequency, polarity, and current. As the electric field 

frequency increases, L. tarentolae cell clumping increases.  Effect of polarity is such that the 

application of any electric field causes aggregation of L. tarentolae underneath the electrode, 

with cell population density decreasing as a function of distance away from the electrode. 

Furthermore, the application of anodic electric fields causes the cells not only to aggregate, but 

also to clump. We interpret this clumping as a stress response from L. tarentolae. As current 

amplitude increases, L. tarentolae cell clumping increases. The interpretation of a treatment 

causing cell clumping is that said treatment is stressing the cells. In cell clumps, L. tarentolae 

may exhibit a behavior identified as quorum sensing. During quorum sensing, cells restrict the 
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expression of specific genes to the high cell densities at which the resulting phenotypes will be 

most beneficial to survival (Miller, Bassler, 2001). Therefore, the conditions of electric fields 

could be optimized such that maximum cell aggregation occurs in one area, thus making 

effective dosing of a topical therapeutic more easily accomplished.    

Testing the Effects of Electric Fields on L. tarentolae Acid Phosphatase Activity in 

Supernatant or Pellet (Cells), Method 1 

Method 1 was used to investigate eighty-four different experimental conditions and 

Figure 57 is a summary. Seventy-two of the eighty-four experimental conditions were different 

than control and statistically significant (p < 0.05 for a paired, two tailed t-test). Thirty-eight of 

the forty-two conditions tested with the supernatant enzymes were statistically different from 

controls (p < 0.05 for a paired, two tailed t-test). Thirty-four of the forty-two conditions tested on 

the cell pellets were statistically different from controls (p < 0.05 for a paired, two tailed t-test). 

Thirty of the eighty-four tested conditions affected both the supernatant and the cell pellet acid 

phosphatase activity. Twenty-one of the thirty conditions caused an increase in supernatant 

activity and a decrease in pellet activity. Five of the thirty conditions increased both supernatant 

and pellet activity. Two of the thirty conditions decreased the supernatant or pellet activity. Two 

of the thirty conditions decreased supernatant activity or increased pellet activity.  

Thirty-four of the forty-two 50 Hz conditions tested were statistically significant (p < 

0.05 for a paired, two tailed t-test). Eighteen of the thirty-four significant results were from 

applying electric fields to L. tarentolae log phase cell supernatant. The magnitude of the average 

effect from a 50 Hz cathodic electric field is 2.10 % different from control (2.35 % activation, 

0.86 % inhibition). The magnitude of the average effect from a 50 Hz symmetric biphasic 

electric field is 2.59 % different from control (2.00 % activation, 3.19 % inhibition). The 
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magnitude of the average effect from a 50 Hz anodic electric field is 0.56 % different from 

control (0.52 % activation, 0.57 % inhibition). Sixteen of the thirty-four significant results were 

from applying electric fields to L. tarentolae log phase cell pellets. The magnitude of the average 

effect from a 50 Hz cathodic electric field is 1.72 % different from control (1.51 % activation, 

1.93 % inhibition). The magnitude of the average effect from a 50 Hz symmetric biphasic 

electric field is 3.91 % different from control (4.47 % activation, 3.54 % inhibition). The 

magnitude of the average effect from a 50 Hz anodic electric field is 4.38 % different from 

control (5.08 % activation, 3.33 % inhibition). Within the 50 Hz frequency, the largest activation 

effect on average is seen from the application of 50 Hz anodic electric fields to L. tarentolae cell 

pellets. The greatest average inhibition caused by 50 Hz is the application of 50 Hz symmetric 

biphasic electric fields to L. tarentolae log phase cell pellets.  

Thirty-eight of the forty-two 10,000 Hz conditions tested were statistically significant (p 

< 0.05 for a paired, two tailed t-test). Twenty of the thirty-eight significant results were from 

applying electric fields to L. tarentolae log phase cell supernatant. The magnitude of the average 

effect from a 10,000 Hz cathodic electric field is 12.31 % different from control (12.31 % 

activation, 0.00 % inhibition). The magnitude of the average effect from a 10,000 Hz symmetric 

biphasic electric field is 2.31 % different from control (2.64 % activation, 0.35 % inhibition). 

The magnitude of the average effect from a 10,000 Hz anodic electric field is 14.27 % different 

from control (14.27 % activation, 0.00 % inhibition). Eighteen of the thirty-eight significant 

results were from applying electric fields to L. tarentolae log phase cell pellets. The magnitude 

of the average effect from a 10,000 Hz cathodic electric field is 16.56 % different from control 

(0.00 % activation, 16.56 % inhibition). The magnitude of the average effect from a 10,000 Hz 

symmetric biphasic electric field is 7.81 % different from control (7.30 % activation, 7.90 % 



76 
 

inhibition). The magnitude of the average effect from a 10,000 Hz anodic electric field is 4.28 % 

different from control (4.90 % activation, 4.16 % inhibition). Within the 10,000 Hz frequency, 

the largest activation effect on average is seen from the application of 10,000 Hz cathodic 

electric fields to L. tarentolae cell pellets. The greatest average activation caused by 10,000 Hz is 

the application of 10,000 Hz anodic electric fields to L. tarentolae log phase cell supernatant. 

The greatest average inhibition caused by 10,000 Hz is the application of 10,000 Hz cathodic 

electric fields to L. tarentolae log phase cell pellets. 

Testing the Effects of Electric Fields on L. tarentolae Acid Phosphatase Activity in 

Supernatant or Pellet (Cells), Method 2 

Method 2 was used to investigate eighty-four different experimental conditions and 

Figure 58 is a summary. Forty-five of the eighty-four experimental conditions were different 

than control and statistically significant (p < 0.05 for a paired, two tailed t-test). Nineteen of the 

forty-two conditions tested with the supernatant enzymes were statistically different from 

controls (p < 0.05 for a paired, two tailed t-test). Twenty-six of the forty-two conditions tested on 

the pellets were statistically different from controls (p < 0.05 for a paired, two tailed t-test). 

Fourteen of the eighty-four tested conditions affected both the supernatant and the pellet acid 

phosphatase activity. Two of the fourteen conditions caused an increase in supernatant activity 

and a decrease in pellet activity. Six of the fourteen conditions increased both supernatant and 

pellet activity. Three of the fourteen conditions decreased both the supernatant and pellet 

activity. Three of the fourteen conditions decreased supernatant activity or increased pellet 

activity.  

Twenty of the forty-two 50 Hz conditions tested were statistically significant (p < 0.05 

for a paired, two tailed t-test). Seven of the twenty significant results were from applying electric 
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fields to L. tarentolae log phase cell supernatant. The magnitude of the average effect from a 50 

Hz cathodic electric field is 2.50 % different from control (3.04 % activation, 1.70 % inhibition). 

The magnitude of the average effect from a 50 Hz symmetric biphasic electric field cannot be 

discussed due to these data not being statistically different from control. The magnitude of the 

average effect from a 50 Hz anodic electric field is 2.67 % different from control (2.67 % 

activation, 0.00 % inhibition). Thirteen of the twenty significant results were from applying 

electric fields to L. tarentolae log phase cell pellets. The magnitude of the average effect from a 

50 Hz cathodic electric field is 3.11 % different from control (3.38 % activation, 2.97 % 

inhibition). The magnitude of the average effect from a 50 Hz symmetric biphasic electric field is 

19.34 % different from control (36.2 % activation, 2.43 % inhibition). The magnitude of the 

average effect from a 50 Hz anodic electric field is 2.43 % different from control (1.91 % 

activation, 3.21 % inhibition). Within the 50 Hz frequency, the largest effect on average is seen 

from the application of 50 Hz symmetric biphasic electric fields to L. tarentolae cell pellets. The 

greatest average activation caused by 50 Hz is the application of 50 Hz cathodic electric fields to 

L. tarentolae log phase cell supernatant. The greatest average inhibition caused by 50 Hz is the 

application of 50 Hz symmetric biphasic electric fields to L. tarentolae log phase cell pellets.  

Twenty-five of the forty-two 10,000 Hz conditions tested were statistically significant (p 

< 0.05 for a paired, two tailed t-test). Twelve of the twenty-five significant results were from 

applying electric fields to L. tarentolae log phase cell supernatant. The magnitude of the average 

effect from a 10,000 Hz cathodic electric field is 1.17 % different from control (1.49 % 

activation, 0.71 % inhibition). The magnitude of the average effect from a 10,000 Hz symmetric 

biphasic electric field is 0.88 % different from control (0.69 % activation, 1.26 % inhibition). 

The magnitude of the average effect from a 10,000 Hz anodic electric field is 2.25 % different 
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from control (1.51 % activation, 2.98 % inhibition). Thirteen of the twenty-five significant 

results were from applying electric fields to L. tarentolae log phase cell pellets. The magnitude 

of the average effect from a 10,000 Hz cathodic electric field is 4.48 % different from control 

(7.31 % activation, 3.07 % inhibition). The magnitude of the average effect from a 10,000 Hz 

symmetric biphasic electric field is 9.91 % different from control (8.75 % activation, 12.22 % 

inhibition). The magnitude of the average effect from a 10,000 Hz anodic electric field is 5.13 % 

different from control (6.00 % activation, 3.35 % inhibition). Within the 10,000 Hz frequency, 

the largest effect on average is seen from the application of 10,000 Hz symmetric biphasic 

electric fields to L. tarentolae cell pellets. The greatest average activation caused by 10,000 Hz is 

the application of 10,000 Hz symmetric biphasic electric fields to L. tarentolae log phase cell 

supernatant. The greatest average inhibition caused by 10,000 Hz is the application of 10,000 Hz 

symmetric biphasic electric fields to L. tarentolae log phase cell pellets. This apparent 

discrepancy can be explained by understanding that different currents within a single frequency 

and polarity had different effects on acid phosphatase enzyme activity.  

Comparing the Effectiveness of Method 1 to Method 2 

When comparing the effectiveness of method 1 (separating supernatant from pellet then 

applying electric fields directly to enzyme pools) to method 2 (applying electric fields to whole 

cells followed by separation of supernatant from pellet), the number of total experiments that 

produced statistically different enzyme activity compared to control are seventy-two (method 1) 

compared to forty-five (method 2). As shown in Figures 57 and 58, the total number of 

statistically significant supernatant experiments is thirty-eight (method 1) compared to nineteen 

(method 2). The total number of statistically significant pellet experiments is thirty-four (method 

1) compared to twenty-six (method 2). Comparing the average effect from a 50 Hz waveform on 
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L. tarentolae cell supernatant acid phosphatase activity, utilizing either method 1 or method 2, 

method 2 (2.59 % different than control) produced a larger effect, on average, than method 1 

(1.75 % different than control). Comparing the activating effect from a 50 Hz waveform on L. 

tarentolae cell supernatant acid phosphatase activity, utilizing either method 1 or method 2, 

method 2 (2.86 % different than control) is more effective than method 1 (1.62 % different than 

control). Comparing the inhibition effect from a 50 Hz waveform on L. tarentolae cell 

supernatant acid phosphatase activity, utilizing either method 1 or method 2, method 1 (1.54 % 

different than control) is more effective than method 2 (0.85 % different than control). Thus, 

while the total number of statistically significant results is larger when using method 1, the 

overall magnitude of the effect, or the activation effect, of the application of 50 Hz electric fields 

is larger on L. tarentolae cell supernatant when using method 2. The magnitude of the inhibition 

effect on L. tarentolae cell supernatant caused by the application of 50 Hz magnetic fields is 

largest when using method 1.    

Comparing the average effect from a 10,000 Hz waveform on L. tarentolae cell 

supernatant acid phosphatase activity, utilizing either method 1 or method 2, method 1 (9.63 % 

different than control) is more effective than method 2 (1.43 % different than control). 

Comparing the activating effect from a 10,000 Hz waveform on L. tarentolae cell supernatant 

acid phosphatase activity, utilizing either method 1 or method 2, method 1 (9.74 % different than 

control) is more effective than method 2 (1.23 % different than control). Comparing the 

inhibition effect from a 10,000 Hz waveform on L. tarentolae cell supernatant acid phosphatase 

activity, utilizing either method 1 or method 2, method 2 (1.65 % different than control) is more 

effective than method 1 (0.12 % different than control). Thus, the total number of statistically 

significant results is larger when using method 1, and the overall magnitude of the effect, or the 
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activation effect, of the application of 10,000 Hz electric fields is larger on L. tarentolae cell 

supernatant when using method 1. The magnitude of the inhibition effect on L. tarentolae cell 

supernatant caused by the application of 10,000 Hz magnetic fields is largest when using  

method 2. 

Comparing the average effect from a 50 Hz waveform on L. tarentolae cell pellet acid 

phosphatase activity, utilizing either method 1 or method 2, method 2 (8.29 % different than 

control) is more effective than method 1 (3.34 % different than control). Comparing the 

activating effect from a 50 Hz waveform on L. tarentolae cell pellet acid phosphatase activity, 

utilizing either method 1 or method 2, method 2 (13.84 % different than control) is more 

effective than method 1 (3.69 % different than control). Comparing the inhibition effect from a 

50 Hz waveform on L. tarentolae cell supernatant acid phosphatase activity, utilizing either 

method 1 or method 2, method 1 (2.93 % different than control) is more effective than method 2 

(2.87 % different than control). Thus, while the total number of statistically significant results is 

larger when using method 1, the overall magnitude of the effect, or the activation effect, of the 

application of 10,000 Hz electric fields is larger on L. tarentolae cell pellets when using method 

2. The magnitude of the inhibition effect on L. tarentolae cell pellets caused by the application of 

50 Hz magnetic fields is largest when using method 1. 

Comparing the average effect from a 10,000 Hz waveform on L. tarentolae cell pellet 

acid phosphatase activity, utilizing either method 1 or method 2, method 1 (9.55 % different than 

control) is more effective than method 2 (6.51 % different than control). Comparing the 

activating effect from a 10,000 Hz waveform on L. tarentolae cell pellet acid phosphatase 

activity, utilizing either method 1 or method 2, method 2 (7.35 % different than control) is more 

effective than method 1 (4.07 % different than control). Comparing the inhibition effect from a 
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10,000 Hz waveform on L. tarentolae cell supernatant acid phosphatase activity, utilizing either 

method 1 or method 2, method 1 (9.54 % different than control) is more effective than method 2 

(6.21 % different than control). Thus, both the total number of statistically significant results is 

larger when using method 1, and the overall magnitude, or inhibition effect, of the application of 

10,000 Hz electric fields is larger on L. tarentolae cell pellets when using method 1. The 

magnitude of the activation effect on L. tarentolae cell pellets caused by the application of 

10,000 Hz magnetic fields is largest when using method 2.  

 
 

 
Figure 57. A summary of the results from method 1 
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Figure 58. A summary of the results from method 2 
 
 
 

Secreted Acid Phosphatase Enzyme Inhibition Assay (Following the Method of Baumhardt 

et al., 2015) 

Using Baumhardt et al., 2015 as model system, it is clear that when comparing the 

inhibitory effects of decavanadate to orthovanadate on L. tarentolae log phase supernatant acid 

phosphatase activity, orthovanadate is a better inhibitor than decavanadate on a mole of total 

vanadium basis (Figure 50). These data correlate with the x-ray diffraction data in the studies 

reviewed by McLauchlan et al. (2015). Therefore, orthovanadate was used as an inhibitor at the 

log[S]/[I] ratio = 1.19 in most of this thesis work. This ratio is selected because it inhibits acid 

phosphatase activity but does not completely shut down the enzyme. Thus, any potential 

synergistic effect caused by electric field treatment followed by orthovanadate exposure can be 

observed.  
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Secreted Acid Phosphatase Enzyme Inhibition Assays with Pretreatment with Electric 

Fields Followed by Incubation with and without Orthovanadate (25 µM) 

Pretreatment of L. tarentolae log phase supernatant with 50 Hz electric fields followed by 

incubation with competitive inhibitor orthovanadate (25 µM, log [S]/[I] = 1.19) resulted in nine 

out of the twenty-one tested conditions being statistically different (p < 0.05 for a paired, two 

tailed t-test) than control (incubation with orthovanadate, 25 µM, only). The average magnitude 

of the 50 Hz cathodic electric field is 1.98 % different from control (3.08 % activation, 1.43 % 

inhibition). The average magnitude of the 50 Hz symmetric biphasic electric field is 3.21 % 

different from control (0.00 % activation, 3.21 % inhibition). The average magnitude of the 50 

Hz anodic electric field is 3.04 % different from control (2.88 % activation, 3.36 % inhibition). 

Pretreatment of L. tarentolae log phase supernatant with 10,000 Hz electric fields 

followed by incubation with competitive inhibitor orthovanadate (25 µM) resulted in seventeen 

out of the twenty-one tested conditions being statistically different (p < 0.05 for a paired, two 

tailed t-test) than control (incubation with orthovanadate, 25 µM, only). The average magnitude 

of the 10,000 Hz cathodic electric field is 5.85 % different from control (6.81 % activation, 5.22 

% inhibition). The average magnitude of the 10,000 Hz symmetric biphasic electric field is 1.76 

% different from control (2.05 % activation, 1.32 % inhibition). The average magnitude of the 

10,000 Hz anodic electric field is 3.46 % different from control (3.74 % activation, 2.91 % 

inhibition). 

The total average effect from the application of electric fields to L. tarentolae log phase 

cell supernatant is larger for 10,000 Hz electric fields (3.69 %) compared to 50 Hz electric fields 

(2.74 %). The average activation from the application of electric fields to L. tarentolae log phase 

cell supernatant is larger for 10,000 Hz electric fields (4.20 %) compared to 50 Hz electric fields 
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(1.99 %). The average deactivation from the application of electric fields to L. tarentolae log 

phase cell supernatant is larger for 10,000 Hz electric fields (3.15 %) compared to 50 Hz electric 

fields (2.67 %). Therefore, the greatest antagonistic effects that occur from pretreatment by 

electric fields followed by orthovanadate incubation are with 10,000 Hz electric fields. The 

largest synergistic effect between electric fields and orthovanadate incubation also comes from 

10,000 Hz electric fields. This apparent discrepancy can be explained by the fact that different 

current amplitudes or electric field polarities within the 10,000 Hz frequency have different 

effects, some activate secreted acid phosphatase activity (antagonistic effect with orthovanadate 

inhibitor), some inhibit secreted acid phosphatase activity (synergistic effect with orthovanadate 

inhibitor).  

Secreted Acid Phosphatase Kinetic Assay with and without the Preincubation with a 

Glycosidase, Followed by Pretreatment with and without Electric Fields 

 The importance of carbohydrate attachment to L. tarentolae SAP1 or SAP2 becomes 

apparent when the enzyme source was incubated with PNGase F. The capacity of the PNGase F 

incubation with L. tarentolae enzyme pool to alter kinetic parameters of enzyme 1 and enzyme 2 

indicates that the N-linked carbohydrates of enzyme 1 and enzyme 2 are of importance to these 

enzymes to bind substrate (kM values of enzyme 1 and enzyme 2 are affected by PNGase F 

incubation). Furthermore, enzyme 1 is more sensitive to the application of a 10,000 Hz, 100 µA, 

anodic electric field after preincubation of the L. tarentolae enzyme pool with PNGase F. These 

data further support the idea that there are two isoforms of SAP secreted by L. tarentolae into the 

culture medium, and that their responses to PNGase F incubation and electric field application 

are different and thus may have different roles in successful infections.  
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Final Global Conclusions and Recommendations for Future Work 

 L. tarentolae secrete two detectable acid phosphatases into the culture medium, enzyme 

1 and enzyme 2. These two isoforms have different kinetic parameters, kM and VMAX, such that 

enzyme 1 binds substrate less tightly than enzyme 2, but enzyme 1 also produces product more 

quickly than does enzyme 2. Furthermore, L. tarentolae has utility as a model system for 

assessing the effects applying electric fields have on cell viability and enzyme activity of enzyme 

1 and enzyme 2. The application of electric fields does not affect cell viability of L. tarentolae, 

but does have a large effect on L. tarentolae cell clumping. Increasing frequency, or current, or 

applying anodic electric fields leads to increased L. tarentolae cell clumping compared to 

control. Applying electric fields to L. tarentolae cell supernatant (method 1) produced more 

statistically significant results than did applying electric fields to whole cells followed by 

separation and collection of supernatant (method 2). The application of 10,000 Hz electric fields 

produced larger effects on L. tarentolae cell supernatant on average than did the application of 

50 Hz electric fields (9.63 % different from control vs. 1.75 % different from control). The 

application of 10,000 Hz electric fields produced larger activation effects on L. tarentolae cell 

supernatant than did the application of 50 Hz electric fields (9.74 % different from control vs. 

2.86 % different from control). The application of 10,000 Hz electric fields produced larger 

inhibition effects on L. tarentolae cell supernatant than did the application of 50 Hz electric 

fields (1.65 % different from control vs. 1.54 % different from control). Overall, electric fields 

had the effect of increasing SAP activity from L. tarentolae log or stationary phase enzyme 

pools. The method of Baumhardt et al. proved useful for determining which of the two tested 

inhibitors were better on a mole of vanadium basis, orthovanadate or decavanadate. By this 

method, orthovanadate was a better inhibitor of L. tarentolae SAP activity than was 
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decavanadate. Following through with this result, the application of electric fields to L. 

tarentolae followed by incubation with orthovanadate (25 µM) did not lead to a consistent 

synergistic effect on L. tarentolae SAP activity. Incubation of L. tarentolae stationary phase SAP 

enzyme pool with PNGase F did lead to changes in kM values of both enzyme 1 and enzyme 2. 

The incubation of L. tarentolae stationary phase SAP enzyme pool followed by the application 

of 10,000 Hz, 100 µA, anodic electric field had an effect on kM and VMAX values of enzyme 1, 

but no effect on enzyme 2.  

Based on these global conclusions this author recommends the following when working 

under the conditions of the methods presented here. To investigate SAP activity from L. tarentolae, 

collection of the supernatant from the log phase or stationary phase of the L. tarentolae growth 

curve will result in the greatest amount of activity from enzyme 1. To investigate enzyme 2, 

collection of the L. tarentolae stationary or senescence phase supernatant will result in the greatest 

activity from enzyme 2. To investigate both enzymes, collection of L. tarentolae log or stationary 

phase supernatant will suffice, as both enzymes are present and detectable during these phases of 

the L. tarentolae growth curve. To further investigate the effect of electric field on L. tarentolae 

cell aggregation and/or cell clumping, use larger frequencies (10,000 Hz), larger currents (500 

µA), and anodic polarities for thirty minute exposures. These conditions will result in a large 

clumping effect, but will also not lead to L. tarentolae cell death due to electric field exposure. To 

further investigate, or to begin probing the mechanism, of how the application of electric fields 

modulates log or stationary phase L. tarentolae SAP activity, the 10,000 Hz frequency is most 

useful as it has produced the greatest measurable effects thus far. To further investigate any 

potential synergism between the application of electric fields followed by incubation with a 

competitive inhibitor, the method of Baumhardt et al., with experiments performed under the same 
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assay conditions as electric field experiments, proves very useful. This method allows the 

determination of which of any potential competitive inhibitor is most effective at enzyme 

inhibition on a stoichiometric basis of inhibitor to substrate (log[S]/[I]). This work suggests that 

the application of electric fields followed by incubation with orthovanadate does not produce a 

large synergistic effect. The following method is recommended for future work on synergism 

between orthovanadate and electric fields for the purpose of inhibiting L. tarentolae SAP activity. 

A master pool of assay buffer, enzyme source and orthovanadate should be produced such that 

buffer occupies 55.56 % of the volume of the master pool, enzyme source occupies 33.33 % of the 

volume of the master pool, orthovanadate (25 µM) is added to the master pool, and aliquots (2.00 

mL) of this master pool are then exposed to electric fields. After electric field exposure, aliquots 

of the master pool will be added to 1.5 mL polypropylene tubes, and PNPP will be added (100 µL 

of 1.347 mM) to give a final assay volume of 0.9 mL. Assays will be stopped with the addition of 

NaOH (0.1 mL, 10 M), and product will be measured by spectroscopy (A405 nm). Results from 

this thesis do now suggest that the therapeutic response reported by Hejazi et al. (1972), using 

electrical treatment of mice, may involve the direct as well as indirect effects of electricity on the 

activity of secreted acid phosphatases. Clearly more work is needed to sort out the full mechanism 

of action of electric fields on Leishmania secreted acid phosphatases.   
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APPENDIX A 

THE INDIVIDUAL LINEWEAVER-BURK PLOTS AND DATA POINTS 

CORRESPONDING TO THE TEXT (TABLE 2, FIGURE 18, 

 TABLE 3, AND FIGURE 19). 
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Day 1         

Enzyme 1      

KM (µM):  

1.36E03±1.3E02    
  

VMAX (µM/23 Hr):  

54.9±1.1E-01    
  

[para-nitrophenylphosphate] 

(µM) 

Average 
1/[para-nitrophenolate] 

(1/µM/23 Hr) 

1/[para-nitrophenyl standard deviation 

[para-nitrophenolate] 

(µM/23 Hr) 

phosphate] 

(1/µM) 

[para-nitrophenol] 

(1/µM/23 Hr) 

150 5.56 0.180 6.67E-03 0.00E+00 

200 7.22 0.138 5.00E-03 6.31E-03 

250 8.33 0.120 4.00E-03 4.62E-03 

300 9.44 0.106 3.33E-03 0.00E+00 

350 11.1 9.00E-02 2.86E-03 4.50E-03 

400 12.2 8.18E-02 2.50E-03 1.26E-17 

450 13.3 7.50E-02 2.22E-03 0.00E+00 

500 14.4 6.92E-02 2.00E-03 1.52E-03 

550 15.6 6.43E-02 1.82E-03 1.31E-03 

1.00E+03 23.3 4.29E-02 1.00E-03 5.84E-04 

2.00E+03 36.1 2.77E-02 5.00E-04 4.89E-04 

4.00E+03 50.6 1.98E-02 2.50E-04 2.51E-04 
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Day 2         

Enzyme 1      

KM (µM): 

1.27E03±1.0E02    
  

VMAX (µM/23 Hr): 

57.1±1.0E-01     
  

[para-nitrophenylphosphate] (µM) 

Average 

1/[para-nitrophenolate] 

(1/µM/23 Hr) 

1/[para-

nitrophenyl 

standard 

deviation 

[para-nitrophenolate] 

(µM/23 Hr) 

phosphate] 

(1/ µM) 

[para-

nitrophenol] 

(1/µM/23 Hr) 

150 6.11 0.164 6.67E-03 0.00E+00 

200 7.78 0.129 5.00E-03 5.18E-03 

250 9.44 0.106 4.00E-03 0.00E+00 

300 10.6 9.47E-02 3.33E-03 1.69E-17 

350 11.7 8.57E-02 2.86E-03 2.32E-03 

400 13.3 7.50E-02 2.50E-03 3.13E-03 

450 15.0 6.67E-02 2.22E-03 1.44E-03 

500 16.1 6.21E-02 2.00E-03 1.25E-03 

1.00E+03 25.0 4.00E-02 1.00E-03 1.39E-03 

2.00E+03 37.2 2.69E-02 5.00E-04 4.61E-04 

4.00E+03 48.9 2.05E-02 2.50E-04 1.34E-04 
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Day 3         

Enzyme 1    
  

KM (µM): 

1.11E03±9.1E01    
  

VMAX (µM/23 Hr): 
63.3±9.0E-01       

  

[para-nitrophenylphosphate] (µM) 

Average 

1/[para-nitrophenolate] 

(1/µM/23 Hr) 

1/[para-

nitrophenyl 

standard 

deviation 

[para-nitrophenolate] 

(µM/23 Hr) 

phosphate] 

(1/µM) 

[para-

nitrophenol] 

(1/µM/23 Hr) 

150 7.78 0.129 6.67E-03 0.00E+00 

200 9.44 0.106 5.00E-03 1.00E-03 

250 11.7 8.57E-02 4.00E-03 1.62E-03 

300 13.3 7.50E-02 3.33E-03 8.47E-18 

350 14.4 6.92E-02 2.86E-03 5.95E-04 

400 16.7 6.00E-02 2.50E-03 4.54E-04 

450 17.8 5.63E-02 2.22E-03 1.11E-04 

500 20.0 5.00E-02 2.00E-03 2.00E-04 

550 21.1 4.74E-02 1.82E-03 0.00E+00 

1.00E+03 30.6 3.27E-02 1.00E-03 6.00E-04 

2.00E+03 43.3 2.31E-02 5.00E-04 8.00E-04 

4.00E+03 53.9 1.86E-02 2.50E-04 1.00E-04 
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Day 3         

Enzyme 2      

KM (µM):  

2.26±7.20E-02    
  

VMAX (µM/23 Hr): 

1.40±2.00E-01     
  

[para-nitrophenylphosphate] (µM) 

Average 

1/[para-nitrophenolate] 

(1/µM/23 Hr) 

1/[para-

nitrophenyl 

standard 

deviation 

[para-nitrophenolate] 

(µM) 

phosphate] 

(1/µM) 

[para-

nitrophenol] 

(1/µM/23 Hr) 

2.62 0.722 1.38 3.82E-01 2.73E-02 

2.99 0.889 1.13 3.34E-01 1.78E-02 

3.37 0.722 1.38 2.97E-01 6.84E-03 

3.74 0.944 1.06 2.67E-01 1.03E-02 

4.12 0.833 1.20 2.43E-01 9.72E-03 

4.49 1.22 0.818 2.23E-01 5.95E-03 

6.00 1.28 0.783 1.67E-01 1.64E-02 

8.83 0.778 1.29 1.13E-01 7.18E-03 

1.20E+01 1.06 0.947 8.33E-02 1.65E-02 

1.40E+01 1.67 0.600 7.14E-02 1.39E-02 

1.80E+01 1.28 0.783 5.56E-02 3.74E-03 
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Day 4         

Enzyme 1      

KM (µM): 

1.27E03±9.0E01    
  

VMAX (µM/23 Hr): 

69.4±6.1E-01       
  

[para-nitrophenylphosphate] (µM) 

Average 

1/[para-nitrophenolate] 

(1/µM/23 Hr) 

1/[para-

nitrophenyl 

standard 

deviation 

[para-nitrophenolate] 

(µM/23 Hr) 

phosphate] 

(1/µM) 

[para-

nitrophenol] 

(1/µM/23 Hr) 

250 11.7 8.57E-02 4.00E-03 4.60E-03 

300 13.3 7.50E-02 3.33E-03 7.36E-03 

350 14.4 6.92E-02 2.86E-03 2.81E-03 

400 16.7 6.00E-02 2.50E-03 2.71E-03 

450 17.8 5.62E-02 2.22E-03 1.19E-03 

500 20.0 5.00E-02 2.00E-03 9.56E-04 

550 21.1 4.74E-02 1.82E-03 0.00E+00 

1.00E+03 30.6 3.27E-02 1.00E-03 0.00E+00 

2.00E+03 43.3 2.31E-02 5.00E-04 4.86E-04 

4.00E+03 53.9 1.86E-02 2.50E-04 0.00E+00 
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Day 4         

Enzyme 2    
  

KM (µM): 6.93±0.42    
  

VMAX (µM/23 Hr): 

3.58±0.12    
  

[para-nitrophenylphosphate] 

(µM) 

Average 

1/[para-nitrophenolate] 

(1/µM/23 Hr) 

1/[para-

nitrophenyl 

standard 

deviation 

[para-nitrophenolate] 

(µM/23 Hr) 

phosphate] 

(1/µM) 

[para-

nitrophenol] 

(1/µM/23 Hr) 

3.37 1.19 0.844 2.97E-01 2.23E-02 

3.74 1.17 0.857 2.67E-01 2.94E-03 

4.12 1.46 0.684 2.43E-01 2.09E-02 

4.49 1.61 0.621 2.23E-01 8.32E-03 

6.00 1.61 0.621 1.67E-01 8.32E-03 

8.83 1.81 0.551 1.13E-01 3.29E-03 

1.20E+01 2.22 0.450 8.33E-02 5.98E-03 

1.40E+01 2.56 0.391 7.14E-02 2.25E-03 

1.80E+01 2.78 0.360 5.56E-02 5.68E-04 
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y = 9.17x + 4.80E-03
R² = 0.972
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Day 5         

Enzyme 1      

KM (µM): 

1.91E03±1.3E02    
  

VMAX (µM/23 Hr): 

208±1.0E01       
  

[para-nitrophenylphosphate] 

(µM) 

Average 

1/[para-nitrophenolate] 

(1/µM/23 Hr) 

1/[para-

nitrophenyl 

standard 

deviation 

[para-nitrophenolate] 

(µM/23 hr) 

phosphate] 

(1/µM) 

[para-

nitrophenol] 

(1/µM/23 Hr) 

150 16.1 6.21E-02 6.67E-03 1.93E-03 

200 19.7 5.08E-02 5.00E-03 8.30E-04 

250 23.8 4.21E-02 4.00E-03 4.11E-04 

300 26.8 3.73E-02 3.33E-03 4.90E-04 

350 29.1 3.44E-02 2.86E-03 5.32E-04 

400 32.4 3.08E-02 2.50E-03 1.58E-04 

450 33.5 2.99E-02 2.22E-03 5.58E-04 

500 50.7 1.97E-02 2.00E-03 2.83E-04 

550 53.0 1.89E-02 1.82E-03 8.62E-05 

1.00E+03 68.1 1.47E-02 1.00E-03 6.72E-05 

2.00E+03 162 6.18E-03 5.00E-04 1.07E-04 

4.00E+03 192 5.22E-03 2.50E-04 7.34E-05 

  



106 
 

  

y = 0.956x + 0.285
R² = 0.887
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Day 5         

Enzyme 2      

KM (µM):  

3.35±7.7E-02    
  

VMAX (µM/23 Hr): 

3.51±2.9E-01     
  

[para-nitrophenylphosphate] (µM) 

Average 

1/[para-nitrophenolate] 

(1/µM/23 Hr) 

1/[para-

nitrophenyl 

standard 

deviation 

[para-nitrophenolate] 

(µM/23 hr) 

phosphate] 

(1/µM) 

[para-

nitrophenol] 

(1/µM/23 Hr) 

2.00 1.28 0.783 5.00E-01 1.66E-02 

2.62 1.83 0.545 3.82E-01 2.49E-02 

2.99 1.56 0.643 3.34E-01 3.56E-03 

3.37 1.67 0.600 2.97E-01 6.18E-03 

3.74 1.72 0.581 2.67E-01 2.25E-03 

4.12 2.00 0.500 2.43E-01 1.59E-03 

4.49 2.11 0.474 2.23E-01 1.10E-02 

6.00 2.11 0.474 1.67E-01 5.40E-03 

8.83 2.22 0.450 1.13E-01 0.00E+00 

1.20E+01 2.67 0.375 8.33E-02 0.00E+00 

1.40E+01 3.00 0.333 7.14E-02 0.00E+00 

1.80E+01 3.56 0.281 5.56E-02 0.00E+00 
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y = 9.80x + 6.30E-03
R² = 0.994
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Day 6 
        

Enzyme 1      

KM (µM): 

1.56E03±6.0E01    
  

VMAX (µM/23 Hr): 

159±7.0       
  

[para-nitrophenylphosphate] 

(µM) 

Average 

1/[para-nitrophenolate] 

(1/µM/23 Hr) 

1/[para-

nitrophenyl 

standard 

deviation 

[para-nitrophenolate] 

(µM/23 Hr) 

phosphate] 

(1/µM) 

[para-

nitrophenol] 

(1/µM/23 Hr) 

150 14.4 6.92E-02 6.67E-03 1.93E-03 

200 17.9 5.59E-02 5.00E-03 8.30E-04 

250 21.6 4.64E-02 4.00E-03 4.11E-04 

300 24.8 4.03E-02 3.33E-03 4.90E-04 

350 27.5 3.64E-02 2.86E-03 5.32E-04 

400 33.4 2.99E-02 2.50E-03 1.58E-04 

450 35.1 2.85E-02 2.22E-03 5.58E-04 

500 38.0 2.63E-02 2.00E-03 2.83E-04 

550 41.3 2.42E-02 1.82E-03 8.62E-05 

1.00E+03 58.4 1.71E-02 1.00E-03 6.72E-05 

2.00E+03 105 9.51E-03 5.00E-04 1.07E-04 

4.00E+03 143 6.98E-03 2.50E-04 7.34E-05 
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y = 3.64x + 0.354
R² = 0.880
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Day 6         

Enzyme 2      

KM (µM): 10.3±8.1E01    
  

VMAX (µM/23 Hr): 

2.82±1.9E-01     
  

[para-nitrophenylphosphate] (µM) 

Average 

1/[para-nitrophenolate] 

1/(µM/23 Hr) 

1/[para-

nitrophenyl 

standard 

deviation 

[para-nitrophenolate] 

(µM)/23 Hr 

phosphate] 

(1/µM) 

[para-

nitrophenol] 

1/(µM/23 Hr) 

6.00 1.06 0.947 1.67E-01 1.61E-02 

8.83 1.33 0.750 1.13E-01 0.00E+00 

12.0 1.39 0.720 8.33E-02 0.00E+00 

14.0 1.50 0.667 7.14E-02 0.00E+00 

18.0 2.11 0.474 5.56E-02 0.00E+00 
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y = 5.72x + 5.20E-03
R² = 0.996
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Day 7         

Enzyme 1      

KM (µM): 

1.10E03±3.0E01    
  

VMAX (µM/23 Hr): 

192±9.0       
  

[para-nitrophenylphosphate] 

(µM) 

Average 

1/[para-nitrophenolate] 

(1/µM/23 Hr) 

1/[para-

nitrophenyl 

standard 

deviation 

[para-nitrophenolate] 

(µM/23 Hr) 

phosphate] 

(1/µM) 

[para-

nitrophenol] 

(1/µM/23 Hr) 

150 23.7 4.23E-02 6.67E-03 4.36E-04 

200 29.3 3.41E-02 5.00E-03 1.79E-04 

250 34.4 2.90E-02 4.00E-03 2.45E-04 

300 40.0 2.50E-02 3.33E-03 4.89E-05 

350 46.0 2.17E-02 2.86E-03 2.50E-04 

400 53.3 1.88E-02 2.50E-03 2.70E-04 

450 55.6 1.80E-02 2.22E-03 2.53E-04 

500 59.4 1.68E-02 2.00E-03 1.13E-04 

550 64.3 1.56E-02 1.82E-03 1.07E-04 

1.00E+03 85.8 1.17E-02 1.00E-03 1.65E-04 

2.00E+03 134 7.44E-03 5.00E-04 2.90E-04 

4.00E+03 168 5.95E-03 2.50E-04 4.50E-05 
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y = 2.26x + 6.18E-02
R² = 0.950
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Day 7         

Enzyme 2      

KM (µM): 36.6±1.8    
  

VMAX (µM/23 Hr): 

16.2±7.0E-01     
  

[para-nitrophenylphosphate] (µM) 

Average 

1/[para-nitrophenolate] 

(1/µM/23 Hr) 

1/[para-

nitrophenyl 

standard 

deviation 

[para-nitrophenolate] 

(µM/23 Hr) 

phosphate] 

(1/µM) 

[para-

nitrophenol] 

(1/µM/23 Hr) 

2.00 0.778 1.29 5.00E-01 1.08E-02 

2.62 1.00 1.00 3.82E-01 1.09E-02 

2.99 1.39 0.720 3.34E-01 1.59E-02 

3.37 1.44 0.692 2.97E-01 9.98E-03 

3.74 1.50 0.667 2.67E-01 5.38E-03 

4.12 1.78 0.563 2.43E-01 5.16E-03 

4.49 2.11 0.474 2.23E-01 5.64E-03 

6.00 2.83 0.353 1.67E-01 1.01E-02 

8.83 2.50 0.400 1.13E-01 5.92E-03 

1.20E+01 3.22 0.310 8.33E-02 4.99E-04 

1.40E+01 4.06 0.247 7.14E-02 5.94E-03 

1.80E+01 4.44 0.225 5.56E-02 1.90E-03 
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y = 6.39x + 5.00E-03
R² = 0.991
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Day 8     

Enzyme 1    
 

KM (µM): 

1.28E03±5.0E01    

 

VMAX (µM/23 Hr): 

200±8.0    
 

[para-nitrophenylphosphate] 

(µM) 

Average 

1/[para-nitrophenolate] 

(1/µM/23 Hr) 

1/[para-

nitrophenyl 

standard 

deviation 

[para-nitrophenolate] 

(µM/23 Hr) 

phosphate] 

(1/µM) 

[para-

nitrophenol] 

(1/µM/23 Hr) 

150 21.8 4.58E-02 6.67E-03 2.61E-02 

200 26.4 3.78E-02 5.00E-03 1.02E-02 

250 31.3 3.19E-02 4.00E-03 1.04E-02 

300 34.9 2.87E-02 3.33E-03 8.04E-03 

350 42.3 2.36E-02 2.86E-03 2.89E-03 

400 50.8 1.97E-02 2.50E-03 1.69E-03 

450 53.3 1.88E-02 2.22E-03 1.09E-03 

500 57.1 1.75E-02 2.00E-03 2.89E-03 

550 60.8 1.64E-02 1.82E-03 3.39E-04 

1.00E+03 82.4 1.21E-02 1.00E-03 2.10E-03 

2.00E+03 123 8.11E-03 5.00E-04 6.53E-04 

4.00E+03 176 5.68E-03 2.50E-04 0.00E+00 
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y = 4.26x + 4.40E-03
R² = 0.963
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Day 8 + Glycosidase         

Enzyme 1      

KM (µM): 968±1.3E02    
  

VMAX (µM/23 Hr): 

227±50       
  

[para-nitrophenylphosphate] 

(µM) 

Average 

1/[para-nitrophenolate] 

(1/µM/23 Hr) 

1/[para-

nitrophenyl 

standard 

deviation 

[para-nitrophenolate] 

(µM/23 Hr) 

phosphate] 

(1/µM) 

[para-

nitrophenol] 

(1/µM/23 Hr) 

150 32.7 3.06E-02 6.67E-03 9.53E-03 

200 36.8 2.72E-02 5.00E-03 1.26E-02 

250 45.9 2.18E-02 4.00E-03 6.42E-03 

300 52.1 1.92E-02 3.33E-03 1.33E-03 

350 56.2 1.78E-02 2.86E-03 1.39E-03 

400 61.1 1.64E-02 2.50E-03 5.06E-03 

450 66.0 1.52E-02 2.22E-03 3.00E-03 

500 69.9 1.43E-02 2.00E-03 2.69E-03 

550 108 9.28E-03 1.82E-03 1.32E-03 

1.00E+03 147 6.78E-03 1.00E-03 0.00E+00 

2.00E+03 147 6.78E-03 5.00E-04 0.00E+00 

4.00E+03 203 4.93E-03 2.50E-04 0.00E+00 
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y = 2.88x + 8.70E-03
R² = 0.915

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1.400

5.00E-03 5.50E-02 1.05E-01 1.55E-01 2.05E-01 2.55E-01 3.05E-01 3.55E-01 4.05E-01

1
/ 

[p
ar

a-
n
it

ro
p

h
en

o
la

te
] 

(1
/µ

M
/2

3
 H

r)

1/[para-nitrophenylphosphate] (1/µM)

Lineweaver-Burk Linear Transformation of the V versus S Curve of the 
L. tarentolae Senescence Phase Supernatant Enzyme Kinetics (Enzyme 2 

Day 8 + Glycosidase)

Enzyme 2

Linear (Enzyme 2)



121 
 

Day 8 + Glycosidase         

Enzyme 2    
  

KM (µM): 331±14    
  

VMAX (µM/23 Hr): 

115±17     
  

[para-nitrophenylphosphate] 

(µM) 

Average 

1/[para-nitrophenolate] 

(1/µM/23 Hr) 

1/[para-

nitrophenyl 

standard 

deviation 

[para-nitrophenolate] 

(µM/23 Hr) 

phosphate] 

(1/µM) 

[para-

nitrophenol] 

(1/µM/23 Hr) 

2.00 0.278 3.600 5.00E-01 4.99E-04 

2.62 0.778 1.286 3.82E-01 5.44E-04 

2.99 1.28 0.783 3.34E-01 6.06E-04 

3.37 1.22 0.818 2.97E-01 4.42E-04 

3.74 1.22 0.818 2.67E-01 4.25E-04 

4.12 1.33 0.750 2.43E-01 2.90E-05 

4.49 1.72 0.581 2.23E-01 1.75E-04 

6.00 2.00 0.500 1.67E-01 1.37E-04 

8.83 3.11 0.321 1.13E-01 3.07E-04 

12.0 3.50 0.286 8.33E-02 5.76E-05 

14.0 4.39 0.228 7.14E-02 6.42E-05 

18.0 26.5 3.77E-02 5.56E-02 8.58E-05 
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