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Golf course putting greens typically consist of creeping bentgrass on sandy soils.  

Creeping bentgrass is mowed at extremely short heights, limiting root growth and making it 

vulnerable to different pests.  Sandy profiles make it difficult for creeping bentgrass to take up 

nutrients and water. Tytanit combines sulfur, magnesium, and titanium-ascorbate as a 

biostimulant to increase chlorophyll content within the plant, increase yields, and assist in 

fighting biotic and abiotic diseases such as diseases and drought.  Previous studies have shown 

benefits in plant growth, but results have been inconsistent.  No previously reported studies have 

been performed on turfgrass using Tytanit.  Therefore, this study determined the effect of foliar 

applied titanium to L-93 creeping bentgrass putting greens on engineered sand rooting profiles at 

two locations in Central Illinois.  Two treatment plots and a control plot were studied during this 

research project.  The label rate for horticulture crops (0.07% of total tank volume; 1x) and the 

label rate for agronomic crops (0.14% of total tank volume; 2x) were both applied and studied 

during this project.  Soil and tissue samples were analyzed throughout the duration of the project.  

Digital photos were analyzed to test visual chlorophyll differences between the treatment areas.  

Potassium tissue concentration increased with magnesium, sulfur, and copper tissue 

concentration with the agronomic rate of Tytanit at Mounier Golf Training Center at Weibring 



 

 
 

Golf Club in Normal, IL.  Phosphorus, manganese, and zinc tissue concentration decreased 

during this time frame.  Calcium, magnesium, iron, and manganese tissue concentration 

increased with the horticultural rate of Tytanit at Lauritsen/Wohler’s Outdoor Golf Practice 

Facility, Urbana, IL.  Titanium did impact plant growth in this study, but the results were 

location and nutrient specific, so it is recommended that further research be conducted on this 

product. 

KEYWORDS: chlorophyll content, macronutrients, micronutrients, putting greens, root growth, 

sandy profiles 
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CHAPTER I: THE PROBLEM AND ITS BACKGROUND 

The turfgrass industry is one of the largest agricultural industries in the United States 

(Emmons 2008).  California, Texas, Florida, and New York spend more than $5 billion in each 

state every year on turfgrass research (Emmons, 2008).  A study conducted in these states in 

2013 found homeowners were willing to spend $25-74 per year on fertilizers for their lawn 

(Khachatryan et al., 2014).   There are approximately 15,000 golf courses in the U.S. alone, 

decreasing 5.6% since 2006 (Crittenden, 2017).  The National Golf Foundation found that nearly 

12% of the population over the age of 12 golfs, and that there are more than 30,000,000 golfers 

in the United States and 60,000,000 worldwide (Emmons, 2008).  With the popularity of this 

sport, it remains important to have sound management techniques in maintaining golf courses, 

especially the putting greens. 

  Typically, putting greens are composed of creeping bentgrass and mowed at extremely 

low heights, which can limit root growth and increases sensitivity to environmental stresses 

(McCullough et al., 2006).  Putting greens also experience large amounts of traffic from golfers 

constantly walking on the greens, which weakens its recuperative capacity that causes weed 

invasions (Samaranayake, Lawson, and Murphy, 2008).  Thus, improving nutrient use efficiency 

is economically and agronomically beneficial for the long-term health of putting greens 

(McCullough et al., 2006).  

The Environmental Protection Agency has developed ecologically sound strategies to 

manage fertility and pests (Balogh and Walker, 1992).  Golf courses provide a natural habitat for 

many animals, including threatened species, and have a direct impact on water sources, 

especially the putting greens because they are constructed of sandy soils, which are susceptible 

to nutrient and water loss. (Terman, 1997).  Balogh and Walker (1992) suggests that chemical 
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treatment of turfgrass should not be a source of water pollution (surface or groundwater) if 

managed properly.  Large amounts of habitat on golf courses reduces water runoff, irrigation, 

and chemical inputs (Terman, 1997).  Golf courses should be able to reduce these issues by 

combining environmentally sound measures with Integrated Pest Management (IPM) methods 

when using pesticides and applying essential nutrients to the turf (Balogh and Walker, 1997).  

Modern putting greens are typically constructed using sands to avoid compaction and 

increase water drainage (Bigelow et al., 2001).  Nutrient management is difficult on sand-based 

greens due to the physical and chemical characteristics of the sand and shallow root zone of the 

creeping bentgrass (Bigelow et al., 2001).  For drainage purposes, creeping bentgrass on putting 

greens is typically established on sand-based soils, which are prone to nutrient deficiencies and 

require supplemental fertilization (Rodriguez et al., 2002).  Although sands provide favorable 

physical properties, nutrient retention is often poor and soluble nutrients are prone to leaching 

(Bigelow et al., 2001).  

These sandy soils often require supplemental fertilization because of their low cation 

exchange capacity (CEC).  The CEC of a soil is measured by the amount and type of colloids 

(clay minerals and organic matter) present (Havlin et al., 2005).  CEC is measured in cmolc per 

kg-1 of soil and is a measure of the quantity of readily exchangeable cations neutralizing negative 

charge in the soil (Rhoades, 1982).  In other words, a soil’s CEC shows how well the soil can 

hold onto cations and water without them leaching or leaving the soil profile.  The higher the 

CEC, the more cations and water the soil can retain.  Sands typically have a low CEC, thus they 

retain little nutrients and water.           

The objectives of this study was to… 
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• Apply a foliar Ti biostimulant on creeping bentgrass on professional golf course putting 

greens the effect on color and quality.  

• Specific measurements included chlorophyll content, visual coloration, and macro- and 

micronutrient uptake include measuring chlorophyll content of creeping bentgrass on golf 

course putting greens at Mounier Golf Training Center at Weibring Golf Club, Normal, 

IL, and Lauritsen/Wohlers Outdoor Golf Practice Facility, Urbana, IL. 

The previously mentioned elements have been individually researched, with varying 

beneficial results, depending on the crop.  Thus, if properly managed, their potential to benefit 

creeping bentgrass on golf course putting greens is likely.  However, additional research is 

needed to determine the effect Ti has on plant growth, specifically on creeping bentgrass. 
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CHAPTER II: REVIEW OF RELATED LITERATURE 

GOLF COURSE INDUSTRY MANAGEMENT 

 Golf courses are an important part of the turf industry.  The popularity of golf in the 

world continues to grow and the number of golf courses now exceeds 25,000 worldwide 

(Guzman and Fernandez, 2014; Terman, 1997).  More than 100 colleges and universities in the 

U.S. offer turfgrass classes or complete turfgrass programs (Emmons, 2008).  Each state holds 

turf conferences and field days to help keep turfgrass managers up-to-date on their information 

and knowledge (Emmons, 2008).  

OVERVIEW OF CREEPING BENTGRASS 

 Creeping bentgrass (Agrostis stolonifera) is the most commonly used cool season 

turfgrass on golf course fairways, tees and putting greens in the U.S. (Elmore et al., 2015) 

(Emmons, 2008). The quality of a golf course is judged by the condition of its greens (Emmons, 

2008).  A lot of the important strokes of a round of golf occur on the greens.  To put things into 

perspective, a golf course superintendent held to a tight budget will attempt to keep the greens in 

excellent shape and give lower priority to fairways and other turf areas (Emmons, 2008).  

Summer growing conditions can facilitate biotic and abiotic stresses such as diseases and 

drought stress on creeping bentgrass (Dernoeden, 2013).  Many bentgrass diseases are associated 

with color changes, appear in circular patterns, and can result in a loss of vigor and stand density 

(Dernoeden, 2013).  Turf fungal diseases typically rely on fungicides for control, which can 

cause environmental concerns (Zhou et al., 2011).  

Mowing Creeping Bentgrass 

Creeping bentgrass is a very commonly used cool season turfgrass on golf course greens 

in the transition zone and cool climate areas (Liu and Huang, 2002).  With putting greens, low 
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mowing heights lead to increased golf ball speed, which is a common practice (Liu and Huang, 

2002).  Creeping bentgrass is typically mowed at 0.12 in with a reel mower (Emmons, 2008).  

When cut this short, creeping bentgrass is highly attractive but becomes shallow rooted and can 

be severely damaged in the summer (Emmons, 2008; Dernoeden, 2012).  However, low mowing 

heights are generally preferred to maintain surface smoothness in high density cultivars 

(Dernoeden, 2012).  

United States Golf Association (USGA) Sand-Based Greens 

 The USGA’s method of constructing putting greens has served as the industry standard 

for building greens since it was introduced in 1960 (Moore, 2004).  Most of the changes since its 

introduction have revolved around adjusting the root zone mix (Hummel, 1993).  Physical and 

chemical properties of root zone mixes and methods of putting green construction are critical 

considerations for improving turf quality (Ok, Anderson, and Ervin, 2003).  Sand provides an 

ideal root zone for bentgrass putting greens due to its particle size, which provides a firm surface 

for foot traffic and compaction resistance, while remaining highly permeable (Ok, Anderson, & 

Ervin, 2003).  Sands also have low water and nutrient retention properties, even with added peat 

moss because the peat moss deteriorates in three to four years (Brockhoff et al, 2010).  

The USGA funded research projects in the 1950s at Texas A&M and the University of 

California at Los Angeles to study root zone structures (Hummel, 1993).  Studies show that the 

root zone mix of a putting green should be 85% to 90% sand, with the rest being peat or 

aggregated clay (Hummel, 1993).  Since 1993, more than $1 million has funded 18 projects 

regarding the slope of the greens, water movement in USGA and California profiles, engineering 

factors of sand root zones, the impact of inorganic and organic amendments, environmental 
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impact of sand-based greens, and the status of microorganisms in sand-based greens and in 

fumigated root zones (Moore, 2004).  

PRIMARY MACRONUTRIENTS IN TURF 

Nitrogen 

 Perhaps no other nutrient has as much of an impact on golf greens in terms of canopy 

color, vigor, root-to-shoot ratios, and disease susceptibility than nitrogen (N) (Schlossberg and 

Schmidt, 2007).  Studies show that desired turf color, the mass of the turf clippings, and the 

percent foliar N all increased with an increase of inorganically applied N fertilizer (Garling and 

Boehm, 2001).  The darker shade of green is more aesthetically pleasing turf (Schlossberg and 

Schmidt, 2007).  In another study, results showed better quality turf after equal applications of N 

in the NH4
+ and NO3

- forms, instead of one or the other (Schlossberg and Schmidt, 2007).  For 

plants, NH4
+ and NO3

- are the most important forms of N and are produced from aerobic 

decomposition of soil organic matter or from addition of N fertilizers (Havlin et al., 2005).   

However, it is important to remember after sod establishment at least half of the applied nitrogen 

should be in a slow release form (Schlossberg and Schmidt, 2007).  There was another study 

completed on sand-based greens, during establishment, with nitrogen fertilizer application 

(Brauen and Stahnke, 1995).  

 During the first year of establishment, there was a limited root structure, no thatch, and 

no organic matter, which led to leaching, especially in the fall and spring with increased rainfall 

(Brauen and Stahnke, 1995).  However, hardly any nitrate leached when applied at the standard 

four pounds total (one pound per application) per 1,000 square feet per growing season (Brauen 

and Stahnke, 1995).  The other excessive nitrate leaching numbers found were involved with 



 

7 

over-applying and excessive rainfall; 12 pounds per 1,000 square feet saw much more leaching 

than eight pounds per 1,000 square feet (Brauen and Stahnke, 1995).  

 Nitrogen levels on low CEC sandy soils can decrease quickly due to plant uptake and 

leaching (Johnson, Koenig, and Kopp, 2003).  Deficient nitrogen levels have a direct correlation 

with the chlorophyll production made by bentgrass, which, in turn, has a direct impact on the 

health of the plant (Johnson, Koenig, and Kopp, 2003).  (Razmjoo et al., 2008) showed that a 

higher mowing height reduces nitrogen levels, so when it comes to increasing nitrogen levels in 

the plant, inorganic fertilizer is the main way to do so.  

Phosphorus 

Plants can uptake phosphorus (P) in the inorganic forms H2PO4
- and HPO4

2- (Havlin et 

al., 2005).  The most essential function P provides is energy storage and transfer within the plant 

(Havlin et al., 2005).  Another function is P aids in root promotion (Emmons, 2008).  As with 

nitrogen, organic P converts to plant available inorganic P through mineralization and becomes 

unavailable during immobilization, which occurs with warmer temperatures (Busman et al., 

2002).  Phosphorus can adsorb to clay particles to reduce leaching, which is seen in fine-textured 

soils (Havlin et al., 2005).  Phosphorus has three pools within the profile- the fixed pool holds 

the P that is insoluble and therefore unavailable to the plant, the solution pool, which contains the 

orthophosphate forms (plant available), and the active pool, which replenishes the solution pool 

(Busman et al., 2017).  

 With turf, P should be incorporated after application (Emmons, 2008).  Most of the P lost 

from the soil profile is due to water running over the surface causing runoff (Havlin et al., 2005).  

Because of this, P can be considered a pollutant to water bodies (algae blooms), which is why it 

is environmentally and economically important to only apply when soil test results show a 



 

8 

deficiency (Emmons, 2008).  It is important to note many turf areas have adequate P levels 

because it does not leave the soil profile readily; however, sand-based greens with low CEC 

could be an exception (Emmons, 2008).  

Potassium 

 Potassium (K) counteracts many of the negative effects of nitrogen such as decreased 

plant tolerance to cold, heat, drought, and diseases (Emmons, 2008).  Potassium is absorbed by 

plants in the K+ form and is needed for metabolic (energy making) reactions because of its 

capacity to activate a multitude of enzymes (Maathuis, 2009).  These metabolic processes 

include photosynthesis, synthesis, and translocation of enzymes (Havlin et al., 2005).  Energy 

from these processes is required for production in carbohydrates, proteins, lipids, oils, vitamins, 

and other compounds, essential for plant growth (Havlin et al., 2005).  Higher K concentrations 

allow plants to allocate more resources to developing stronger cell walls for preventing pathogen 

infection and insect attack, and to obtain more nutrients to be used for plant defense and damage 

repair (Wang et al., 2013).  Adequate amounts of K help resist drought damage, maintaining 

good cell structure to keep the plant healthy and strong (Wang et al., 2013).  

Plants exhibit “luxury consumption” with K, absorbing more than they need (Emmons, 

2008).  Like with other nutrients, sand creates a different environment for K.  A lack of response 

to applied K has been explained by lack of stress due to high amounts of K in the sand (Johnson, 

Koenig, and Kopp, 2003).  Another explanation for lack of response is the inability of the K to 

adsorb to the sand particles due to low CEC, which leads to subsequent leaching of K through 

the root zone (Johnson, Koenig, and Kopp, 2003).  

Potassium is the second most needed nutrient by turf (Johnson et al., 2003).  However, as 

stated earlier, turf will absorb more K than needed (Emmons, 2008).  Turf fertilizers with a 2:1 
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nitrogen to K ratio are often recommended unless soil tests indicate otherwise (Emmons, 2008).  

Some studies have shown applications of K to other types of grass showed no benefit, but it is 

important to note creeping bentgrass being mowed at such short heights is more susceptible to 

drought, and K can help prevent drought (Wang et al., 2013; Fitzpatrick and Guillard, 2004).  

SECONDARY MACRONUTRIENTS 

Sulfur 

 Sulfur (S) is a secondary macronutrient and is primarily absorbed as SO4
-2 (Havlin et al., 

2005).  Sulfur is critical for protein synthesis (Jeschke and Diedrick, 2017).  It is taken up 

primarily as sulfate and required for synthesis of S-containing amino acids, which are essential 

components of plant proteins that compromise nearly 90% of S in plants (Havlin et al., 2005).  In 

the early spring, a sulfur application may be beneficial as mineralization needs warm weather to 

take place (Jeschke and Diedrick, 2017).  Mineralization is the conversion of S from organic to 

inorganic, meaning the plant can then use the nutrient.  There is a benefit to applying S to young 

plants or plants with shallow root systems because S can be translocated in the soil profile 

(Jeschke and Diedrick, 2017).  

Calcium 

In humans, not having enough calcium (Ca) leads to fragile bones, and this is similar in 

plant growth, with calcium deficiency leading to the disintegration of cell walls and the collapse 

of the affected tissues (Hirschi, 2004).  When examining the total amount of Ca in plants, the 

concentration is quite large but its requirement is comparable to the requirement of a 

micronutrient (Hepler, 2005).  However, Ca plays an important role in germination and pollen 

production (Brewbaker and Kwack, 1963).  In a study done, Ca was uniformly distributed along 



 

10 

pollen tube walls and the growth of the pollen due to calcium related primarily to the binding of 

Ca to groups along the pollen wall (Brewbaker and Kwack, 1963).  

In another study, elevating Ca levels led to an inhibition in shoot or coleoptile growth, 

but reducing its concentration promoted cell and tissue elongation (Hepler, 2005).  The same 

study showed low calcium concentrations making membranes more permeable, and if this is 

true, it is right to believe high calcium concentrations should make the membrane less permeable 

(Hepler, 2005).  Calcium stabilizes cell membranes by connecting various proteins and lipids at 

membrane surfaces so when these membranes and cell wall weaken, they are susceptible to 

letting disease pathogens enter the plant (Hirschi, 2004).  

While Ca deficiency is uncommon, it is seen in highly leached, unlimed soils (Havlin et 

al., 2005).  Calcium is generally immobile in the plant and is important in enhancing nitrate 

uptake in the plant as well (Havlin et al., 2005).  Ever since the early sixties, plant biologists 

have been investigating the notion that Ca is crucial for plant development, along with the other 

macronutrients as well (Hepler, 2005).  Macronutrients are considered such because plants 

require them in large amounts; however, micronutrients, though less demanded, have just as 

much of a critical role in plant growth and development.  

Magnesium 

 Magnesium is a secondary macronutrient also present in the earth’s crust at 

approximately 2% (Havlin et al., 2005).  Even though Mg is a secondary macronutrient, it is an 

important chlorophyll molecule in plant tissue and helps to activate specific enzyme systems 

(Kaiser, Rosen and Lamb, 2016).  It is also required for carbohydrate metabolism (Havlin et al., 

2005).  Thus, if Mg is deficient, there will be a shortage of chlorophyll causing stunted growth 

(Kaiser et al., 2016).  Most Midwest soils contain adequate amounts of Mg (Kaiser et al., 2016).  
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Arid soils show deficiencies.  Magnesium is a mobile nutrient, meaning deficiencies would be 

seen on the lower portion of the plant. 

ESSENTIAL MICRONUTRIENTS FOR PLANT GROWTH 

 Micronutrients are equally important as macronutrients in plant growth; the only 

difference is micronutrients are required in smaller amounts (Havlin et al., 2005).  There are 

seven essential micronutrients and they combined constitute less than one percent of the dry 

weight of most plants (Clemson University, 2018).  Plants grown in micronutrient deficient soils 

will exhibit deficiency symptoms just like macronutrients (Havlin et al., 2005).  Some forms of 

these nutrients are more important than others, but understanding the relationships and dynamics 

among these nutrients is critical for optimizing plant productivity (Havlin et al., 2005).  

The physiological interaction and substitution of nutrients with each other in metabolic 

processes can make it difficult to identify the role of a single nutrient in a disease (Huber and 

Wilhelm, 1988).  Studies have recognized the relationships between manganese (Mn) status of 

the plant and severity of the disease infecting the plant, and manganese plays a big role (Huber 

and Wilhelm, 1988).  Manganese has been shown to help with production of chlorophyll but 

excessive amounts have shown to decrease chlorophyll levels (Shenker, Plessner, and Tel-Or 

2004).  

Iron (Fe) assists in photosynthesis, respiration, and nitrogen assimilation (Raven, 1988).  

A large portion of the arable land worldwide does not have soil properties that allow sufficient 

Fe for optimal growth and yield (Buckhout and Schmidt, 2003).  Because solution Fe is low 

compared to calcium, magnesium, and potassium, only a small amount of Fe is adsorbed to the 

clay particles, meaning only a little adsorbed iron contributes to plant growth (Havlin et al., 

2005).  
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Chlorine (Cl) is primarily involved with maintaining osmotic and ion charge balance, 

which are important in many biochemical processes in plants (Havlin et al., 2005).  Chlorine is 

also critical for the function of manganese within the plant (photosynthetic production of 

carbohydrates) (Havlin et al., 2005).  For plants to use nutrients efficiently, nutrients accumulate 

in the vacuole until being transported to growing plant parts; chlorine helps with maintaining 

balance in the tonoplasts, which are membranes that protect the vacuole (Havlin et al., 2005).  

Boron (B) deficiency is viewed in plants more than any other micronutrient, world-wide 

(Blevins and Lukaszewski, 1998).  Deficiencies are typically seen in light-textured soils where 

the boron can leach in a water-soluble form (Blevins and Lukaszewski, 1998).  Boron’s primary 

function is incorporated with plant cell wall structure- cell wall expansion and lignin production 

with cell wall expansion (Blevins and Lukaszewski, 1998; Havlin et al., 2005).  

Zinc (Zn) is required for the production of growth hormones (Havlin et al., 2005).  

Reduced growth hormone production in plants causes shortening of internodes and smaller than 

usual leaves (Havlin et al., 2005).  Zinc is also involved with chlorophyll synthesis, enzyme 

activation, and cell wall integrity (Havlin et al., 2005).  Deficiencies in grasses can reduce 

tillering and can be seen as a chlorotic midrib of younger leaves (Havlin et al., 2005).  

Soil solution copper (Cu) and plant available Cu are mainly determined by solution pH 

and the amount of Cu adsorbed to the clay and organic matter surfaces (Havlin et al., 2005).  

Copper provides structure in regulatory proteins and participates in photosynthetic electron 

transport, mitochondrial respiration, oxidative stress response, cell wall metabolism, and 

hormone signaling (Yruela, 2005).  Both Cu deficiencies and excess Cu can cause disorders in 

plant growth and development by adversely affecting important physiological processes in plants 

(Yruela, 2005).  
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Besides copper, molybdenum (Mo) is the least abundant essential micronutrient present 

in most plant tissues (Kaiser et al., 2005).  It is often set as the base from which all other 

nutrients are compared to and measured (Kaiser et al., 2005).  Considered a transition element, 

Mo is required by enzymes that catalyze important reactions within the cell (Mendel, 2011).  

Molybdenum is used by selected enzymes to carry out redox reactions (Kaiser et al., 2005).  

However, there is little information on how plants access Mo from the soil and how it is 

distributed throughout the plant (Kaiser et al., 2005).  

Even though nickel (Ni) is essential for plant growth, the amount of Ni required is very 

low (Chen et al., 2009).  It is important to keep the amount of Ni low in plants and the soil 

solution, because it has been found to be toxic at high levels, limiting root growth (Seregin and 

Kozhevnikova, 2006).  However, a Ni deficiency has been shown to cause an increase in 

nitrogen uptake, causing necrosis among leaves (Eskew et al., 1984).  

BENEFICIAL NUTRIENTS FOR PLANT GROWTH 

Beneficial elements are not classified as essential for plant growth and development 

(Kaur et al., 2015).  These elements are not critical for plants but have the potential to improve 

plant growth and yield (Kaur et al., 2015).  Beneficial elements enhance resistance to abiotic 

stresses (drought, salinity, high temperatures, cold temperatures, ultraviolet stress, nutrient 

toxicity, and nutrient deficiency (Kaur, et al., 2015).  

Titanium (Ti) is the tenth most abundant element in the earth and is present in the soil at 

relatively high concentrations (57% by weight of the crust); however, it is insoluble at pH ranges 

of 4-8, which is the range most plants need because most nutrients are available in that pH range 

(Carvajal and Alcaraz, 1998; Lyu et al., 2017).  Titanium content has been shown to intensify 

plant growth and development, as well as cause increased chlorophyll content (Tlustos et al., 
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2005).  The results have varied from plant-to-plant, as well as how much Ti benefits the plant, 

and, in general, if it does noticeably at all.  To the author’s knowledge, no reported studies have 

been researrched on turfgrass using foliar applied Ti, but those that have been completed have 

mainly focused on various agronomic and horticultural crops, all showing benefits for the most 

part, but varying results.  Another study done tested annual bedding plants and those results 

fluctuated from plant-to-plant (Whitted-Haag et al., 2014). 

Tytanit is a liquid biostimulant that combines titanium, magnesium, and sulfur to create 

a biostimulant that aids in plant growth by increasing chlorophyll content and helping resist 

biotic and abiotic disease stress.  It is composed of 10% sulfur trioxide, five percent magnesium 

oxide, and 0.85% titanium-ascorbate. Tytanit provides the previously mentioned nutrients in 

soluble forms and is made by INTERMAG in Poland.  

SOIL AND PLANT TISSUE LABORATORY ANALYSIS 

 Farmers and growers soil test mainly to determine fertilizer and lime requirements 

(Jones, Jr., 2001).  The other main reason soil samples are taken is to determine if there would be 

a profitable response to a fertilizer application (Jones, Jr., 2001).  Plant tissue testing is useful in 

helping determine nutrient status within the plant and diagnosing nutrient deficiencies 

(University of Connecticut).  This allows growers to have the most efficiently effective nutrient 

management program (University of Connecticut).  Analysis by inductively coupled plasma 

(ICP) has become more popular in labs due to its ability to measure multiple elements, meaning 

it’s very versatile and efficient (Pittman et al., 2007).  

DIGITAL ANALYSIS 

 Near-ground remote sensing is becoming increasingly important in modern agriculture 

production (Jia et al., 2014).  Ground-based observations of crop growth provide fast, real-time, 
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non-destructive, automatic, and relatively inexpensive information about crop status (Jia et al., 

2014).  This information can significantly increase yields by allowing growers to properly time 

cultivation, fertilizer application, irrigation, pest control, and harvest (Jia et al., 2014).  

FOLIAR APPLICATIONS OF FERTILIZERS 

 Foliar fertilization is the process of nutrient uptake through the foliage or other aerial 

parts of the plant (Stiegler et al., 2010).  All 16 plant nutrients have been reported to be absorbed 

by leaves (Liu et al., 2003).  Using foliar fertilizers has seen an upward trend for all levels of 

turfgrass management, including home lawns and sports turf, especially golf courses (Liu et al., 

2003; Stiegler et al., 2010).  Total fertilizer input may be reduced by using foliar fertilization 

(Liu et al., 2003).  Recent surveys of Arkansas golf course superintendents show that nearly all 

superintendents use foliar fertilization on at least some area of the golf course (Stiegler et al., 

2010).  Micronutrient deficiencies may limit crop yields even though small amounts of each 

nutrient are required by plants (Martens and Westerman, 1991).  Foliar applications of fertilizers 

can help change that.  Foliar fertilization can complement soil fertilization (Fageria et al., 2009).  

 Nutrient uptake by leaf tissue is more affective the longer the nutrient solution remains in 

the form of a fine film on the leaf surface, which means applying a foliar fertilizer on a hot, 

humid day will make absorption tough (Mengel and Kirby, 1987).  Nutrient concentration and 

day temperature should be optimal to avoid leaf burning and the fertilizer source should be 

soluble in water to be more effective (Fageria et al., 2009).  Cool season grasses can absorb foliar 

fertilizers better than warm season grasses due to a higher concentration of stomates (Hull and 

Kopec, 2001).  The process of nutrient uptake by leaf cells is at the very least comparable to that 

of root cell absorption- the transport of the nutrients through the biological membrane, the 

plasmalemma, is the main process (Mengel and Kirby, 1987).  The rate of uptake is regulated by 
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diffusion of the nutrients from the water film on the leaf surface through the cuticle and cell wall 

material to the plasmalemma (Mengel and Kirby, 1987).  Foliar application is particularly useful 

under certain conditions restricting nutrient uptake, and it is important to note the maximum 

effect of one particular nutrient can only be expected if the concentration of the other plant 

nutrients is adequate (Mengel and Kirby, 1987).  

 Several studies have been done testing foliar fertilizer applications on sports turf, 

typically of N, P, and K.  One test showed an absorption rate of 30% to 60% of the N applied and 

43% to 74.8% of the P and K applied (Liu et al., 2003).  The rest of the percentages can be left in 

the soil, lost by the removal of clippings, or stuck in the thatch layer; however, it is important to 

note that unabsorbed liquid fertilizer still has a better chance of being available to the plant than 

granular fertilizers because liquid fertilizers are already dissolved (Liu et al., 2003).  Another test 

was done on creeping bentgrass specifically at the University of Arkansas, and foliar N was 

applied with no irrigation for 24 hours to test the true absorption rate of the leaves (Stiegler et al., 

2010).  The absorption rate ranged from 24-57% in the first hour after treatment and 76% of the 

N was absorbed in the first 24 hours during the month of May, which is the month with the 

highest absorption rate (Stiegler et al., 2010).  A study done at Clemson University showed 

bentgrass absorption being the highest when the fertilizer was applied as 100% liquid (Totten, 

2006).  

 Foliar fertilization can result in more uniform growth and more consistent putting green 

conditions (Stiegler et al., 2010).  In today’s agricultural world, environmental practices are a 

growing concern, and it is true that foliar applications are more environmentally sound practices 

than granular fertilizers (Liu et al., 2003).  
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Figure 1. pH Effect on Nutrient Uptake (Vista and Brasnet, 2015)
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COMMON DISEASES OF BENTGRASS GREENS 

Creeping bentgrass is prone to several diseases (Cook, 2008).  Dollar spot, brown patch, 

and pythium blight are seen nationwide (Cook, 2008).  Fairy ring is seen more on sandy soils due 

to thatch and root environment (Cook, 2008).  Creeping bentgrass is susceptible to diseases by 

hyphae entering through the stomata and through mowing wounds (Emmons, 2008).  Fungicides 

are cost-effective because of the value level of greens; however, a reduction in fungicides would 

be beneficial because of how intensely used golf courses are during the summer as well as 

golfers being in close contact with the turf (Goodman and Burpee, 1991).  

Dollar Spot 

 Creeping bentgrass is highly susceptible to dollar spot (Belanger, Bonos, and Meyer, 

2004).  There is a wide range of susceptibility among current cultivars (Belanger, Bonos, and 

Meyer, 2004).  Genetic resistance is an important control strategy that can reduce fungicide use 

(Bonos, 2006).  The genetic mechanism of dollar spot resistance in turfgrasses is not fully 

understood (Bonos, 2006).  Mowing and dew removal can greatly reduce the chances of seeing 

dollar spot on creeping bentgrass (Ellram et al., 2006).  Removing the dew daily reduced the 

chances of seeing dollar spot compared to removing the dew every other day (Ellram et al., 

2006).  There were no differences in disease control indicated between sharp and dull blades 

when it came to mowing (Ellram et al., 2006).  Dollar spot activity begins at 60 degrees 

Fahrenheit and is optimum at 70-80 degrees Fahrenheit (Emmons, 2008).  The first symptoms 

are straw-colored bands on the leaves and on closely-mowed turf, the first observable signs are 

when the spots on the turf are the size and shape of a silver dollar (Emmons, 2008).  
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Brown Patch 

Creeping bentgrass is one of the most susceptible grasses to brown patch (Emmons, 

2008).  Curative applications of fungicides on turf infected with brown patch do not always 

control the disease (Settle, Frye, and Tisserat, 2001).  Brown patch develops rapidly, with some 

plots exceeding 10% of the plot within the first 24 hours (Settle, Frye, and Tisserat, 2001).  

Disease activity begins at 15 degrees Celsius but is greatest between 27 and 32 degrees Celsius 

(Emmons, 2008).  Somewhat circular, light brown patches ranging from a few inches to several 

feet across the turf will appear (Emmons, 2008).  When the grass is wet, grayish black mycelia 

may be observed around the edge of the patch (Emmons, 2008).  Dew removal can help prevent 

this disease as well as not overwatering the turf and not over fertilizing with nitrogen fertilizers 

(Emmons, 2008).  

Pythium Blight 

 There is probably no other disease that can devastate a turf area like pythium blight 

(Emmons, 2008).  Entire turf stands can be destroyed in less than 24 hours when conditions are 

optimal (27- 32 degrees Celsius, cloudy, wet, rainy weather) (Emmons, 2008).  On high value 

turf such as golf course putting greens, preventative fungicides may be economically justified 

(“Pythium blight,” 2017).   On fairway-height bentgrass, the first symptoms appear as irregularly 

shaped, water-soaked greasy patches up to four inches in diameter (Kennelly, 2008).  Leaves 

appear water-soaked at first, then shriveled (“Pythium blight,” 2017).  Patches fade to a light 

brown or gray color (Kennelly, 2008).  Groups of spots frequently join together and can even 

appear in streaks (Kennelly, 2008).  Pattern and presence of the streaks determined by the flow 

of water (“Pythium blight,” 2017).   Typically, temperatures between 30-35 degrees Fahrenheit 

and high humidity will trigger this disease (Kennelly, 2008).  Sometimes in the early morning, 
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especially with high humidity, a cottony-looking white mycelium is present on the leaf tissue, 

which is why this disease is also called “cottony blight” (Emmons, 2008).  Moderate fertilizer 

applications and adequate drainage can help prevent Pythium blight (“Emmons, 2008).  

Fairy Ring 

 Fairy rings are partial or complete circular bands of grass that are darker green and faster 

growing than the remainder of the turf (Emmons, 2008).  The circles are initially one foot or less 

in diameter but expand in size year after year, reaching up to several hundred feet in diameter 

(“Fairy Ring,” 2016).   The organisms that cause fairy rings feed on organic matter in the soil 

(Emmons, 2008).  They release chemicals that stimulate plants to grow faster and become darker 

(Emmons, 2008).  If the conditions are wet enough, mushrooms can appear along the circular 

pattern (Emmons, 2008).  Turf is not typically injured by fairy rings, but can be killed if the 

fungi secrete toxic compounds or if the layer of mycelia becomes so thick that water cannot 

penetrate to the roots (Emmons, 2008).  The source of fairy ring infestations is unclear (“Fairy 

Ring,” 2016).  Sterilization or fumigation of the root zone mix has not been effective in 

controlling fairy ring establishment (“Fairy Ring,” 2016).  Power raking or vertical mowing to 

remove excess thatch will help to minimize fairy rings (“Fairy Rings,” 2016).  Golf course 

superintendents should aerate and topdress putting greens regularly to prevent thatch buildup and 

maintain soil aeration (“Fairy Ring,” 2016).  It’s important to avoid extremes in soil moisture 

(too wet, too dry) and to apply adequate nitrogen and maintain adequate nutrient levels (“Fairy 

Ring,” 2016).  Applying extra nitrogen to the surrounding areas can help mask the darker green 

color of the infected turf (Emmons, 2008).  Fungicides are most effective for fairy ring control 

when used as a preventative fungicide (“Fairy Ring,” 2016).  Curative applications have little to 
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no effect because the symptoms are caused by a change in the soil environment and fungicides 

do nothing to change the soil environment (“Fairy Ring,” 2016).   
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CHAPTER III: EFFECTS OF FOLIAR APPLIED TITANIUM (TI) ON QUALITY AND 

NUTRIENT UPTAKE OF CREEPING BENTGRASS (AGROSTIS STOLONIFERA) ON 

PROFESSIONAL GOLF COURSE GREENS 

 

ABSTRACT 

Golf course putting greens typically consist of creeping bentgrass on sandy soils.  

Creeping bentgrass is mowed at extremely short heights, limiting root growth and making it 

vulnerable to different pests.  Sandy profiles make it difficult for creeping bentgrass to take up 

nutrients and water. Tytanit combines sulfur, magnesium, and titanium-ascorbate as a 

biostimulant to increase chlorophyll content within the plant, increase yields, and assist in 

fighting biotic and abiotic diseases such as diseases and drought.  Previous studies have shown 

benefits in plant growth, but results have been inconsistent.  No previously reported studies have 

been performed on turfgrass using Tytanit.  Therefore, this study determined the effect of foliar 

applied titanium to L-93 creeping bentgrass putting greens on engineered sand rooting profiles at 

two locations in Central Illinois.  Two treatment plots and a control plot were studied during this 

research project.  The label rate for horticulture crops (0.07% of total tank volume; 1x) and the 

label rate for agronomic crops (0.14% of total tank volume; 2x) were both applied and studied 

during this project.  Soil and tissue samples were analyzed throughout the duration of the project.  

Digital photos were analyzed to test visual chlorophyll differences between the treatment areas.  

Potassium tissue concentration increased with magnesium, sulfur, and copper tissue 

concentration with the agronomic rate of Tytanit at Mounier Golf Training Center at Weibring 

Golf Club in Normal, IL.  Phosphorus, manganese, and zinc tissue concentration decreased 

during this time frame.  Calcium, magnesium, iron, and manganese tissue concentration 
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increased with the horticultural rate of Tytanit at Lauritsen/Wohler’s Outdoor Golf Practice 

Facility, Urbana, IL.  Titanium did impact plant growth in this study, but the results were 

location and nutrient specific, so it is recommended that further research be conducted on this 

product. 

KEYWORDS: macronutrients, micronutrients, sandy profiles, chlorophyll content, putting 

greens, root growth 
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INTRODUCTION 

 Golf courses are an important part of the turf industry.  The popularity of golf in the 

world continues to grow and the number of golf courses now exceeds 25,000 worldwide 

(Guzman and Fernandez, 2014; Terman, 1997).  Creeping bentgrass (Agrostis stolonifera) is the 

most commonly used cool season turfgrass on golf course fairways, tees and putting greens in 

the U.S. (Elmore et al., 2015; Emmons, 2008).  

Creeping bentgrass is a very commonly used cool season turfgrass on golf course greens 

in the transition zone and cool climate areas (Liu and Huang, 2002).  On putting greens, lower 

mowing heights are a common practice to increase golf ball speed (Liu and Huang, 2002).  

Creeping bentgrass is typically mowed at 0.30 cm with a reel mower (Emmons, 2008).  When 

cut this short, creeping bentgrass is highly attractive but becomes shallow rooted and is more 

prone to damage and reduced playing quality (Emmons, 2008; Dernoeden, 2012).  However, low 

mowing heights are generally preferred to maintain surface smoothness in high density cultivars 

(Dernoeden, 2012).  

 Sand provides an ideal root zone for bentgrass putting greens due to its particle size, 

which provides a firm surface for foot traffic and compaction resistance, while remaining highly 

permeable (Ok, Anderson, and Ervin, 2003).  Sands also have low water and nutrient retention 

properties, even with added peat moss because the peat moss deteriorates in three to four years 

(Brockhoff et al, 2010).  In addition, sandy soils often need supplemental fertilization because of 

their low cation exchange capacity (CEC).  The CEC of a soil is determined by the amount and 

type of colloids in a soil (Havlin et al., 2005).  Colloids consist of organic matter and clay 

particles less than 0.001 mm in diameter (Havlin et al., 2005). CEC is measured in 

milliequivalents per cmolc per kg-1 of soil and is a measure of the quantity of readily 



 

35 

exchangeable cations neutralizing negative charge in the soil (Rhoades, 1982).  CEC describes 

the potential of a soil to hold onto positively charged nutrients (cation) and water without them 

leaching or leaving the soil profile.  The higher the CEC, the more nutrients and water the soil 

can retain.  Sands typically have a low CEC, thus they retain fewer nutrients and water.  

Sixteen elements have been identified as essential for plants to complete their life cycle.  

Of these elements, carbon, hydrogen, and oxygen generally come from carbon dioxide and 

water.  The atmospheric concentration of CO2 is currently approximately 400 ppm.  Studies 

evaluating CO2 fertilization have shown mixed results in enhancing plant groth and are 

dependent on plant species, temperature, and the availability of other plant essential elements.  

While soil water content can vary widely, plant growth tends to be optimal at field capacity and 

decreases above and below this level. 

Perhaps no other nutrient has as much of an impact on golf greens in terms of canopy 

color, vigor, root-to-shoot ratios, and disease resistance than nitrogen (N) (Schlossberg and 

Schmidt, 2007).  Nitrogen levels can decrease quickly due to leaching and low CEC of sandy 

soils (Johnson, Koenig, and Kopp, 2003).  Nitrogen deficiencies show a direct correlation in 

chlorophyll production synthesized by bentgrass, which, in turn, has a direct positive impact on 

the health of the plant (Johnson, Koenig, and Kopp, 2003). 

Phosphorus (P) is critical for plant growth and development because it provides energy 

storage and transfer within the plant (Havlin et al., 2005).  Phosphorus is also essential for 

optimal root growth and deficiencies can drastically reduce plant growth (Emmons, 2008).  It is 

important to note many turf areas generally have adequate P levels because it does not leave the 

soil profile readily; however, sand-based golf greens could be an exception (Emmons, 2008).  
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Adequate amounts of potassium (K) are known to improve plant drought resistance, 

which keeps plants healthy and strong (Wang et al., 2013).  A lack of response to applied K has 

been observed and explained by lack of stress on the plant due to high amounts of K initially 

present in the sand (Johnson, Koenig, and Kopp, 2003).  Another explanation for lack of 

response to K fertilization is the inability of the K to adsorb to the sand particles due to low CEC, 

which can lead to subsequent leaching of K through the root zone (Johnson, Koenig, and Kopp, 

2003).  It is important to note that creeping bentgrass managed at short growing heights is more 

susceptible to drought (Wang et al., 2013; Fitzpatrick and Guillard, 2004).   However, K 

fertilizer has been shown to improve creeping bentgrass drought resistance on golf greens (Wang 

et al., 2013; Fitzpatrick and Guillard, 2004). 

Calcium (Ca) stabilizes cell membranes by connecting various proteins and lipids at 

membrane surfaces (Hirschi, 2004).  Plants growing under Ca deficiencies are more susceptible 

to disease pathogens (Hirschi, 2004).  While Ca deficiency is uncommon, it has been observed in 

highly leached, unlimed soils (Havlin et al., 2005). 

Magnesium is a secondary macronutrient that is present in the earth’s crust and absorbed 

by plant roots as Mg2+ (Havlin et al., 2005).  Even though Mg is a secondary macronutrient, it is 

an important chlorophyll molecule in plant tissue and helps to activate specific enzyme systems 

(Kaiser, Rosen and Lamb, 2016).  It is also required for carbohydrate metabolism (Havlin et al., 

2005).  Thus, when Mg is deficient, there is a shortage of chlorophyll causing stunted growth 

(Kaiser et al., 2016).  Most Midwest soils contain adequate amounts of Mg (Kaiser et al., 2016).  

Arid soils tend to show deficiencies.  Magnesium is a mobile nutrient, meaning deficiencies 

would be seen on the lower portion of the plant.  
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  Sulfur (S) is also a secondary macronutrient and is primarily absorbed as SO4
-2 (Havlin 

et al., 2005).  It is taken up primarily as sulfate and required for synthesis of S-containing amino 

acids, which are essential components of plant proteins (Jeschke and Diedrick, 2017) that 

compromise nearly 90% of S in plants (Havlin et al., 2005).  In the early spring, an application of 

sulfur may be beneficial as mineralization needs warm weather to take place (Jeschke and 

Diedrick, 2017).  Mineralization is the conversion of S from organic to inorganic sulfate, which 

the plant can use.  There is a benefit to applying S to young plants or plants with shallow root 

systems because S can be translocated out of the root zone, causing a deficiency (Jeschke and 

Diedrick, 2017). 

Manganese (Mn) has been shown to help with production of chlorophyll but excessive 

amounts have a toxic effect, decreasing chlorophyll levels (Shenker, Plessner, and Tel-Or, 2004).  

Iron (Fe) assists in photosynthesis, respiration, and nitrogen assimilation (Raven, 1988).  

Chlorine (Cl) is critical to aid Mn with the photosynthetic production of carbohydrates in plants 

(Havlin et al., 2005).  For plants to use nutrients efficiently, nutrients accumulate in the vacuole 

until being transported to growing plant parts; Cl helps with maintaining balance in the 

tonoplasts, which are membranes that protect the vacuole (Havlin et al., 2005).  Worldwide, 

boron (B) deficiency is observed in plants more than any other micronutrient, (Blevins and 

Lukaszewski, 1998).  Deficiencies are typically seen in light-textured soils where the B can leach 

in a water-soluble form (Blevins and Lukaszewski, 1998).  Boron assists with plant cell wall 

structure development, cell wall expansion, and lignin production with cell wall expansion 

(Blevins and Lukaszewski, 1998; Havlin et al., 2005).  Zinc (Zn) is required for the production of 

growth hormones (Havlin et al., 2005).  Zinc also enhances chlorophyll synthesis, enzyme 

activation, and cell wall integrity (Havlin et al., 2005).  Copper (Cu) provides structure in 
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regulatory proteins, improves photosynthetic electron transport, mitochondrial respiration, 

oxidative stress response, cell wall metabolism, and hormone signaling (Yruela, 2005).  

Considered a transition element, molybdenum (Mo) is required by enzymes that catalyze 

important reactions within the cell (Mendel, 2011).  Nickel (Ni) deficiency has been shown to 

increase nitrogen uptake, causing necrosis among leaves (Eskew et al., 1984).  

Although not an essential element, there is evidence to indicate that titanium (Ti) is a 

beneficial element. It is the tenth most abundant element in the earth, is available as Ti2+, Ti3+, 

and Ti4+, and is present in the soil at relatively high concentrations (57% by weight of the crust); 

however, it is insoluble at the pH range of 4 to 8, which is considered the optimal range for plant 

growth because most nutrients exhibit optimal availability in this pH range (Carvajal and 

Alcaraz, 1998; Lyu et al., 2017).  Titanium content has been shown to intensify plant growth and 

development, as well as cause increased chlorophyll content (Tlustos et al., 2005).  However, 

results have varied from plant-to-plant, as well as how much Ti benefits the plant.  No reported 

studies have been published on turfgrass evaluating foliar applied Ti, but there have been studies 

completed analyzing various agronomic and horticultural crops.  Another study published tested 

annual bedding plants and growth and quality effects fluctuated from plant-to-plant (Whitted-

Haag, et al., 2014).  

Tytanit is a liquid fertilizer that combines titanium, magnesium, and sulfur to create a 

fertilizer that aids in plant growth by increasing chlorophyll content and helping resist biotic and 

abiotic disease stress.  It is composed of 10% sulfur trioxide, five percent magnesium oxide, and 

0.85% titanium-ascorbate. Tytanit  provides the previously mentioned nutrients in soluble forms 

and is made by INTERMAG in Poland.  
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All 16 essential plant nutrients have been reported to be absorbed by leaves (Liu et al., 

2003).  The use of foliar fertilizers has increased for turfgrass management, including home 

lawns and sports turf, especially golf courses (Liu et al., 2003; Stiegler et al., 2010).  Total 

fertilizer input may be reduced by using foliar fertilization (Liu et al., 2003).  Cool season 

grasses can absorb foliar fertilizers better than warm season grasses due to a higher concentration 

of stomates in the leaves (Hull and Kopec, 2001).  The process of nutrient uptake by leaf cells is 

at the very least comparable to that of root cell absorption (Mengel and Kirby, 1987).  The 

transport of the nutrients through the biological membrane, the plasmalemma, is the main 

process (Mengel and Kirby, 1987).  It is important to note that unabsorbed liquid fertilizer still 

has a better chance of being available to the plant than granular fertilizers because liquid 

fertilizers are already dissolved and readily available for leaf and root absorption (Liu et al., 

2003).   

 

MATERIALS AND METHODS 

 In order to assess the effect of a titanium biostimulant product on creeping bentgrass 

growth and quality, applications were made to sand-based putting greens using a split plot 

experimental design (Little and Hills, 1978).  The main plots were the 1x Tytanit rate (label 

horticulture) treatment, the 2x Tytanit (label agronomic) treatment, and the untreated control 

treatment.  Sub plots were the sampling dates over time for soil and tissue nutrient analysis and 

digital image analysis.  Strips of each treatment were made on turf surfaces and soil, tissue, and 

digital images were replicated four (4) times within each strip.  Research was conducted in two 

(2) separate locations; 1) Mounier Golf Training Center at Weibring Golf Club in Normal, IL 
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and at the 2) Lauritsen/Wohlers Outdoor Golf Practice Facility in Champaign, IL.  The greens 

chosen at each location were approximately 3,000 square feet in size. 

Titanium treatments consisted of the product label rate (0.07% of total tank volume for 

horticulture crops), doubled the product label rate (0.14% of total tank volume for the agronomic 

rate), and an untreated control plot.  (Tytanit, Intermag, Olkusz, Poland) was applied along with 

a non-ionic surfactant (Spreader Sticker, Lesco, Cleveland, Ohio) to the horticulture (1x) 

treatment plot and agronomic (2x) treatment plot at 0.5 liters of surfactant per 379 liters of water 

using sprayer models (Smithco Spraystar 3180, John Deere HD 200) going one direction and 

mowed the plots (John Deere 180E, John Deere 220E) going in the same direction to collect the 

clippings.  Clipping were collected during mowing. There was a 1.5 m wide buffer zone between 

each research plot.  Each individual plot was 7.62 m long and 1.5 m wide. The total plot was 

7.62 m long and 22.86 m wide at each location.   

Soil samples were collected from each of the twenty-four subsampling locations before 

the Tytanit applications and at two and four weeks after the application for a total of three soil 

samples per subsampling location.  Three (3) soil tests per subsampling locations x twenty-four 

(24) subsampling locations = 72 total soil samples.  Tissue samples were collected individually 

from reel mower clippings of each subsampling location with the treatment plots prior to the 

Tytanit applications, and then every three (3) days over a six (6) week period.  There were 

twelve (12) total tissue analysis samples per subsampling location.  Twelve (12) tissue tests per 

subsampling locations x twenty-four (24) subsampling locations = 288 total tissue samples.  Soil 

and tissue samples were analyzed for elemental content by GMS Labs in Cropsey, IL using 

Inductively Coupled Plasma (ICP) analysis.  

 



 

41 

Chlorophyll Analysis- Tissue Extraction 

A key component of this project was measuring chlorophyll levels in the plant tissue.  

Leaf tissue from each mowing was assessed for chlorophyll content using the Lichtenthaler 

Method (Lichtenthaler, 1987).  Harvested plant tissues were frozen at -20° C, until analyzed.  

The process required 0.5 g of fresh tissue.  To begin the extraction, the plant tissue sample was 

soaked in 20 mL of ethanol in a mortar and pestle.  The addition of approximately 1 g of sand 

aided in grinding the tissue to rupture the cell walls.  The sand was sea sand purchased from 

(Fisher Scientific, Houston, TX). The physical and chemical approaches served to bleach the 

tissue.  Once the tissue was bleached, it was transferred into a graduated cylinder with the 

addition of another 30 mL of ethanol.  The solution was stirred for 1 minute by twisting my wrist 

and then transferred to a centrifuge tube where it was rotated for three minutes.  Once 

centrifugation was complete, an aliquot was transferred pipette dropper to a spectrophotometer 

tube that was placed in the spectrophotometer at 470 nm wavelengths, 649 nm wavelengths, and 

664 nm wavelengths.  These three readings were used to determine the chlorophyll concentration 

number.  The higher the number correlates with more chlorophyll in the tissue.  

Digital Analysis 

To visually evaluate chlorophyll content, two pictures were obtained from every 

treatment rep before application and every three days following application using a Canon EOS 

Rebel T6 (Tokyo, Japan). Pictures were analyzed using Turf Analyzer (Karcher et al., 2017) 

software to compare plant chlorophyll content between the treatments.  The purpose of this 

portion of the project was to visually test chlorophyll content for general health of the turf but 

also because dark green turf is less desirable to golfers.   
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Chlorophyll Content 

At Weibring, the control plot had a higher chlorophyll concentration than the treated 

areas prior to the Tytanit application.  Following the application, the agronomic rate (2x) plot 

had the highest concentration among the three plots through July 18th (five weeks).  At 

Lauritsen/Wohler’s, the control plot had a higher chlorophyll concentration than the treated areas 

prior to the Tytanit application.  Following the application, the horticultural rate (1x) was the 

highest concentration through July 4th (two and a half weeks).  Chlorophyll content in previous 

research has varied from plant-to-plant.  (Whitted-Haag et al., 2014) found Ti applications to 

have linear increases and decreases in chlorophyll content, depending on the plant.  The results 

were inconsistent.  

Tissue Analysis  

These research study results agree with previous research in foliar titanium having an 

impact on plant growth.  Results have varied depending on the individual project and the 

individual plants being researched.  This project evaluated the same soil type (sandy), same 

creeping bentgrass cultivar (L-93), but two separate locations within Central Illinois to complete 

this project.  By doing this, we feel results will be beneficial to golf course superintendents 

throughout Central Illinois. 

Tytanit was applied the same day at both locations. Mounier Golf Training Center at 

Weibring Golf Club in Normal received a 23-0-23 fertilizer three days following the Tytanit  

application.  The potassium tissue concentration immediately jumped in the agronomic rate 

treated plot.  This increase in concentration lasted for only two days following the 23-0-23 liquid 

application, which was three days after the Tytanit application.  Essentially, Tytanit made the 

fertilizer application more efficient in nutrient uptake compared to the other two plots in the 
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study.  However, with the application, there was a decrease in calcium and iron concentration in 

both treated plots compared to the control plot.  At Lauritsen/Wohler’s Outdoor Golf Practice 

Facility in Urbana, there was a delayed response to the Tytanit.  No fertilizer was applied 

during the time frame of the research project.  However, on day 10 following the Tytanit 

application, there was an increase in calcium and magnesium concentration but only for the 

horticultural rate.  Four days after this increase, nutrient concentration levels decreased back to 

the amount they were before the dramatic increase. (Carvajal and Alcaraz, 1998) found 

consistent magnesium uptake in cereal grains after a Ti application. (Alcaraz-Lopez et al., 2004) 

saw increased calcium uptake, which led to branch elongation, flowering, fruit set intensities, 

and fruit size studying peach trees.  

STATISTICAL ANALYSIS 

 Data was subjected to analysis of variance (ANOVA) and regression to test the 

significance of main treatment effect using SPSS statistical software. (IBM SPSS Statistics 21, 

Armonk, North Castle, New York).  

RESULTS AND DISCUSSION 
  

Results varied by location.  Mounier Golf Training Center at Weibring Golf Club saw an 

increased K uptake along with Mg, S, and Cu with the agronomic rate application of Tytanit.  

The enhanced nutrient stimulation was observed for only two days following the 23-0-23 liquid 

fertilizer that was applied three days following the Ti application.  During this time frame, P, 

Mn, and Zn tissue concentration decreased. Ca, Mg, Fe, and Mn uptake increased at 

Lauristen/Wohler’s Outdoor Golf Practice Facility but not until 10 days following the Ti 

application.  During this time frame, K tissue concentration decreased.  The nutrient stimulation 

lasted four days following that.  Previous research had shown benefits and drawbacks to nutrient 
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uptake and chlorophyll content, as well as other factors that were tested in other projects.  There 

was an increase in nutrient stimulation following a 23-0-23 liquid fertilizer applied at Weibring 

and due to the compatibility of Tytanit with numerous other fertilizers and pesticides, it could 

make sense to apply Tytanit with those fertilizers and/or pesticides to make nutrient stimulation 

more efficient.  
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Table 1. Mean Valuez and Standard Deviation for Leaf Tissue Macronutrient Content of Creeping Bentgrass (Agrostis stolonifera) in 
the Control Plot at Mounier Golf Training Center at Weibring Golf Club, Normal, IL. 
 

 % Tissue Concentration 
DATy Ca  K  Mg  P S  

-1 0.8 ± 0.2 1.6 +/- 0.2 0.4 +/- 0.1 0.4 +/- 0.0 0.4 +/- 0.0 
2 0.9 ± 0.1 4.5 +/- 0.7 1.9 +/- 0.2 0.3 +/- 0.0 3.2 +/- 0.5 
6 0.9 ± 0.1 1.9 +/- 0.3 0.7 +/- 0.1 0.3 +/- 0.1 0.9 +/- 0.1 
9 1.3 +/- 0.4 1.1 +/- 0.1 0.6 +/- 0.2 4.9 +/- 1.0 0.6 +/- 0.1 
13 0.9 +/- 0.3 2.2 +/- 0.1 0.5 +/- 0.1 0.9 +/- 0.1 0.6 +/- 0.0 
16 1.1 +/- 0.4 2.0 +/- 0.2 0.6 +/- 0.2 0.7 +/- 0.1 0.5 +/- 0.0 
20 0.8 +/- 0.5 2.3 +/- 0.5 0.4 +/- 0.2 0.6 +/- 0.1 0.4 +/- 0.1 
23 0.9 +/- 0.2 2.4 +/- 0.1 0.4 +/- 0.1 0.7 +/- 0.0 0.5 +/- 0.0 
28 0.9 +/- 0.3 2.1 +/- 0.2 0.5 +/- 0.1 0.5 +/- 0.0 0.4 +/- 0.0 
31 1.3 +/- 0.6 2.1 +/- 0.1 0.7 +/- 0.2 0.6 +/- 0.0 0.4 +/- 0.0 
35 1.8 +/- 0.8 2.0 +/- 0.4 0.8 +/- 0.3 0.4 +/- 0.3 0.3 +/- 0.1 
38 1.0 +/- 0.4 2.1 +/- 0.2 0.5 +/- 0.2 0.7 +/- 0.1 0.3 +/- 0.0 

Contrastx      
Linear NS NS NS NS NS 

Quadratic NS NS NS NS NS 
z Means are of four replications of an homogenous tissue sample removed from a plot 7.62 m long and 1.5 m wide. 
y DAT=days after treatment. Experimental sampling occurred from June 19 to July 28, 2017.   
x Significance for linear and quadratic orthogonal contracts. NS = Non-significant. 
 
 
 
 



 

 
 

50 

 
Table 2. Mean Valuez and Standard Deviation for Leaf Tissue Micronutrient Content of Creeping Bentgrass (Agrostis stolonifera) in 
the Control Plot at Mounier Golf Training Center at Weibring Golf Club, Normal, IL. 
 

 Tissue Concentration ppm 
DATy B  Cu Fe Mn Zn 

-1 19.7 ± 1.7  11.5 ± 1.0  1378.3 ± 546.7 86.0 ± 32.9 37.8 ± 4.0 
2 23.7 ± 1.2 11.0 ± 7.7 879.7 ± 169.9 60.0 ± 1.7 19.8 ± 3.1 
6 31.8 ± 5.5 13.5 ± 2.1 1221.3 ± 219.3 73.3 ± 13.2 27.3 ± 4.4  
9 58.9 ± 12.6 32.2 ± 9.4 5037.8 ± 593.8 203.4 ± 20.3 210.2 ± 70.2 
13 72.7 ± 11.2 15.4 ± 1.5 1538.0 ± 606.4 181.4 ± 62.4 58.9 ± 14.6  
16 19.9 ± 2.1 14.5 ± 1.4 1395.3 ± 714.4 149.8 ± 5.1 39.7 ± 7.3 
20 23.5 ± 2.9 13.2 ± 2.8 834.5 ± 535.0 94.2 ± 9.3 27.6 ± 4.2 
23 36.4 ± 1.2 17.3 ± 0.8 932.5 ± 389.4 124.4 ± 35.6 34.7 ± 6.6 
28 27.5 ± 3.3 14.8 ± 0.7 1342.3 ± 756.7 87.3 ± 19.3 24.0 ± 2.0 
31 22.5 ± 1.2 14.4 ± 0.8 1174.0 ± 506.2 106.6 ± 54.7 26.4 ± 2.0 
35 26.4 ± 2.0 12.8 ± 2.1 2036.3 ± 1080.7 118.9 ± 47.5 25.6 ± 2.8 
38 24.7 ± 2.0 18.0 ± 2.2 1123.8 ± 547.4 121.0 ± 10.4 26.3 ± 3.9 

Contrastx      
Linear NS NS NS NS NS 

Quadratic NS NS NS NS NS 
z Means are of four replications of an homogenous tissue sample removed from a plot 7.62 m long and 1.5 m wide. 
y DAT=days after treatment. Experimental sampling occurred from June 19 to July 28, 2017.   
x Significance for linear and quadratic orthogonal contracts. NS = Non-significant.     
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Table 3. Mean Valuez and Standard Deviation for Leaf Tissue Macronutrient Content of Creeping Bentgrass (Agrostis stolonifera) in 
the Horticulture Treatment Plot (1x) at Mounier Golf Training Center at Weibring Golf Club, Normal, IL. 
 

 % Tissue Concentration 
DATy Ca  K  Mg  P S  

-1 0.7 ± 0.2 1.7 ± 0.2 0.3 ± 0.1 0.4 ± 0.0 0.4 ± 0.0 
2 1.0 ± 0.4 4.7 ± 0.8 2.0 ± 0.2 0.3 ± 0.0 3.5 ± 0.5 
6 1.0 ± 0.5 1.8 ± 0.2 0.7 ± 0.1 0.3 ± 0.0 0.8 ± 0.2 
9 0.9 ± 0.2 1.1 ± 0.1 0.5 ± 0.0 5.3 ± 0.1 0.6 ± 0.1 
13 1.0 ± 0.7 2.3 ± 0.2 0.5 ± 0.1 0.9 ± 0.1 0.6 ± 0.1 
16 0.5 ± 0.2 2.2 ± 0.2 0.4 ± 0.1 0.7 ± 0.1 0.6 ± 0.1 
20 0.5 ± 0.0 2.6 ± 0.0 0.3 ± 0.0 0.6 ± 0.0 0.4 ± 0.0 
23 0.5 ± 0.1 2.5 ± 0.1 0.3 ± 0.0 0.7 ± 0.0 0.5 ± 0.0 
28 0.5 ± 0.1 2.4 ± 0.2 0.3 ± 0.0 0.7 ± 0.1 0.4 ± 0.0 
31 0.7 ± 0.2 2.2 ± 0.2 0.5 ± 0.1 0.7 ± 0.1 0.4 ± 0.0 
35 1.0 ± 0.4 2.5 ± 0.1 0.5 ± 0.1 0.7 ± 0.0 0.4 ± 0.0 
38 1.2 ± 0.6 3.0 ± 0.3 0.6 ± 0.2 0.9 ± 0.1  0.4 ± 0.0 

Contrastx      
Linear NS NS NS NS NS 

Quadratic NS NS NS NS NS 
z Means are of four replications of an homogenous tissue sample removed from a plot 7.62 m long and 1.5 m wide. 
y DAT=days after treatment. Experimental sampling occurred from June 19 to July 28, 2017.   
x Significance for linear and quadratic orthogonal contracts. NS = Non-significant.     
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Table 4. Mean Valuez and Standard Deviation for Leaf Tissue Micronutrient Content of Creeping Bentgrass (Agrostis stolonifera) in 
the Horticulture Treatment Plot (1x) at Mounier Golf Training Center at Weibring Golf Club, Normal, IL. 
 

 Tissue Concentration ppm 
DATy B  Cu Fe Mn Zn 

-1 16.7 ± 1.8  14.5 ± 4.7  610.0 ± 113.2 52.1 ± 11.8 33.8 ± 2.7 
2 23.2 ± 1.9  39.5 ± 28.6 946.9 ± 514.4 70.2 ± 20.3 20.1 ± 2.2 
6 27.9 ± 1.9 14.2 ± 0.8 1053.0 ± 788.0 73.0 ± 34.6 24.8 ± 1.5 
9 57.3 ± 9.8 25.2 ± 6.6 4960.3 ± 132.8 210.2 ± 18.1 286.6 ± 1.7 
13 75.1 ± 6.9 17.6 ± 1.0 1227.8 ± 465.3 151.0 ± 35.1 58.5 ± 7.4 
16 20.0 ± 0.5 16.3 ± 0.4 337.5 ± 115.6 120.9 ± 4.7 41.9 ± 2.0 
20 24.9 ± 1.0 15.1 ± 0.1 395.8 ± 38.9 82.6 ± 2.0 32.0 ± 0.9 
23 38.1 ± 1.9 18.5 ± 0.7 349.0 ± 53.9 84.1 ± 7.7 33.2 ± 1.7 
28 25.2 ± 2.6 16.8 ± 1.7 386.8 ± 75.0 59.1 ± 12.0 29.0 ± 3.8 
31 24.0 ± 1.5 19.8 ± 6.1 753.3 ± 243.2 69.2 ± 11.6 29.3 ± 1.4 
35 28.0 ± 1.1 15.7 ± 0.7 957.3 ± 429.1 87.8 ± 25.0 30.6 ± 1.0 
38 29.2 ± 1.9 20.9 ± 1.7 1041.3 ± 494.3 132.2 ± 10.3 25.8 ± 2.2 

Contrastx      
Linear NS NS NS NS NS 

Quadratic NS NS NS NS NS 
z Means are of four replications of an homogenous tissue sample removed from a plot 7.62 m long and 1.5 m wide. 
y DAT=days after treatment. Experimental sampling occurred from June 19 to July 28, 2017.   
x Significance for linear and quadratic orthogonal contracts. NS = Non-significant.     
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Table 5. Mean Valuez and Standard Deviation for Leaf Tissue Macronutrient Content of Creeping Bentgrass (Agrostis stolonifera) in 
the Agronomic Treatment Plot (2x) at Mounier Golf Training Center at Weibring Golf Club, Normal, IL. 
 

 % Tissue Concentration 
DATy Ca  K  Mg  P S  

-1 0.84 ± 0.14 1.91 ± 0.18 0.45 ± 0.06 0.51 ± 0.06 0.46 ± 0.06 
2 0.65 ± 0.06 5.66 ± 0.75 2.23 ± 0.22 0.33 ± 0.04 4.05 ± 0.46 
6 0.71 ± 0.05 2.28 ± 0.26 0.69 ± 0.06 0.4 ± 0.04 1.05 ± 0.11 
9 0.63 ± 0.08 1.12 ± 0.02 0.47 ± 0.03 5.6 ± 0.34 0.66 ± 0.05 
13 0.52 ± 0.03 2.35 ± 0.06 0.41 ± 0.01 1 ± 0.02 0.61 ± 0.03 
16 0.39 ± 0.04 2.35 ± 0.19 0.35 ± 0.02 0.83 ± 0.08 0.62 ± 0.07 
20 0.47 ± 0.05 2.82 ± 0.47 0.34 ± 0.04 0.73 ± 0.09 0.48 ± 0.07 
23 0.52 ± 0.13 2.48 ± 0.1 0.33 ± 0.01 0.77 ± 0.04 0.49 ± 0.01  
28 0.43 ± 0.04 2.45 ± 0.27 0.32 ± 0.02 0.76 ± 0.08 0.44 ± 0.04 
31 0.73 ± 0.11 2.18 ± 0.08 0.44 ± 0.06 0.76 ± 0.02 0.43 ± 0.01 
35 0.72 ± 0.43 2.36 ± 0.24 0.41 ± 0.13 0.69 ± 0.07 0.36 ± 0.03 
38 0.73 ± 0.06 3.44 ± 0.17 0.47 ± 0.03 1.06 ± 0.05 0.32 ± 0.19 

Contrastx      
Linear NS NS NS NS NS 

Quadratic P = 0.04 NS NS NS NS 
z Means are of four replications of an homogenous tissue sample removed from a plot 7.62 m long and 1.5 m wide. 
y DAT=days after treatment. Experimental sampling occurred from June 19 to July 28, 2017.   
x Significance for linear and quadratic orthogonal contracts. NS = Non-significant.     
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Table 6. Mean Valuez and Standard Deviation for Leaf Tissue Micronutrient Content of Creeping Bentgrass (Agrostis stolonifera) in 
the Agronomic Treatment Plot (2x) at Mounier Golf Training Center at Weibring Golf Club, Normal, IL. 
 

 Tissue Concentration ppm 
DATy B  Cu Fe Mn Zn 

-1 19.6 ± 3.61  15.4 ± 3.2 777.1 ± 139.4 54.9 ± 8.1 39.4 ± 6.06 
2 25.2 ± 3.66 37.3 ± 16.8 1112 ± 1091 47.7 ± 5.11 22.3 ± 2.14 
6 34.1 ± 3.19 14 ± 0.42 732 ± 140.9 56.1 ± 2.24 29.8 ± 2.75 
9 55.6 ± 5.38 26.2 ± 4.53 5214 ± 477.8 208 ± 23.3 262 ± 28.2 
13 82.9 ± 0.92 16.5 ± 1.01 1090 ± 78.05 137 ± 12.3 67.1 ± 11 
16 20.8 ± 2.41 18.4 ± 1.73 328.5 ± 49.56 132 ± 8.21 43.4 ± 5.7 
20 26 ± 3.53 16.6 ± 2.24 405 ± 34.41 90.4 ± 12 34.5 ± 4.37 
23 36.4 ± 2.01 18.7 ± 1.26 318.3 ± 28.48 84.7 ± 9.6 33 ± 0.42 
28 24.1 ± 1.85 17.5 ± 2.11 268 ± 55.41 56.1 ± 4.37 31.3 ± 3.65 
31 22.2 ± 0.75 16.7 ± 0.53 612.8 ± 150 69.5 ± 14.2 28.1 ± 0.57 
35 25.6 ± 3.02 14.3 ± 1.84 475 ± 562.2 65.4 ± 30.6 29.1 ± 2.73 
38 32.2 ± 0.84 23.8 ± 1 660.5 ± 117 131 ± 3.43 30.7 ± 1.08 

Contrastx      
Linear NS NS NS NS NS 

Quadratic NS NS NS NS NS 
z Means are of four replications of an homogenous tissue sample removed from a plot 7.62 m long and 1.5 m wide. 
y DAT=days after treatment. Experimental sampling occurred from June 19 to July 28, 2017.   
x Significance for linear and quadratic orthogonal contracts. NS = Non-significant.     
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Table 7. Mean Valuez and Standard Deviation for Leaf Tissue Macronutrient Content of Creeping Bentgrass (Agrostis stolonifera) in 
the Control Plot at Lauritsen/Wohler’s Outdoor Golf Practice Facility, Urbana, IL. 

% Tissue Concentration 
DATy Ca K Mg P S 

-1 0.77 ± 0.1 1.16 ± 0.06 0.43 ± 0.05 0.31 ± 0.01 0.25 ± 0.02 
2 0.75 ± 0.1 1.29 ± 0.19 0.43 ± 0.05 0.34 ± 0.04 0.28 ± 0.06 
6 0.63 ± 0.0 1.46 ± 0.14 0.34 ± 0.03 0.34 ± 0.03 0.26 ± 0.02 
9 0.98 ± 0.3 1.06 ± 0.24 0.52 ± 0.11 0.26 ± 0.03 0.62 ± 0.92 
13 0.76 ± 0.1 1 ± 0.14 0.35 ± 0.14 0.3 ± 0.04 0.2 ± 0.03 
16 1.11 ± 0.2 1.28 ± 0.15 0.56 ± 0.06 0.42 ± 0.05 0.25 ± 0.04 
20 0.6 ± 0.1 1.24 ± 0.18 0.38 ± 0.05 0.36 ± 0.04 0.19 ± 0.11 
23 0.80 ± 0.0 1.98 ± 0.34 0.38 ± 0.23 0.56 ± 0.02 0.35 ± 0.01 
28 0.66 ± 0.0 2.16 ± 0.08 0.4 ± 0.02 0.54 ± 0.02 0.34 ± 0.02 
31 0.64 ± 0.1 1.5 ± 0.08 0.39 ± 0.02 0.55 ± 0.03 0.35 ± 0.02 
35 0.56 ± 0.1 1.75 ± 0.3 0.36 ± 0.02 0.44 ± 0.01 0.33 ± 0.03 
38 0.55 ± 0.0 1.5 ± 0.04 0.34 ± 0.01 0.53 ± 0.01 0.33 ± 0.02 

Contrastx 
Linear NS P = 0.05 NS P = 0.00 NS 

Quadratic NS NS NS NS NS 
z Means are of four replications of an homogenous tissue sample removed from a plot 7.62 m long and 1.5 m wide. 
y DAT=days after treatment. Experimental sampling occurred from June 19 to July 28, 2017.   
x Significance for linear and quadratic orthogonal contracts. NS = Non-significant.     
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Table 8. Mean Valuez and Standard Deviation for Leaf Tissue Micronutrient Content of Creeping Bentgrass (Agrostis stolonifera) in 
the Control Plot at Lauritsen/Wohler’s Outdoor Golf Practice Facility, Urbana, IL. 

Tissue Concentration ppm 
DATy B Cu Fe Mn Zn 

-1 17.95 ± 1.1 12.38 ± 0.88 1077 ± 273.3 47.03 ± 8.76 23.28 ± 1.396 
2 17.63 ± 3.2 9.025 ± 2.164 578.4 ± 180.2 42.42 ± 5.106 27.12 ± 4.317 
6 26.4 ± 2.2 8.75 ± 0.755 770 ± 220.5 43.25 ± 4.39 25.08 ± 1.164 
9 16.13 ± 1.3 9.025 ± 1.493 1499 ± 116.3 87.63 ± 15.54 21.1 ± 2.061 
13 17.08 ± 0.8 9.625 ± 0.427 1098 ± 277.6 52.9 ± 3.367 26.38 ± 0.866 
16 25.5 ± 1.6 11.53 ± 1.204 1243 ± 457 117.6 ± 11.89 28.05 ± 2.797 
20 11.18 ± 1.5 10.08 ± 0.995 696.5 ± 115 55.48 ± 5.235 24.98 ± 1.864 
23 29.03 ± 4.7 13.18 ± 2.019 722.3 ± 166.7 89.2 ± 3.284 445.1 ± 88.08 
28 30.13 ± 1.2 14.23 ± 0.665 326.3 ± 108.1 52.25 ± 3.931 154.5 ± 6.418 
31 26.23 ± 0.8 11.85 ± 0.342 528 ± 406.4 46.45 ± 7.116 81.13 ± 3.052 
35 27.08 ± 6.2 13.25 ± 0.532 229.5 ± 114.8 44.13 ± 1.871 91.55 ± 34.47 
38 15.4 ± 0.6 14.1 ± 0.497 229.8 ± 94.07 36.7 ± 0.966 54.28 ± 2.35 

Contrastx 
Linear NS P = 0.01 P = 0.01 NS NS 

Quadratic NS NS P = 0.08 P = 0.04 NS 
z Means are of four replications of an homogenous tissue sample removed from a plot 7.62 m long and 1.5 m wide. 
y DAT=days after treatment. Experimental sampling occurred from June 19 to July 28, 2017.   
x Significance for linear and quadratic orthogonal contracts. NS = Non-significant.     
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Table 9. Mean Valuez and Standard Deviation for Leaf Tissue Macronutrient Content of Creeping Bentgrass (Agrostis stolonifera) in 
the Horticulture Treatment Plot (1x) at Lauritsen/Wohler’s Outdoor Golf Practice Facility, Urbana, IL. 
 

 % Tissue Concentration 
DATy Ca  K  Mg  P S  

-1 0.79 ± 0.085 1.265 ± 0.056 0.425 ± 0.05 8.745 ± 16.84 0.258 ± 0.021 
2 0.678 ± 0.074 1.26 ± 0.069 0.375 ± 0.05 0.333 ± 0.024 0.255 ± 0.017 
6 0.668 ± 0.102 1.433 ± 0.242 0.35 ± 0.041 0.34 ± 0.057 0.245 ± 0.049 
9 1.783 ± 0.417 1.31 ± 0.282 0.878 ± 0.184 0.303 ± 0.061 0.213 ± 0.05 
13 1.213 ± 0.296 1.1 ± 0.115 0.63 ± 0.017 0.325 ± 0.035 0.22 ± 0.032 
16 1.02 ± 0.104   1.375 ± 0.096 0.57 ± 0.102 0.415 ± 0.062 0.243 ± 0.035 
20 0.783 ± 0.151 1.503 ± 0.114 0.478 ± 0.07 0.403 ± 0.035 0.263 ± 0.03 
23 0.905 ± 0.185 1.873 ± 0.092 0.505 ± 0.079 0.638 ± 0.05 0.373 ± 0.034 
28 0.638 ± 0.068 2.148 ± 0.066 0.39 ± 0.026 0.543 ± 0.022  0.359 ± 0.012 
31 0.688 ± 0.15 1.45 ± 0.129 0.433 ± 0.078 0.475 ± 0.031 0.305 ± 0.026 
35 0.635 ± 0.062 1.568 ± 0.068 0.383 ± 0.017 0.503 ± 0.019 0.313 ± 0.019 
38 0.53 ± 0.029 1.495 ± 0.061 0.34 ± 0.008 0.51 ± 0.022 0.34 ± 0.014 

Contrastx      
Linear NS P = 0.07 NS NS P = 0.01 

Quadratic NS NS P = 0.08 P = 0.04 NS 
z Means are of four replications of an homogenous tissue sample removed from a plot 7.62 m long and 1.5 m wide. 
y DAT=days after treatment. Experimental sampling occurred from June 19 to July 28, 2017.   
x Significance for linear and quadratic orthogonal contracts. NS = Non-significant.     
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Table 10. Mean Valuez and Standard Deviation for Leaf Tissue Micronutrient Content of Creeping Bentgrass (Agrostis stolonifera) in 
the Horticulture Treatment Plot (1x) at Lauritsen/Wohler’s Outdoor Golf Practice Facility, Urbana, IL. 
 

 Tissue Concentration ppm 
DATy B Cu Fe Mn Zn 

-1 19.53 ± 1.333 10.8 ± 4.414 395.7 ± 81.78 40.77 ± 4.414 23.21 ± 1.943 
2 15.6 ± 0.632 8.25 ± 0.806 397.2 ± 93.24 40.81 ± 2.557 24.97 ± 1.174 
6 26.33 ± 2.54 7.875 ± 1.884 447.5 ± 118.7 42.95 ± 5.422 23.25 ± 3.042 
9 20.33 ± 2.066 10.68 ± 1.702 1897 ± 377.9 121.5 ± 3.553 26.83 ± 0.738  
13 19.75 ± 1.895 9.175 ± 0.714 1195 ± 376.5 66.8 ± 14.35 26.48 ± 3.381 
16 24.1 ± 3.483 12 ± 1.052 903.8 ± 172.3 137.5 ± 8.7 22.93 ± 3.326 
20 10.55 ± 0.617 10.95 ± 0.755 557.3 ± 165.4 64.25 ± 9.385 25.38 ± 0.746 
23 36.65 ± 1.515 12.55 ± 0.332 677.5 ± 248.5  94.18 ± 12.77 510.2 ± 14.27 
28 32.13 ± 3.214 14.58 ± 1.132 239.5 ± 80.46 49.23 ± 6.025 147.3 ± 12.89 
31 22.2 ± 1.095 10.6 ± 0.825 402 ± 110.5 39.08 ± 2.29 60.2 ± 3.349 
35 23.08 ± 1.187 14.08 ± 0.714 286.8 ± 37.21 42.63 ± 2.953  55.25 ± 1.287 
38 17.13 ± 0.395 14.18 ± 0.85 153.8 ± 17.21 34.03 ± 3.583  47.55 ± 2.412 

Contrastx      
Linear NS P = 0.00 NS NS NS 

Quadratic NS NS P = 0.06 P = 0.02 NS 
z Means are of four replications of an homogenous tissue sample removed from a plot 7.62 m long and 1.5 m wide. 
y DAT=days after treatment. Experimental sampling occurred from June 19 to July 28, 2017.   
x Significance for linear and quadratic orthogonal contracts. NS = Non-significant.     
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Table 11. Mean Valuez and Standard Deviation for Leaf Tissue Macronutrient Content of Creeping Bentgrass (Agrostis stolonifera) in 
the Agronomic Treatment Plot (2x) at Lauritsen/Wohler’s Outdoor Golf Practice Facility, Urbana, IL. 
 

 % Tissue Concentration 
DATy Ca  K  Mg  P S  

-1 0.755 ± 0.029 1.283 ± 0.057  0.4 ± 0 0.315 ± 0.006 0.285 ± 0.013 
2 0.728 ± 0.089 1.605 ± 0.266 0.375 ± 0.05 0.39 ± 0.048 0.335 ± 0.052 
6 0.565 ± 0.07 1.578 ± 0.127 0.32 ± 0.032 0.315 ± 0.031 0.28 ± 0.042 
9 1.02 ± 0.271  1.483 ± 0.159 0.53 ± 0.122 0.338 ± 0.042 0.265 ± 0.045 
13 0.748 ± 0.152 1.25 ± 0.1 0.41 ± 0.047 0.343 ± 0.032 0.265 ± 0.034 
16 0.71 ± 0.153 1.4 ± 0.082 0.433 ± 0.057 0.428 ± 0.061 0.285 ± 0.041 
20 0.57 ± 0.086 1.555 ± 0.114 0.38 ± 0.024 0.43 ± 0.029 0.308 ± 0.032 
23 0.73 ± 0.098 2.06 ± 0.032 0.448 ± 0.042 0.7 ± 0.05 0.445 ± 0.024 
28 0.628 ± 0.123 1.88 ± 0.158 0.315 ± 0.064 0.348 ± 0.165 0.238 ± 0.124 
31 0.645 ± 0.051 1.6 ± 0.082 0.415 ± 0.021 0.488 ± 0.046 0.355 ± 0.019 
35 0.53 ± 0.051 1.628 ± 0.105 0.355 ± 0.024  0.493 ± 0.033 0.338 ± 0.026 
38 0.483 ± 0.013 1.415 ± 0.102 0.31 ± 0.018 0.47 ± 0.029 0.325 ± 0.026 

Contrastx      
Linear P = 0.05 NS NS P = 0.05 NS 

Quadratic NS NS NS NS NS 
z Means are of four replications of an homogenous tissue sample removed from a plot 7.62 m long and 1.5 m wide. 
y DAT=days after treatment. Experimental sampling occurred from June 19 to July 28, 2017.   
x Significance for linear and quadratic orthogonal contracts. NS = Non-significant.     
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Table 12. Mean Valuez and Standard Deviation for Leaf Tissue Micronutrient Content of Creeping Bentgrass (Agrostis stolonifera) in 
the Agronomic Treatment Plot (2x) at Lauritsen/Wohler’s Outdoor Golf Practice Facility, Urbana, IL. 
 

 Tissue Concentration ppm 
DATy B Cu Fe Mn Zn 

-1 19.2 ± 2.893 11.18 ± 3.568 355.1 ± 92.35 41.26 ± 2.836 23.41 ± 0.598 
2 17.63 ± 2.895 12.7 ± 3.218 334.7 ± 40.27 50.19 ± 7.864 31.43 ± 3.996 
6 27.05 ± 4.173 8.15 ± 1.156 311.8 ± 143.7 36.15 ± 7.117 23.13 ± 2.226 
9 19.53 ± 2.105 12.08 ± 1.274 986.8 ± 357.5 108.3 ± 10.11 24.69 ± 2.199 
13 18.55 ± 0.998 9.15 ± 0.603 615.3 ± 192.6  49.53 ± 5.278 25.58 ± 1.144  
16 29.35 ± 5.546 13.2 ± 1.219 708.5 ± 229 118 ± 9.288 23.8 ± 3.424  
20 11.45 ± 1.012 11.75 ± 0.819 379.5 ± 78.67 54.7 ± 3.303 27.08 ± 2.019 
23 43.2 ± 3.176 14.03 ± 0.32 483.3 ± 91.6 92.53 ± 6.904 614.2 ± 69.42 
28 20.45 ± 9.56 11.75 ± 2.768 140.5 ± 34.32 31.68 ± 12.04 79.25 ± 65.69 
31 27.85 ± 2.014 13.28 ± 1.431 388.3 ± 45.75 42.83 ± 2.406 63.65 ± 9.479 
35 25.13 ± 2.933 14.73 ± 0.768 219.8 ± 32.19 40.93 ± 2.49 55.65 ± 5.798 
38 18.2 ± 1.936 13.98 ± 1.502 192 ± 30.3 35.28 ± 1.841 46.05 ± 1.733 

Contrastx      
Linear NS P = 0.03 NS NS NS 

Quadratic NS NS P = 0.07 P = 0.07 NS 
z Means are of four replications of an homogenous tissue sample removed from a plot 7.62 m long and 1.5 m wide. 
y DAT=days after treatment. Experimental sampling occurred from June 19 to July 28, 2017.   
x Significance for linear and quadratic orthogonal contracts. NS = Non-significant.     
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CHAPTER IV: CONCLUSIONS AND RECOMMENDATIONS 

The goal of this experiment was to determine if foliar applied titanium affected the 

growth and quality of creeping bentgrass at two locations in Central Illinois using two different 

rates.  Based on the results from the experiment, it can be reasoned that foliar titanium affected 

the growth and quality of creeping bentgrass at both locations.  However, these effects were site 

and rate specific, causing nutrient concentrations to increase or decrease which makes it difficult 

to make a single, universal recommendation for creeping bentgrass.  Individual rates would be 

more beneficial for each individual location at this time, as well as applying Tytanit at the same 

time as a fertilizer application, which was proven to make the fertilizer application more efficient 

in this study. 

The delayed response at Lauritsen/Wohler’s Outdoor Golf Practice Facility in nutrient 

response to the Ti application is hard to explain.  Since it is a newer putting green, it is possible 

the Tytanit stayed in the upper soil surface where the peat is.  Peat typically deteriorates in a 

few years following putting green construction, but this green is only a few years old.  Other than 

that, there was adequate moisture at the time so it is possible a lack of rainfall or irrigation 

following the application left the Tytanit  in the upper soil profile. 

Nitrogen uptake was not tested with the soil and tissue samples.  One reason for this is 

the extra cost per sample to test for nitrogen at the lab.  The other reason is each golf course 

superintendent has his or her own nitrogen application plan in terms of “spoon-feeding” the 

creeping bentgrass, meaning it would have been difficult to track each superintendent’s nitrogen 

plan with the Ti application.  Rainfall was not tracked either because if there was a shortage of 

water, the superintendents irrigated the putting green, so that also would have difficult to track 

and not really feasible.  
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Tytanit  has the potential to benefit creeping bentgrass in a sandy profile on golf courses 

in Central Illinois.  However, because of the limited research previously done with applying 

Tytanit on turf, more research could be done to gain a better understanding of the exact impact 

Tytanit has on turf, specifically creeping bentgrass in a more consistent manner.  Our research 

indicated it does make sense to apply Tytanit with your fertilizer application either before, with, 

or immediately after for more efficient fertilizer usage and nutrient uptake.  Other than that, it’d 

be hard for us to recommend a single, universal rate for creeping bentgrass on sandy profiles at 

this time.  

Results from this 2017 research study were presented to the Central Illinois Golf Course 

Superintendents Association of America (CI-GCSAA) at their regional meetings in December 

2017, developed into a popular press article for the regional and state GCSAA group newsletters, 

and submitted for publication to a professional turfgrass journal.  A final project report will be 

delivered to the CI-CGSAA by June 30, 2018. 
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APPENDIX A: TYTANIT® PRODUCT LABEL 
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APPENDIX B: SOIL TESTING RESULTS 

Table B-1. Soil Statistics at Mounier Golf Training Center at                                                               
Weibring Golf Club, Normal, IL, June 19, 2017. 

Sample # pH water pH buffer OM% CEC meq/100g 

Control 7.0   7.0 1.0 17.0 

Control 7.0   7.0 0.6 16.4 

Control 8.0   7.0 0.5 17.1 

Control 7.0   7.0 0.6 17.1 

1x 8.0   7.0 1.1 17.9 

1x 8.0   7.0 0.4          17.4 

1x 7.0   7.0 0.4 15.2 

1x 7.8.0   7.0 0.8 17.3 

2x 8.1 7.0 0.6 16.4 

2x 8.1   7.0 1.2 18.1 

2x 8.0   7.0 0.4 14.8 

2x 8.0   7.0 0.6 19.2 

Averages 7.7   7.0 0.68          17.0 

Control Plot 
1x- (Horticultural Rate) 
2x- (Agronomic Rate) 
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Table B-2. Soil Statistics at Mounier Golf Training Center at                                                           
Weibring Golf Club, Normal, IL, July 6, 2017. 

Sample # pH water pH buffer OM% CEC meq/100g 

Control 7.1 7.0 1.9 13.6 

Control 7.5 7.0 1.5 18.3 

Control 7.3 7.0 1.6 13.7 

Control 7.4 7.0 1.5 19.1 

1x 7.5 7.0 1.1          16.7 

1x 7.6 7.0 0.9          21.3 

1x 7.7 7.0 1.0 17.6 

1x 7.7 7.0 1.6 21.8 

2x 7.7       7.0 2.0 19.1 

2x 7.5 7.0 0.9          18.3 

2x 7.6 7.0 1.1 18.1 

2x 7.4 7.0 1.0 20.0 

Averages 7.5 7.0 1.3 18.1 

Control Plot 
1x- (Horticultural Rate) 
2x- (Agronomic Rate) 
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Table B-3. Soil Statistics at Mounier Golf Training Center at                                                      
Weibring Golf Club, Normal, IL, July 20, 2017. 

 

Control Plot 
1x- (Horticultural Rate) 
2x- (Agronomic Rate) 
 

  

Sample # pH water pH buffer OM% CEC meq/100g 

Control 7.7 7.0 0.7 26.3 

Control 8.0 7.0 0.6 21.5 

Control 7.7 7.0 0.5 20.8 

Control 8.0 7.0 0.6 18.9 

1x 7.9 7.0 0.4          25.1 

1x 8.4 7.0 0.5          17.9 

1x 8.2 7.0 0.7 23.4 

1x 8.3 7.0 0.7          26.6 

2x 8.3       7.0 0.6 28.9 

2x 8.5 7.0 0.5          16.5 

2x 8.3 7.0 0.5 19.4 

2x 8.6 7.0 0.4 17.3 

Averages 8.15 7.0 0.55          21.8 
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Table B-4. Soil Statistics at Lauritsen/Wohler’s Outdoor Golf                                                               
Practice Facility, Urbana, IL, June 20, 2017. 

Sample # pH water pH buffer OM% CEC meq/100g 

Control 8.4 7.0 0.4 16.7 

Control 8.3 7.0 0.4           14.1 

Control 8.4 7.0 0.5 18.5 

Control 8.2 7.0 0.6           21.3 

1x 8.5 7.0 0.4           15.6 

1x 8.3 7.0 0.4           24.1 

1x 8.4 7.0 0.5 16.8 

1x 8.5 7.0 0.5           18.7 

2x 8.7       7.0 0.6 19.5 

2x 8.5 7.0 0.7           16.9 

2x 8.5 7.0 0.5 20.6 

2x 8.6 7.0 0.4 25.7 

Averages 8.4 7.0 0.5           19.0 

Control Plot 
1x- (Horticultural Rate) 
2x- (Agronomic Rate) 
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Table B-5. Soil Statistics at Lauritsen/Wohler’s Outdoor Golf                                                              
Practice Facility, Urbana, IL, July 7, 2017. 

 

Control Plot 
1x- (Horticultural Rate) 
2x- (Agronomic Rate) 
 

 

  

Sample # pH water pH buffer OM% CEC meq/100g 

Control 7.7 7.0 1.0 26.2 

Control 7.8 7.0 0.6 19.8 

Control 8.0 7.0 0.5 23.4 

Control 8.1 7.0 0.6 19.2 

1x 8.2 7.0 1.1 26.1 

1x 8.2 7.0 0.4 18.5 

1x 7.9 7.0 0.4 16.3 

1x 7.8 7.0 0.8 18.7 

2x 8.2 7.0 0.6 25.6 

2x 8.0 7.0 1.2 20.4 

2x 7.9 7.0 0.4 20.2 

2x 8.5 7.0 0.6 19.7 

Averages 8.0 7.0 0.7 21.2 
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Table B-6. Soil Statistics at Lauritsen/Wohler’s Outdoor Golf                                                          
Practice Facility, Urbana, July 21, 2017. 

Sample # pH water pH buffer OM% CEC meq/100g 

Control 8.1 7.0 1.1 17.3 

Control 8.0 7.0 1.5           18.2 

Control 8.1 7.0 1.4           16.6 

Control 8.1 7.0 1.5 17.1 

1x 8.1 7.0 1.1 20.3 

1x 8.3 7.0 1.1 19.2 

1x 8.2 7.0 1.5 18.1 

1x 8.1 7.0 1.4 17.9 

2x 8.2 7.0 1.1 15.4 

2x 8.4 7.0 1.7 16.7 

2x 8.6 7.0 1.4 15.8 

2x 8.4 7.0 1.6 13.9 

Averages 8.2 7.0 1.4          17.2 

Control Plot 
1x- (Horticultural Rate) 
2x- (Agronomic Rate) 
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APPENDIX C: TISSUE TESTING RESULTS 

Table C-1. Nutrient Concentration in Plant Tissue at Mounier Golf Training Center at Weibring Golf Club, Normal, IL,                       
June 19, 2017. 

Lab ID Boron 
PPM 

Calcium 
% 

Copper 
PPM 

Iron  
PPM 

Potassium 
% 

Magnesium 
% 

Manganese  
PPM 

Sodium 
% 

Phosphorus 
% 

Sulfur 
% 

Zinc  
PPM 

Control  20.3 1.04 10.6 2108. 1.40 .5 81.71 .025 .37 .33 41.85 

Control  21.7 .98 12.3 1398 1.66 .4 68.55 .036 .43 .40 39.42 

Control  18.5 .65 10.6 1207 1.63 .3 133.53 .028 .41 .37 32.43 

Control 18.1 .70 12.3 800.0 1.79 .3 60.08 .019 .46 .43 37.37 

1x 16.1 .59 14.2 486.5 1.94 .3 45.22 .022 .49 .42 37.77 

1x 14.6 .63 10.7 585.0 1.51 .3 41.77 .004 .39 .35 31.81 

1x 17.0 .78 21.2 608.4 1.68 .3 53.29 .007 .43 .37 32.52 

1x 18.9 .96 11.7 760.1 1.64 .4 68.26 .037 .42 .37 33.09 

2x 16.9 .71 13.1 651.7 1.91 .4 47.57 .0258 .47 .43 35.59 

2x 19.4 .97 14.7 890.1 1.83 .5 58.61 .056 .50 .43 37.22 

2x 17.2 .73 13.7 661.4 1.75 .4 48.9 .052 .47 .42 36.47 

2x 24.7 .95 20.1 905.2 2.16 .5 64.56 .064 .60 .54 48.48 
Control Plot 
1x- (Horticultural Rate) 
2x- (Agronomic Rate)  
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Table C-2. Nutrient Concentration in Plant Tissue at Mounier Golf Training Center at Weibring Golf Club, Normal, IL,                  
June 22, 2017. 

Lab ID Boron 
PPM 

Calcium 
% 

Copper 
PPM 

Iron  
PPM 

Potassium 
% 

Magnesium 
% 

Manganese  
PPM 

Sodium 
% 

Phosphorus 
% 

Sulfur   
% 

Zinc  
PPM 

Control 24.9 1.00 8.1 1122 3.66 1.6 59.36 .077 .33 2.56 24.45 

Control 24.4 1.00 6.2 855.3 5.42 2.2 57.95 .075 .27 3.67 18.26 

Control 22.6 .78 7.1 729.0 4.44 1.9 60.76 .079 .27 3.26 17.87 

Control 22.7 .91 22.5 812.3 4.58 1.9 61.95 .066 .27 3.43 18.72 

1x 21.1 .62 24.7 448.5 4.59 1.9 50.75 .076 .30 3.65 20.45 

1x 22.8 .74 21.2 666.0 5.91 2.3 58.62 .055 .24 4.08 16.91 

1x 23.3 1.23 82.0 1051.2 4.48 2.0 74.61 .069 .31 3.25 21.86 

1x 25.6 1.53 30.1 1622 3.93 1.9 96.79 .067 .30 2.85 21.05 

2x 30.2 .62 45.4 2741 4.84 2.0 53.12 .062 .31 3.74 20.73 

2x 21.6 .65 56.0 515.9 6.60 2.5 45.54 .060 .29 4.70 20.16 

2x 23.7 .60 29.4 474.7 5.87 2.3 41.71 .072 .35 4.02 23.97 

2x 25.1 .74 18.2 716.1 5.34 2.1 50.59 .072 .37 3.72 24.27 
Control Plot 
1x- (Horticultural Rate) 
2x- (Agronomic Rate) 
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Table C-3. Nutrient Concentration in Plant Tissue at Mounier Golf Training Center at Weibring Golf Club, Normal, IL,                  
June 26, 2017. 

Lab ID Boron 
PPM 

Calcium 
% 

Copper 
PPM 

Iron  
PPM 

Potassium 
% 

Magnesium 
% 

Manganese  
PPM 

Sodium 
% 

Phosphorus 
% 

Sulfur 
% 

Zinc  
PPM 

Control 26.4 0.70 12.4 1218 1.72 0.62 59.0 0.06 0.30 0.88 30.9 

Control 27.8 1.00 11.4 1433 1.61 0.65 79.6 0.05 0.25 0.78 21.3 

Control 34.9 0.93 13.9 1315 1.85 0.78 88.5 0.06 0.31 0.84 26.7 

Control 37.9 0.88 16.3 919 2.24 0.71 66.2 0.06 0.41 1.02 30.2 

1x 29.8 0.81 15.0 575 2.06 0.67 53.2 0.05 0.34 1.00 26.6 

1x 29.0 0.64 14.6 731 1.96 0.66 56.8 0.05 0.33 1.01 25.5 

1x 25.4 0.84 13.4 675 1.77 0.56 57.0 0.05 0.30 0.76 23.4 

1x 27.4 1.82 13.7 2231 1.50 0.8 124.8 0.04 0.25 0.58 23.8 

2x 29.4 0.75 14.4 766 1.93 0.61 56.5 0.05 0.34 0.88 25.8 

2x 34.88 0.70 13.4 847 2.29 0.74 57.7 0.05 0.39 1.12 30.1 

2x 36.40 0.73 14.1 788 2.35 0.72 57.3 0.57 0.42 1.10 31.9 

2x 35.72 0.64 13.92 527 2.54 0.67 52.8 0.06 0.43 1.10 31.3 
Control Plot 
1x- (Horticultural Rate) 
2x- (Agronomic Rate) 
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Table C-4. Nutrient Concentration in Plant Tissue at Mounier Golf Training Center at Weibring Golf Club, Normal, IL,                   
June 29, 2017. 

Lab ID Boron 
PPM 

Calcium 
% 

Copper 
PPM 

Iron  
PPM 

Potassium 
% 

Magnesium 
% 

Manganese  
PPM 

Sodium 
% 

Phosphorus 
% 

Sulfur 
% 

Zinc  
PPM 

Control 43.2 1.74 27.2 4235 1.20 0.87 174.0 0.070 3.55 0.51 122.2 

Control 63.0 1.60 46.3 5078 1.06 0.71 220.7 0.079 4.76 0.54 192.1 

Control 73.3 0.98 28.9 5665 1.07 0.51 208.1 0.08 5.68 0.63 239.8 

Control 56.0 0.88 26.5 5173 1.16 0.50 210.8 0.085 5.68 0.67 286.6 

1x 71.9 0.71 34.3 4827 1.18 0.49 236.0 0.094 5.41 0.70 256.1 

1x 52.7 0.67 20.8 4902 1.14 0.46 193.6 0.087 5.30 0.65 245.1 

1x 52.9 1.06 25.7 5138 1.05 0.54 207.0 0.093 5.26 0.58 441.1 

1x 51.5 0.97 20.0 4974 1.20 0.47 204.3 0.094 5.30 0.62 204.0 

2x 53.6 0.72 32.9 5196 1.10 0.47 229.3 0.09 5.46 0.66 244.5 

2x 63.6 0.61 25.1 5881 1.12 0.46 226.2 0.10 6.08 0.73 303.3 

2x 52.9 0.67 23.1 4770 1.12 0.50 184.2 0.08 5.31 0.64 244.0 

2x 52.2 0.53 23.8 5008 1.14 0.43 191.5 0.09 5.53 0.62 255.3 
       Control Plot 
       1x- (Horticultural Rate) 
       2x- (Agronomic Rate) 
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Table C-5.  Nutrient Concentration in Plant Tissue at Mounier Golf Training Center at Weibring Golf Club, Normal, IL,                       
July 3, 2017. 

Lab ID Boron 
PPM 

Calcium 
%  

Copper 
PPM 

Iron 
PPM 

Potassium 
% 

Magnesium  
% 

Manganese  
PPM 

Sodium 
% 

Phosphorus 
% 

Sulfur 
% 

Zinc           
PPM 

Control 59.1 1.25 14.4 2411 2.0 0.58 156.1 0.050 0.81 0.52 48.1 

Control 67.9 1.02 14.0 1471 2.2 0.54 274.6 0.046 0.85 0.54 45.4 

Control 82.1 0.63 16.1 1211 2.3 0.42 152.0 0.049 1.02 0.62 66.2 

Control 81.8 0.51 17.1 1059 2.3 0.40 142.9 0.046 0.97 0.60 75.9 

1x 83.0 0.49 17.7 921 2.6 0.43 159.7 0.061 1.04 0.74 68.4 

1x 66.5 0.63 16.1 964 2.1 0.44 118.2 0.046 0.85 0.58 52.0 

1x 73.5 0.95 18.4 1111 2.2 0.55 129.6 0.051 0.92 0.59 53.6 

1x 77.2 1.97 18.2 1915 2.3 0.68 196.6 0.056 0.97 0.60 59.9 

2x 82.6 0.51 17.4 1150 2.4 0.41 137.3 0.049 1.03 0.63 64.1 

2x 82.8 0.51 15.7 1149 2.3 0.42 153.5 0.048 0.97 0.60 83.3 

2x 84.1 0.49 17.3 985 2.4 0.41 124.8 0.050 1.00 0.64 61.7 

2x 81.9 0.57 15.5 1077 2.3 0.41 131.5 0.051 1.00 0.57 59.3 
Control Plot 
1x- (Horticultural Rate) 
2x- (Agronomic Rate) 
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Table C-6. Nutrient Concentration in Plant Tissue at Mounier Golf Training Center at Weibring Golf Club, Normal, IL,                  
July 6, 2017. 

Lab ID Boron 
PPM 

Calcium 
% 

Copper 
PPM 

Iron  
PPM 

Potassium 
% 

Magnesium 
% 

Manganese  
PPM 

Sodium 
% 

Phosphorus 
% 

Sulfur 
% 

Zinc 
PPM 

Control 22.8 1.60 13.3 2142 1.8 0.83 150.0 0.047 0.62 0.48 33.8 

Control 20.0 1.09 13.4 1837 1.7 0.58 142.6 0.045 0.58 0.45 50.0 

Control 18.5 0.86 15.2 991 2.1 0.48 152.1 0.049 0.68 0.51 35.1 

Control 18.4 0.67 16.2 611 2.2 0.39 154.4 0.050 0.74 0.55 39.7 

1x 19.4 0.40 16.2 261 2.4 0.36 126.9 0.053 0.80 0.63 42.1 

1x 20.4 0.32 16.8 243 2.1 0.31 118.6 0.044 0.76 0.60 42.6 

1x 20.5 0.41 15.9 350 2.2 0.33 116.0 0.044 0.74 0.57 39.2 

1x 19.7 0.77 16.4 496 2.0 0.43 122.2 0.053 0.65 0.50 43.8 

2x 18.8 0.44 17.2 371 2.2 0.34 126.8 0.044 0.75 0.56 36.3 

2x 20.1 0.36 17.3 308 2.2 0.33 126.2 0.045 0.79 0.59 42.4 

2x 24.33 0.40 20.9 367 2.6 0.37 143.9 0.051 0.94 0.71 50.0 

2x 20.1 0.37 18.2 268 2.4 0.34 131.9 0.050 0.82 0.60 45.0 
Control Plot 

 1x- (Horticultural Rate) 
 2x- (Agronomic Rate) 
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Table C-7. Nutrient Concentration in Plant Tissue at Mounier Golf Training Center at Weibring Golf Club, Normal, IL, 
July 10, 2017. 

Lab ID Boron 
PPM 

Calcium 
% 

Copper 
PPM 

Iron  
PPM 

Potassium 
% 

Magnesium 
% 

Manganese  
PPM 

Sodium 
% 

Phosphorus 
% 

Sulfur 
% 

Zinc  
PPM 

Control 19.6 1.44 9.5 1590 1.57 0.67 107.9 0.045 0.40 0.28 21.9 

Control 22.9 0.65 12.7 806 2.24 0.38 89.8 0.056 0.55 0.37 26.7 

Control 25.6 0.50 15.2 578 2.54 0.35 91.6 0.061 0.66 0.44 30.9 

Control 25.7 0.47 15.5 364 2.67 0.33 87.5 0.062 0.68 0.45 30.7 

1x 23.9 0.50 15.2 426 2.58 0.34 83.8 0.059 0.65 0.43 32.0 

1x 24.9 0.44 15.2 377 2.55 0.32 82.4 0.055 0.66 0.43 33.3 

1x 24.6 0.55 15.0 430 2.60 0.33 84.3 0.059 0.66 0.43 31.2 

1x 26.2 0.50 14.9 350 2.52 0.31 79.8 0.071 0.62 0.42 31.4 

2x 23.5 0.44 15.2 445 2.50 0.31 80.9 0.058 0.67 0.43 31.1 

2x 22.5 0.41 14.1 369 2.34 0.29 79.3 0.055 0.64 0.40 30.4 

2x 28.3 0.50 18.5 421 3.21 0.38 98.6 0.073 0.80 0.53 38.3 

2x 29.7 0.53 18.4 385 3.24 0.36 102.7 0.079 0.82 0.54 38.3 
Control Plot 

 1x- (Horticultural Rate) 
 2x- (Agronomic Rate) 
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Table C-8. Nutrient Concentration in Plant Tissue at Mounier Golf Training Center at Weibring Golf Club, Normal, IL,                        
July 14, 2017. 

Lab ID Boron 
PPM 

Calcium 
% 

Copper 
PPM 

Iron  
PPM 

Potassium 
% 

Magnesium 
% 

Manganese  
PPM 

Sodium 
% 

Phosphorus 
% 

Sulfur 
% 

Zinc  
PPM 

Control 37.9 1.09 18.3 1242 2.4 0.48 173.4 0.0420 0.75 0.50 35.6 

Control 35.7 1.02 16.4 1292 2.3 0.55 126.0 0.0347 0.66 0.44 30.5 

Control 35.1 0.83 16.9 653 2.4 0.39 106.6 0.0343 0.69 0.46 29.1 

Control 36.9 0.62 17.6 543 2.5 0.36 91.6 0.0328 0.73 0.48 43.7 

1x 35.3 0.47 17.5 281 2.4 0.31 72.6 0.0321 0.70 0.45 31.2 

1x 38.3 0.52 19.1 405 2.6 0.36 88.6 0.0285 0.77 0.49 35.0 

1x 38.9 0.59 18.6 334 2.6 0.33 88.4 0.0323 0.76 0.49 34.3 

1x 39.7 0.60 18.8 376 2.5 0.37 86.7 0.0453 0.72 0.49 32.4 

2x 38.3 0.45 19.9 358 2.5 0.33 82.8 0.0311 0.79 0.50 33.5 

2x 36.6 0.72 19.5 319 2.4 0.34 96.7 0.0285 0.79 0.49 32.9 

2x 33.6 0.43 17.1 302 2.4 0.31 73.4 0.0269 0.72 0.47 32.5 

2x 37.2 0.48 18.3 294 2.6 0.33 85.7 0.0331 0.79 0.50 33.1 
       Control Plot 

 1x- (Horticultural Rate) 
 2x- (Agronomic Rate) 
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Table C-9. Nutrient Concentration in Plant Tissue at Mounier Golf Training Center at Weibring Golf Club, Normal, IL, 
July 18, 2017. 

Lab ID Boron 
PPM 

Calcium 
% 

Copper 
PPM 

Iron  
PPM 

Potassium 
% 

Magnesium 
% 

Manganese  
PPM 

Sodium 
% 

Phosphorus 
% 

Sulfur 
% 

Zinc  
PPM 

Control 32.4 1.09 14.0 2351 1.86 0.59 94.6 0.073 0.54 0.36 26.1 

Control 26.5 1.24 14.4 1446 2.06 0.60 103.1 0.068 0.53 0.35 22.9 

Control 25.4 0.69 15.4 974 2.14 0.43 92.1 0.075 0.53 0.36 21.9 

Control 25.6 0.57 15.3 598 2.24 0.37 59.2 0.074 0.59 0.38 25.2 

1x 22.3 0.36 15.1 448 2.19 0.30 48.9 0.068 0.56 0.36 23.9 

1x 28.2 0.37 18.4 336 2.40 0.31 53.7 0.069 0.70 0.44 30.1 

1x 26.3 0.68 18.1 454 2.72 0.36 76.3 0.081 0.77 0.46 32.9 

1x 23.8 0.48 15.6 309 2.35 0.30 57.4 0.086 0.65 0.41 29.1 

2x 21.4 0.42 14.7 345 2.07 0.29 52.3 0.066 0.64 0.38 26.0 

2x 24.6 0.40 17.7 216 2.55 0.32 57.3 0.079 0.81 0.45 32.7 

2x 24.8 0.40 19.8 244 2.51 0.32 53.1 0.078 0.77 0.45 34.3 

2x 25.6 0.48 17.9 267 2.68 0.33 61.8 0.084 0.81 0.46 32.3 
Control Plot 

 1x- (Horticultural Rate) 
       2x- (Agronomic Rate) 
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Table C-10. Nutrient Concentration in Plant Tissue at Mounier Golf Training Center at Weibring Golf Club, Normal, IL,                     
July 21, 2017. 

Lab ID Boron 
PPM 

Calcium 
% 

Copper 
PPM 

Iron  
PPM 

Potassium 
% 

Magnesium 
% 

Manganese  
PPM 

Sodium 
% 

Phosphorus 
% 

Sulfur 
% 

Zinc  
PPM 

Control 23.8 1.84 13.5 1697 1.86 0.78 93.8 0.061 0.58 0.36 27.0 

Control 23.2 1.85 14.1 1515 2.12 0.95 187.2 0.061 0.61 0.38 24.6 

Control 21.3 0.84 14.7 795 2.11 0.49 69.1 0.060 0.65 0.39 25.1 

Control 21.7 0.75 15.3 689 2.20 0.43 76.3 0.060 0.68 0.41 28.9 

1x 22.5 0.62 16.0 545 2.29 0.42 58.1 0.066 0.72 0.42 28.2 

1x 25.7 0.78 18.6 885 2.41 0.48 77.7 0.064 0.79 0.45 31.2 

1x 22.9 0.60 28.7 553 2.22 0.40 60.4 0.064 0.72 0.43 29.7 

1x 24.7 0.97 15.7 1030 2.0 0.54 80.5 0.066 0.65 0.40 28.2 

2x 22.0 0.79 17.0 513 2.29 0.38 87.0 0.065 0.78 0.45 28.1 

2x 22.3 0.77 16.6 735 2.09 0.48 73.1 0.060 0.74 0.42 27.4 

2x 23.1 0.78 17.2 747 2.16 0.49 64.3 0.060 0.76 0.43 28.8 

2x 21.3 0.57 16.0 456 2.18 0.39 53.5 0.061 0.75 0.42 28.1 
Control Plot 
1x- (Horticultural Rate) 
2x- (Agronomic Rate) 
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Table C-11. Nutrient Concentration in Plant Tissue at Mounier Golf Training Center at Weibring Golf Club, Normal, IL,                
July 25, 2017. 

Lab ID Boron 
PPM 

Calcium 
% 

Copper 
PPM 

Iron  
PPM 

Potassium 
% 

Magnesium 
% 

Manganese  
PPM 

Sodium 
% 

Phosphorus 
% 

Sulfur 
% 

Zinc  
PPM 

Control 28.2 2.72 12.1 3158 1.67 1.15 177.8 0.062 .045 0.27 26.7 

Control 24.9 2.14 10.2 2697 1.62 0.94 134.3 0.056 0.41 0.25 23.7 

Control 24.5 1.32 13.7 1477 2.09 0.62 93.7 0.066 0.54 0.30 22.9 

Control 28.1 0.89 15.2 813 2.56 0.51 69.7 0.081 0.66 0.37 29.1 

1x 27.0 0.71 15.0 900 2.57 0.42 82.8 0.086 0.69 0.37 29.9 

1x 28.5 0.66 16.5 494 2.71 0.42 63.6 0.085 0.74 0.39 32.0 

1x 27.2 0.96 15.9 902 2.48 0.47 82.1 0.079 0.70 0.38 30.4 

1x 29.3 1.59 15.2 1533 2.36 0.64 122.8 0.081 0.66 0.36 30.1 

2x 27.8 1.35 15.0 1303 2.35 0.59 109.0 0.082 0.65 0.35 29.4 

2x 28.6 0.65 16.6 56 2.69 0.43 64.5 0.090 0.78 0.40 32.8 

2x 22.5 0.49 12.6 312 2.14 0.33 45.4 0.071 0.63 0.34 26.8 

2x 23.6 0.40 13.1 229 2.25 0.30 42.8 0.075 0.68 0.36 27.3 
Control Plot 
1x- (Horticultural Rate) 
2x- (Agronomic Rate) 
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Table C-12. Nutrient Concentration in Plant Tissue at Mounier Golf Training Center at Weibring Golf Club, Normal, IL,                  
July 28, 2017. 

Lab ID Boron 
PPM 

Calcium 
% 

Copper 
PPM 

Iron  
PPM 

Potassium 
% 

Magnesium 
% 

Manganese  
PPM 

Sodium 
% 

Phosphorus 
% 

Sulfur 
% 

Zinc  
PPM 

Control 22.5 1.51 14.9 1774 1.74 0.70 128.2 0.052 0.60 0.27 21.4 

Control 27.3 0.97 18.7 1300 2.11 0.53 131.2 0.056 0.81 0.35 30.4 

Control 24.2 0.75 18.4 938 2.18 0.43 115.2 0.059 0.76 0.32 28.1 

Control 24.8 0.62 20.1 483 2.29 0.35 109.5 0.057 0.82 0.34 25.4 

1x 30.4 0.64 23.0 579 3.31 0.43 127.4 0.094 0.97 0.39 29.1 

1x 26.6 1.00 21.2 981 2.96 0.52 123.1 0.076 0.82 0.34 25.4 

1x 30.8 2.00 18.9 1738 2.57 0.84 146.8 0.073 0.81 0.34 24.5 

1x 28.9 1.17 20.6 867 3.04 0.68 131.6 0.099 0.83 0.36 24.3 

2x 32.0 0.80 22.9 782 3.24 0.51 127.1 0.086 1.01 .041 29.3 

2x 31.5 0.68 24.1 610 3.44 0.47 132.5 0.090 1.06 0.41 30.4 

2x 31.8 0.75 25.11 728 3.41 0.47 129.9 0.089 1.04 0.41 31.2 

2x 33.4 0.69 23.2 522 3.65 0.44 135.1 0.097 1.12 0.43 31.8 
Control Plot 
1x- (Horticultural Rate) 
2x- (Agronomic Rate) 
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Table C-13. Nutrient Concentration in Plant Tissue at Lauritsen/Wohler’s Outdoor Golf Practice Facility, Urbana, IL,                    
June 20, 2017. 

Lab ID Boron 
PPM 

Calcium 
% 

Copper 
PPM 

Iron  
PPM 

Potassium 
% 

Magnesium 
% 

Manganese  
PPM 

Sodium 
% 

Phosphorus 
% 

Sulfur 
% 

Zinc  
PPM 

Control 17.3 .73 11.2 1058 1.16 .4 39.54 .103 .30 .23 22.43 

Control 18.7 .83 12.7 1442 1.11 .4 53.95 .102 .30 .24 22.56 

Control 16.8 .62 12.3 779.8 1.12 .4 39.37 .098 .31 .25 22.75 

Control 19.0 .89 13.3 1030 1.23 .5 55.25 .102 .33 .27 25.36 

1x 20.3 .73 13.2 318.1 1.34 .4 43.54 .084 34 .28 24.98 

1x 20.7 .89 13.3 453.4 1.27 .5 44.63 .080 .35 .27 24.71 

1x 17.7 .71 12.5 333.2 1.24 .4 34.82 .084 .32 .24 21.02 

1x 19.4 .83 4.2 478.2 1.21 .4 40.09 .085 .31 .24 22.14 

2x 16.4 .75 9.3 412.3 1.22 .4 40.99 .089 .31 .27 22.85 

2x 17.8 .79 12.8 453.4 1.25 .4 39.11 .085 .32 .30 22.95 

2x 19.5 .76 7.3 260.6 1.34 .4 39.59 .089 .31 .29 23.80 

2x 23.1 .72 15.3 294.1 1.32 .4 45.34 .087 .32 .28 24.04 
Control Plot 
1x- (Horticultural Rate) 
2x- (Agronomic Rate) 
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Table C-14. Nutrient Concentration in Plant Tissue at Lauritsen/Wohler’s Outdoor Golf Practice Facility, Urbana, IL,                            
June 23, 2017. 

Lab ID Boron 
PPM 

Calcium 
% 

Copper 
PPM 

Iron  
PPM 

Potassium 
% 

Magnesium 
% 

Manganese  
PPM 

Sodium 
% 

Phosphorus 
% 

Sulfur 
% 

Zinc  
PPM 

Control 22.3 .88 12.2 734.8 1.57 .5 48.40 .149 .39 .37 33.57 

Control 15.0 .64 8.5 440.8 1.24 .4 36.94 .122 .33 .26 24.79 

Control 17.2 .77 7.4 732.9 1.13 .4 44.64 .107 .30 .24 24.63 

Control 16.0 .70 8.0 404.9 1.22 .4 39.68 .109 .33 .26 25.48 

1x 14.8 .58 7.6 263.9 1.30 .3 37.19 .115 .33 .26 24.35 

1x 16.0 .69 8.2 440.2 1.27 .4 42.64 .110 .35 .27 25.72 

1x 16.2 .76 9.4 407.7 1.31 .4 42.59 .118 .35 .26 26.16 

1x 15.4 .68 7.8 476.9 1.16 .4 40.82 .103 .30 .23 23.64 

2x 14.3 .62 8.0 385.2 1.22 .3 38.93 .113 .32 .26 25.83 

2x 16.1 .81 13.7 344.9 1.69 .4 50.64 .142 .40 .35 32.08 

2x 20.1 .79 15.3 318.1 1.83 .4 55.25 .158 .43 .38 35.29 

2x 20.0 .69 13.8 290.7 1.68 .4 55.93 .150 .41 .35 32.53 
Control Plot 
1x- (Horticultural Rate) 
2x- (Agronomic Rate) 
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Table C-15.  Nutrient Concentration in Plant Tissue at Lauritsen/Wohler’s Outdoor Golf Practice Facility, Urbana, IL,                      
June 27, 2017. 

Lab ID Boron 
PPM 

Calcium 
% 

Copper 
PPM 

Iron  
PPM 

Potassium 
% 

Magnesium 
% 

Manganese  
PPM 

Sodium 
% 

Phosphorus 
% 

Sulfur 
% 

Zinc 
PPMPP 

Control 23.9 0.59 7.7 970 1.26 0.32 40.2 0.125 0.30 0.23 24.9 

Control 27.5 0.63 8.9 935 1.44 0.36 44.7 0.147 0.34 0.28 24.7 

Control 28.8 0.70 9.5 665 1.56 0.39 48.8 0.153 0.36 0.28 26.73 

Control 25.4 0.61 8.9 510 1.56 0.34 39.3 0.149 0.35 0.26 24.0 

1x 28.8 0.60 9.9 340 1.69 0.34 44.6 0.172 0.40 0.30 26.0 

1x 25.8 0.62 8.7 397 1.53 0.33 42.6 0.150 0.37 0.27 24.0 

1x 23.0 0.63 5.5 438 1.12 0.32 35.8 0.108 0.27 0.19 18.9 

1x 27.7 0.82 7.4 615 1.39 0.41 48.8 0.125 0.32 0.22 24.1 

2x 27.7 0.65 8.7 513 1.59 0.35 40.8 0.161 0.36 0.28 25.2 

2x 23.0 0.56 7.4 244 1.51 0.31 31.0 0.149 0.31 0.25 21.2 

2x 24.9 0.48 7.0 182 1.46 0.28 29.2 0.149 0.30 0.25 21.2 

2x 32.6 0.57 9.5 308 1.75 0.34 43.6 0.181 0.29 0.34 24.9 
Control Plot 
1x- (Horticultural Rate) 
2x- (Agronomic Rate) 
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Table C-16. Nutrient Concentration in Plant Tissue at Lauritsen/Wohler’s Outdoor Golf Practice Facility, Urbana, IL, 
June 30, 2017.  

Lab ID Boron 
PPM 

Calcium 
% 

Copper 
PPM 

Iron  
PPM 

Potassium 
% 

Magnesium 
% 

Manganese  
PPM 

Sodium 
% 

Phosphorus 
% 

Sulfur 
% 

Zinc  
PPM 

Control 15.7 0.66 9.2 1629 0.78 0.43 73.6 0.090 0.27 0.14 19.3 

Control 14.6 0.86 7.0 1346 0.97 0.43 75.2 0.111 0.23 0.16 19.6 

Control 16.6 1.22 9.3 1505 1.16 0.60 97.4 0.129 0.26 0.18 21.8 

Control 17.63 1.21 10.6 1514 1.34 0.63 104.3 0.147 0.29 2.0 23.7 

1x 20.1 1.17 12.5 1363 1.71 0.61 117.1 0.190 0.38 0.28 27.2 

1x 23.2 1.87 11.6 2067 1.28 0.90 125.8 0.147 0.32 0.22 27.69 

1x 19.7 2.03 8.7 1925 1.06 1.00 121.6 0.119 0.27 0.18 26.23 

1x 18.3 2.06 9.9 2234 1.19 1.00 121.6 0.131 0.24 0.17 26.2 

2x 16.7 1.13 10.2 1143 1.32 0.57 99.2 0.150 0.28 0.20 21.4 

2x 20.5 1.33 12.7 1413 1.57 0.67 121.5 0.179 0.34 0.27 25.6 

2x 21.6 0.92 13.0 757 1.66 0.50 110.7 0.186 0.35 0.29 25.87 

2x 19.3 0.70 12.4 634 1.38 0.38 101.7 0.163 0.38 0.30 25.9 
Control Plot 
1x- (Horticultural Rate) 
2x- (Agronomic Rate) 
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Table C-17. Nutrient Concentration in Plant Tissue at Lauritsen/Wohler’s Outdoor Golf Practice Facility, Urbana, IL, July 4, 
2017. 

Lab ID Boron 
PPM 

Calcium 
% 

Copper 
PPM 

Iron  
PPM 

Potassium 
% 

Magnesium 
% 

Manganese  
PPM 

Sodium 
% 

Phosphorus 
% 

Sulfur 
% 

Zinc 
PPM 

Control 16.3 0.68 9.9 1424 0.8 0.36 49.1 0.087 0.24 0.16 25.4 

Control 16.6 0.79 9.0 1113 1.0 0.14 52.5 0.112 0.29 0.19 26.0 

Control 18.0 0.81 9.9 1110 1.1 0.46 57.3 0.126 0.33 0.22 27.4 

Control 17.4 0.74 9.7 745 1.1 0.42 52.7 0.122 0.33 0.22 26.7 

1x 19.4 0.85 10.0 706 1.2 0.47 51.0 0.130 0.36 0.26 25.5 

1x 17.9 1.12 8.4 1123 1.0 0.62 60.7 0.100 0.30 0.20 23.7 

1x 19.3 1.34 8.8 1367 1.0 0.69 71.0 0.096 0.29 0.19 25.3 

1x 22.4 1.54 9.5 1584 1.2 0.74 84.5 0.119 0.35 0.23 31.4 

2x 18.0 0.91 8.9 890 1.2 0.47 56.9 0.136 0.32 0.23 26.0 

2x 18.4 0.83 8.6 599 1.2 0.42 49.4 0.130 0.33 0.25 24.7 

2x 17.8 0.68 9.1 519 1.2 0.39 47.1 0.137 0.33 0.27 24.6 

2x 20.0 0.57 10.0 453 1.4 0.36 44.7 0.151 0.39 0.31 27.0 
Control Plot 
1x- (Horticultural Rate) 
2x- (Agronomic Rate) 
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Table C-18. Nutrient Concentration in Plant Tissue at Lauritsen/Wohler’s Outdoor Golf Practice Facility, Urbana, IL, July 7, 
2017. 

Lab ID Boron 
PPM 

Calcium 
% 

Copper 
PPM 

Iron  
PPM 

Potassium 
% 

Magnesium 
% 

Manganese  
PPM 

Sodium 
% 

Phosphorus 
% 

Sulfur 
% 

Zinc 
PPM 

Control 27.8 0.84 12.3 864 1.4 0.49 100.5 0.136 0.47 0.29 32.0 

Control 24.9 1.12 10.6 1877 1.2 0.57 119.9 0.115 0.38 0.22 27.4 

Control 24.3 1.42 10.4 1270 1.1 0.63 121.9 0.105 0.37 0.22 25.4 

Control 25.0 1.04 12.8 960 1.4 0.53 128.0 0.122 0.44 0.27 27.4 

1x 22.5 1.12 11.1 872 1.3 0.64 136.2 0.123 0.38 0.23 20.0 

1x 22.7 0.88 11.9 677 1.4 0.43 127.2 0.127 0.44 0.26 23.9 

1x 29.3 1.07 13.5 1073 1.5 0.65 148.4 0.132 0.49 0.28 27.2 

1x 21.9 1.01 11.5 993 1.3 0.56 138.2 0.116 0.35 0.20 20.6 

2x 23.0 0.88 12.0 986 1.3 0.50 116.2 0.125 0.38 0.24 22.1 

2x 34.1 0.79 14.2 803 1.4 0.46 127.3 0.140 0.49 0.32 26.8 

2x 26.4 0.63 12.3 489 1.4 0.39 105.8 0.136 0.37 0.26 19.8 

2x 33.9 0.54 14.3 556 1.5 0.38 122.5 0.152 0.47 0.32 26.5 
Control Plot 
1x- (Horticultural Rate) 
2x- (Agronomic Rate) 
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Table C-19. Nutrient Concentration in Plant Tissue at Lauritsen/Wohler’s Outdoor Golf Practice Facility, Urbana, IL, July 11, 
2017. 

Lab ID Boron 
PPM 

Calcium 
% 

Copper 
PPM 

Iron  
PPM 

Potassium 
% 

Magnesium 
% 

Manganese  
PPM 

Sodium 
% 

Phosphorus 
% 

Sulfur 
% 

Zinc 
PPM 

Control 11.76 0.51 8.9 776 1.01 0.32 47.8 1.107 0.33 0.21 25.3 

Control 12.32 0.58 10.9 812 1.20 0.37 58.2 0.132 0.40 0.26 26.6 

Control 9.04 0.67 9.6 577 1.32 0.43 56.6 0.154 0.32 .021 22.3 

Control 11.6 0.64 10.9 621 1.44 0.40 59.3 0.162 0.38 0.25 25.7 

1x 10.55 0.62 11.7 396 1.67 0.41 58.0 0.170 0.44 0.30 26.0 

1x 11.38 0.69 10.3 489 1.43 0.43 58.5 0.146 0.42 0.27 25.7 

1x 9.90 0.89 10.3 560 1.43 0.51 62.5 0.147 0.39 0.25 24.3 

1x 10.37 0.93 11.5 784 1.48 0.56 78.0 0.154 0.36 0.23 25.5 

2x 10.75 0.68 11.4 441 1.49 0.40 57.7 0.162 0.41 0.28 25.7 

2x 10.43 0.57 11.0 428 1.47 0.37 51.1 0.158 0.40 0.28 25.0 

2x 12.49 0.56 12.9 381 1.72 0.40 57.3 0.183 0.46 0.34 29.0 

2x 12.13 0.47 11.7 268 1.54 0.35 52.7 0.164 0.45 0.33 28.6 
Control Plot 
1x- (Horticultural Rate) 
2x- (Agronomic Rate) 
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Table C-20. Nutrient Concentration in Plant Tissue at Lauritsen/Wohler’s Outdoor Golf Practice Facility, Urbana, IL, July 13, 
2017. 

Lab ID Boron 
PPM 

Calcium 
% 

Copper 
PPM 

Iron  
PPM 

Potassium 
% 

Magnesium 
% 

Manganese  
PPM 

Sodium 
% 

Phosphorus 
% 

Sulfur 
% 

Zinc 
PPM 

Control 26.4 0.86 15.3 955 2.33 0.54 87.3 0.209 0.62 0.36 344.2 

Control 24.1 0.80 14.5 645 2.20 0.51 89.5 0.188 0.58 0.33 398.3 

Control 34.8 0.76 11.4 719 1.65 .044 93.7 0.413 0.59 0.35 515.2 

Control 30.8 0.75 11.5 570 1.73 0.43 86.3 0.145 0.59 0.34 522.5 

1x 37.3 0.70 12.2 409 1.90 0.41 81.0 0.150 0.65 0.40 529.0 

1x 37.7 0.80 13.0 559 1.99 0.47 87.4 0.155 0.69 0.40 508.2 

1x 37.2 1.03 12.5 761 1.81 0.56 98.2 0.141 0.64 0.36 494.3 

1x 34.4 1.09 12.5 981 1.79 0.58 110.1 0.142 0.57 0.33 509.2 

2x 41.9 0.87 14.3 586 2.02 0.51 102.8 0.171 0.71 0.42 619.1 

2x 46.5 0.72 13.7 510 2.05 0.43 89.0 0.173 0.76 0.47 709.9 

2x 39.4 0.68 14.3 471 2.08 0.42 90.2 0.177 0.64 0.43 553.5 

2x 45.0 0.65 13.8 366 2.09 0.43 88.1 0.185 0.69 0.46 574.3 
Control Plot 
1x- (Horticultural Rate) 
2x- (Agronomic Rate) 
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Table C-21. Nutrient Concentration in Plant Tissue at Lauritsen/Wohler’s Outdoor Golf Practice Facility, Urbana, IL, July 17, 
2017. 

Lab ID Boron 
PPM 

Calcium 
% 

Copper 
PPM 

Iron  
PPM 

Potassium 
% 

Magnesium 
% 

Manganese  
PPM 

Sodium 
% 

Phosphorus 
% 

Sulfur 
% 

Zinc 
PPM 

Control 30.7 0.69 14.2 473 2.19 0.43 54.6 0.156 0.55 0.33 150.6 

Control 30.7 0.66 14.6 292 2.21 0.40 54.5 0.151 0.55 0.35 150.6 

Control 30.7 0.67 14.8 325 2.22 0.40 53.5 0.153 0.55 0.36 164.0 

Control 28.4 0.61 13.3 215 2.05 0.37 46.4 0.144 0.51 0.33 152.8 

1x 32.6 0.58 13.6 163 2.15 0.38 47.7 0.153 0.53 0.37 140.5 

1x 27.7 0.58 13.6 178 2.10 0.36 41.4 0.141 0.52 0.347 134.1 

1x 35.4 0.68 15.7 320 2.10 0.40 53.0 0.143 0.57 0.37 163.5 

1x 32.8 0.71 15.4 297 2.24 0.42 54.8 0.148 0.55 0.35 151.2 

2x 13.6 0.81 13.2 156 1.73 0.35 24.3 0.006 0.21 0.14 25.2 

2x 11.0 0.56 7.6 91 1.76 0.22 18.6 0.003 0.20 0.12 19.6 

2x 27.0 0.59 13.2 169 1.99 0.35 41.5 0.145 0.49 0.34 137.4 

2x 30.2 0.55 13.0 146 2.04 0.34 42.3 0.151 0.49 0.35 134.8 
Control Plot 
1x- (Horticultural Rate) 
2x- (Agronomic Rate) 
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Table C-22. Nutrient Concentration in Plant Tissue at Lauritsen/Wohler’s Outdoor Golf Practice Facility, Urbana, IL, July 20, 
2017. 

Lab ID Boron 
PPM 

Calcium 
% 

Copper 
PPM 

Iron  
PPM 

Potassium 
% 

Magnesium 
% 

Manganese  
PPM 

Sodium 
% 

Phosphorus 
% 

Sulfur 
% 

Zinc  
PPM 

Control 27.4 0.75 11.9 1136 1.4 0.42 53.0 0.106 0.51 0.32 84.0 

Control 25.7 0.63 11.7 341 1.5 0.38 52.2 0.115 0.56 0.36 79.9 

Control 26.2 0.58 12.3 285 1.6 0.38 40.7 0.123 0.58 0.37 83.2 

Control 25.6 0.61 11.5 350 1.5 0.39 39.9 0.118 0.53 0.35 77.4 

1x 22.0 0.55 11.5 321 1.6 0.37 38.0 0.110 0.49 0.33 60.9 

1x 23.8 0.75 10.7 480 1.4 0.44 38.1 0.101 0.50 0.32 61.9 

1x 21.4 0.87 9.5 513 1.3 0.54 42.5 0.104 0.43 0.27 55.3 

1x 21.6 0.58 10.7 294 1.5 0.38 37.7 0.118 0.48 0.30 62.7 

2x 27.6 0.60 12.2 326 1.6 0.39 41.2 0.118 0.55 0.38 77.0 

2x 26.0 0.71 12.0 429 1.5 0.42 41.7 0.117 0.48 0.34 63.6 

2x 27.1 0.61 13.9 383 1.6 0.41 42.0 0.126 0.44 0.34 55.8 

2x 30.7 0.66 15.0 415 1.7 0.44 46.4 0.134 0.48 0.36 58.2 
Control Plot 
1x- (Horticultural Rate) 
2x- (Agronomic Rate) 
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Table C-23. Nutrient Concentration in Plant Tissue at Lauritsen/Wohler’s Outdoor Golf Practice Facility, Urbana, IL, July 24, 
2017. 

Lab ID Boron 
PPM 

Calcium 
% 

Copper 
PPM 

Iron  
PPM 

Potassium 
% 

Magnesium 
% 

Manganese  
PPM 

Sodium 
% 

Phosphorus 
% 

Sulfur 
% 

Zinc 
PPM 

Control 32.8 0.55 12.7 157 2.04 0.35 45.3 0.164 0.47 0.36 126.1 

Control 32.0 0.48 12.9 126 1.97 0.33 45.4 0.159 0.46 0.35 116.3 

Control 21.6 0.60 13.6 254 1.49 0.37 41.4 0.097 0.48 0.31 62.0 

Control 21.9 0.60 13.8 381 1.49 0.37 44.4 0.096 0.48 0.30 61.8 

1x 24.8 0.58 14.7 243 1.64 0.38 42.6 0.105 0.53 0.34 56.0 

1x 22.2 0.60 14.0 271 1.52 0.36 40.8 0.095 0.49 0.31 53.6 

1x 22.4 0.72 13.1 327 1.50 0.40 40.3 0.099 0.49 0.30 54.9 

1x 22.9 0.64 14.5 306 1.61 0.39 46.8 0.106 0.50 0.30 56.5 

2x 23.4 0.60 14.9 254 1.67 0.38 41.3 0.113 0.53 0.35 64.3 

2x 21.9 0.51 13.6 218 1.47 0.33 37.3 0.106 0.45 0.30 52.2 

2x 27.9 0.53 15.1 230 1.68 0.37 42.7 0.130 0.50 0.36 53.6 

2x 27.3 0.48 15.3 177 1.69 0.34 42.4 0.133 0.49 0.34 52.5 
Control Plot 
1x- (Horticultural Rate) 
2x- (Agronomic Rate) 
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Table C-24. Nutrient Concentration in Plant Tissue at Lauritsen/Wohler’s Outdoor Golf Practice Facility, Urbana, IL, July 27, 
2017. 

Lab ID Boron 
PPM 

Calcium 
% 

Copper 
PPM 

Iron  
PPM 

Potassium 
% 

Magnesium 
% 

Manganese  
PPM 

Sodium 
% 

Phosphorus 
% 

Sulfur 
% 

Zinc 
PPM 

Control 15.5 0.54 13.5 369 1.44 0.34 36.9 0.085 0.52 0.31 57.7 

Control 14.8 0.55 14.0 203 1.53 0.35 37.1 0.087 0.52 0.33 52.6 

Control 15.1 0.55 14.2 166 1.52 0.34 35.3 0.090 0.53 0.34 52.9 

Control 16.2 0.55 14.7 181 1.51 0.34 37.5 0.090 0.53 0.35 53.9 

1x 17.0 0.49 14.8 137 1.55 0.34 34.3 0.103 0.52 0.36 50.0 

1x 17.0 0.53 13.6 158 1.42 0.33 32.7 0.093 0.48 0.33 45.1 

1x 16.8 0.54 13.3 144 1.47 0.34 30.3 0.098 0.51 0.33 45.9 

1x 17.7 0.56 15.0 176 1.54 0.35 38.8 0.104 0.53 0.34 49.2 

2x 15.7 0.50 14.6 168 1.47 0.32 34.4 0.094 0.49 0.33 47.5 

2x 17.9 0.48 12.9 201 1.27 0.29 33.1 0.092 0.44 0.30 45.8 

2x 20.3 0.48 15.8 168 1.50 0.33 36.9 0.115 0.50 0.36 47.2 

2x 18.9 0.47 12.6 231 1.42 0.30 36.7 0.108 0.45 0.31 43.7 
Control Plot 
1x- (Horticultural Rate) 
2x- (Agronomic Rate) 
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APPENDIX D: CHLOROPHYLL DATA STATISTICS 

   Table D-1. Chlorophyll Correlation with Boron (B) at Mounier Golf Training Center at Weibring Golf Club, Normal, IL. 

Correlations 
B_C B_1x B_2x Chlorophyll_a Chlorophyll_b Chlorophyll_ab Total_Carotenoids 

B_C 
Pearson Correlation 1 .a .a -.474** -.151 -.263 .124 
Sig. (2-tailed) . . .001 .305 .071 .400 
N 48 0 0 48 48 48 48 

B_1x 
Pearson Correlation .a 1 .a .048 .056 .054 -.003 
Sig. (2-tailed) . . .744 .708 .718 .984 
N 0 48 0 48 48 48 48 

B_2x 
Pearson Correlation .a .a 1 -.307* -.134 -.193 .098 
Sig. (2-tailed) . . .034 .363 .189 .507 
N 0 0 48 48 48 48 48 

Chlorophyll_a 
Pearson Correlation -.474** .048 -.307* 1 .946** .975** -.897** 
Sig. (2-tailed) .001 .744 .034 .000 .000 .000 
N 48 48 48 144 144 144 144 

Chlorophyll_b 
Pearson Correlation -.151 .056 -.134 .946** 1 .994** -.971** 
Sig. (2-tailed) .305 .708 .363 .000 .000 .000 
N 48 48 48 144 144 144 144 

Chlorophyll_ab 
Pearson Correlation -.263 .054 -.193 .975** .994** 1 -.958** 
Sig. (2-tailed) .071 .718 .189 .000 .000 .000 
N 48 48 48 144 144 144 144 

Total_Carotenoid
s 

Pearson Correlation .124 -.003 .098 -.897** -.971** -.958** 1 
Sig. (2-tailed) .400 .984 .507 .000 .000 .000 
N 48 48 48 144 144 144 144 

**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 
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     Table D-2. Chlorophyll Correlation with Calcium (Ca) at Mounier Golf Training Center at Weibring Golf Club, Normal, IL. 

Correlations 
Ca_C Ca_1x Ca_2x Chlorophyll_a Chlorophyll_b Chlorophyll_ab Total_Carotenoids 

Ca_C 
Pearson Correlation 1 .a .a -.047 -.109 -.091 .128 
Sig. (2-tailed) . . .750 .460 .538 .386 
N 48 0 0 48 48 48 48 

Ca_1x 
Pearson Correlation .a 1 .a -.176 -.209 -.200 .275 
Sig. (2-tailed) . . .232 .153 .173 .059 
N 0 48 0 48 48 48 48 

Ca_2x 
Pearson Correlation .a .a 1 -.423** -.435** -.434** .437** 
Sig. (2-tailed) . . .003 .002 .002 .002 
N 0 0 48 48 48 48 48 

Chlorophyll_a 
Pearson Correlation -.047 -.176 -.423** 1 .946** .975** -.897** 
Sig. (2-tailed) .750 .232 .003 .000 .000 .000 
N 48 48 48 144 144 144 144 

Chlorophyll_b 
Pearson Correlation -.109 -.209 -.435** .946** 1 .994** -.971** 
Sig. (2-tailed) .460 .153 .002 .000 .000 .000 
N 48 48 48 144 144 144 144 

Chlorophyll_ab 
Pearson Correlation -.091 -.200 -.434** .975** .994** 1 -.958** 
Sig. (2-tailed) .538 .173 .002 .000 .000 .000 
N 48 48 48 144 144 144 144 

Total_Carotenoi
ds 

Pearson Correlation .128 .275 .437** -.897** -.971** -.958** 1 
Sig. (2-tailed) .386 .059 .002 .000 .000 .000 
N 48 48 48 144 144 144 144 

**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 
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       Table D-3. Chlorophyll Correlation with Copper (Cu) at Mounier Golf Training Center at Weibring Golf Club, Normal, IL. 

 Correlations 
Cu_C Cu_1x Cu_2x Chlorophyll_a Chlorophyll_b Chlorophyll_ab Total_Carotenoids 

Cu_C 
Pearson Correlation 1 .a .a -.505** -.507** -.519** .498** 
Sig. (2-tailed) . . .000 .000 .000 .000 
N 48 0 0 48 48 48 48 

Cu_1x 
Pearson Correlation .a 1 .a -.237 -.240 -.240 .246 
Sig. (2-tailed) . . .105 .101 .100 .092 
N 0 48 0 48 48 48 48 

Cu_2x 
Pearson Correlation .a .a 1 -.317* -.344* -.337* .321* 
Sig. (2-tailed) . . .028 .017 .019 .026 
N 0 0 48 48 48 48 48 

Chlorophyll_a 
Pearson Correlation -.505** -.237 -.317* 1 .946** .975** -.897** 
Sig. (2-tailed) .000 .105 .028 .000 .000 .000 
N 48 48 48 144 144 144 144 

Chlorophyll_b 
Pearson Correlation -.507** -.240 -.344* .946** 1 .994** -.971** 
Sig. (2-tailed) .000 .101 .017 .000 .000 .000 
N 48 48 48 144 144 144 144 

Chlorophyll_ab 
Pearson Correlation -.519** -.240 -.337* .975** .994** 1 -.958** 
Sig. (2-tailed) .000 .100 .019 .000 .000 .000 
N 48 48 48 144 144 144 144 

Total_Carotenoids 
Pearson Correlation .498** .246 .321* -.897** -.971** -.958** 1 
Sig. (2-tailed) .000 .092 .026 .000 .000 .000 
N 48 48 48 144 144 144 144 

**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 
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       Table D-4. Chlorophyll Correlation with Iron (Fe) at Mounier Golf Training Center at Weibring Golf Club, Normal, IL. 

Correlations 
Cu_C Cu_1x Cu_2x Chlorophyll_a Chlorophyll_b Chlorophyll_ab Total_Carotenoids 

Cu_C 
Pearson Correlation 1 .a .a -.530** -.534** -.546** .513** 
Sig. (2-tailed) . . .000 .000 .000 .000 
N 48 0 0 48 48 48 48 

Cu_1x 
Pearson Correlation .a 1 .a -.589** -.613** -.609** .590** 
Sig. (2-tailed) . . .000 .000 .000 .000 
N 0 48 0 48 48 48 48 

Cu_2x 
Pearson Correlation .a .a 1 -.578** -.577** -.581** .537** 
Sig. (2-tailed) . . .000 .000 .000 .000 
N 0 0 48 48 48 48 48 

Chlorophyll_a 
Pearson Correlation -.530** -.589** -.578** 1 .946** .975** -.897** 
Sig. (2-tailed) .000 .000 .000 .000 .000 .000 
N 48 48 48 144 144 144 144 

Chlorophyll_b 
Pearson Correlation -.534** -.613** -.577** .946** 1 .994** -.971** 
Sig. (2-tailed) .000 .000 .000 .000 .000 .000 
N 48 48 48 144 144 144 144 

Chlorophyll_ab 
Pearson Correlation -.546** -.609** -.581** .975** .994** 1 -.958** 
Sig. (2-tailed) .000 .000 .000 .000 .000 .000 
N 48 48 48 144 144 144 144 

Total_Carotenoids 
Pearson Correlation .513** .590** .537** -.897** -.971** -.958** 1 
Sig. (2-tailed) .000 .000 .000 .000 .000 .000 
N 48 48 48 144 144 144 144 

**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 
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       Table D-5. Chlorophyll Corrleation with Potassium (K) at Mounier Golf Training Center at Weibring Golf Club, Normal, IL. 

Correlations 
K_C K_1x K_2x Chlorophyll_a Chlorophyll_b Chlorophyll_ab Total_Carotenoids 

K_C 
Pearson Correlation 1 .a .a .106 .098 .103 -.052 
Sig. (2-tailed) . . .475 .508 .487 .726 
N 48 0 0 48 48 48 48 

K_1x 
Pearson Correlation .a 1 .a .029 .021 .024 .018 
Sig. (2-tailed) . . .844 .886 .871 .903 
N 0 48 0 48 48 48 48 

K_2x 
Pearson Correlation .a .a 1 .040 .015 .023 .014 
Sig. (2-tailed) . . .786 .922 .876 .925 
N 0 0 48 48 48 48 48 

Chlorophyll_a 
Pearson Correlation .106 .029 .040 1 .946** .975** -.897** 
Sig. (2-tailed) .475 .844 .786 .000 .000 .000 
N 48 48 48 144 144 144 144 

Chlorophyll_b 
Pearson Correlation .098 .021 .015 .946** 1 .994** -.971** 
Sig. (2-tailed) .508 .886 .922 .000 .000 .000 
N 48 48 48 144 144 144 144 

Chlorophyll_ab 
Pearson Correlation .103 .024 .023 .975** .994** 1 -.958** 
Sig. (2-tailed) .487 .871 .876 .000 .000 .000 
N 48 48 48 144 144 144 144 

Total_Carotenoids 
Pearson Correlation -.052 .018 .014 -.897** -.971** -.958** 1 
Sig. (2-tailed) .726 .903 .925 .000 .000 .000 
N 48 48 48 144 144 144 144 

**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed).  
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   Table D-6. Chlorophyll Correlation with Magnesium (Mg) at Mounier Golf Training Center at Weibring Golf Club, Normal, IL. 

Correlations 
Mg_C Mg_1x Mg_2x Chlorophyll_a Chlorophyll_b Chlorophyll_ab Total_Carotenoids 

Mg_C 
Pearson Correlation 1 .a .a -.222 -.279 -.267 .285* 
Sig. (2-tailed) . . .129 .055 .067 .050 
N 48 0 0 48 48 48 48 

Mg_1x 
Pearson Correlation .a 1 .a -.295* -.280 -.286* .324* 
Sig. (2-tailed) . . .041 .054 .048 .025 
N 0 48 0 48 48 48 48 

Mg_2x 
Pearson Correlation .a .a 1 -.246 -.254 -.253 .268 
Sig. (2-tailed) . . .091 .082 .083 .065 
N 0 0 48 48 48 48 48 

Chlorophyll_a 
Pearson Correlation -.222 -.295* -.246 1 .946** .975** -.897** 
Sig. (2-tailed) .129 .041 .091 .000 .000 .000 
N 48 48 48 144 144 144 144 

Chlorophyll_b 
Pearson Correlation -.279 -.280 -.254 .946** 1 .994** -.971** 
Sig. (2-tailed) .055 .054 .082 .000 .000 .000 
N 48 48 48 144 144 144 144 

Chlorophyll_ab 
Pearson Correlation -.267 -.286* -.253 .975** .994** 1 -.958** 
Sig. (2-tailed) .067 .048 .083 .000 .000 .000 
N 48 48 48 144 144 144 144 

Total_Carotenoids 
Pearson Correlation .285* .324* .268 -.897** -.971** -.958** 1 
Sig. (2-tailed) .050 .025 .065 .000 .000 .000 
N 48 48 48 144 144 144 144 

**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 
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       Table D-7. Chlorophyll Correlation with Manganese (Mn) at Mounier Golf Training Center at Weibring Golf Club, Normal, IL. 

Correlations 
   Mn_C Mn_1x Mn_2x Chlorophyll_a Chlorophyll_b Chlorophyll_ab Total_Carotenoids 

 Mn_C 
Pearson Correlation 1 .a .a -.192 -.046 -.096 -.003 
Sig. (2-tailed) . . .192 .757 .518 .986 
N 48 0 0 48 48 48 48 

Mn_1x 
Pearson Correlation .a 1 .a -.225 -.250 -.243 .186 
Sig. (2-tailed) . . .124 .087 .096 .205 
N 0 48 0 48 48 48 48 

Mn_2x 
Pearson Correlation .a .a 1 -.312* -.285* -.296* .162 
Sig. (2-tailed) . . .031 .049 .041 .273 
N 0 0 48 48 48 48 48 

Chlorophyll_a 
Pearson Correlation -.192 -.225 -.312* 1 .946** .975** -.897** 
Sig. (2-tailed) .192 .124 .031 .000 .000 .000 
N 48 48 48 144 144 144 144 

Chlorophyll_b 
Pearson Correlation -.046 -.250 -.285* .946** 1 .994** -.971** 
Sig. (2-tailed) .757 .087 .049 .000 .000 .000 
N 48 48 48 144 144 144 144 

Chlorophyll_ab 
Pearson Correlation -.096 -.243 -.296* .975** .994** 1 -.958** 
Sig. (2-tailed) .518 .096 .041 .000 .000 .000 
N 48 48 48 144 144 144 144 

Total_Carotenoids 
Pearson Correlation -.003 .186 .162 -.897** -.971** -.958** 1 
Sig. (2-tailed) .986 .205 .273 .000 .000 .000 
N 48 48 48 144 144 144 144 

**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed) 
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Table D-8. Chlorophyll Correlation with Sodium (Na) at Mounier Golf Training Center at Weibring Golf Club, Normal, IL. 

Correlations 
Na_C Na_1x Na_2x Chlorophyll_a Chlorophyll_b Chlorophyll_ab  Total_Carotenoids 

Na_C 
Pearson Correlation 1 .a .a -.383** -.473** -.455** .503** 
Sig. (2-tailed) . . .007 .001 .001 .000 
N 48 0 0 48 48 48 48 

Na_1x 
Pearson Correlation .a 1 .a -.424** -.564** -.522** .583** 
Sig. (2-tailed) . . .003 .000 .000 .000 
N 0 48 0 48 48 48 48 

Na_2x 
Pearson Correlation .a .a 1 -.210 -.237 -.230 .268 
Sig. (2-tailed) . . .151 .105 .116 .065 
N 0 0 48 48 48 48 48 

Chlorophyll_a 
Pearson Correlation -.383** -.424** -.210 1 .946** .975** -.897** 
Sig. (2-tailed) .007 .003 .151 .000 .000 .000 
N 48 48 48 144 144 144 144 

Chlorophyll_b 
Pearson Correlation -.473** -.564** -.237 .946** 1 .994** -.971** 
Sig. (2-tailed) .001 .000 .105 .000 .000 .000 
N 48 48 48 144 144 144 144 

Chlorophyll_ab 
Pearson Correlation -.455** -.522** -.230 .975** .994** 1 -.958** 
Sig. (2-tailed) .001 .000 .116 .000 .000 .000 
N 48 48 48 144 144 144 144 

Total_Carotenoids 
Pearson Correlation .503** .583** .268 -.897** -.971** -.958** 1 
Sig. (2-tailed) .000 .000 .065 .000 .000 .000 
N 48 48 48 144 144 144 144 

*. Correlation is significant at the 0.05 level (2-tailed). 
**. Correlation is significant at the 0.01 level (2-tailed). 
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       Table D-9. Chlorophyll Correlation with Phosphorus (P) at Mounier Golf Training Center at Weibring Golf Club, Normal, IL. 

Correlations 
P_C P_1x P_2x Chlorophyll_a Chlorophyll_b Chlorophyll_ab Total_Carotenoids 

P_C 
Pearson Correlation 1 .a .a -.560** -.572** -.583** .559** 
Sig. (2-tailed) . . .000 .000 .000 .000 
N 48 0 0 48 48 48 48 

P_1x 
Pearson Correlation .a 1 .a -.520** -.542** -.538** .481** 
Sig. (2-tailed) . . .000 .000 .000 .001 
N 0 48 0 48 48 48 48 

P_2x 
Pearson Correlation .a .a 1 -.485** -.507** -.503** .466** 
Sig. (2-tailed) . . .000 .000 .000 .001 
N 0 0 48 48 48 48 48 

Chlorophyll_a 
Pearson Correlation -.560** -.520** -.485** 1 .946** .975** -.897** 
Sig. (2-tailed) .000 .000 .000 .000 .000 .000 
N 48 48 48 144 144 144 144 

Chlorophyll_b 
Pearson Correlation -.572** -.542** -.507** .946** 1 .994** -.971** 
Sig. (2-tailed) .000 .000 .000 .000 .000 .000 
N 48 48 48 144 144 144 144 

Chlorophyll_ab 
Pearson Correlation -.583** -.538** -.503** .975** .994** 1 -.958** 
Sig. (2-tailed) .000 .000 .000 .000 .000 .000 
N 48 48 48 144 144 144 144 

Total_Carotenoids 
Pearson Correlation .559** .481** .466** -.897** -.971** -.958** 1 
Sig. (2-tailed) .000 .001 .001 .000 .000 .000 
N 48 48 48 144 144 144 144 

**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 
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   Table D-10. Chlorophyll Correlation with Sulfur (S) at Mounier Golf Training Center at Weibring Golf Club, Normal, IL. 

Correlations 
S_C S_1x S_2x Chlorophyll_a Chlorophyll_b Chlorophyll_ab Total_Carotenoids 

S_C 
Pearson Correlation 1 .a .a -.253 -.266 -.269 .259 
Sig. (2-tailed) . . .083 .067 .065 .076 
N 48 0 0 48 48 48 48 

S_1x 
Pearson Correlation .a 1 .a -.259 -.215 -.231 .240 
Sig. (2-tailed) . . .075 .142 .115 .100 
N 0 48 0 48 48 48 48 

S_2x 
Pearson Correlation .a .a 1 -.185 -.184 -.186 .196 
Sig. (2-tailed) . . .208 .209 .206 .183 
N 0 0 48 48 48 48 48 

Chlorophyll_a 
Pearson Correlation -.253 -.259 -.185 1 .946** .975** -.897** 
Sig. (2-tailed) .083 .075 .208 .000 .000 .000 
N 48 48 48 144 144 144 144 

Chlorophyll_b 
Pearson Correlation -.266 -.215 -.184 .946** 1 .994** -.971** 
Sig. (2-tailed) .067 .142 .209 .000 .000 .000 
N 48 48 48 144 144 144 144 

Chlorophyll_ab 
Pearson Correlation -.269 -.231 -.186 .975** .994** 1 -.958** 
Sig. (2-tailed) .065 .115 .206 .000 .000 .000 
N 48 48 48 144 144 144 144 

Total_Carotenoids 
Pearson Correlation .259 .240 .196 -.897** -.971** -.958** 1 
Sig. (2-tailed) .076 .100 .183 .000 .000 .000 
N 48 48 48 144 144 144 144 

**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 
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   Table D-11. Chlorophyll Correlation with Zinc (Zn) at Mounier Golf Training Center at Weibring Golf Club, Normal, IL. 

Correlations 
Zn_C Zn_1x Zn_2x Chlorophyll_a Chlorophyll_b Chlorophyll_ab Total_Carotenoids 

Zn_C 
Pearson Correlation 1 .a .a -.546** -.524** -.545** .497** 
Sig. (2-tailed) . . .000 .000 .000 .000 
N 48 0 0 48 48 48 48 

Zn_1x 
Pearson Correlation .a 1 .a -.477** -.483** -.484** .428** 
Sig. (2-tailed) . . .001 .001 .000 .002 
N 0 48 0 48 48 48 48 

Zn_2x 
Pearson Correlation .a .a 1 -.479** -.472** -.478** .422** 
Sig. (2-tailed) . . .001 .001 .001 .003 
N 0 0 48 48 48 48 48 

Chlorophyll_a 
Pearson Correlation -.546** -.477** -.479** 1 .946** .975** -.897** 
Sig. (2-tailed) .000 .001 .001 .000 .000 .000 
N 48 48 48 144 144 144 144 

Chlorophyll_b 
Pearson Correlation -.524** -.483** -.472** .946** 1 .994** -.971** 
Sig. (2-tailed) .000 .001 .001 .000 .000 .000 
N 48 48 48 144 144 144 144 

Chlorophyll_ab 
Pearson Correlation -.545** -.484** -.478** .975** .994** 1 -.958** 
Sig. (2-tailed) .000 .000 .001 .000 .000 .000 
N 48 48 48 144 144 144 144 

Total_Carotenoids 
Pearson Correlation .497** .428** .422** -.897** -.971** -.958** 1 
Sig. (2-tailed) .000 .002 .003 .000 .000 .000 
N 48 48 48 144 144 144 144 

**. Correlation is significant at the 0.01 level (2-tailed).  
*. Correlation is significant at the 0.02 level (2-tailed). 
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   Table D-12. Chlorophyll Correlation with Boron (B) at Lauritsen/Wohler’s Outdoor Golf Practice Facility, Urbana, IL. 

Correlations 
B_C B_1x B_2x Chlorophyll_a Chlorophyll_b Chlorophyll_ab Total_Carotenoids 

B_C 
Pearson Correlation 1 .a .a .345* .326* .333* -.039 
Sig. (2-tailed) . . .016 .024 .021 .790 
N 48 0 0 48 48 48 48 

B_1x 
Pearson Correlation .a 1 .a .412** .358* .376** -.084 
Sig. (2-tailed) . . .004 .012 .008 .572 
N 0 48 0 48 48 48 48 

B_2x 
Pearson Correlation .a .a 1 .141 .152 .149 .041 
Sig. (2-tailed) . . .339 .303 .313 .783 
N 0 0 48 48 48 48 48 

Chlorophyll_a 
Pearson Correlation .345* .412** .141 1 .983** .992** -.757** 
Sig. (2-tailed) .016 .004 .339 .000 .000 .000 
N 48 48 48 144 144 144 144 

Chlorophyll_b 
Pearson Correlation .326* .358* .152 .983** 1 .998** -.799** 
Sig. (2-tailed) .024 .012 .303 .000 .000 .000 
N 48 48 48 144 144 144 144 

Chlorophyll_ab 
Pearson Correlation .333* .376** .149 .992** .998** 1 -.788** 
Sig. (2-tailed) .021 .008 .313 .000 .000 .000 
N 48 48 48 144 144 144 144 

Total_Carotenoids 
Pearson Correlation -.039 -.084 .041 -.757** -.799** -.788** 1 
Sig. (2-tailed) .790 .572 .783 .000 .000 .000 
N 48 48 48 144 144 144 144 

**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 
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Table D-13. Chlorophyll Correlation with Calcium (Ca) at Lauritsen/Wohler’s Outdoor Golf Practice Facility, Urbana, IL. 

Correlations 
Ca_C Ca_1x Ca_2x Chlorophyll_a Chlorophyll_b Chlorophyll_ab Total_Carotenoids 

Ca_C 
Pearson Correlation 1 .a .a -.335* -.298* -.310* .143 
Sig. (2-tailed) . . .020 .040 .032 .334 
N 48 0 0 48 48 48 48 

Ca_1x 
Pearson Correlation .a 1 .a -.499** -.441** -.461** .423** 
Sig. (2-tailed) . . .000 .002 .001 .003 
N 0 48 0 48 48 48 48 

Ca_2x 
Pearson Correlation .a .a 1 -.507** -.451** -.473** .224 
Sig. (2-tailed) . . .000 .001 .001 .125 
N 0 0 48 48 48 48 48 

Chlorophyll_a 
Pearson Correlation -.335* -.499** -.507** 1 .983** .992** -.757** 
Sig. (2-tailed) .020 .000 .000 .000 .000 .000 
N 48 48 48 144 144 144 144 

Chlorophyll_b 
Pearson Correlation -.298* -.441** -.451** .983** 1 .998** -.799** 
Sig. (2-tailed) .040 .002 .001 .000 .000 .000 
N 48 48 48 144 144 144 144 

Chlorophyll_ab 
Pearson Correlation -.310* -.461** -.473** .992** .998** 1 -.788** 
Sig. (2-tailed) .032 .001 .001 .000 .000 .000 
N 48 48 48 144 144 144 144 

Total_Carotenoids 
Pearson Correlation .143 .423** .224 -.757** -.799** -.788** 1 
Sig. (2-tailed) .334 .003 .125 .000 .000 .000 
N 48 48 48 144 144 144 144 

**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 
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Table D-14. Chlorophyll Correlation with Copper (Cu) at Lauritsen/Wohler’s Outdoor Golf Practice Facility, Urbana, IL. 

Correlations 
Cu_C Cu_1x Cu_2x  Chlorophyll_a Chlorophyll_b Chlorophyll_ab Total_Carotenoids 

Cu_C 
Pearson Correlation 1 .a .a .744** .729** .735** -.644** 
Sig. (2-tailed) . . .000 .000 .000 .000 
N 48 0 0 48 48 48 48 

Cu_1x 
Pearson Correlation .a 1 .a .681** .713** .706** -.660** 
Sig. (2-tailed) . . .000 .000 .000 .000 
N 0 48 0 48 48 48 48 

Cu_2x 
Pearson Correlation .a .a 1 .402** .387** .394** -.310* 
Sig. (2-tailed) . . .005 .007 .006 .032 
N 0 0 48 48 48 48 48 

Chlorophyll_a 
Pearson Correlation .744** .681** .402** 1 .983** .992** -.757** 
Sig. (2-tailed) .000 .000 .005 .000 .000 .000 
N 48 48 48 144 144 144 144 

Chlorophyll_b 
Pearson Correlation .729** .713** .387** .983** 1 .998** -.799** 
Sig. (2-tailed) .000 .000 .007 .000 .000 .000 
N 48 48 48 144 144 144 144 

Chlorophyll_ab 
Pearson Correlation .735** .706** .394** .992** .998** 1 -.788** 
Sig. (2-tailed) .000 .000 .006 .000 .000 .000 
N 48 48 48 144 144 144 144 

Total_Carotenoids 
Pearson Correlation -.644** -.660** -.310* -.757** -.799** -.788** 1 
Sig. (2-tailed) .000 .000 .032 .000 .000 .000 
N 48 48 48 144 144 144 144 

**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 
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   Table D-15. Chlorophyll Correlation with Iron (Fe) at Lauritsen/Wohler’s Outdoor Golf Practice Facility, Urbana, IL. 

Correlations 
Fe_C Fe_1x Fe_2x Chlorophyll_a Chlorophyll_b Chlorophyll_ab Total_Carotenoids 

Fe_C 
Pearson Correlation 1 .a .a -.544** -.508** -.521** .230 
Sig. (2-tailed) . . .000 .000 .000 .116 
N 48 0 0 48 48 48 48 

Fe_1x 
Pearson Correlation .a 1 .a -.535** -.474** -.495** .490** 
Sig. (2-tailed) . . .000 .001 .000 .000 
N 0 48 0 48 48 48 48 

Fe_2x 
Pearson Correlation .a .a 1 -.436** -.340* -.376** .259 
Sig. (2-tailed) . . .002 .018 .008 .076 
N 0 0 48 48 48 48 48 

Chlorophyll_a 
Pearson Correlation -.544** -.535** -.436** 1 .983** .992** -.757** 
Sig. (2-tailed) .000 .000 .002 .000 .000 .000 
N 48 48 48 144 144 144 144 

Chlorophyll_b 
Pearson Correlation -.508** -.474** -.340* .983** 1 .998** -.799** 
Sig. (2-tailed) .000 .001 .018 .000 .000 .000 
N 48 48 48 144 144 144 144 

Chlorophyll_ab 
Pearson Correlation -.521** -.495** -.376** .992** .998** 1 -.788** 
Sig. (2-tailed) .000 .000 .008 .000 .000 .000 
N 48 48 48 144 144 144 144 

Total_Carotenoids 
Pearson Correlation .230 .490** .259 -.757** -.799** -.788** 1 
Sig. (2-tailed) .116 .000 .076 .000 .000 .000 
N 48 48 48 144 144 144 144 

**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 



109 

Table D-16. Chlorophyll Correlation with Potassium (K) at Lauritsen/Wohler’s Outdoor Golf Practice Facility, Urbana, IL. 

Correlations 
K_C K_1x K_2x Chlorophyll_a Chlorophyll_b Chlorophyll_ab Total_Carotenoids 

K_C 
Pearson Correlation 1 .a .a .447** .409** .422** -.14 0 
Sig. (2-tailed) . . .001 .004 .003 .34 3 
N 48 0 0 48 48 48 48 

K_1x 
Pearson Correlation .a 1 .a .689** .629** .650** -.375** 
Sig. (2-tailed) . . .000 .000 .000 .009 
N 0 48 0 48 48 48 48 

K_2x 
Pearson Correlation .a .a 1 .179 .118 .140 .120 
Sig. (2-tailed) . . .224 .426 .343 .416 
N 0 0 48 48 48 48 48 

Chlorophyll_a 
Pearson Correlation .447** .689** .179 1 .983** .992** -.757** 
Sig. (2-tailed) .001 .000 .224 .000 .000 .000 
N 48 48 48 144 144 144 144 

Chlorophyll_b 
Pearson Correlation .409** .629** .118 .983** 1 .998** -.799** 
Sig. (2-tailed) .004 .000 .426 .000 .000 .000 
N 48 48 48 144 144 144 144 

Chlorophyll_ab 
Pearson Correlation .422** .650** .140 .992** .998** 1 -.788** 
Sig. (2-tailed) .003 .000 .343 .000 .000 .000 
N 48 48 48 144 144 144 144 

Total_Carotenoids 
Pearson Correlation -.140 -.375** .120 -.757** -.799** -.788** 1 
Sig. (2-tailed) .343 .009 .416 .000 .000 .000 
N 48 48 48 144 144 144 144 

**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed).  
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Table D-17. Chlorophyll Correlation with Magnesium (Mg) at Lauritsen/Wohler’s Outdoor Golf Practice Facility, Urbana, IL. 

Correlations 
Mg_C Mg_1x Mg_2x Chlorophyll_a Chlorophyll_b Chlorophyll_ab Total_Carotenoids 

Mg_C 
Pearson Correlation 1 .a .a -.153 -.117 -.129 .024 
Sig. (2-tailed) . . .300 .428 .383 .871 
N 48 0 0 48 48 48 48 

Mg_1x 
Pearson Correlation .a 1 .a -.407** -.347* -.367* .338* 
Sig. (2-tailed) . . .004 .016 .010 .019 
N 0 48 0 48 48 48 48 

Mg_2x 
Pearson Correlation .a .a 1 -.374** -.308* -.333* .146 
Sig. (2-tailed) . . .009 .033 .021 .323 
N 0 0 48 48 48 48 48 

Chlorophyll_a 
Pearson Correlation -.153 -.407** -.374** 1 .983** .992** -.757** 
Sig. (2-tailed) .300 .004 .009 .000 .000 .000 
N 48 48 48 144 144 144 144 

Chlorophyll_b 
Pearson Correlation -.117 -.347* -.308* .983** 1 .998** -.799** 
Sig. (2-tailed) .428 .016 .033 .000 .000 .000 
N 48 48 48 144 144 144 144 

Chlorophyll_ab 
Pearson Correlation -.129 -.367* -.333* .992** .998** 1 -.788** 
Sig. (2-tailed) .383 .010 .021 .000 .000 .000 
N 48 48 48 144 144 144 144 

Total_Carotenoids 
Pearson Correlation .024 .338* .146 -.757** -.799** -.788** 1 
Sig. (2-tailed) .871 .019 .323 .000 .000 .000 
N 48 48 48 144 144 144 144 

**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 
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Table D-18. Chlorophyll Correlation with Manganese (Mn) at Lauritsen/Wohler’s Outdoor Golf Practice Facility, Urbana, IL. 

Correlations 
Mn_C Mn_1x Mn_2x Chlorophyll_a Chlorophyll_b Chlorophyll_ab Total_Carotenoids 

Mn_C 
Pearson Correlation 1 .a .a -.309* -.258 -.275 .192 
Sig. (2-tailed) . . .033 .077 .059 .191 
N 48 0 0 48 48 48 48 

Mn_1x 
Pearson Correlation .a 1 .a -.143 -.067 -.091 .140 
Sig. (2-tailed) . . .332 .649 .537 .344 
N 0 48 0 48 48 48 48 

Mn_2x 
Pearson Correlation .a .a 1 -.230 -.100 -.147 .075 
Sig. (2-tailed) . . .116 .498 .319 .611 
N 0 0 48 48 48 48 48 

Chlorophyll_a 
Pearson Correlation -.309* -.143 -.230 1 .983** .992** -.757** 
Sig. (2-tailed) .033 .332 .116 .000 .000 .000 
N 48 48 48 144 144 144 144 

Chlorophyll_b 
Pearson Correlation -.258 -.067 -.100 .983** 1 .998** -.799** 
Sig. (2-tailed) .077 .649 .498 .000 .000 .000 
N 48 48 48 144 144 144 144 

Chlorophyll_ab 
Pearson Correlation -.275 -.091 -.147 .992** .998** 1 -.788** 
Sig. (2-tailed) .059 .537 .319 .000 .000 .000 
N 48 48 48 144 144 144 144 

Total_Carotenoids 
Pearson Correlation .192 .140 .075 -.757** -.799** -.788** 1 
Sig. (2-tailed) .191 .344 .611 .000 .000 .000 
N 48 48 48 144 144 144 144 

*. Correlation is significant at the 0.05 level (2-tailed). 
**. Correlation is significant at the 0.01 level (2-tailed). 
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Table D-19. Chlorophyll Correlation with Sodium (Na) at Lauritsen/Wohler’s Outdoor Golf Practice Facility, Urbana, IL. 

Correlations 

Na_C Na_1x Na_2x Chlorophyll_a Chlorophyll_b Chlorophyll_ab Total_Carotenoids 

Na_C 
Pearson Correlation 1 .a .a -.197 -.193 -.195 .152 
Sig. (2-tailed) . . .179 .188 .184 .302 
N 48 0 0 48 48 48 48 

Na_1x 
Pearson Correlation .a 1 .a .030 .011 .017 .274 
Sig. (2-tailed) . . .838 .941 .908 .060 
N 0 48 0 48 48 48 48 

Na_2x 
Pearson Correlation .a .a 1 -.451** -.427** -.438** .536** 
Sig. (2-tailed) . . .001 .002 .002 .000 
N 0 0 48 48 48 48 48 

Chlorophyll_a 
Pearson Correlation -.197 .030 -.451** 1 .983** .992** -.757** 
Sig. (2-tailed) .179 .838 .001 .000 .000 .000 
N 48 48 48 144 144 144 144 

Chlorophyll_b 
Pearson Correlation -.193 .011 -.427** .983** 1 .998** -.799** 
Sig. (2-tailed) .188 .941 .002 .000 .000 .000 
N 48 48 48 144 144 144 144 

Chlorophyll_ab 
Pearson Correlation -.195 .017 -.438** .992** .998** 1 -.788** 
Sig. (2-tailed) .184 .908 .002 .000 .000 .000 
N 48 48 48 144 144 144 144 

Total_Carotenoids 
Pearson Correlation .152 .274 .536** -.757** -.799** -.788** 1 
Sig. (2-tailed) .302 .060 .000 .000 .000 .000 
N 48 48 48 144 144 144 144 

**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 
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Table D-20. Chlorophyll Correlation with Phosphorus (P) at Lauritsen/Wohler’s Outdoor Golf Practice Facility, Urbana, IL. 
 

Correlations 
 P_C P_1x P_2x Chlorophyll_a Chlorophyll_b Chlorophyll_ab Total_Carotenoids 

P_C 
Pearson Correlation 1 .a .a .583** .556** .566** -.259 
Sig. (2-tailed)  . . .000 .000 .000 .075 
N 48 0 0 48 48 48 48 

P_1x 
Pearson Correlation .a 1 .a -.112 -.108 -.109 -.145 
Sig. (2-tailed) .  . .449 .466 .459 .324 
N 0 48 0 48 48 48 48 

P_2x 
Pearson Correlation .a .a 1 .305* .267 .282 -.080 
Sig. (2-tailed) . .  .035 .066 .052 .590 
N 0 0 48 48 48 48 48 

Chlorophyll_a 
Pearson Correlation .583** -.112 .305* 1 .983** .992** -.757** 
Sig. (2-tailed) .000 .449 .035  .000 .000 .000 
N 48 48 48 144 144 144 144 

Chlorophyll_b 
Pearson Correlation .556** -.108 .267 .983** 1 .998** -.799** 
Sig. (2-tailed) .000 .466 .066 .000  .000 .000 
N 48 48 48 144 144 144 144 

Chlorophyll_ab 
Pearson Correlation .566** -.109 .282 .992** .998** 1 -.788** 
Sig. (2-tailed) .000 .459 .052 .000 .000  .000 
N 48 48 48 144 144 144 144 

Total_Carotenoids 
Pearson Correlation -.259 -.145 -.080 -.757** -.799** -.788** 1 
Sig. (2-tailed) .075 .324 .590 .000 .000 .000  

N 48 48 48 144 144 144 144 
**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 



 

 
 

114 

 
 
Table D-21. Chlorophyll Correlation with Sulfur (S) at Lauritsen/Wohler’s Outdoor Golf Practice Facility, Urbana, IL. 

Correlations 
 S_C S_1x S_2x Chlorophyll_a Chlorophyll_b Chlorophyll_ab Total_Carotenoids 

S_C 
Pearson Correlation 1 .a .a -.044 -.028 -.033 .048 
Sig. (2-tailed)  . . .764 .852 .823 .745 
N 48 0 0 48 48 48 48 

S_1x 
Pearson Correlation .a 1 .a .746** .694** .712** -.499** 
Sig. (2-tailed) .  . .000 .000 .000 .000 
N 0 48 0 48 48 48 48 

S_2x 
Pearson Correlation .a .a 1 .057 .007 .025 .067 
Sig. (2-tailed) . .  .702 .963 .868 .653 
N 0 0 48 48 48 48 48 

Chlorophyll_a 
Pearson Correlation -.044 .746** .057 1 .983** .992** -.757** 
Sig. (2-tailed) .764 .000 .702  .000 .000 .000 
N 48 48 48 144 144 144 144 

Chlorophyll_b 
Pearson Correlation -.028 .694** .007 .983** 1 .998** -.799** 
Sig. (2-tailed) .852 .000 .963 .000  .000 .000 
N 48 48 48 144 144 144 144 

Chlorophyll_ab 
Pearson Correlation -.033 .712** .025 .992** .998** 1 -.788** 
Sig. (2-tailed) .823 .000 .868 .000 .000  .000 
N 48 48 48 144 144 144 144 

Total_Carotenoids 
Pearson Correlation .048 -.499** .067 -.757** -.799** -.788** 1 
Sig. (2-tailed) .745 .000 .653 .000 .000 .000  

N 48 48 48 144 144 144 144 
**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 
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Table D-22. Chlorophyll Correlation with Zinc (Zn) at Lauritsen/Wohler’s Outdoor Golf Practice Facility, Urbana, IL. 

Correlations 
 Zn_C Zn_1x Zn_2x Chlorophyll_a Chlorophyll_b Chlorophyll_ab Total_Carotenoids 

Zn_C 
Pearson Correlation 1 .a .a .017 -.012 -.003 .033 
Sig. (2-tailed)  . . .910 .935 .985 .822 
N 48 0 0 48 48 48 48 

Zn_1x 
Pearson Correlation .a 1 .a .401** .339* .360* -.105 
Sig. (2-tailed) .  . .005 .018 .012 .479 
N 0 48 0 48 48 48 48 

Zn_2x 
Pearson Correlation .a .a 1 .014 -.019 -.007 .076 
Sig. (2-tailed) . .  .924 .899 .962 .610 
N 0 0 48 48 48 48 48 

Chlorophyll_a 
Pearson Correlation .017 .401** .014 1 .983** .992** -.757** 
Sig. (2-tailed) .910 .005 .924  .000 .000 .000 
N 48 48 48 144 144 144 144 

Chlorophyll_b 
Pearson Correlation -.012 .339* -.019 .983** 1 .998** -.799** 
Sig. (2-tailed) .935 .018 .899 .000  .000 .000 
N 48 48 48 144 144 144 144 

Chlorophyll_ab 
Pearson Correlation -.003 .360* -.007 .992** .998** 1 -.788** 
Sig. (2-tailed) .985 .012 .962 .000 .000  .000 
N 48 48 48 144 144 144 144 

Total_Carotenoids 
Pearson Correlation .033 -.105 .076 -.757** -.799** -.788** 1 
Sig. (2-tailed) .822 .479 .610 .000 .000 .000  

N 48 48 48 144 144 144 144 
**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 
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