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LATTICE-GAS CELLULAR AUTOMATA IN MODELING BIOLOGICAL PATTERN

FORMATION

GIZEM YUCE

65 Pages

Cellular automaton models (the most famous of which is arguably the Game of

Life) are particularly suited for studying systems in the physical/biological world that

evolve in discrete units and discrete time steps, depending on no master plan but instead

on local interactions with simple rules. As a result of such interactions, patterns of

behavior or structure with unexpected complexity may emerge. We can count termite

nests, animal coat patterns, and bird flocking among such patterns. Lattice-gas cellular

automaton (LGCA) models take the Game-of-Life type models one step further and

introduce additional features, where several interacting units with interior structure

(such as velocity) may be present in the same cell. Under familiar physical rules, which

may be chosen from conservation laws, statistical mechanics, and quantum mechanics,

the units (particles) of one or more species interact with each other, often according to a

stochastic model, before propagating. In this study, we make use of an “adhesive” LGCA

model on a hexagonal lattice and the agent-based NetLogo software to simulate the

conditions under which a biological pattern, similar to a mammal coat pattern but more

frequently observed in real life in the developmental stage of smaller organisms,

emerges. By varying two parameters, namely the “adhesive strength” of the pigment cells

and the particle concentration, we observe a line of bifurcation points where patterns

change from stable (homogeneously distributed and relatively unchanging in time) to

unstable (increasingly growing patches with wide spaces in between). The dependence

on these parameters is very similar to the pattern displayed in [4] and [6] for the same



model on a square lattice.

KEYWORDS: Cellular Automata, Lattice-Gas Cellular Automata, Agent-Based Modeling,

NetLogo
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CHAPTER I: INTRODUCTION

1.1 Background of Biological Pattern Formation

Biological pattern formation is practically synonymous with development of

organisms. “In the beginning of embryological development, all cells are identical [6].”

Hence, the genome itself is not sufficient to explain differentiation and pattern

formation. Interactions among cells, and between cells and their environment, are

responsible for the developmental stage. A complex pattern emerges from a collection of

similar cells and bottom-up, mindless interactions at the mesoscopic level selected by

nature.

Morphogenesis (“beginning of the shape”) is the biological process that shapes an

organism by differentiation of cells, tissues, and organs, and the eventual development of

organ systems. We can also apply this term to the development of unicellular organisms.

Let us briefly go over the evolution of various explanations of the mechanisms

responsible for morphogenesis, following Deutsch and Dormann [6]. The authors

emphasize that both the space and time components of pattern formation need to be

accounted for. Plato and his followers, for example, regarded all forms (biological or not)

as unchanging and preformed, uncoiling and following their destiny in a predetermined

path. No new form was allowed to come to existence in this ideology. By contrast, the

Aristotelian school accepted the necessity of epigenetic changes (those that involve

heritable gene expression without any change to the genome, as the modern biologists

would say) in new pattern formation, and adopted a dynamic world view. The modern

understanding of morphogenesis involves ontogenetic changes (development from

embryo to adult form) in the small time-scale as well as phylogenetic changes (evolution

of species) in the long time-scale. Although Darwin’s “pangenesis” theory of heredity had

many incorrect components, The Origin of Species (1859) created the impetus that

challenged and changed the dogmas.
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Today, there are several accepted mechanisms that explain different types of

pattern formation, including preformation, optimization, and self-organization. In fact,

it is often necessary to combine more than one characteristic to model a particular

example. Just like physical theories, it is important to choose a model that best

approximates the kind and scale of system under consideration. In this paper, we will

examine cellular automata in general and adhesive lattice-gas cellular automata in

particular. The latter is an example of an agent-based, bottom-up, discrete model that

relies on stochastic cell-cell interactions and Boltzmann-type physics to explain

self-organization of patterns at cellular level. One particular application of this model

involves aggregation via cadherin expression, where motile cells seem to follow a

gradient field of cadherin expressed by their neighbors.
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1.2 Mathematical Modeling of Pattern Formation: Famous

Models

As Deutsch and Dormann [6] admit, there is no unified theory of morphogenesis

today, certainly not on a par with Darwin’s theory of natural selection. We understand

the existing models to be a patchwork of ideas that (individually or in groups) work well

for particular organisms, which makes morphogenesis one of the most exciting subfields

of biology. Is there an organizing principle, and are we going to know in our lifetime? As

summarized in [6], there are only so many things cells do in morphogenesis: they change

shape, grow, differentiate, die, and migrate. Most importantly, cells do not act

independent of each other. It has been long known that cells interact with each other

over short and long distances; they also react to their chemical environment, which is

partially formed by activities of nearby cells. Direct (local) cell interactions include

adhesion, alignment, contact guidance/contact inhibition, and haptotaxis (directional

motility or outgrowth of cells). Indirect (long-distance) cell interactions are understood

to be guided by mechanical forces such as bending as well as chemical signals. For

example, chemotaxis explains how cells orient themselves towards the local maxima of a

chemical gradient field [6]. Although we think of the particles in our simulations as

pigment cells, the model certainly applies to any system of cells that express certain

levels of chemicals to interact with each other and migrate as a result. It would be

interesting to generalize this model to include more than one species of cells (like the

oocyte and nurse cells [13] in Section 1.4), and to asymmetric adhesion rules.

On the whole, a morphogenetic system is one that exhibits self-organization. It is

the job of mathematical modeling to describe what assumptions and simplifications to

make when choosing the essential players (cells and interactions) so that real biological

systems can be re-created in such a way that the macroscopic patterns that they form can

be plausibly explained.
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Figure 1: Alan Turing & the system of activator and inhibitor, and pattern production for
vegetation biomass by the arid ecosystem model

A detailed history of mathematical modeling of pattern formation is given in [6].

Since we will explore cellular automata in detail later, let us just mention one of the

pioneering works, by Alan Turing, that is widely recognized by biologists. In addition to

his ground-breaking work in the theory of computation and his cryptological work

during World War II, Turing was also responsible for the revolutionary

reaction-diffusion model for pattern formation [29]. The novel idea behind his work was

that diffusion, which was accepted to be a stabilizing process, could actually destabilize a

homogeneous initial condition and lead to a heterogeneous pattern formation in a

reactive system. As explained by Rietkerk and Van de Koppel [24], short-distance

positive feedback (amorphous aggregation) and long-distance negative feedback, or,

“scale-dependent feedback,” has been shown to be responsible for a variety of pattern

formations. Turing’s system consists of two chemical substances, an activator that

creates more of itself, and an inhibitor that is also created by the activator. These two

chemicals provide positive and negative feedback respectively, and an unexpected

“Turing pattern” emerges as they diffuse through tissue at different rates. Fig. 1a [24]

provides a sketch of his system, whereas Fig. 1b [24] shows pattern formation as a result

of the Turing mechanism in an arid ecosystem, first published in Rietkerk et al. [23]
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Figure 2: Examples of melanin concentration and numerical simulations of the reaction-
diffusion model

(Amazingly, Turing’s paper [28] included hand-drawn figures, as the Father of

Computing did not have a modern computer.)

Turing not only published one of the most important papers in theoretical biology

(according to Murray [20]), but also inspired generations of biologists to conduct

real-life experiments as well as simulations based on his ideas. He also coined the term

“morphogen” for agents of morphological change. In one of the better-known later

articles (How the Leopard Gets Its Spots [20]), Murray explains how his work improved

Turing’s reaction-diffusion idea and shows how mammalian coat patterns could be

generated. On the left of Fig. 2 [20], tapering cylinders of different widths successfully

imitate tails of the leopard (left), the jaguar and the cheetah (middle), and the genet

(right) respectively. On the right, his simulations show that very small and very large

animals like the mouse and the elephant are likely to have uniformly colored coats,

whereas middle-sized animals like the leopard are predisposed to have patterned coats.

Murray showed, remarkably, that his mechanism allows a spotted animal to have a

striped tail but a striped animal may not have a spotted tail. In reaction-diffusion

models, indeed, in all positive-negative feedback models, the importance of scale cannot

be overemphasized. Cellular-size interactions lead to patterns that are much larger than

the individual cells.
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1.3 General Introduction to Cellular Automata

Cellular automata are the best known models of self organization in physical,

chemical, and biological systems [32]. True self organization happens when individuals

in a large group work simultaneously without an external “boss,” just employing a few

local rules by observing the “states” of themselves and their neighbors. The individuals

may be independent organisms such as fish, ants, or birds, or subunits of organisms,

such as cells [5]. Eventually, complex behavior (such as flocking) or structures (such as

termite mounds, sea shell patterns, or coat patterns) emerge on the macroscopic level.

John von Neumann (1903-1957) and Stanislaw Ulam (1909-1984) planted the

seeds of the cellular automaton (CA) mechanism by proposing an abstract model of

self-reproduction that creates copies of itself [6]. Further generalizations as well as

simplifications of their model led to the CA mechanisms we use today. With powerful

computing support, there are several modern applications for CAs in biology, chemistry,

physics, and sociology studies [18]. Once CAs became better known in the scientific

community, the British mathematician John Horton Conway introduced the Game of

Life in 1970 as a two-dimensional deterministic cellular automaton based on a square

grid. An initial array of white and black “cells” represent dead and alive individuals

respectively [3]. In synchronous steps, the fate of each cell is sealed by its own state and

its neighbors that simplify von Neumann’s machine. In essence, the idea is a cellular

automaton in which a finite number of deterministic rules are applied according to the

states of the cells and of their eight neighbors’: an empty cell comes to life when exactly

three of its neighbors are alive; a live cell dies of crowding (more than three neighbors) or

loneliness (less than two neighbors). The emergent patterns of populations have

fascinated observers ever since. Populations may die out, arrive at some steady

-unchanging- state, settle into periodic behavior (e.g., “blinkers”), or march across the

screen in hordes (e.g., “gliders”). Fig. 3 [12], shows the several patterns generated by the
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Figure 3: Examples for possible patterns in the Game of Life

Game of Life. The first pattern from the top is a stable block; the second one shows an

extinction; the third is a 2-cycle (called a blinker); and the fourth is the famous glider

that moves across the grid in an undulating motion.

Although it is possible to set cellular automata in a space of arbitrary dimension,

studying them in one- or two-dimensional space is mathematically easier. In the

one-dimensional case (See Fig. 4) [6], there is a large number of adjacent boxes in an

array with specific boundary conditions such as periodic, reflecting, or fixed. To see how

the CA evolves, we need discrete moments in time, t = 0, 1, 2, 3, . . . , where t = 0 denotes

the initial time, and a local transition function for the change of state for each cell and its

neighbors according to the set of rules defined. In Fig.4 [6], there are three different

boundary types for a one-dimensional CA. The cells on the left and right of the dashed

lines define the left and right closest neighbor cells for the boundaries. For fixed values

of boundaries, gray cells are used. After deciding what to do at the boundary, we consider
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Figure 4: One-dimensional lattice configurations

the local transition function, which may be probabilistic or deterministic.

If the same set of rules are applied to all cell states at the same time, then we say

that CA is synchronous; if cells are allowed to change their states at different times, then

we call the CA asynchronous. All of these notions readily generalize to higher dimensions

[1].

In this project, our goal is to understand the so-called lattice-gas cellular

automata (LGCA)mechanisms and analyze their contributions to biological pattern

formation. This line of investigation of lattice-gas cellular automata methods was

proposed in paper of Hardy et al. [15]. What is the distinction between a plain CA and a

lattice-gas CA? In a CA, there is only one set of rules to be applied at each time step. By

contrast, LGCA have separate “interaction” and “propagation” rules, based more on

physical rather than biological processes. In the first, static, phase of time step, particles

“collide” and change direction, or are otherwise affected, in the cell they are already

located in. The second, dynamic, phase of the time step consists of “propagating” these

affected particles in the direction they are facing. The complicated but more realistic

rules allow LGCAs to have many more interesting emergent properties than ordinary

8



CAs.

In the first lattice gas cellular automata models, gas was modeled as a group of

particles with continuous position moving in continuous time, with a discrete set of

velocities. Later, LGCAs were set in discrete space and time, in addition to having

discrete velocity values. Hardy et al. [15] studied the first real LGCA in its simplest form,

which was a cellular automaton on a two-dimensional square lattice [9]. This automaton

is known as HPP. This model contains a fixed set of four vectors that connect each cell to

its neighbors, so that at each node, there are four cells that are designated as “closest

neighbors.” One of the crucial points here is that each cell can have at most one particle

within the same “velocity channel,” which is valid for all modern LGCA. This is simply

the “Pauli exclusion principle” that says matter particles cannot occupy the same state.

Also, all particles are identical (another idea from quantum physics) and the

development in time is deterministic [31].

In a possible regular two-dimensional lattice, “square” is not the only choice for

the shape of a cell. For a polygon that can tile the plane, its interior angle should be a

factor of 360 degrees. According to this fact, there are only three regular polygons with

this condition: equilateral triangles, squares, and regular hexagons (Fig. 5) [6]. In this

figure, cells and nodes (dots at the center of each cell) in the three possible

two-dimensional lattices are shown. One of the important advantages of using a

hexagonal automaton is the additional variation that it accommodates compared to the

square or triangle ones. Due to the larger number of edges, hexagonal lattices are better

approximations to the continuous plane than the others. There are “velocity channels”

that serve as both particle holders and direction inside cells, namely north-east, east,

south-east, south-west, west, and north-west [19]. In this set-up, we randomly assign

zero to six particles modeling biological pigment cells to each cell, no more than one

occupying the same channel. As we have mentioned before, the static and dynamic

transition rules then take over and move the particles around, conserving the total

9



Figure 5: Two-dimensional lattice configurations

number (yet another physical concept).

We will specifically study local interaction rules that create adhesive patterns.

Therefore, the full name of our model is “Adhesive lattice-gas cellular automaton”

(ALGCA). The overall pattern, if any, is developed by a combination of two factors,

namely diffusion as the dynamic propagation rule, and sticking as the static local

interaction rule. The adhesion/sticking strength is controlled by a positive parameter α.

In our model, particles (pigment cells) directly and locally interact with each other

without any intermediaries such as chemicals, outer signals, etc., during the local

interaction rule I, then get diffused by the propagation rule P . Each time step contains a

back-to-back application of operators, P ◦ I, synchronously at all hexagons.

CA are particular examples of “agent-based models” (ABMs), where agents are the

images of real-world individuals, and they have certain characteristics like being active,

identifiable, autonomous, and capable of making independent decisions. This technique

is useful to simulate complex systems by deterministic, stochastic, and adaptive rules,

and may lead a disordered system to organize itself into an ordered configuration. ABMs

allow either synchronous or non-synchronous interactions of agents with other agents

and with their environments. We will talk about ABMs in depth later.

Overall, our goal is to examine the large-scale behavior of an adhesive lattice-gas

10



cellular automaton that simulates pattern formation due to cell-cell interactions. Here,

the fundamental point is that every single cell responds to the signals from its immediate

environment. The static, local interaction rule I depends on two parameters, α (the

adhesive strength) and ρ̄ (fixed particle density). Depending on the values of these

parameters, we will observe either homogeneous, stable behavior (no discernible

pattern), or unstable behavior, resulting in aggregating and evolving patterns. The

bifurcation line will be clearly visible.

11



1.4 Biological Examples of Adhesive Aggregation in the

Literature

From [6]: “Stable cell interactions are needed to maintain the structural integrity

of tissues, and dynamic changes in cell adhesion are required in the morphogenesis of

developing tissues. Stable interactions actually depend on active adhesion mechanisms

that are very similar to those involved in tissue dynamics. Adhesion mechanisms are

highly regulated during tissue morphogenesis and are intimately coupled to cell

migration processes. In particular, molecules of the cadherin and integrin families are

involved in the control of cell movement. Cadherin-mediated cell compaction and

cellular rearrangements may be analogous to integrin-mediated cell spreading and

motility on the extracellular matrix.”

The first in vivo example about cell sorting in Drosophila that depends on affinity

is provided by Godt and Tepass [13]. In follicles of the fruitfly ovary, there are two types

of germline cells (which are evolved from earlier cells and show continuity of consecutive

generations): the oocyte (egg cell) and its attendant nurse cells (helper cells for food and

stability to their neighboring cells). As a whole, it consists of these two germline cells and

a surrounding layer of follicle cells. The oocyte is settled next to the follicle cells at the

posterior pole of the follicle. Here, the point is that even though all germline and follicle

cells are expressing E-cadherin, the majority comes from posterior follicle cells and the

oocyte. Therefore, it is possible that for this specific positioning, the oocyte considers

cells with higher levels of E-cadherin. By removing E-cadherin from the oocyte and

nurse cells, it is shown that the oocyte adapts to random position. This indicates that the

adhesion between germline and follicle cells is fundamental for positioning.

In another recent and similar study, Gonzalez and Johnston [14] studied

anterior-posterior polarity inDrosophila by the oocyte and the nurse cells and the

surrounding layer of follicle cells. The main focus was finding the mechanism of oocyte

12



Figure 6: Cell sorting into separate aggregates during developmental stage

that helps it to reach the posterior of germline cyst and the role of cadherin-dependent

adhesion for this movement. Different from [13], they showed that the anterior-posterior

polarity occurs in two adhesive steps; homotypic adhesion between the germ cells for the

placement of the two pro-oocytes (cells that have four connection canals that are two

more than regular cell in the cyst) where they can contact with the posterior follicle cells,

and heterotypic adhesion between oocyte (the one is selected from two pro-oocytes) and

those follicle cells. Their results as consistent with [13] revealed that the incident of

polarity is based on cadherin-dependent adhesion.

Peifer [21] summarized the cell sorting mechanism, which can be based on

different levels of cadherins. The relevant studies of recent times which suggest that

differential expression of cadherins is the determinant mechanism for certain

morphogenetic events in the whole animal world, are mentioned in [21]. Figure 6a [21],

shows an in vitro example, sorting of cells due to their types. It is clear that neural cells

13



Figure 7: Schematic drawing of four cell strains

are organizing in such a way that they can adhere to other neural cells by expression of

different cadherins. Fig. 6b [21], shows that cells with higher level of cadherin are

sorting to stay together. In Fig. 6c [21], the expression of higher levels of E-cadherin in

the oocyte and posterior follicle cells than nurse cells (NC) is shown. This is

demonstrated also in [13] and [14], and it appears that expression of E-cadherin ensures

the positioning of the oocyte at the posterior pole.

Weiss [29] discussed main topics for morphogenesis with their current problems

in 1950. In particular, differentiation and its criteria examined in detail. According to

this study, differentiation is defined as “the gradual elaboration of new chemical systems

and compounds not previously present as such, presumably by gradual transformation of

the patterns according to which synthesis of the protoplasmic ( the cytoplasm and

nucleus of a cell.) compounds occurs. This transformation of basic protoplasm takes

divergent courses in different cell strains, producing lines which become increasingly

dissimilar in their biochemical and morphological constitution as development

proceeds.” As end products, secretion bodies, pigment granules, etc., are signs of cellular

14



Figure 8: Diagrams for stages of composite reaggregates

manufacturing processes which differ due to their respective formative mechanisms.

Figure 7 [29], shows how cells of the same constitution that originate from the same

germ layer can advance to different cell strains. These strains keep splitting until all of

the specialized cell forms evolve.

In 1955, Townes and Holtfreter [27] performed an experiment by using eggs of

several species of Amphibia, which is considered as the beginning of modern

morphogenesis analysis. The different cell types of the embryo showed tissue-specific

tendencies -for every time- by moving either to the center of cell or to the opposite

direction when cell types were mixed. Then, different adhesion levels were monitored in

the moving cells. Overall, as a result of adhesive effects, segregations and

recombinations of tissues and individual cells occurred. With this study, the concepts of

cell recognition and selective affinity of cells and tissues were firmly established. Figure

8 [27], denotes the successive stages for reaggregation of cells from the neural fold with

the scattered epidermal (black-cells that are forming the outermost portion of the skin)

and mesodermal (white- the middle layer among three primary germ layers) cells (first

15



Figure 9: Aggregation of cell lines with increasing cadherin expression levels

diagram), and only epidermal and mesodermal cells (second diagram). When there are

only mesodermal and epidermal cells, the latter tend to regroup at the outer edge, while

the mesoderm cells move toward the center, where they merge into a larger and more

homogeneous cell mass. Moreover, if there are cells from the neural fold in the

composition, the mesodermal cells tend to move to between neural and epidermal cells.

That is external epidermal layer, then layer of mesodermal tissue and inner neural tissue.

In this study, it is shown that selective affinity is altered during development, which helps

cells in their interactions with different types of cells in the processes of morphogenesis.

As an alternative explanation to Townes and Holtfreter [27], Steinberg and

Takeichi [25] analyzed two populations of cultured cells with different amounts of

adhesion molecules to see the underlying sorting-out mechanism. These cell lines differ

from each other only by their P-cadherin synthesis amounts. This fact is especially

important when the two are mixed, because the ones with higher cadherin levels

surround those with lower-expressions of cadherin. It is thus once again shown that

morphogenetic movements and the specific anatomical arrangements are determined by

differences in the intensity of cell-cell adhesions.

After [25], Foty and Steinberg [11] evaluated the hypothesis of tissue surface

tensions, which describes the path and final order of tissue arrangements that are driven

by adhesion between heterotypic and homotypic cells. They examined whether the tissue

16



surface tensions that control mutual tissue segregation, spreading, and cell sorting are

produced by the intensities of adhesion between the cells containing these tissues.

Different from previous studies, various amount of N-, P- and E-cadherins were

measured to quantify the tendency of cells for maximization of their mutual bindings. It

was found that different types of chicken embryonic cells were sorted into homotypic

arrays, and then organized into segregated tissues. Figure 9 [11], shows the cell lines with

lowest cadherin expression, which aggregated slowly and were shaped into small clumps

(A), and then the lines with higher cadherin expression that aggregated much more

rapidly (B-C-D).

17



CHAPTER II: AGENT-BASEDMODELS AND NETLOGO

2.1 What is an Agent-Based Model?

Agent-based modeling (ABM) makes it possible for us to simulate complicated

behavior, from traffic patterns to spread of diseases, by employing individual “agents”

that behave according to well-defined but usually stochastic local rules [30]. With the

enormous advances in computational capacity, ABMs can simulate events that would

have been impossible to do with top-down (differential or difference equation) models.

Agents are discrete, autonomous, detectable and traceable units that do not answer to a

central authority [17]. They may be mobile, as opposed to static (confined to cells), and

they may learn how to change their behavior to survive, as well as be able to reproduce.

Agent-based modeling is now so advanced that credible physical theories have been put

forward that suggest we are all living in a simulation!

ABMs are immeasurably different from equation-based models (EBMs) as we are

able to track individual agents, observe their interactions with other agents and their

environment, and visually observe emergent macroscopic complex behavior. The agent,

in other words, is the object of the model [22]. The heterogeneity that emerges is worlds

apart from the top-down EBMmodels, which can only describe the average behavior of

individuals and consider them identical.

EBMs would be more suited to modeling physical and chemical phenomena,

where “particles” are truly identical and interchangeable, and “laws of nature” are much

better understood and verified to high precision. In contrast, ABMs are perfect for the

messier and much more complex structures and interactions in biology (in addition to

those coming from physics and chemistry). A sample of gold is homogeneous, but a

sample of bacteria is heterogeneous. Perfect mixing is an unattainable ideal. The more

heterogeneous a biological system is, the more useful an ABM becomes [10].

The downside of using ABMs vs. EBMs is mainly that (i) a lot more computational
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power is required, and (ii) it takes more effort to understand the relevant details of how

the system works, and to equip the agents with sufficiently simple decision-making

powers.
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2.2 Why Agent-Based Modeling with LGCAs ?

The point of origin for this study is how biological pattern formation can be

described by lattice-gas cellular automata. The idea of visualizing possible patterns, such

as those produced in coats of mammals by pigment cells, requires highly movable agents

instead of stationary ones. Randomizing the initial states of “pigment cells” and using a

simple stochastic process that has its roots in physics, it is possible to run a large number

of simulation experiments with fixed parameter values to see whether the system will be

stable and settle in a more or less homogeneous state, or it will be unstable and promote

the formation of clumps. A LGCA model makes it possible for us to make educated

guesses about the mechanism that moves the particles. When analytical methods are

either not available or not practical, LGCA shows us the actual result of the simulation,

and makes it unnecessary to examine an entire parameter space. In our study, we will

focus on two parameters, α and ρ̄ (adhesion strength and particle density respectively),

to see which region of the α− ρ̄ space gives rise to patterns. A mosaic picture (Fig. 16a-d)

made up of actual simulation results shows the bifurcation line as clearly as if it has

materialized out of an equation. We should add that the dimensionality and the

near-circular symmetry of the hexagonal lattice provides a very manageable and

reasonable approximation to the matrix in which pigment cells move. Moving and

stochastically-decision-making agents in a symmetric environment makes a LGCA model

suitable for this particular problem. Could we have achieved the same goal by employing

an ordinary CA model with stochastic transition rules? No, because the LGCA model

accommodates extra structure, namely, several particles in the same cell, hence a

“shading” of the pigment patterns.

In this study, two types of agents are used: “turtles” and “patches” for the goal of

modeling biological patterns by using a lattice-gas cellular automaton. The detailed

explanation about their behaviors in the model will be described in the next section.

20



2.3 NetLogo

NetLogo is a multi-agent programming language that simulates natural and social

complex phenomena, authored by Uri Wilensky in 1999 [26]. To investigate the

interactions of individuals and their environment, the model is populated with

independent agents called “turtles.” These agents are moving over a grid of “patches,”

which form another class of programmable agents. Turtles may be taken to be bees,

bacteria, ants, or shepherds, etc., whereas patches may be trees, walls, cancer cells, etc.

Several modeling tools, such as cellular automata, genetic algorithms, evolution, and

artificial life are enabled by NetLogo. Due to its simplicity, NetLogo allows researchers to

build their own models in the authoring environment without much advanced

programming skills. It is easy to explore the behaviors of agents under certain conditions

and alter the environment to see its effects on simulations. Additionally, NetLogo can be

downloaded for free from [33] (Appendix A).
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CHAPTER III: OUR MODEL

3.1 Pattern Formation with Adhesive Lattice-Gas Cellular

Automata

The model in this study was examined by Alexander et al. [2] initially, then

improved by Bussemaker [4] and featured in Deutsch and Dormann [6]. It characterizes

the motion of particles (which we think of as pigment cells) in a two-dimensional, L x L

hexagonal lattice with L = 75 in our case. The overall dynamics of our model is created

by two operations, repeated for every time step. These are the stochastic adhesive

interaction rule I, which defines a reorientation of a fixed number of particles in a

hexagon towards more populous neighbor cells with highest probability, and then the

deterministic propagation rule P that ensures the movement of each oriented particle in

a certain direction to the neighbor cell in that direction with probability 1.

We analyze a discrete adhesive Boltzmann (LGCA) model with the assumption

that all particles move at the same time and at the same speed (m = 1) on a hexagonal

lattice. Because of its maximum rotational symmetry, we chose the hexagonal lattice to

study among all three regular tilings as mentioned before. The model is specifically

suited for examination of pattern formation because it increases the effects of little

fluctuations that are present in a nearly homogeneous initial state [4]. According to

Deutsch [7], it is also biologically favorable since the local rules are designed to randomly

minimize the work done against nearby cells, instead of the usual physics requirement of

lowering energy deterministically. Using microscopic rules of statistical mechanics for

macroscopic predictions makes this model simplistic yet useful to work in the

mesoscopic (about cell-size) scale. An important point is that all interactions are

between cells and not between cells and their environment.

The centers of the hexagonal cells, called nodes, are indexed by vectors r. The six

velocity channels that serve both as velocity and direction vectors are given by
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ci =
(
cos

(2π(i− 1)

6

)
, sin

(2π(i− 1)

6

))
, 1 ≤ i ≤ 6.

Hence, the node of the neighboring hexagonal cell in direction ci is given by (r+ ci). As

we mentioned previously, every channel can be occupied by at most one particle at any

given time step, and the total number of particles in every cell is conserved during the

stochastic phase. Additionally, the total number of particles is preserved during the

propagation step. Consequently, the average number ρ̄ of particles per cell remains

constant during each simulation. This density is one of the determining factors of

pattern formation in this model.
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Figure 10: Two-dimensional hexagonal lattice configuration

Fig. 10 gives an example of a configuration of a cell in a two-dimensional hexagonal

lattice, accommodating up to 6 particles. The presence of particles are shown with filled

dots in the corresponding channels.

The occupation number of channel i of the cell at node r is denoted by

ηi(r, t) ∈ {0, 1}. In other words, it is the number of particles in the channel facing

direction ci at the beginning of time step t in the pre-collision state. Then

n(r, t) =
∑

ηi(r, t) is the occupation number of the whole cell. In order to describe the

probabilistic adhesive interaction rule, we examine each cell and its immediate neighbors

in the lattice, by computing the gradient vector

G(r, t) =
6∑

i=1

n(r+ ci, t)ci,

which defines a weighted sum of direction vectors according to the populations of

neighbor cells only, and serves as the direction that the particles in the middle are most

likely to “gravitate” towards. For the transition into the post-collision state ηIi (r, t), we

also need to know the total number n = n(r, t) of particles in the center cell. However, it

is not necessary to know the channels that they are currently located at, since they will be

re-positioned into n channels of the same cell with certain probabilities. All particles are

identical, so there are N(n) =
(
6
n

)
ways of placing them into channels. Each possible
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Figure 11: Two-dimensional hexagonal lattice configuration with propagation step

configuration is given by some collection {ηi} of occupation numbers, which denotes the

near future -but not the present- state. For each 0 ≤ n ≤ 6, we have N(n) pre-computed

and stored flux vectors

J({ηi}) =
6∑

i=1

ηici

that represent the sum of velocities of the particles occupying the center cell, once they

are placed in the relevant channels. That is, the particles will be posed to move in this

weighted direction and with this velocity (on the average) in the propagation step. Since

there will be no change in the configuration when the cell is either completely empty or

completely full, it is enough to compute the flux vectors for 1 ≤ n ≤ 5 only.

In Figure 11, we can see the propagation step realized in the two-dimensional

hexagonal lattice with speedm = 1, where the lattice configurations before (s) and after

(sP ) the propagation step are shown. The presence of a particle is shown with a filled dot

in the corresponding channel.

In order to choose the configuration {ηi} that will re-distribute the particles in the
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Figure 12: Example for adhesive interaction in the hexagonal lattice

center cell, we take the dot product G(r, t) · J({ηi}) for each configuration. This result

will be at its maximum when bothG(r, t) and J({ηi}) are facing the same direction and at

its minimum when they are facing opposite directions. The code is instructed to choose J

such that G(r, t) and J are closest to each other with the highest probability. Therefore,

we define the probability that {ηi(r, t)} will become {ηi}, givenG(r, t), to be

W
(
{ηi(r, t)} → {ηIi (r, t)} = {ηi})|G(r, t)

)
=

eαG(r,t)·J({ηi})

Z
,

where Z is the normalization factor

Z =
∑
{η′i}

eαG(r,t)·J({η′i}).

Figure 12 illustrates an example of the transition probability. The right side (ηI) denotes

all possible results of the interaction step that is applied to the center cell of initial
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configuration (η) with probabilityW . According to the results, the particle will be poised

to move towards the neighbor on the south-west most probably, but there is small

nonzero probability that the particle may go to any other neighbor due to our stochastic

rule. Here, α > 0 is the second parameter in the model, which determines the sensitivity

or the adhesion strength of particles. With negative values of α, we have a repulsive

model of particles. The idea of exponentiation is useful because it

• creates a nonzero probability for each configuration to be realized, and

• preserves the order of the values of the dot products as real numbers.

For small positive values of α, particles will be mostly reshuffled into channel

configurations with equal probability, and for large values of α, they will be more likely to

get into a configuration that matches the gradient. In the latter case, homogeneous

patterns (stability) will be broken, and a pattern formation through adhesion will become

possible. Hence, for each fixed value of the particle density ρ̄, there exists a critical value

of α at which stability turns into unstability. This is shown by a graph for a square lattice

in Bussemaker [4] and Deutsch [7] (Fig. 14). We have simulated a similar graph (Fig. 13)

for the hexagonal lattice.

During the propagation stage of time step t, every particle moves from its channel

to the same channel in the next hexagon that lies in the direction of the velocity of the

channel by the deterministic rule

ηi(r+ ci, t+ 1) = ηIi (r, t).(1)

We employ periodic boundary conditions for propagation. In our simulations with

NetLogo, shadings of gray are used to denote particle concentrations in each cell. Pattern

formation is indicated by dark patches that become more defined as time passes, and

there are white spaces left between them as empty cells. This is a demonstration of the

unstability of equilibrium states that are indicated by a uniform distribution of smaller,
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lighter patches. Due to the stochasticity of the model, we need to work with the expected

(average) values of occupation numbers in order to study stability analytically.
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3.2 Aside: Stability Analysis of Systems of First Order

Nonlinear Autonomous Difference Equations

Mathematical models for discrete-time biological systems are generally more

complicated than linear models, and they require nonlinear difference equations.

Identification of equilibrium points and examination of their stability are standard tools

[16]. If the function F in a first-order system

Xt+1 = F (Xt)

does not depend on t explicitly, then the system is referred to as an autonomous

difference equation, otherwise, it is nonautonomous. We will only be concerned with the

autonomous case. For a first-order difference equation

xt+1 = f(xt),

an equilibrium point is a constant solution x̄ of the difference equation that satisfies

x̄ = f(x̄).

Similarly, for the first-order systemXt+1 = F (Xt), an equilibrium point is a solution X̄

that satisfies

X̄ = F (X̄).

Next, we define the local stability of an equilibrium point. An equilibrium point x̄ of

xt+1 = f(xt) is locally stable if, for any ϵ > 0, there exists δ > 0 such that whenever

|x0 − x̄| < δ, we have

|xt − x̄| = |f t(x0)− x̄| < ϵ for every t ≥ 0.
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If x̄ is not stable, then it is said to be unstable. The equilibrium point x̄ is locally

attracting if there exists γ > 0 such that for all |x0 − x̄| < γ, we have

lim
t→∞

xt = lim
t→∞

f t(x0) = x̄.

Finally, the equilibrium point x̄ is locally asymptotically stable if it is stable and locally

attracting.

Theorem [16]. Assume that f is continuously differentiable on an open interval I

containing x̄, and that x̄ is a fixed point of f . Then x̄ is a locally asymptotically stable

equilibrium of xt+1 = f(xt) if

|f ′(x̄)| < 1,

and is unstable if

|f ′(x̄)| > 1.

Let us next consider a first-order system consisting of n equations, with

X(t) = (x1(t), x2(t), · · · , xn(t))
T , and

X(t+ 1) = F (X(t)),

where F = (f1, f2, · · · , fn) and fi = fi(x1, x2, · · · , xn), i = 1, 2, · · · , n. Now, suppose that

this system has an equilibrium at X̄. Then the corresponding Jacobian matrix J ,

evaluated at X̄, is 

∂f1(X̄)
∂x1

∂f1(X̄)
∂x2

· · · ∂f1(X̄)
∂xn

∂f2(X̄)
∂x1

∂f2(X̄)
∂x2

· · · ∂f2(X̄)
∂xn

...
... · · · ...

∂fn(X̄)
∂x1

∂fn(X̄)
∂x2

· · · ∂fn(X̄)
∂xn


.

J is the “linearization” of the system at X̄, and is analogous to |f ′(x̄)| above. The local

asymptotic stability of X̄ is dependent on the eigenvalues of the Jacobian matrix J . (We
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require that all partial derivatives of fi be continuous in an open set containing X̄.) The

eigenvalues of the Jacobian matrix are the solutions of the characteristic equation

det(J − λI) = 0.

The following well-known theorem can be generalized to Rn. The main point is that all

eigenvalues of the Jacobian matrix at an equilibrium point must have absolute values (or

moduli in the complex case) smaller than 1, so that we can say the equilibrium is

asymptotically stable. Let ρ(A) denote the maximummodulus of all (complex)

eigenvalues of a square matrix.

Theorem [8]. Let f : I ⊂ R2 → R2 be continuously differentiable, where I is an open

subset of R2, x̄ be an equilibrium point of f , and A = J(x̄), where J is the corresponding

Jacobian matrix. Then the following are true:

• If ρ(A) < 1, then x̄ is asymptotically stable.

• If ρ(A) > 1, then x̄ is unstable.

• If ρ(A) = 1, then x̄may or may not be unstable.
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3.3 Stability Analysis of the Hexagonal ALGCA

Let fi(r, t) =
⟨
ηi(r, t)

⟩
denote the single-particle distribution function that is

obtained by averaging Eq. (1) over all possible initial positions. Then, the average rate of

change of the occupation number of ith channel can be written as

fi(r+ ci, t+ 1)− fi(r, t) =
⟨
ηIi (r, t)− ηi(r, t)

⟩
, 1 ≤ i ≤ 6.

By ignoring the dependence of the micro-states on each other and neglecting

fluctuations, we obtain what is called the nonlinearmean-field (Boltzmann)

approximation in physics:

fi(r+ ci, t+ 1)− fi(r, t) =
⟨
ηIi (r, t)− ηi(r, t)

⟩
MF

, 1 ≤ i ≤ 6.(2)

These 6 equations form a deterministic, nonlinear, autonomous (the local rules are

independent of t) system of difference equations. Namely, it is possible to search for

equilibrium states by setting the right-hand side equal to zero and to discuss the stability

of these states by the usual linearization process. It can be shown that for the ith

channel, the value fi(r, t) = ρ̄/6, where ρ̄ is the average density of cells at a node, gives us

an equilibrium point as in [4]. Since we randomly distribute ρ̄L2 particles to all channels

at t = 0, we always start in a nearly homogeneous state close to this equilibrium, and

then analyze the evolution of the system in time under fixed parameters ρ̄ and α.

The linearization, eigenvalues, and eigenvectors have been computed in closed

form for a square lattice in [4], after the fi have been subjected to a Fourier transform

into q (momentum) space, and the Fourier coefficients are examined. However, even in

this relatively simpler case, only writing the dominant eigenvalue as an approximation

up to O(|q|4) was possible. Thus, the condition that its modulus is equal to 1 (a critical

value) was approximate. The critical values for α were then obtained from this condition
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Figure 13: Phase diagram of the adhesive one-species LGCA model for the hexagonal lat-
tice

numerically by fixing values of ρ̄. Since the underlying equations for a hexagonal lattice

are more complicated, we decided to make a similar phase space diagram showing the

critical values of α as a function of ρ̄, and separate the stable/unstable (no

pattern/pattern) regions by performing simulations for various values of (α, ρ̄) in a grid

(Fig. 13). Hence, we were able to draw a similar demarcation curve to the one in Fig. 14

that was not simulated either in [4] or [6].
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Figure 14: Diagram for adhesive pattern formation in the LGCA model on square lattice
with stable and unstable cases

3.4 The Simulation

Let us now show the results of our simulations, all starting from spatially

homogeneous random initial conditions. On a 75x75 hexagonal lattice, we ran our

NetLogo code for 100 iterations for each pair of values (α, ρ̄) in a rectangular grid. We

then visually determined whether the homogeneous equilibrium was stable (no pattern;

blue points) or unstable (distinctive patterns; red points). The transitional yellow dots

show patterns that display both kinds of characteristics. The resulting graph is shown in

Figure 13, and is comparable to the stable/unstable regions for the square grid in [6],

page 154 (Fig 14).

Two additional figures show special cases, one unstable and one stable, with

intermediate stages (Figure 15). These longer runs were not possible for every point on

the grid due to inadequate computing time. However, these examples clearly show the

cases of increasing instability and increasing homogenization respectively, as time

progresses. Shades of gray, from white to black, indicate lower to higher density of

pigment particles. Finally, we have put together a mosaic of the end results of the

100-run simulations, in the same relative positions to the corresponding (α, ρ̄) pairs in

the αρ̄-plane. This blow-up of Figure 13 is indeed striking, and shows the advantage of

agent-based models in visualization over EBMs.
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Figure 15: Adhesive pattern formation in the LGCAmodel on hexagonal lattice with stable
and unstable cases
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Figure 16a: The mosaic configuration of 100-run simulations in the αρ̄-plane. The x-axis
shows ρ̄ values from 0 to 0.25 by 0.0125 increment. The y-axis denotes α values starting
from 0.55 to 0.9 by 0.025
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Figure 16b: The mosaic configuration of 100-run simulations in the αρ̄-plane. The x-axis
shows ρ̄ values from 0.25 to 0.5 by 0.0125 increment. The y-axis denotes α values starting
from 0.55 to 0.9 by 0.025
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Figure 16c: The mosaic configuration of 100-run simulations in the αρ̄-plane. The x-axis
shows ρ̄ values from 0 to 0.25 by 0.0125 increment. The y-axis denotes α values starting
from 0.2 to 0.525 by 0.025
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Figure 16d: The mosaic configuration of 100-run simulations in the αρ̄-plane. The x-axis
shows ρ̄ values from 0.25 to 0.5 by 0.0125 increment. The y-axis denotes α values starting
from 0.2 to 0.525 by 0.025
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CHAPTER IV: DISCUSSION

4.1 Conclusions

The results of our simulation showed that in a hexagonal lattice-gas cellular

automata model with a single cell type, the parameters α and ρ̄ play a significant role in

pattern formation. Due to the complicated of equations for a hexagonal lattice, we

showed the critical values of α as a function of ρ̄ on a phase space diagram by

simulations. That is, the regions for unstable and stable cases were described according

to pattern formation in NetLogo simulations. For higher values of α, the equilibrium

states turned into unstable slightly sooner than they did for smaller α values. Smaller

and lighter patches with low α value remained homogeneously distributed for a longer

time due to the nature of the adhesive interaction coefficient. On the other hand, for a

fixed adhesion coefficient value, the equilibrium states turned into patterns in narrow

range of particle density values (yellow dots). Moreover, the results may imply that a

combination of the adhesion coefficient and the particle density requires to change its

configuration into pattern formation around the middle values of the particle density.
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4.2 Future Work

There is surely more future work to do related with this model for the hexagonal

lattice and finding an approximate value similar to the one in [4] and [6] for the

dominant eigenvalue in closed form. In order to determine formation of spatial patterns,

Fourier analysis can be very useful, as shown in [7]. On the other hand, in [4] a more

realistic model is shown, where correlations of microstates are taken into account.

Additionally, changing the local interaction rules or creating the patterns with two or

more types of pigment cells might be interesting for future study. It is also possible to try

asynchronous updates to see how the model evolves. What are the impacts of different

boundary conditions on general pattern formation? Besides, we assumed our lattice-gas

cellular automaton model under no creation or annihilation of particles, the absence of

which might change the final structure completely. For real life applications, tumor

invasion may be studied with cellular automata models to see the distinctions between

healthy and tumor cells formation patterns. It is also possible to search for the invasive

cells that might diffuse at different speeds.
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APPENDIX A: NETLOGO

A1. Obtaining NetLogo

To download NetLogo, please go to

https://ccl.northwestern.edu/netlogo/download.shtml and click on the Download

button. For the next step, we need to choose the suitable operating system and follow the

required instructions through the downloading process.

A2. NetLogo Variables in Our Model

We have 5 global variables in the model:

• spawn-p

• α - adhesion coefficient

• m - velocity of particle

• G - gradient field vector

• J1, J2, J3, J4, J5, J6- the direction vectors

• hexagon size

Spawn-p determines the probability of a node sprouting one particle. High spawn-p

means every node will get more particles and setting up at 1 implies every node will get 6

particles. There is a slider from 0 to 1 for it on the interface. Recall that α denotes the

strength of adhesion as a positive parameter. It is defined in such a way that particles

prefer to move in the direction of increasing density of cells. However, a negative value

for α implies that particles tend to migrate in the direction of decreasing density, known

as repulsion. The hexagon size determines the size of each cell after setting their shapes

as hexagons. This number is specifically selected, since we need to see the pattern of

adjacent cells without any space between them. The symbolm shows the velocity of each
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particle and in this study; we setm = 1, which means that every particle migrates to the

next cell according to its direction vector. The gradient field vector G is defined to model

the tendency of particles to move towards the heavier neighbors. It includes the weighted

geometric distribution of particles among the neighbors but not any information about

the center. This way, which ever neighbor has more particles has a greater sloped

gradient field vector towards itself. Finally, the direction vectors, J1, J2, J3, J4, J5, J6,

denote the direction vectors, and are given as

J1 = (1, 0), J2 =

(
1

2
,

√
3

2

)
, J3 =

(
−1

2
,

√
3

2

)
,

J4 = (−1, 0), J5 =

(
−1

2
, −

√
3

2

)
, J6 =

(
1

2
, −

√
3

2

)
A3. Set Up

There are two breeds of turtles: walkers and nodes. Walkers represent the

particles at each cell, and nodes are the hexagonal lattices. The walkers begin in a

randomly distributional form. This aims to mimic the biological pattern formation with a

realistic representation of structure. We coded the direction (0, 0) to be “down;” this way

is more convenient due to the hexagonal shapes in NetLogo and does not affect the

result. Each hexagonal cell can have at most 6 particles, and the boundaries of the lattice

are wrapped around (periodic). The initial setting has shaded hexagons that determines

the particle number of cells. Accordingly, heavier shades of gray denote particles with

more cells, and white cells are empty.
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Figure A-1: Initial NetLogo Setup.

A4. Adjusting Code

There are ten different settings in the user interface, which can be altered to match

the population at hand. To customize sliders, click on the selector and move them to the

left or right.

To turn debugging on or off, click on the switch;

For checking calculations, there areDebug as set up,Debug − Step and seven input

windows to put particle numbers between 0 and 6 including center cell. Once we set the

values, all other cells will be empty but only seven cells at the center will be occupied

according to the numbers that are entered. Then, with debug-step, it is possible to

observe the behavior of particles in the center cell.
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To state the walker’s pen, click on pens down once we set walker-transparency to high

value for clear vision. Pen is a tool to draw lines for every movement commands of

turtles. To erase the lines, click on Pens Up;

All settings that are not listed in the user interface can be adjusted directly from the code.

To start with the configuration of hexagonal lattice, we write
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Here, the background is set in white color to have a better pattern image. Furthermore,

there is a slider for hexagonal cell transparency, which adjusts the color of cells to darker

or lighter.

In addition, for randomly distributed particles, random− float was used with

spawn− p which denotes the particle density. If we increase the density, it is likely that

we will get higher number of particles for each cell.

For the computational analysis part, it is possible to check the calculations with

debug command. The idea is to clear all other cells in the lattice and only demonstrate

seven of them for simplicity. We can enter the number of particles from the user

interface directly; debug-c is center cell and the others are local neighbors. We may

observe any of the neighborhood’s seven cells by editing the node numbers.

According to our set-up for debug, the following command, debug − step, provides the

moving of particles by one step. Again, one can change the center cell with its

coordinates to see related configurations.
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For the initial set up of direction vectors J1, J2, J3, J4, J5 and J6, it is essential to combine

the coordinates with NetLogo coordinates, because the hexagonal turtles are not

equilateral, so turtles are not moving slide away from our angle list.

After defining the coordinates for directional vectors, the report for calculate− j − values

command gives the vectorial sum of J-vectors. Here, this command is used to start a

reporter procedure. The main body of the procedure is stated with report, to report a

value for the related procedure.

We used the same logic and command, G-tendency vector, the raw transitional

probabilities, the occupied seats for each seat configuration, the position in angles list
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that corresponds to index of j-coordinates and nj-coordinates. Since the raw transitional

probabilities are not in normalized form, with report procedure, the weighted probability

list was computed and joined vectors lists were created. Finally, for the occupancy of a

cell at certain coordinates and for the turtle directions, the to− report command was

used. To set the node colors with their shades, we used update− colors. In this code, the

slider for walker-transparency is installed. The corresponding shade-coding states that

the higher number of particles, the darker the nodes get.

The moving procedure starts with hex− walk, which defines occupancy of nodes

at each local neighborhood and does all the calculations. Also in this part, we set up the

maximum number of particle in each cell as six. The weighted probabilities for seating

configurations are used here to pick one of them.

After setting all configurations, the final step is that each particle moves by one

step in the direction it is pointing at.
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If necessary, a command can be commented out by “;” within the code. However, it is

possible to have an error since the program may not run properly without certain

commands.

A5. Stochasticity

The stochasticity for agent-based modeling is defined in the code with

rnd:weighted-one-of-list. According to this command, after computing each

configuration probability, the computer makes a random selection from that probability

list. Due to those weighted probabilities, the highest probabilities are more likely to be

chosen, however there is also a little chance for one of the others to be chosen.

Additionally, in the case of having equal highest probabilities for configuration of

particles, the computer is instructed to randomly pick a configuration, as defined by

rnd:weighted-one-of-list. Finally, according to selection, every particle moves one step

along the direction it is facing.

A5. Running Code

To run the code, we need to regulate the sliders. Click the Set up button and follow

by go. It is possible to add step button for observing the change gradually. For forever

running, we need to right click on go and edit, then select the forever option.
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To stop and start the simulation, we click the go button. Here, time is discrete and

counted by ticks, which is set above the world.

A7. The Code

extens ions [ t ab l e rnd ]

breed [ nodes node ]

breed [ walkers walker ]

walkers−own [ or i g in cha i r ]

g loba l s [ occupied−nodes vec tors v j−coords nj−coords

j 1 j2 j3 j4 j5 j6 j v 1 jv2 jv3 jv4 jv5 jv6 ]

to setup

c lear−a l l

set−defau l t−shape nodes ”hex ”

foreach sor t patches [ p −>

ask p [

se t pcolor white sprout−nodes 1

[ l e t hex−co lor ( l i s t 100 100 100 hex−transparency )

se t co lor hex−co lor

se t s i z e 1 .2

i f pxcor mod 2 = 0

[ se t ycor ycor − 0.5 ] ] ]

]
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ask nodes [

i f random−f l o a t 1 < spawn−p [ hatch−walkers 1 [ se t o r i g in

[who] of myself ] ]

i f random−f l o a t 1 < spawn−p [ hatch−walkers 1 [ se t o r i g in

[who] of myself ] ]

i f random−f l o a t 1 < spawn−p [ hatch−walkers 1 [ se t o r i g in

[who] of myself ] ]

i f random−f l o a t 1 < spawn−p [ hatch−walkers 1 [ se t o r i g in

[who] of myself ] ]

i f random−f l o a t 1 < spawn−p [ hatch−walkers 1 [ se t o r i g in

[who] of myself ] ]

i f random−f l o a t 1 < spawn−p [ hatch−walkers 1 [ se t o r i g in

[who] of myself ] ]

]

i n i t−j

update−co lo r s

reset−t i c k s

end

to debug

setup

ask walkers [ die ]

ask node 297 [ hatch−walkers debug−c [ se t o r i g in [who] of myself ] ]

ask node 323 [ hatch−walkers debug−j 1 [ s e t o r i g in [who] of myself ] ]
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ask node 298 [ hatch−walkers debug−j2 [ s e t o r i g in [who] of myself ] ]

ask node 272 [ hatch−walkers debug−j3 [ s e t o r i g in [who] of myself ] ]

ask node 271 [ hatch−walkers debug−j4 [ s e t o r i g in [who] of myself ] ]

ask node 270 [ hatch−walkers debug−j 5 [ s e t o r i g in [who] of myself ] ]

ask node 296 [ hatch−walkers debug−j6 [ se t o r i g in [who] of myself ] ]

ask walkers [pd se t co lor [255 255 255] se t s i z e 0 .5]

update−co lo r s

end

to debug−step

ask node 297 [

hex−walk

]

l e t walker− l i s t node−occupants 11 14

ask walker− l i s t [ facexy ( xcor + item 0 cha i r )

( ycor + item 1 cha i r ) se txy ( xcor + item 0 cha i r )

( ycor + item 1 cha i r ) ]

update−co lo r s

t i c k

end

to in i t−j

s e t j−coords ( l i s t ( l i s t 1 0) ( l i s t 0.5 ( sqr t 3 / 2))

( l i s t −0.5 ( sqr t 3 / 2)) ( l i s t −1 0) ( l i s t −0.5 (−1 * sqr t 3 / 2))

( l i s t 0.5 (−1 * sqr t 3 / 2 ) ) )

se t nj−coords ( l i s t ( l i s t 0 −1) ( l i s t 1 −0.5) ( l i s t 1 0 .5)

( l i s t 0 1 ) ( l i s t −1 0 .5) ( l i s t −1 −0.5))
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se t j 1 ( l i s t ( l i s t 0) ( l i s t 60) ( l i s t 120) ( l i s t 180) ( l i s t 240)

( l i s t 300))

se t j v 1 ca l cu l a t e−j−va lues j 1

se t j2 ( l i s t ( l i s t 0 60) ( l i s t 0 120) ( l i s t 0 180) ( l i s t 0 240)

( l i s t 0 300) ( l i s t 60 120) ( l i s t 60 180) ( l i s t 60 240)

( l i s t 60 300) ( l i s t 120 180) ( l i s t 120 240) ( l i s t 120 300)

( l i s t 180 240) ( l i s t 180 300) ( l i s t 240 300))

se t jv2 ca l cu l a t e−j−va lues j2

se t j3 ( l i s t ( l i s t 0 60 120) ( l i s t 0 60 180) ( l i s t 0 60 240)

( l i s t 0 60 300) ( l i s t 0 120 180) ( l i s t 0 120 240)

( l i s t 0 120 300) ( l i s t 0 180 240) ( l i s t 0 180 300)

( l i s t 0 240 300) ( l i s t 60 120 180) ( l i s t 60 120 240)

( l i s t 60 120 300) ( l i s t 60 180 240) ( l i s t 60 180 300)

( l i s t 60 240 300) ( l i s t 120 180 240) ( l i s t 120 180 300)

( l i s t 120 240 300) ( l i s t 180 240 300))

se t jv3 ca l cu l a t e−j−va lues j3

se t j4 ( l i s t ( l i s t 0 60 120 180) ( l i s t 0 60 120 240)

( l i s t 0 60 120 300) ( l i s t 0 60 180 240) ( l i s t 0 60 180 300)

( l i s t 0 60 240 300)

( l i s t 0 120 180 240) ( l i s t 0 120 180 300) ( l i s t 0 120 240 300)

( l i s t 0 180 240 300) ( l i s t 60 120 180 240) ( l i s t 60 120 180 300)

( l i s t 60 120 240 300) ( l i s t 60 180 240 300) ( l i s t 120 180 240 300))

se t jv4 ca l cu l a t e−j−va lues j4

se t j5 ( l i s t ( l i s t 0 60 120 180 240) ( l i s t 0 60 120 180 300)

( l i s t 0 60 120 240 300) ( l i s t 0 60 180 240 300)

( l i s t 0 120 180 240 300) ( l i s t 60 120 180 240 300))
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se t jv5 ca l cu l a t e−j−va lues j5

se t j6 ( l i s t ( l i s t 0 60 120 180 240 300))

se t jv6 ca l cu l a t e−j−va lues j6

end

to−report ca l cu l a t e−j−va lues [ j−vec tor ]

l e t j−va lues [ ]

foreach j−vec tor [combo −>

l e t j v a l [0 0]

foreach combo [ angle −>

se t j v a l (map [ [ a b] −> a + b] ( j v a l ) ( get−j−coord angle ) )

]

s e t j−va lues lput j v a l j−va lues

]

report j−va lues

end

to−report ca l cu l a t e−g−value [ neighborhood ]

l e t n 0

l e t gx 0

l e t gy 0

foreach j−coords [ j −>

se t gx gx + item n neighborhood * item 0 j

se t gy gy + item n neighborhood * item 1 j

se t n n + 1

]

report ( l i s t ( gx ) ( gy ) )
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end

to−report ca l cu l a t e−t r an s i t i ona l−va lues [ g j v a l s ]

l e t t [ ]

l e t gx item 0 g

l e t gy item 1 g

foreach j v a l s [ j −>

l e t j x item 0 j

l e t j y item 1 j

se t t lput ( exp α( * ( gx * j x + gy * j y ) ) ) t

]

report t

end

to−report get−sea t s [ t ]

l e t i 0

l e t cha i r s [ ]

l e t c −1

while [ i < length t ] [

s e t c item i t

se t cha i r s lput ( get−nj−coord c ) cha i r s

se t i i + 1

]

report cha i r s

end

58



to−report get−j−coord [ query ]

l e t angles [0 60 120 180 240 300]

i f query > 0 and query < 7[

se t query item ( query − 1 ) angles

]

l e t index pos i t i on query angles

report item index j−coords

end

to−report get−nj−coord [ query ]

l e t angles [0 60 120 180 240 300]

i f query > 0 and query < 7[

se t query item ( query − 1 ) angles

]

l e t index pos i t i on query angles

report item index nj−coords

end

to update−co lo r s

ask nodes [

ask walkers [ l e t t c o l o r ( l i s t random 255 random 255 random 255

walker−transparency ) se t co lor t c o l o r se t s i z e 0.3 se t heading 0]

l e t shade (6 − ( node−occupancy xcor ycor ) ) * 42

i f shade > 255 [ se t shade 255]
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se t co lor ( l i s t shade shade shade hex−transparency )

i f node−occupancy xcor ycor > 6 [ se t co lor

( l i s t shade 0 0 hex−transparency )

pr in t node−occupancy xcor ycor ]

]

end

to−report get−weighted− l i s t [ t ]

l e t sum−t sum t

l e t weighted− l i s t map [ a −> a / sum−t ] t

report weighted− l i s t

end

to−report jo in−vec tors [ a b ]

l e t jo ined [ ]

l e t pa i r [ ]

( foreach a b [ [ i j ] −> se t pa i r [ ]

( s e t pa i r lput i pa i r ) ( s e t pa i r lput j pa i r )

s e t jo ined lput pa i r jo ined ] )

report jo ined

end

to hex−walk

l e t occupancy count node−occupants xcor ycor

i f occupancy > 6 [

pr in t ” Error : node occupancy grea te r than 6”
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stop

]

i f occupancy > 0 [

l e t walker− l i s t node−occupants xcor ycor

l e t neighborhood [ ]

ask node who [ se t neighborhood node−neighborhood−occupancy

xcor ycor ]

i f e l s e sum neighborhood > 0 [

l e t g ca l cu l a t e−g−value neighborhood

l e t t [ ]

l e t j−op [ ]

i f occupancy = 1 [

se t t ca l cu l a t e−t r an s i t i ona l−va lues g j v 1

se t j−op j 1

]

i f occupancy = 2 [

se t t ca l cu l a t e−t r an s i t i ona l−va lues g jv2

se t j−op j2

]
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i f occupancy = 3 [

se t t ca l cu l a t e−t r an s i t i ona l−va lues g jv3

se t j−op j3

]

i f occupancy = 4 [

se t t ca l cu l a t e−t r an s i t i ona l−va lues g jv4

se t j−op j4

]

i f occupancy = 5 [

se t t ca l cu l a t e−t r an s i t i ona l−va lues g jv5

se t j−op j5

]

i f occupancy = 6 [

se t t ca l cu l a t e−t r an s i t i ona l−va lues g jv6

se t j−op j6

]

l e t seat ing−con f i gura t ion [ ]

l e t weighted−p get−weighted− l i s t t

l e t joined−p join−vec tors j−op weighted−p

l e t draw [ ]

i f length weighted−p > 1

[ se t draw f i r s t rnd : weighted−one−of− l i s t

joined−p [ [p] −> l a s t p ] ]
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i f e l s e length weighted−p > 1

[ se t seat ing−con f i gura t ion get−sea t s draw]

[ se t seat ing−con f i gura t ion get−sea t s item 0 j−op ]

l e t w [ ]

ask walker− l i s t [ s e t w lput s e l f w]

l e t i 0

foreach w [ th i s−walker −>

ask th is−walker [ se t cha i r ( item i seat ing−con f i gura t ion ) ]

se t i i + 1

]

] [

ask walker− l i s t [ s e t cha i r [0 0]]

]

]

end
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to go

ask nodes [

hex−walk

]

ask walkers [ facexy ( xcor + item 0 cha i r ) ( ycor + item 1 cha i r )

se txy ( xcor + item 0 cha i r ) ( ycor + item 1 cha i r ) ]

i f debugging = true [

export−world (word ”hex_debug/hex−” t i c k s )

]

update−co lo r s

t i c k

i f t i c k s > 100 [ stop ]

end

to−report node−occupancy [ centerx centery ]

report count walkers with [ xcor = ( centerx ) and ycor = ( centery ) ]

end

to−report node−occupants [ centerx centery ]

report walkers with [ xcor = ( centerx ) and ycor = ( centery ) ]

end

to−report node−neighborhood−occupancy [ centerx centery ]

l e t n1 count walkers−at 0.0 −1.0

l e t n2 count walkers−at 1 .0 −0.5

l e t n3 count walkers−at 1 .0 0.5
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l e t n4 count walkers−at 0.0 1 .0

l e t n5 count walkers−at −1.0 0.5

l e t n6 count walkers−at −1.0 −0.5

report ( l i s t n1 n2 n3 n4 n5 n6)

end
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