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In this study, I attempt to examine the nature of pedagogical content knowledge 

(Shulman, 1986) that teachers exhibit while observing computer-generated animations that bring 

up pedagogical issues in the classroom. In-service teachers were asked to view different 

animations and react to different prompts about the animations. Later, teachers were interviewed 

to prompt more discussion of pedagogical issues with the intention of clarifying their stance and 

their knowledge of pedagogy. The computer animations were utilized as a surrogate for 

classroom teaching, highlighting issues that could be otherwise overlooked during live teaching 

observation. 
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CHAPTER I: BACKGROUND AND RATIONALE 

 

Statistics 

Shaughnessy (1992) claimed that statistics is one of the most important subjects for 

college-bound or non-college-bound students. Statistics, a relatively new subject, has been 

gaining momentum within the last 30 years in the curriculum of school mathematics (Franklin et 

al., 2007; National Council of Teachers of Mathematics [NCTM], 1989, 2000, 2006; National 

Governors Association Center for Best Practices [NGA] & Council of Chief State School 

Officers [CCSSO], 2010; Shaughnessy, 1992, 2007). This shift was first felt from the National 

Council of Teachers of Mathematics (NCTM) in 1989, when they first placed statistics in the 

national curriculum. Statistics and probability was one of the five major strands of study 

(Number & Operations, Algebra, Geometry, Measurement, Data Analysis & Probability) 

recommended for students as early as the elementary grades all the way to high school. The 

subsequent NCTM (2000, 2006) documents kept advocating for statistics by keeping the subject 

as a large part of the curriculum. Following those documents, the Guidelines for Assessment and 

Instruction in Statistics Education (GAISE) Report (Franklin et al., 2007) introduced a 

curriculum framework to further specify the level of understanding that students needed to have 

at different developmental milestones. Teacher preparation, on the other hand, has not been as 

quick in adapting to changes in curriculum, with Statistical Education of Teachers (Franklin et 

al., 2015) being the only document clarifying recommendations for teachers’ statistics 

preparation. 
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Recommendations for Statistics in K–12 Mathematics Curriculum 

During the 1980s, after the publication of the report A Nation at Risk (National 

Commission on Excellence in Education, 1983), the U.S. Department of Education 

recommended that schools and colleges set more rigorous standards for academic excellence. 

Within mathematics, the National Council of Teachers of Mathematics (NCTM) was the first to 

set such rigorous standards, which were understood as statements of value. NCTM standards 

were followed by efforts in other school subjects such as science and reading. After the release 

of these standards both researchers and policy makers began to scrutinize and debate the 

standards. What followed were attempts at updating and enhancing the standards by 

acknowledging research and other scholarship in mathematics education. 

 

NCTM Standards 

The NCTM standards (1989) were the first curriculum document to include statistics in 

the content of teaching mathematics in elementary grades through high school. The standards 

encouraged teachers to include student experiences with data analysis and probability so that 

students can— 

• collect, organize, and describe data; 

• construct, read, and interpret displays of data; 

• formulate and solve problems that involve collecting and analyzing data; 

• explore concepts of chance. (NCTM, 1989, p. 54) 

The authors of this curriculum document emphasized the idea that students should see statistics 

as a problem-solving tool and not just another computation algorithm. The emphasis was on 

students being able to make decisions and predictions based on the information gathered, and a 



3 

spirit of investigation and exploration was associated with the learning of statistics. In the early 

grades, the authors concentrated on data displays and the types of questions the teachers could 

use to scaffold student learning. 

In the standards for middle school (fifth through eighth grade), NCTM (1989) added to 

the elementary standard by requiring students to make inferences and arguments and to evaluate 

arguments based on data. These standards drew emphasis to the idea that students needed to 

learn to appreciate the process of statistical investigation. With respect to measures of central 

tendency, the authors concentrated on what the average student would be and how, for example, 

to find Mr. and Ms. Average, using random sampling while keeping in mind biases in data. At 

this grade level, the authors recommended that mode should be used to represent nonnumerical 

data. 

A decade after their 1989 curriculum document, NCTM published a new document, the 

Principles and Standards for School Mathematics (NCTM, 2000). The authors envisioned 

students moving from formulating questions close to their experience, to formulating questions 

based on current issues and interests, and further to posing questions that require investigation 

and exploration of complex issues. Moving from simple data gathering plans (planning data 

collection and evaluating collection methods), to working with data gathered by others in the 

middle grades and further to understand the purpose of surveys, observational studies, and 

experiments. Developing from the early grades in which data can be organized or ordered in 

pictures to middle school in which data are displayed in bar graphs, tables, and line plots.  

With respect to measures of center, NCTM (2000) made some simple recommendations 

about what knowledge students should exhibit. NCTM recommended that children as early as the 

third grade could start learning about concepts of statistics, specifically measures of center. In the 
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recommendations for the third to fifth grade, the authors emphasized the need for students to see 

the measures of center in different context and that students needed to build on “their ideas of 

what is ‘typical’”? The authors recommended that students needed to understand what the 

median told them about the data and that, in Grade 5, the best representation of the mean was the 

balance point. 

In Grades 6–8, NCTM (2000) acknowledged that students did not understand the mean 

well, and they reiterated the fact that using balance point, the mean evens out or balances a set of 

data because the representation of the mean was the best practice. Students needed to see the 

median as the middle of the data. Also, when choosing the best average to represent the data, 

students needed to understand (through modeling) that the mean could be influenced by extreme 

values. In high school, the recommendations became more geared toward procedural 

understanding of the mean, adding the same constant to all observations would change the 

measure of center by the same constant but not the measure of spread, and claiming that “the 

mean score of a test was 50 percent” (p. 327) could cover several distributions of data. Keeping 

to the theme of choosing measures of center, they recommended that students should recognize 

that the sample mean and median could be greatly influenced by the skewness of the distribution. 

 

GAISE Report 

Within the NCTM (1989, 2000, 2006) curriculum documents, there are recommendations 

on what students should know, and there are some recommendations about how mathematics 

should be taught (National Council of Teachers of Mathematics, Commission on Teaching 

Standards for School Mathematics, 1991). However, there initially were no documents that 

specifically discuss the way that statistics should be taught. With that in mind, Franklin et al. 
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(2007) published the Guidelines for Assessment and Instruction in Statistics Education (GAISE) 

Report. The guidelines were designed as a curriculum framework for all grades, preK–12, with 

the goal of statistical literacy for citizenship. The authors envisioned all high school students 

making sound decisions using statistics in order to cope with the daily challenges of life. Hence, 

the framework was designed to provide a conceptual structure for the teaching of statistics that 

gave a coherent picture of the curriculum during three different levels of development. The main 

methodology for teaching the concepts of statistics was through the investigative cycle combined 

with an emphasis on variability, progressing in sophistication through the three levels of 

development. This framework includes the following: formulate questions, collect data, analyze 

data, interpret results, and the nature of and focus on variability. 

The progression of ownership of the investigative cycle was spelled out in the report 

(Franklin et al., 2007), with teachers having a more direct role at Level A and progressing toward 

a more passive role in Levels B and C. The report suggested that students act as the collectors of 

data in Level A, but teachers can help students take advantage of their innate curiosity and help 

them formulate statistical questions for investigation. At the early stages, another 

recommendation was for teachers to capitalize on natural occurring errors when collecting data 

to help students speculate about the impact on the final results. Because the authors suspected 

that teachers might not be prepared for some statistical procedures, they offered examples on 

simulations and other difficult concepts. 

 

CCSSM (2010) 

From the recommendations of Foundations for Success: The Final Report of the National 

Mathematics Advisory Panel (National Mathematics Advisory Panel, 2008), the Common Core 
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State Standards for Mathematics (CCSSM; NGA & CCSSO, 2010) were born. The content of 

the CCSSM is important because even though it is designed as standards to be strived towards, 

most states have adopted it as the intended national curriculum document by which they base the 

choice of content being taught in the classroom (Porter, McMaken, Hwang, & Yang, 2011). 

Until this point, previous NCTM documents had advocated for statistics to be a presence in the 

curriculum as early as first grade; however, the CCSSM pushed all that to sixth grade. Even 

though there are mentions of Measurement and Data in Grades 1–5, these standards have nothing 

to do with statistics or data analysis. At Grade 6, students were encouraged to think of the 

median as the center of data and how it could be used to create a box and whiskers plot and 

consequently the interquartile range (IQR), explained as a measure of variability. Connecting 

statistics to mathematics, the authors expected students to use knowledge of fractions to calculate 

the arithmetic mean, recommending that students think of mean as leveling out or fair share. 

When comparing mean with median the authors recommended that the mean can be pulled by 

extreme values, and that context should be used in making these comparisons. For instances in 

which the mean is understood as the measure of center, the authors recommend using the mean 

absolute deviation (MAD) as the measure of variability; however, when the median was used 

and the data displays long tails, the IQR should be used as the measure of variability. 

 

Statistical Education of Teachers 

With direct implication for teachers, the American Statistics Association (Franklin et al., 

2015) released the Statistical Education of Teachers (SET) report, which was designed as a 

companion to the Conference Board of the Mathematical Sciences’ (2012) document, The 

Mathematical Education of Teachers II (MET II). Franklin (2014) commented that the American 



7 

Statistical Association (ASA) and NCTM felt that the MET II had not gone deep enough on their 

recommendations for teaching of statistics. Even though there were some recommendations, they 

were concentrated on the teaching of mathematics, so the SET report was conceptualized as a 

detailed source for statistical pedagogy with a better map toward the understanding of the 

evolution of statistical topics and concepts from K–12. Because the writing team for SET was 

headed by the same researchers as the GAISE report, SET was designed to build on existing K–

12 standards as recommended by the GAISE report, the NCTM standards, and the CCSSM. The 

authors of the SET report suggested that there were three different goals when designing the 

document: to reach the appropriate audience for teacher preparation, to make recommendations 

and provide details for content and pedagogy, and to make recommendations for improving the 

training of teachers. The intended audience for the document were mathematicians and 

statisticians, mathematics educators, and policy makers. 

As with the GAISE report, the SET report (Franklin et al., 2015) recommended that the 

teaching of statistics should be done thorough the statistical problem-solving process so that 

statistics topics could be developed through meaningful experiences. Staying with meaningful 

experiences, it recommends that teachers preparation courses should be taught with an emphasis 

on active engagement and that lecture, direct/individual instruction, is not appropriate as a 

primary mode of teaching. With respect to pedagogy, the report emphasized the importance of 

connecting concepts in statistics with other areas in mathematics and how concepts in middle 

school built on elementary understanding. 

The SET report also made more direct recommendations for the teaching of statistics. 

One of the primary goals of teacher preparation in elementary school statistics is to “develop 

pedagogical content knowledge necessary for effective teaching of statistics. Pre-service and 
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practicing teachers should be familiar with common student conceptions, content-specific 

teaching strategies, strategies for assessing statistical knowledge, and appropriate integration of 

technology for developing statistical concepts” (Franklin et al., 2015, p. 14). Following that, the 

authors recommended that teachers should attend to common misunderstandings that students 

have with regards to statistics and develop strategies to address students’ conceptions. Further, it 

was recommended that teachers have pedagogical knowledge to assess students’ levels of 

understanding and plan for the steps needed to advance and develop students’ statistical thinking. 

More precisely, and more pertinent to the teaching of statistics in middle school, the SET 

report (Franklin et al., 2015) gave some specific recommendations on the teaching of measures 

of center. Regarding the problem-solving cycle’s analyze data component, the teachers were 

encouraged to recognize and use appropriate numerical summaries to describe characteristics of 

the distribution for quantitative data, such as mean or median for describing center, and range 

IQR or MAD to describe variability. Also, teachers should recognize that the shape of the 

distribution, for quantitative data, influences the numerical summary for center and that the 

median is resistant to outliers. Keeping to the theme of comparison, teachers should realize that 

distributions are compared with respect to similarities or differences in center, shape, and 

variability and that the context of the original question is paramount in the comparison. 

In the elementary grades, it was expected that the teacher would help the students in 

writing a specific statistical question to investigate (Franklin et al., 2015). The teacher was then 

expected to facilitate the data collection process by helping students determine how data would 

be collected and design an appropriate and feasible experiment. In analyzing data, the teacher 

was expected to use graphical displays and numerical summaries to help students identify 

patterns present in the variability pertinent to the question at hand. In the last step of interpreting 
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results, teachers were expected to help students use the results to answer the question 

investigated.  

Recommendations for the education of prospective and in-service teachers also came 

from a joint policy paper published by ASA and NCTM (2013). The recommendations of this 

paper were not as detailed as the SET or GAISE reports; however, they encompassed every 

stakeholder in the education process. The paper emphasized the growing importance of statistics 

as a scientific field of study and that teachers must have deep knowledge and understanding of 

both content and pedagogy. The paper recommended that administrators support in-service 

teachers through opportunities for professional development (PD), and that educators create PD 

to model effective teaching pedagogies and deeper understanding of statistical concepts, boosting 

their knowledge of content, statistical thinking, and problem solving. For preservice-teacher 

educators, recommendations revolved around creating courses that familiarize future teachers 

with pedagogies appropriate for the classroom, as outlined by policy documents. Similar 

recommendations were given for faculty members who teach statistics and for state departments 

of education. 

 

Teachers’ Statistical Knowledge for Teaching 

Cobb and Moore (1997), and later Groth (2007), argued that the knowledge that is needed 

to teach statistics is different from the knowledge that it takes to teach mathematics. In an 

attempt to differentiate between mathematics and statistics, Groth (2007) used statistical 

knowledge for teaching (SKT) instead of mathematical knowledge for teaching (MKT; Hill, 

Schilling, & Ball, 2004) to talk about the knowledge needed to teach statistics. Groth (2007) 

following Cobb and Moore (1997) advocated for the need of mathematics to take context away 
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from doing mathematics and the standardization of mathematical thinking and computation free 

from context. Mathematics is more interested in finding the correct answer to a question, no 

matter if that question has real-life applications or not. On the other hand, statistics thrives in, 

and requires, context from real-life situations because context decides what questions to ask, how 

to collect data, and more importantly how to analyze and interpret the data. Another difference is 

exemplified in question posing: Although mathematics poses questions with deterministic 

answers, statistics often poses questions to form conditional conclusions (Groth, 2007). 

Although scholarship on different embodiments of MKT is vast, there also exists research 

on the understanding of SKT. SKT became a subject of research projects with in-service teachers 

outside of the United States (Burgess 2007, 2009a; Estrella, Olfos, & Mena-Lorca, 2015; 

Watson, 2001; Watson, Callingham, & Donne, 2008; Watson & Nathan, 2010) as well as 

research done with preservice teachers (PSTs) in the United States (Groth, 2014). Much of the 

research on SKT with in-service teachers outside of the United States is concentrated around 

Australia with Watson and colleagues (Watson, 2001; Watson et al., 2008; Watson & Nathan, 

2010), who have developed, and validated, different assessments in understanding teacher 

knowledge including pedagogical content knowledge (PCK) (Hill, Ball, and Schilling, 2008) 

within statistics. Another contribution to the research with in-service teachers has come from 

Estrella, Olfos, and Mena-Lorca (2015) in Chile, who also created an instrument to measure 

PCK that focuses on teachers’ awareness of student statistical knowledge. 

From New Zealand, Burgess (2007, 2009a) gave a hybrid conceptualization of teacher 

knowledge by observing teachers while they taught. His framework (see Figure 1) was an 

amalgam of the four major components of MKT introduced by Hill, Schilling, and Ball (2004), 

and eight components of statistical thinking model by Wild and Pfannkuch (1999). With this 
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model, Burgess (2007, 2009a) gave a more structured view of in-service teachers’ knowledge 

through the investigative cycle. Burgess concluded his research by giving examples of what each 

box in the matrix looked like for his four participating teachers. In further publications, Burgess 

(2009b) introduced profiles of each teacher’s knowledge (see Figure 2) by highlighting examples 

in which the teachers showed direct evidence (solid grey cells) or indirect evidence (checkered 

cells) of the hypothesized component of the framework, examples in which the teachers missed 

opportunities to show their knowledge (grey cells with an M), and examples in which the 

knowledge was not evident at all (white cells). 

 

Figure 1. Framework for teacher knowledge in relation to statistical thinking and investigation. 
This figure shows the components of knowledge hypothesized by Burgess (2009a) with the 
intersections being the components. 

 

Figure 2. Summary of John’s teaching knowledge. This figure shows the knowledge that John 
displays in Burgess’ (2009b) study. The solid grey indicates direct evidence of that knowledge 
component, shaded M indicates missed opportunities to show evidence, checkered indicates 
indirect knowledge, and unshaded indicates that no evidence of that component was given. 
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So, if we look at Figure 2, we can see that John showed direct evidence of “Common 

content knowledge: integration of statistical and contextual” (Burgess, 2009b). This category 

was characterized by the ability to make sense of statistical measures and by understanding the 

relevance of statistical tools in real-life data. According to Burgess (2009b), John showed direct 

evidence of this knowledge by acknowledging that the reason all younger students could whistle 

(a finding in the experiment) was because they were taught by their older siblings. This displayed 

John’s knowledge by relating statistical findings to real-life context. In another instance, John 

had the knowledge, but he missed the opportunity to show it in class, “knowledge of content and 

teaching: reasoning with models” (how a teacher structures teaching to encourage reasoning with 

models). The teacher commented that because the students had concentrated on one variable at a 

time during instruction, he intended to structure the next lesson to encourage students to consider 

two variable simulations. 

Groth (2007) hypothesized about what SKT would look like, acknowledging that 

statistics is a different discipline from mathematics while still using some mathematical ideas. 

Groth introduced only two categories, common knowledge and specialized content knowledge, 

both of which had aspects of mathematical and nonmathematical concepts. He also made the 

point that when a teacher made a decision in the classroom, she or he could not divorce the 

mathematical and statistical thinking and that every decision made in the classroom had a 

component of both disciplines in it. 

Later, Groth (2013) incorporated the ideas of Hill, Ball, and Schilling (2008) and their 

concepts of PCK for MKT into his construct of what SKT would look like. Groth (2013) 

reconciled that PCK for statistics would have similar aspects to PCK for mathematics and that 

knowledge of students and teaching still constituted the main concepts. Groth arrived at this 
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conclusion by incorporating two concepts: key developmental understandings (KDUs; Simon, 

2006) and pedagogically powerful ideas (PPIs; Silverman & Thompson, 2008). At the base of 

his theoretical framework, Groth places KDUs, cognitive landmarks used in the learning of 

contextual concepts, and the need for decentering to transform these KDUs into PPIs. KDUs, as 

conceptualized by Simon (2006), are landmarks that a student reaches only after an extensive 

immersion in the major concept being taught. These KDUs cannot be reached by direct 

instruction alone; they have to be reinforced through different experiences in the classroom from 

the teacher and through peers. Pedagogically powerful ideas, as conceptualized by Silverman & 

Thompson, were KDU’s that the teachers would have, and the teachers would need to somehow 

become aware of these KDU’s and use them in their teaching. So, after a teacher would become 

aware of her/his possession of particular KDU’s for a subject, through decentering she/he would 

start to create these pedagogically powerful ideas about teaching. 

After having laid out his theoretical perspective, Groth (2013) goes on to introduce a 

couple of KDUs as they relate to statistics and, more specifically, to the work he was doing with 

his PSTs in a statistics content course. Under “common content knowledge: experimental and 

theoretical probabilities,” Groth theorized that “conceiving of theoretical probability as an anchor 

for predicting long-term behavior is a statistical KDU” (p. 169). This came from the responses 

his students gave when explaining differences between experimental and theoretical probability. 

His students kept concentrating on predicting individual outcomes rather that the long-term 

trends and kept thinking of theoretical probability as just a guess. Another KDU was presented in 

the context of MAD in which responses were solicited about differences of MAD to standard 

deviation. “Conceiving of the ‘typical’ deviation as a measure of spread can be considered a 

KDU” (p. 131). 
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Existing research on PCK has shown that teachers, within statistics, are not adapt at 

responding well to student questions about proportional reasoning (Watson et al., 2008). Watson, 

Callingham, and Donne (2008) interviewed 42 teachers and asked them to solve a probability 

question. The authors then asked the teachers to think of the responses that their students would 

give and how they would use the item in their classroom. The authors found that most teachers 

gave only generic responses to developing instructional strategies, dependent on student 

knowledge. Using a similar instrument, Watson, Callingham, and Nathan (2009) found that more 

than a third of their teachers were quick at judging student responses about data analysis but 

were not able to use those responses to suggest activities to further student knowledge. Another 

third of their teachers only used a handful of specific questions about the task at hand without 

being able to make connections to previous knowledge. In the same group, some participants 

mentioned that the students needed experience with data collection. 

In helping students improve their conceptions of statistics, Godino, Batanero, Roa, and 

Wilhelmi (2008) found that almost half of their participants made vague suggestions about 

improvements to a statistical question and were only sometimes able to use those suggestions in 

the classroom. Only 26% of their participants were able to make general statements and suggest 

improvements. Groth (2014) found that 85% of his participants were able to identify a student 

with a more sophisticated response about which measure of center to use; however, the majority 

of his participants were not able to give specific suggestions to the less sophisticated students on 

improving his understanding. Ijeh (2013) found that most of his participants taught the subject of 

statistics, particularly graphical representations of data, in a step-wise procedural fashion and 

linked that teaching to student misconceptions about graphical displays, analysis, and 

interpreting of scatter plots. 
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As previously mentioned, research in SKT has been lacking, with most of the work done 

with PSTs and little work done with in-service teachers especially in the United States. The work 

done in the United States has concentrated mostly on PSTs (Groth, 2014). Because the CCSSM 

(NGA & CCSSO, 2010) has been adopted as the new implemented curriculum in most states, 

there is a need for research to be done with in-service teachers to understand their knowledge of 

pedagogy. There is also a need for research to understand what component of PCK: teachers 

understanding of their students’ knowledge of statistical concepts, and teachers’ knowledge of 

the best representations to use in teaching statistical concepts, do teachers possess in statistics at 

the middle school and what does that knowledge look like. 

 

Problem Statement and Research Questions 

In the early stages of understanding teachers’ knowledge researches started with observations 

of classroom teaching (Even, 1993; Even & Tirosh, 1995; Wilson, 1994). Later, in lieu of 

observations researchers stated to introduce instruments for measuring teachers’ knowledge of 

mathematics as well as statistics (Ball et al., 2008; Hill et al., 2008; Hill & Lubienski, 2007; 

Watson, 2001). However, as argued in the same publications, these methods have had some 

shortcomings, hence as a field mathematics education has started to use different methods in 

understanding teacher knowledge. One of these methods is animations (comics) (Chazan & 

Herbst, 2012; Herbst & Chazan, 2015; Herbst, Chazan, Chen, Chieu, & Weiss, 2011; Herbst & 

Kosko, 2014). Herbst, Chazan, Chen, Chieu, and Weiss (2011) have argued that animations 

present a unique opportunity in understanding teacher’s knowledge. Following Herbst and his 

colleagues’ recommendations, I will be using Computer-Generated Animations as the main 
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instrument to analyze the characteristics of participating teachers’ knowledge when teaching 

measures of center in middle school. 

The importance and use of statistics has gained momentum in the last 30 years with its 

inclusion in the curriculum (Franklin et al., 2007; NCTM, 1989, 2000, 2006; NGA & CCSSO, 

2010). Hence, it is important for teachers to know how to teach statistics in meaningful ways 

(Batanero, Godino, Vallecillos, Green, & Holmes, 1994; Franklin et al., 2007; Shaughnessy, 

1992, 2007). This means that teachers need to know what conceptions and misconceptions their 

students bring to the classroom environment so that they can correct the misconceptions and 

foster the correct conceptions. Teachers also need to have multiple representations of the 

concepts that they are going to teach so that students will be afforded different examples to relate 

the new concepts to. Also, teachers need to relate statistics to other concepts in mathematics so 

that the transition between the two disciplines can be integrated and seamless. All the concepts 

and knowledge that teachers need to have are part of what Ball and Bass (2003) conceptualized 

as components of PCK. 

There is research that has been put forth regarding what PCK should look like in 

mathematics (Ball & Bass, 2003; Ball & Hill, 2005; Ball, Thames, & Phelps, 2008; Even, 1993; 

Even & Tirosh, 1995; Hill & Lubienski, 2007; Hill, Ball, & Schilling, 2008; Shulman, 1986, 

1987; Wilson, 1994); however, research on what PCK looks like for teaching statistics, other 

than the research previously mentioned (Burgess, 2007; Groth, 2007, 2013; Watson et al., 2008; 

Watson & Nathan, 2010), has been lacking and constricted. Other than Burgess, there is a chunk 

of research missing to tell us what PCK looks like in the environment in which it is being taught. 

In order for PD courses to be designed for in-service teachers, we need to understand the 

knowledge that they bring into instruction. 
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The purpose of this study is to examine a small part of teachers’ knowledge by examining 

their pedagogical content knowledge when teaching measures of center. The reason for the 

concentration in middle school is that it is the first time that teachers, according to the curriculum 

(NGA & CCSSO, 2010), introduce students to the concepts of measures of center and statistics 

itself. The measures of center are important because, as mentioned by Batanero, Godino, 

Vallecillos, Green, and Holmes (1994), the mean is an important subject that is as simple as it is 

difficult for students. As Cai (1998) and Zawojewski and Shaughnessy (1999, 2000) reported, 

students in all grades were able to find the measures of center; however, they were not able to 

discern which measure is better to use for which situation. This shows that students can use the 

algorithm to find these measures, but they do not have the knowledge to relate their choice of 

measure to the shape or context of the data, a major recommendation in the CCSSM (NGA & 

CCSSO, 2010). Therefore, it is important to understand the knowledge that teachers have when 

introducing the measures of center so that we, as educators, can have a baseline when helping 

teachers with future PD. For these reasons, I used the following questions to guide my research. 

1. What characteristics of knowledge of content ad curriculum do middle school 

mathematics teachers exhibit when reflecting on teaching measures of center? 

2. What characteristics of knowledge of content and students do middle school mathematics 

teachers exhibit when reflecting on teaching measures of center? 

3. What characteristics of knowledge of content and teaching do middle school mathematics 

teachers exhibit when reflecting on teaching measures of center? 
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CHAPTER II: REVIEW OF RELATED LITERATURE 

 

Introduction 

With the changes introduced in the curriculum, it is not clear if teachers are prepared to 

teach statistics meaningfully (Batanero, Godino, Vallecillos, Green & Holmes, 1994; 

Shaughnessy, 1992). Batanero et al. (1994) stated that many teachers needed to improve their 

knowledge of the subject matter, ways in which to teach statistics, and improve their knowledge 

of difficulties and errors that students experience. However, as noticed by Hashweh (1987) and 

by Carlsen (1993), in the teaching of biology and physics, teachers with low knowledge of 

content tend to not deviate or change the activities that are presented in books. The same teachers 

also tended to ask mostly recall questions, and tended to reinforce preconceptions and incorrectly 

criticized correct student answers. These shortcomings, point at the teachers’ characteristics of 

knowledge of content and curriculum, knowledge of content and teaching as well as knowledge 

of content and students.  Hence, it is important to place teachers in a position to where they can 

show us what characteristics their knowledge has, so that we can better inform their education 

through professional development and experiences in college classrooms. 

In this chapter, I attempt to give some background information and situate my research in 

relation to work already assimilated by the field. I start this chapter by introducing the term PCK 

from its conception with Shulman (1986) to its later refinement and definition by Deborah Ball 

and her colleagues (Ball & Bass, 2003; Ball & Hill, 2005; Ball et al., 2008; Hill et al., 2008). I 

also include discussions of similarities and differences between the way PCK is theorized in 

mathematics to the way it is theorized in statistics. I share work done by both mathematics 

educators and statistics educators as it relates to the study at hand. Later, I lay out my 
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development of a conceptual framework that I use in this study and recommendations for teacher 

knowledge from curriculum documents and research. 

 

Pedagogical Content Knowledge 

PCK, as identified by Shulman (1986), has been gaining momentum as a legitimate field 

of study for mathematics educators and researchers (Ball & Bass, 2003; Ball & Hill, 2005; Ball 

et al., 2008; Bergess, 2007, 2010; Ebert & Risacher, 1996; Even, 1993, Even & Tirosh, 1995; 

Foss & Kleinsasser, 1996; Groth, 2007, 2013; Hill et al., 2008; Lehrer & Franke, 1992; Shulman, 

1986, 1987; Watson, 2001; Watson et al., 2008; Watson & Nathan, 2010; Wilson, 1994). 

Because of Begle’s (1979) research report that questioned the merits of judging teacher 

performance solely on their content knowledge and content courses taken in college, Shulman 

(1986) introduced the idea that teachers’ knowledge was not just content related but had a 

pedagogical component as well. In his article, Shulman advocated for the existence of a different 

type of knowledge, which he called PCK, on which teacher educators should concentrate their 

efforts. 

For Shulman (1986), subject matter content knowledge not only had to do with the facts 

of the subject but also required the understanding of the structure of said subject. The structure 

was thought of as the different ways that the concepts of the subject were organized and the way 

that truth or falsehood is identified. PCK was thought of as the knowledge that went further into 

the subject matter pertaining to aspects of teaching. PCK consisted of the most useful forms or 

representations of that subject; the most powerful analogies, examples, formulations; and the 

ways of representing the subject to make it comprehensible to others. In Shulman’s opinion, 

there was no single most powerful representation for a subject; hence, the teacher needed to have 
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a plethora of alternative ways of representation derived from experience, research, and practice. 

Another important idea incorporated into PCK was the knowledge of conceptions and 

preconceptions that students brought into the classroom and how the teacher needed to be aware 

when these preconceptions were misconceptions. Knowledge of curriculum was especially a sore 

point with Shulman because he thought that teacher educators failed to prepare their students for 

the coming curriculum. In the following sections of this review, I first introduce the most 

dominant models conceptualizing what knowledge is needed to teach mathematics and statistics 

as well as research on the findings from these models. 

Further elaborating on Shulman’s (1986) original framework, Ball, Thames, and Phelps 

(2008) introduced their “egg” model of mathematical knowledge for teaching (MKT). This 

model was comprised of two equally important areas, subject matter knowledge (SMK) on the 

left and PCK on the right. SMK was comprised of three parts: common content knowledge 

(CCK), specialized content knowledge (SCK), and horizon knowledge. On the PCK side we find 

knowledge of content and students (KCS), knowledge of content and teaching (KCT), and 

knowledge of content and curriculum (KCC). Ball et al. (2008) conceptualized PCK as 

knowledge of students, the knowledge of teaching, and knowledge of curriculum, even though 

more attention was dedicated to the first two concepts. KCS was identified as the knowledge that 

combined knowledge about students and knowledge about mathematics. The authors were very 

careful in not confusing KCS with SCK, so they conceptualized KCS as the knowledge that 

allows teachers to recognize student thought processes and student misconceptions and to 

anticipate what students find confusing and are likely to think about a problem. So, in the 

subtraction problem, the teacher not only recognizes that the answer is correct but is also able to 
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interpret the students’ thinking and find obstacles that impede the student in generalizing the 

method for larger or more complex numbers (Hill et al., 2008). 

The other important part of PCK, KCT, can also be identified in the process of analyzing 

student work (Ball et al., 2008; Hill et al., 2008; Hill & Lubienski, 2007). After the teacher has 

understood the students’ thinking and methodology, he needs to be able to capitalize in this 

teaching moment. KCT allows the teacher to identify the next step in instruction to take the 

student deeper into the content; hence, KCT connects knowledge about teaching with knowledge 

of mathematics. Teachers evaluate the instructional advantages of representations exhibited by 

individual students and then identify the best representations and methodology to model in the 

classroom for maximum results. The last component of PCK, the knowledge of content and 

curriculum, is not as well defined and developed as the other components of PCK. The only 

definition comes from Shulman (1987), who conceptualized KCC as “the grasp of the materials 

and programs that serve as ‘tools of the trade’ for teachers” (Shulman, 1987, p. 8). 

Within mathematics, the research has been abundant in the knowledge that teachers need 

to teach mathematics (MKT; Ball & Bass, 2003; Ball & Hill, 2005; Ball et al., 2008; Hill et al., 

2008; Shulman, 1986, 1987). There has been research on what components of content knowledge 

and what components of pedagogical knowledge teachers need to teach mathematics at the 

elementary level and research on instruments for measuring MKT (Hill et al., 2008). It is easy to 

see, from the abundant scholarship undertaken, why the “egg” model is one of the most 

dominant model in mathematics and why it is still being researched today. However, in statistics, 

it is not easy to pinpoint to a singular model that is widely used to understand SKT; hence, what 

follows is a synthesis of what models exist in understanding SKT. 
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Statistical Knowledge for Teaching 

Although PCK is not the only component of SKT that has been researched (Casey, 2008), 

it is one of the more interesting areas in the education of new teachers. Within this dissertation, 

SKT is defined as the knowledge that teachers need to teach statistics, knowledge that might be 

different from the MKT. “Many teachers need to increase their knowledge of both the subject 

matter of statistics and appropriate ways to teach the subject” (Batanero et al., 1994, p. 528). 

Batanero et al. (1994) made the point that with the rise of interest in the teaching of statistics, 

educators should not lose the focus on helping teachers better themselves by increasing their 

knowledge of both subject matter and pedagogy. As the importance of PCK was gaining 

momentum in mathematics with proponents like Deborah Ball, statistics educators started 

showing interest in mapping out the components of PCK for the teaching of statistics (Burgess, 

2007; Groth, 2007, 2013; Watson, 2001). 

There have been several research agendas introducing frameworks with the intent of 

explaining and describing what PCK for teachers teaching statistics effectively should look like 

(Batanero & Diaz, 2010; Burgess, 2007, 2009a, 2009b; Godino, Ortiz, Roa, & Wilhelmi, 2011; 

González, 2016; Groth 2007, 2013; Watson, 2001; Watson, Callingham, & Nathan 2009). 

However, when it comes to presenting evidence of what teacher knowledge looks like the 

research is fragmented at best (pre- and in-service teachers; Estrella et al., 2015; Groth, 2014; 

Ijeh, 2013; Mercimek & Erbas 2017; Sorto & White, 2004; Wessels, 2014). In this section, I 

introduce some of the most prevalent frameworks hypothesized and used in understanding and 

explaining PCK within statistics, and then I discuss some of the research that shows what 

teachers’ PCK looks like within SKT. 
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Models and Frameworks 

One of the earliest conceptualizations of knowledge for teaching statistics came from 

Watson (2001). Watson created an assessment that would analyze teacher’s knowledge through a 

survey-style questionnaire and a follow-up interview in which the answers were evaluated 

through a hierarchical rubric. This assessment was not specifically designed to measure teacher’s 

PCK, but it was designed with Shulman’s (1987) conceptualization of teacher knowledge as the 

overarching framework and with statistics as its main content (as seen in Figure 3). 

 

 

Figure 3. Summary profile sections and types of knowledge covered. On top, there are the types 
of knowledge that the instrument was assessing, and on the side, there are the 10 sections of 
profiling for the teachers (Watson, 2001). The tick marks are the evidence shown by the teachers 
about their knowledge as it pertains to each section. 
 

As seen in Figure 3, the profile selection is adhering to the major categories that Shulman 

(1987) hypothesized should be included in teacher knowledge. Watson et al. (2008) and Watson 

and Nathan (2010) continued the work started with Watson (2001) in the use of the assessment 

for profiling teachers. Watson and colleagues (Watson et al., 2008; Watson & Nathan, 2010) 

expanded on the protocols used in order to understand teacher’s knowledge of pedagogy when 

teaching statistics. Both articles were tailored toward the understanding of PCK with in-service 
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teachers. Watson and colleagues found that PCK could be conceptualized into four categories: 

recognizes big ideas, anticipates student answers, employs content-specific strategies, and 

constructs shift to general, which they used as their framework for teacher knowledge of 

statistics. 

For Watson, Callingham & Nathan (2009), recognizing big ideas meant the teacher 

would have a clear idea for a sequence of related concepts, showing her/his knowledge of 

content. Anticipating student answers meant that the teacher would recognize appropriate and 

inappropriate student answers, as well as show an understanding of the way students reason 

about statistical concepts. Employs content-specific strategies, entailed the teacher directing 

questions towards clarification and explanations of students’ answers, as well as promptly 

introducing alternative data to bring up similar previous issues. Construct shift to general, meant 

that the teacher exposes differences between similar topics in statistics, makes connections to 

statistical ideas, as well as exposing limitations and misuses of data.   

Groth (2007) used the term SKT in contrast to MKT (Ball & Bass, 2003). In his article, 

Groth explained how statistics was not a branch of mathematics and pointed out the differences 

between the two disciplines. The most poignant difference was about context and how, in 

mathematics, context is just background noise that you must filter through to get the pertinent 

information. However, in statistics context makes all the difference in terms of interpreting 

results and making decisions. Groth also hypothesized about what SKT would look like; the 

main components were common knowledge and specialized knowledge: 

Common knowledge relates to competencies developed in conventional mathematics 

courses, such as computing accurately, making correct mathematical statements, and 

solving problems. Specialized knowledge is developed by carefully attending to 
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mathematical issues and dilemmas that arise in teaching contexts. It relates to such tasks 

as providing understandable explanations, appraising students’ unconventional methods 

for solving problems, and constructing and evaluating multiple representations for 

concepts. (Groth, 2007, p. 428) 

Both categories could have mathematical and nonmathematical components to them. The 

difference was that Groth hypothesized that both mathematical and nonmathematical aspects of 

knowledge had to be activated for many statistical activities.  

Later, Groth (2013) was able to see the benefits of having a more unified theoretical 

perspective with Ball and colleagues (Hill, Ball, & Schilling, 2008) and with the pedagogically 

powerful ideas conceived by Silverman and Thompson (2008). Simon (2006) introduced KDUs 

as a conceptual advance that is needed in order for the student to develop a new concept. He 

thought of KDUs as abilities, not as missing any knowledge that inhibited the students’ 

achievement, and that KDUs may be related to the learning trajectories of the student. Simon 

conceptualized KDUs closer to Piaget’s (1952) levels, which needed to be constructed through 

multiple experiences. Simon was adamant in the contradiction of Vygotsky’s (1978) theory of 

the zone of proximal development: that KDUs could not be acquired through explanation or 

demonstration. 

With his later research, Groth (2013) placed his earlier theory in question by trying to 

rethink the construct of SKT that he had presented previously. Hence, in his new work, Groth 

(2013) understood that his definition of common knowledge was a very close definition to what 

Hill et al. (2008) conceived of as CCK, except that their definition cut through professions, 

whereas Groth’s was ingrained in mathematics. Groth’s definition of specialized knowledge 

contains similar ideas with Hill et al.’s specialized content knowledge, Within KCS, Groth 
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hypothesized his ideas of various representations and unusual student strategies. In Hill et al.’s 

conception of KCS, he also found his ideas of common difficulties that students have in 

understanding a subject. 

 

 

Figure 4. Hypothetical SKT elements and developmental structure. Shows the conceptualization 
of SKT as envisioned by Groth (2013). You can see the components of knowledge of content on 
the left and the components of PCK on the middle and right. 
 

The next model in the conceptualization of SKT is offered by Burgess (2007, 2009a, 

2011), who looked at in-service teachers in the environment of teaching, in the classroom, and 

characterized what PCK looks like. As his main components of teacher knowledge, Burgess 

(2009a) decided to concentrate on CKC, SKC, KCT, and KCS from Hill, Schilling, et al. (2004) 

and Ball, Thames, and Phelps (2008). These four categories were intertwined with the eight 

categories of statistical thinking put forth by Wild and Pfannkuch (1999)—namely; recognize the 
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need for data, transnumeration (transforming data correctly in order to report it), variation 

(uncertainty in decision making), reasoning with models (different models used to make 

decisions), dispositions (that teachers hold pertaining to statistics), investigative cycle, 

interrogative cycle, and integration of contextual with statistical thinking.  

Burgess hypothesized that when teaching statistics, teachers must use all four 

components of MKT while still addressing and keeping in mind the components of statistical 

thinking (see Figure 5). If you look at “common knowledge of content: transnumeration,” 

Burgess hypothesized that this intersection would be the knowledge of content allowing the 

teacher to transform data to make more sense of it and the ability to recognize if a student used 

the correct procedures and rules in transforming the data. 

 

 

Figure 5. Framework for teacher knowledge in relation to statistical thinking and investigation. 
This figure shows the components of knowledge hypothesized by Burgess (2007) with the 
intersections being the components. 
 

Godino, Ortiz, Roa, and Wilhelmi (2011) synthesized models for statistical pedagogical 

knowledge before they introduced their framework for PCK. They started by introducing the 

model laid out by Shulman (1986), then moved on to Hill et al.’s (2008) MKT, and then moved 

to the statistical models laid out by Burgess (2008) and Watson et al. (2008). Even though 
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Godino et al. (2011) recognized that all the previous models for MKT and SKT were useful, they 

also stated that the categories on those models were too general and that there was room for 

improvement and more precise categories. They expanded on the didactical suitability model 

(epistemological and cognitive components) and added an instructional component based on 

social constructivism to construct their new model (as seen in Figure 6). 

 

 

Figure 6. Facets and levels of teachers’ knowledge. This figure shows the six different facets of 
knowledge that teachers must require (horizontal) interacting with four teaching and learning 
processes (vertical; Godino et al., 2011). 
 

Godino et al. (2011) hypothesized that the epistemic facet was the intended and 

implemented instructional meaning for a given statistical content, the cognitive facet explains the 

level of students’ development and understanding of the topic, the affective facet explains 

students’ attitudes and emotions about the content, the media facet explains the technological 

resources available for teaching, the interactional facet explains possible organizations of 

classroom discourse, and the ecological facet is the relation of the topic with the official 

curriculum. On the vertical aspect of this framework, hypothesized that didactical practices 
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explain the actions students take to solve problems, the configuration of statistical objects 

explains the processes that emerge in statistical practices, norms explain the rules and habits that 

make learning possible, and didactic suitability explains the criteria that helps improve the 

learning and teaching as well as the evaluation of said learning and teaching process. 

González (2016) started by laying out the existing research on frameworks for SKT and 

then explained the four major arguments that were considered in in designing of his framework. 

The first argument considered that his framework would have to use the six components of MKT 

introduced by Ball et al. (2008). His second argument was that the six components of MKT 

would have to be redefined for use in statistics. For example, common content knowledge would 

have to be seen as statistical literacy, one of the major goals of statistics education. The third 

argument is that the teachers’ beliefs about teaching and learning of statistics should also be 

considered. The last argument of his framework has to do with tasks used to get teachers 

thinking about their conception of variability. His framework was also followed by an instrument 

used to assess SKT, a pencil-and-paper assessment asking about important ideas in context and 

teaching strategies as well as asking teachers to discuss student thinking. 

Summary. In this section, I have introduced some of the frameworks used in 

understanding what PCK looks like within statistics. Some of the models included are inspired 

and based on Shulman (1986; e.g., Watson, 2001; Watson et al., 2008), others based on work 

done within mathematics by Ball and her colleagues (Hill, Ball, & Schilling, 2008) (e.g., 

Burgess, 2007; Groth, 2013), and others still by looking at existing models and creating new 

ones (e.g., Godino et al., 2011; Groth, 2007). However, there is some consensus: teachers should 

be aware of their students’ understanding, teachers should be able to predict student answers, 



30 

teachers should be able to develop instructional strategies based on student knowledge, and 

teachers should be knowledgeable of the available curriculum. 

 

Research on Teacher’s Statistical Knowledge for Teaching 

In this section, I introduce some of the research that has been brought forth about the 

knowledge that teachers, in-service first then preservice, have with respect to statistics. As with 

frameworks, this section will start with the work done by Watson and her colleagues in 

Australian schools with in-service teachers. Watson (2001) found that when it came to the 

teaching of chance and data, although there were a lot of activity-based lesson plans at the 

primary level, there was almost no evidence of uniformity in curriculum through different 

schools. The opposite was evident at the secondary level; student difficulties were well 

documented, but teachers were reluctant to bring activities that would relate to simulations or 

actual sampling to reinforce theory. Interestingly, the authors found that the major curriculum 

document, in Australia at the time, was only used by a quarter of the secondary teachers. 

Watson et al. (2008) worked with 40 teachers, from Grade 5 to Grade 12 teachers. They 

used a previous instrument (Watson, 2001) with 12 items specifically addressing PCK, using 

Rasch analysis to obtain a measure of teachers’ ability. The Rasch analysis differentiated three 

different groups of teachers based on their ability, with a one-way ANOVA confirming 

significant differences between the groups. The instrument asked teachers a question about odds 

and then asked them to predict student answers (both correct and incorrect) and ways to use the 

items in the classroom. 

In the “low” level (Watson et al., 2008) group, the 14 teachers were only able to predict 

student answers and to use some of the materials in the classroom. Watson et al. presented two 
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teachers who were both at the low level, and their responses showed that they did not have any 

success with responding to student work or student questions about proportional reasoning. At 

the “middle” level, the 19 teachers suggested both correct and incorrect student answers as well 

as found errors and made suggestions to students about several items. At this “middle” level, 

however, teachers were only able to give the same single generic suggestion when using student 

responses to develop ideas for the classroom. At the “high” level, the nine teachers suggested 

both correct and incorrect student responses, focused on the mathematics of proportional 

reasoning; however, some of them still did not earn high grades when using student answers to 

suggest classroom activities. 

Using the same instrument for understanding teachers’ PCK (Watson, 2001), Watson et 

al. (2009) changed their methodology by taking a holistic approach in the analysis of the data. 

Forty in-service teachers, involved in a professional learning project in statistics for middle 

school, were interviewed. The teachers had to consider the variation and information given in a 

pictograph, and they also had to make predication of expectation couched in uncertainty. They 

found that nine teachers could be identified as having a high degree of PCK, 14 teachers were 

classified as medium, and 17 teachers were classified as low. Teachers in the “medium” group 

exhibited knowledge of some of the components of the framework but were not consistent across 

all four major categories of PCK as previously identified. When discussing ways of handling 

student responses, teachers focused on using specific questions about the task at hand and 

commented on the need for students to familiarize themselves with data collection. Teachers in 

the “low” group did not see the big ideas involved with the tasks presented, and they were quick 

at giving judgement on student responses, appropriate or otherwise. 
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Burgess (2009b) conducted a study with four inexperienced primary teachers in their 

second year of teaching. He gave the teachers a teaching unit that had students investigate some 

multivariate data sets. He observed and videotaped the teaching of the lesson; the video was then 

edited to show only noteworthy episodes from the lesson. The teacher and the researcher 

(Burgess) then discussed the lesson, which was also audiotaped for further analysis. These 

videos and audiotapes were the main data source that was informed the profiles of each teacher’s 

knowledge. He found that almost all four teachers had instances in which they showed direct 

evidence of the hypothesized knowledge (Figure 7, solid grey color), indirect evidence 

(checkered pattern), missed opportunities (M) and no evidence of the hypothesized knowledge 

(white solid color). None of the teachers displayed the components for “need for data” because 

all the activities started with the teachers giving students a set of data; also, dispositions were not 

evident because there was no questionnaire to determine them. 

 

 

Figure 7. Summary of Linda’s reaching knowledge. Solid grey shows direct evidence of that 
knowledge component, shaded M shows missed opportunities to show evidence, checkered 
shows indirect knowledge, and unshaded shows no evidence of that component was given. 
 

If you look at “common knowledge of content: transnumeration,” Burgess (2009a) 

hypothesized that this intersection would be the knowledge of content allowing the teacher to 
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transform data to make more sense of it and the ability to recognize if a student used the correct 

procedures and rules in transforming the data. Burgess observed that (as in Figure 7) Linda did 

not show “direct common knowledge of content: transnumeration” because she did not transform 

the data she was given; however, when helping a student, she did help him sort the data, hence 

Burgess was able to observe “indirect common knowledge of content.” 

There also has been research with in-service teachers outside of the United States to give 

evidence of what PCK for statistics looks like (Estrella et al., 2015; Ijeh, 2013). Estrella et al. 

(2015) reported that of the second item, how to get students at a higher level of understanding, 

only 29% of teachers answered correctly, and 70% of teachers had issues with commenting on 

student difficulties about a graphical display item. Graphical displays of data were an important 

topic of the research reported by Ijeh (2013), who found that most teachers taught the topic in a 

step-wise and mostly procedural fashion. From analysis of student work, Ijeh (2013) found that 

learners experienced misconceptions confusing bar graphs and histograms and that some 

experienced misconceptions in analyzing and interpreting scatter plots and labeling the data axis. 

Estrella et al. (2015) found that only 51% of teachers were able to correctly answer a 

transnumeration process of counting to tabular representation task, with only 18% of fourth-

grade and 15% of seventh-grade students answered correctly. The authors hypothesized that this 

lack of knowledge could be explained by the teachers’ lack of study and teaching practice 

regarding this type of content. 

Godino et al. (2008) started by introducing a framework of PCK: 

a) Epistemology: Epistemological reflection on the meaning of concepts to be taught . . .; 

b) Cognition: Prediction of students’ learning difficulties . . .; c) Teaching resources and 
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techniques: Experience and good examples of teaching . . .; d) Affect: Ability to engage 

students’ interest. (p. 1) 

The authors used this previous framework to create a formative cycle to improve their 

participants’ PCK in statistics. There were 55 PSTs that were asked to work on a statistical 

project and then later to carry out a didactical analysis of the project. Two key elements in 

didactical analysis are the epistemic (mathematical content) and cognitive (students’ learning). 

This analysis was designed to increase both the content knowledge and PCK of the prospective 

teachers. Teachers were asked to complete a project on their intuitions about chance with the aim 

of showing usefulness of statistics in checking conjectures and checking intuitions about 

randomness, with the secondary aim of realizing that sometimes intuitions are misleading. The 

authors found that a majority of the PSTs could use elementary statistics concepts, but they had 

issues with statistical variables, used inadequate graphs, and were not able to reach a conclusion 

about their intuitions. Most teachers showed some statistical knowledge but not literacy of 

statistics concepts. 

Godino et al. (2008) used a cluster analysis to identify four levels of knowledge for both 

statistical content and pedagogy. At the first level of content knowledge (60%), the PSTs only 

used their sample (instead of the whole class) as part of analysis, they built incorrect frequency 

tables, and they computed the mean but did not use it to reach a conclusion. At Level 2 (18.2%), 

teachers produced tables and graphs for different statistical variables but did not compare the 

simulated and real distributions. At Level 3 (16.3%), teachers plotted each pair of variables on 

the same graph, facilitating the comparison of distributions, but the comparison was limited to 

the averages without spread. At Level 4 (5.5%), as in Level 3, the comparison of distributions 

was not limited to the averages, but it was extended to the spread. At Level 1 for pedagogical 
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content (47%), PSTs did not apply descriptors and were vague in ways to help student improve. 

At Level 2 (26%), they listed all the components of the didactical analysis but were only 

sometimes able to use them, and improvements, for students, were sometimes specific. At Level 

3 (26%), they applied at least one component of the analysis, made global judgments, and even 

suggested some improvements. The authors concluded that there was a need to improve the 

training of PSTs in statistics. 

Before hypothesizing about what content knowledge within SKT should look like, 

Batanero and Diaz (2010) decided to take a look at the existing literature on content needed in 

the teaching of statistics. The authors found that even though curriculum documents advocated 

for the development of statistical thinking, schools frequently reduced the teaching of statistics, 

and when it was taught, it was with few examples of real-life applications. The authors also 

mentioned that teachers did not consider themselves prepared to help their students with the 

difficulties that they faced. Batanero and Diaz also shared results from research that suggested 

that teachers struggled with the mean and median, incorrectly identified relevant variables, did 

not consider outliers when looking at mean and median, and failed to interpret data distributions 

as a whole. The authors concluded with some activities that could be influential in training 

teachers: promoting collaborative work among PSTs, analyzing student responses strategies and 

difficulties, project work or research projects, and working with technology. 

Like Godino et al. (2008), Groth (2012, 2014), Mercimek and Erbas (2017), and Sorto 

and White (2004) also worked with PSTs. Groth (2012) used writing prompts to help asses and 

develop content and pedagogical knowledge of his students. Groth used SOLO Taxonomy 

(Biggs & Collis, 1982) to evaluate student responses through which he was able to get a clear 

snapshot of his students’ knowledge. In the posttest, Groth identified that at the prestructural 
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level, the students did not exhibit evidence of understanding probability. At the unistructural 

level, the students showed a degree of progress in using probability to help student conception. 

At the multistructural level, students used relevant terminology and relevant aspects of what 

students will do during stimulations in statistics. At the relational level, students added by 

describing how elements of probability can be used to help with statistics. Using LMT and 

CAOS testing for PCK, Groth found significant differences from pre- to post-test. 

Groth (2014) used his theoretical framework (Groth, 2013) to analyze PSTs’ responses to 

student answers to National Assessment of Educational Progress (NAEP) tasks. Groth introduced 

his PSTs to questions and answers from three children taken directly from NAEP website. Groth 

then asked PSTs to rank the answers from least to most sophisticated and then explain what they 

would do to further support the students’ thinking. Using his theoretical framework, Groth 

analyzed PSTs’ thinking and understanding of statistics and was able to identify levels of 

knowledge that the PSTs possessed. 

In the case of content knowledge of the mean and median, Groth (2014) classified his 

PSTs’ responses as seen in Figures 8 and 9. Groth found that of the 20 students, 17 correctly 

observed that the second student was more sophisticated in his answer because he was paying 

attention to the outliers. 

Figure 8. Levels of response to NAEP-based assessment task on mean and median. This figure 
shows the three different levels of responses that Groth (2014) encountered with his PSTs when 

they were analyzing student work. 
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To explain his PSTs’ KCT when suggesting support for a specific student, Groth (2014) offered 

the classification shown in Figure 9. 

 

 

Figure 9. Levels of knowledge of content and teaching apparent in individualized support 
suggested for student 1. This figure shows the four levels of knowledge of content that Groth 
(2014) observed when PSTs were asked to comment on strategies in helping struggling students. 
 

Three of the PSTs described what they thought the students could do to improve without offering 

any specific pedagogical strategies. Seven of the PSTs chose to ask the student to explain in 

more detail. Although asking probing questions can give insight, Groth also warns that such 

questions do not show evidence of how teachers will further the students’ thinking. Three PSTs 

suggested pointing out the outlier to the student, which could lower the cognitive demand of the 

question. 

Sorto and White (2004) used a written instrument and one-on-one interviews to assess the 

teachers’ pure statistical knowledge and knowledge applied to teaching. Within pure statistical 

knowledge, the teachers had to respond to questions pertaining to reading, interpreting, and 

inferring data using a graphical display. They also had to recognize and use the shape of a data 

distribution as well as use and develop measures of center and variability. Within their 

knowledge applied to teaching, PSTs had to respond to student work, responses, and solutions by 

judging correctness or by explaining strategies used by the students. 

Sorto and White (2004) found that PSTs performed better at pure statistical knowledge, 

with 65.72% accuracy, than when they had to apply statistical knowledge to teaching. PSTs 
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perform better at the lower levels of statistical literacy, and at high levels of reasoning and 

thinking, they do progressively worse. Statistical literacy was defined as recognition, 

identification, computation, or basic understanding of concepts; reasoning referred to the ways 

that students reason with statistics; and thinking referred to the application of students’ 

understanding to real-world problems. All teachers found the mean through an algorithm, and 

most teachers were bothered by non-whole-numbers as average. PSTs do not think of what the 

measures of center and spread tell you about the data when trying to find them. When applying 

their knowledge to teaching, PSTs performed worse, at 45.14%, with only a third of teachers 

providing the ideal response of connecting algorithm of mean as balance point. At identifying 

student errors, no teacher received a top score. PSTs made up strategies for median of categorical 

data, and they could not recognize student errors about median or range of categorical data. 

Mercimek and Erbas (2017) worked with 659 preservice middle school teachers in 

Turkey in order to assess their mathematical knowledge for teaching statistics and to identify any 

relations between the components of that knowledge. In that study, Mercimek and Erbas only 

looked at content knowledge and PCK. They took a previous instrument (TEDS-M, Tattoo et al., 

2008) and adapted it for their use. They found that there was a statistically significant difference 

in the content and pedagogical knowledge between third-year and fourth-year scores, with 

fourth-year students receiving better scores. Another significant finding was that CK and PCK 

had a high correlation (r = 78, p < 0.001). They also found that the gain from third to forth year 

was very small, suggesting that teachers are not gaining any new knowledge in the last year of 

their education. 
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Summary 

The key components of the pedagogical knowledge that teachers should bring to the 

teaching of statistics are their KCS, KCT, as well as knowledge of curriculum. However, as 

research shows (Watson et al., 2008), teachers have a hard time predicting student answers 

(correct and incorrect), and when they do have those student answers, they have a hard time 

using said answers to come up with activities to use in the classroom. When it comes to handling 

student responses (Watson et al., 2009), teachers focused on using specific questions about the 

task at hand. As Groth (2014) warned that such questions do not show evidence of how teachers 

will further the students’ thinking, Godino et al. (2008) reported that almost half of their 

participants used vague ideas when helping their students. 

With respect to KCT, Godino et al. (2008) reported that their participants had a hard time 

with statistical literacy and concepts and showed little statistical knowledge. In the same study, 

they reported that only 26% of their participants used activities and made suggestions for 

improvement. Similarly, Ijeh (2013) reported that most teachers taught the topic in a step-wise 

and mostly procedural fashion. As reported earlier, Watson (2001) found that only a quarter of 

the participating high school teachers used the prevailing curriculum document. In primary 

schools, activity-based lesson plans were available, but there was little evidence of coherent 

program planning. All of these studies paint a grim picture of the knowledge that teachers have 

with respect to statistical pedagogy and content. 

 

Development of the Conceptual Framework 

I am conducting this research to find out what the structure of teachers’ knowledge about 

teaching statistics looks like within statistics in middle school. To do this, I look at the statistical 
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knowledge that teachers have based on what is expected of them from research as well as 

curriculum documents. However, finding a theoretical perspective to rely on and to use in this 

study has not been a simple task. PCK is a subject that has been theorized about and researched 

for the last 30 years, and it is a subject that will keep being the center of attention for years to 

come. So, being able to pinpoint the best or most appropriate theoretical perspective to use can 

be a challenge. Since Shulman (1986) wrote his prolific paper, there have been a lot of 

researchers that have put forth models and theories about the construct and components of PCK 

for mathematics (Ball & Bass, 2003; Ball & Hill, 2005; Ball, Thames, & Phelps, 2008; Even, 

1993; Even & Tirosh, 1995; Hill & Lubienski, 2007; Hill, Ball, & Schilling, 2008; Shulman, 

1986, 1987; Wilson, 1994) and PCK for statistics (Burgess, 2007; Groth, 2007, 2013; Watson 

2008). For this study, I chose to use the EGG Model (Hill et al., 2008) because it is a model that 

has endured through the last decade and because it is a model used by other researchers that are 

conducting scholarship in statistics (Burgess, 2009a; Groth, 2013, 2014). This model also gives 

me the ease of understanding how to classify the responses that my participating teachers give, 

where I can easily differentiate the statements offered into statements about students about 

teaching and about curriculum. 

The egg model is divided into two parts: content knowledge and pedagogical content 

knowledge. PCK is partitioned into knowledge of curriculum, KCS, and KCT. These three 

components of PCK will become the three major components of my conceptual framework. But 

I still have to fill in the blanks and define what knowledge of curriculum, or the other two 

components, looks like for the teaching of statistics in middle school as it pertains to measures of 

center. This kind of detail has not been conceptualized in previous scholarship. This is the major 

reason why I cannot use an existing framework, but I have to conceive of my own conceptual 
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framework. All the components of my framework will come from curriculum documents or from 

research done with students or with teachers. 

For the purpose of this study PCK is conceived as being comprised of three different, yet 

overlapping, types of knowledge. Knowledge of content and curriculum will be the knowledge 

of what content the curriculum requires to teach, and how to use it. Knowledge of content and 

students will be conceived as the knowledge of student conceptions, misconceptions, and topics 

of issue. Knowledge of content and teaching will be conceived as the knowledge of different 

strategies to teach, different activities to use to transfer (discover) knowledge in the classroom.   

Within each part, I introduce components that are advocated for in research about what 

this knowledge should look like. For the first part, knowledge of curriculum, I introduce what 

existing curriculum documents have to say about the major ideas that need to be included in 

curriculum. Here, I introduce ideas about the conceptualization of the measures of center, what 

concepts should be introduced first, and what documents say should be related to measures of 

center in the curriculum. Within knowledge of students, I introduce some of the difficulties that 

students have and some of the successes that students have with measures of center. In 

knowledge of teaching, I introduce what research advocates for the teaching of measures of 

center. 

 

Knowledge of Content and Curriculum 

Curriculum was one of the main categories that Shulman (1986) introduced as part of 

what he theorized as content knowledge that teachers have. At that time, Shulman regarded 

educators as “delinquent” (p. 10) for the lack of teaching future teachers about knowledge of 

curriculum. Shulman defined curriculum as the full range of programs designed for teaching a 
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particular subject at a given level. For the purpose of this study I will define curriculum as the 

major ideas and concepts, that are advocated and kept at the forefront of curriculum documents 

(NCTM, 1989, 2000, 2006) as well as standards (NGA & CCSSO, 2010) that have been adopted 

as curriculum documents. In 1989, NCTM published a standards document to establish a 

framework to guide school mathematics. NCTM realized their vision of what curriculum should 

look like, what topics to include, and where to place their priorities by establishing a precedence 

for what a curriculum document should be. From that first standards document, NCTM has 

further explored their ideas about curriculum with consecutive documents in 2000 and 2006, 

later followed by National Governors Association Center for Best Practices (NGA) and Council 

of Chief State School Officers (CCSSO, 2010) with the establishment of the Common Core State 

Standards for Mathematics. 

 

NCTM (1989). In 1989, NCTM published its first curriculum document, Curriculum and 

Evaluation Standards for School Mathematics, with the purpose of establishing a broad 

framework to guide reform in school mathematics. The standards included goals for teaching 

emphasizing the need to create: mathematically literate students, lifelong learners, provide 

opportunity for all students, and to create an informed electorate. They also included goals for 

students: learn to value mathematics, become confident in their ability to do mathematics, 

become mathematical problem solvers, learn to communicate mathematically, and learn to 

reason mathematically. 

As explained by NCTM (1989), the standards were designed to establish a framework to 

guide reform in school mathematics and to make suggestions about what curriculum should 
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include in terms of content. Without including all the details about the standards for middle 

school, the major ideas for probability and statistics (Grades 5–8) were: 

• systematically collect, organize, and describe data; 

• construct, read, and interpret tables, charts, and graphs; 

• make inferences and convincing arguments that are based on data analysis; 

• evaluate arguments that are based on data analysis; 

• develop an appreciation for statistical methods as powerful means for decision 

making. (NCTM, 1989, p. 105) 

The focus of the NCTM (1989) standards for middle school was on the students’ 

exploration of probability and statistics in the real world. The writers of the standards envisioned 

students’ interaction with real-world information in order to understand how data are processed 

and translated into usable information. The writers understood the need for students to cope with 

an ever-changing world of information, and they understood that probability and statistics could 

be that catalyst. They wanted students to understand trends in data and how to use such trends to 

make decisions; also, they wanted students to become active participants of the statistics cycle, 

all the way from articulating questions to the consumption of the results. The authors envisioned 

students interacting with computers in the recording, analysis, and displaying of data. So, the 

standards put forth a picture of an educated and well-versed citizen of the future with statistics as 

one of the tools in his arsenal. 

 

NCTM (2000). There have been revisions and improvements to the standards with the 

publication of the Principles and Standards for School Mathematics (NCTM, 2000). The authors 

understood that in a quickly changing world, the need to understand and use mathematics in life 
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and work would become greater (NCTM, 2000). With this document, the authors outlined the 

essential components of an advanced and quality school mathematics program, emphasizing the 

need for teachers and administrators that were prepared to tackle the challenges to come. The 

document was envisioned as a guide for focused, sustained effort to improve school mathematics 

aiming to: set a comprehensive and coherent set of learning goals for mathematics; serve as a 

recourse for teachers, educators, and policymakers; guide the development of curriculum 

frameworks, assessments, and instructional materials; and stimulate ideas and ongoing 

conversations both at the national and state level about how best to help students understand 

important mathematics. 

NCTM (2000) situated the standards for Data Analysis and Probability as early as the 

third grade all the way up to the twelfth grade. The authors envisioned students moving from 

formulating questions close to their experience, because young children are naturally curious, to 

formulating questions based on current issues and interests, and further to posing questions that 

investigate and explore complex issues. Moving from simple data gathering plans (planning data 

collection and evaluating collection methods) to working with data gathered by others in the 

middle grades and further to understand the purpose of surveys, observational studies, and 

experiments. Developing from the early grades in which data can be organized or ordered in 

pictures to middle school in which data are displayed in bar graphs, tables, and line plots. In later 

grades, students would start to compare the effectiveness of different displays in organizing data 

for further analysis, or presentation, and move on to record and represent data using technology 

in order to analyze and understand the results. 

With respect to measures of center, NCTM (2000) made some simple recommendations 

about what knowledge students should exhibit. With respect to the timing, NCTM (2000) 
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recommended that children as early as the third grade could start learning about concepts of 

statistics and specifically measures of center. In the recommendations for the third to fifth grade, 

the authors emphasized the need for students to see the measures of center in different context, 

and that students needed to build on their ideas of “typical.” The authors recommended that 

students needed to understand what the median told them about the data, and that in Grade 5 the 

best representation of the mean was the balance point. 

In Grades 6–8, NCTM (2000) acknowledged that students did not understand the mean 

well, and they reiterated the fact that using balance point, the mean evens out or balances a set of 

data because the representation of the mean was the best practice. Students needed to see the 

median as the middle of the data. Also, when choosing the best average to represent the data, 

students needed to understand (through modeling) that the mean could be influenced by extreme 

values. 

In high school, the recommendations became more geared toward the procedural 

understanding of the mean, adding the same constant to all observations would change the 

measure of center by the same constant but not the measure of spread, and that claiming that “the 

mean score of a test was 50 percent” (p. 327) could cover several distributions of data. Keeping 

to the theme of choosing measures of center, they recommended that students should recognize 

that the sample mean and median could be greatly influenced by the skewness of the distribution. 

GAISE (2007). The next avenue for the standardization of teaching statistics came from 

the GAISE report (Franklin et al., 2007) that put forth some major areas that students need to 

develop in school. The report is designed as a framework, and as a document to compliment the 

Principles and Standards for School Mathematics (NCTM, 2000), on what to teach and how to 

teach statistics, giving recommendations on what to teach at each level. There are three levels of 
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teaching explained in the framework; the lowest level, Level A, is thought of as the introductory 

level, continuing to Level B and finally Level C as the pinnacle of statistics education of students 

in school. The framework recommends that students start at Level A and then progress through 

the other levels to Level C. At all levels, the students should learn statistics through 

investigations, which, as explained by the authors, will empower students by giving them tools to 

think for themselves and ask intelligent questions, skills required to excel in the modern world. 

The report (Franklin et al., 2007) recommends that at all levels, students should through 

the statistical investigation cycle to: formulate questions, collect data, analyze data, and interpret 

results while focusing on the nature of variability. At Level A, the report recommends that 

teaches pose questions of interest restricted to the classroom, taking census of the classroom and 

designing simple experiments. Teachers should use properties of distributions in context, display 

variability within a group, and observe association between two variables. In the context of 

interpreting results, the report recommends that students do not look beyond the data, do not 

make generalizations beyond the classroom, note differences between two individuals, and 

observe associations in displays. With regard to measures of center, at Level A, the authors 

recommend that students should recognize mode as a way to describe what is typical or 

representative of a distribution. With regards to the mean and median, students are recommended 

to see the mean as a fair share and the median as the middle of the data with 50% of the data 

above and 50% of the data below the median. It is cautioned that students should be careful and 

purposeful in choosing the mean or median to describe numerical data and not categorical data. 

In the GAISE report (Franklin et al., 2007), Level B is conceptualized as the second level 

that students come to with some conception of both summarized data and displaying it for 

analysis. For the purpose of this study, I thought of Level B as the middle school 
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recommendations, which is what this study will be concentrating on. At this level, it is 

recommended that students start posing their own questions for investigation and that they start 

paying attention to differences in the samples chosen to answer the questions. Attention to the 

distribution properties as tools for analysis is another recommendation along with 

acknowledging sampling error, comparing groups in graphical displays, and noting the 

difference between two groups with differing conditions. The conception of the mean is 

recommended to be developed from fair share to balance point. This is done through several dot 

plots showing the original data then changed all to one point, pivot or balancing point, as the 

mean and moving values to the left and right to keep the pivot from tilting in either direction. 

Building from Level A in which median was the middle point, measure of central location of the 

data, the authors use the dot-plot activity to show that the mean also is to be considered a 

measure of central location. 

In Level C, all the previous ideas on the investigative cycle are revisited, but the studies 

are of a deeper statistical nature. At this level, the students are encouraged to develop additional 

strategies for all the four steps of the investigative cycle and to explain their statistical reasoning 

to others. Students are still expected to come up with their own questions to investigate, but at 

this step, they have to take into account the data collection and analysis that will help provide an 

answer. Students are expected to understand what constitutes good practice for different types of 

data collection strategies and identify appropriate ways to summarize and analyze numerical or 

categorical data. At this level, students are expected to use the measures of center as tools for 

their data analysis, but they are expected to have the concepts developed from previous levels. 

The distinction between mean and median is more about the position in the graphical displays 

and not focused so much on which measure to use to represent the data. 
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CCSSM (2010). The next and final curriculum document has a more conventional and 

more gubernatorial pedigree. From the recommendations of Foundations for Success: The Final 

Report of the National Mathematics Advisory Panel (National Mathematics Advisory Panel, 

2008), the Common Core State Standards for Mathematics (NGA & CCSSO, 2010) were born. 

The content of the CCSSM is important because it has been adapted by most states as the 

national curriculum document by which they decide the content in their classes. The 

recommended standards were designed to outline what students should be able to understand and 

be able to do at the end of a particular grade level. Even though the five major strands were never 

the same during the middle grades, probability and statistics was always one of the five. In the 

sixth grade, recommendations were aligned with students developing understanding of statistical 

variability and summarizing and describing distributions. In the seventh grade, the statistics and 

probability strand concentrated on probability, using random sampling to draw inferences about 

populations and to draw informal comparative inferences about two populations as well as 

investigating chance processes and develop probability models. In Grade 8, the students should 

be able to investigate patterns of association in bivariate data. 

CCSSM (NGA & CCSSO, 2010), and its accompanying Progressions (NGA & CCSSO, 

2011) document, has recommendations for data analysis from as early as kindergarten; however, 

on closer review, the recommendations have no connections to statistics or statistical thinking. 

The first instance of recommendations for statistic happen in the sixth-grade standards in which 

students are expected to understand variability, describe distributions, and use graphical displays 

to analyze and represent data. Aside from my bias on the enormity of the burden to sixth-grade 

content, students are expected, through investigations, to understand variability and, through 

graphics, to look for symmetry in the data. 
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At this grade level, students are encouraged to think of the median as the center of data 

and how it can be used to create a box and whiskers plot and consequently the IQR, explained as 

a measure of variability. Connecting statistics to mathematics, the authors expect students to use 

knowledge of fractions to calculate the arithmetic mean, recommending that students think of the 

mean as leveling out or fair share. When comparing mean with median, the authors recommend 

that the mean can be pulled by extreme values and that context should be used in making these 

comparisons. For instances in which the mean is understood as the measure of center, the authors 

recommend using the MAD as the measure of variability; however, when the median is used and 

the data displays long tails, then the IQR should be used as the measure of variability. 

In the seventh grade, students are expected to understand the inherent variability in data 

collection and that random sampling is the best way to avoid bias. With that in mind, the seventh 

grade is designed around the principles of probability in which random sampling and repeated 

sampling will pave the road for better designs in data collection. There are no recommendations 

about the conception of measures of center; however, there are instances in which sample 

statistics, center or variability, are linked to population justified through random sampling. At 

this point, students are also encouraged to think of comparisons of different populations can be 

done through comparison of samples and their statistics. 

Eighth grade recommendations are based on the same ideas of progressing through the 

investigative cycle only more advanced with concentration on associations and data displays of 

bivariate data. Students are pushed to plot bivariate data as points on a plane, investigate 

questions through linear functions, and to build statistical models to explore relationships 

between variables. Still, quantitative data can be represented by its characteristics such as center, 
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variability, and shape, and the comparison, choice, of mean or median should be appropriate to 

the shape of the data distribution. 

Conclusions. From this review of the curriculum documents, there has been a change in 

the way that statistics has been conceptualized from procedures (NCTM 1989) to investigations 

(Franklin et al., 2007; NCTM, 2000; NGA & CCSSO, 2010). The importance of the 

investigative cycle is evident in the mathematics and the statistics envisioned curriculum 

documents in which students are encouraged to ask statistical questions for investigation, to find 

appropriate ways to collect data, to analyze the data, and finally to interpret the findings and 

draw valid conclusions while keeping in mind variability and context. The last three documents, 

reviewed in detail here, all envision a knowledgeable student who is curious about her or his 

surroundings and willing to use technology and to understand the real world in order to become a 

better more informed citizen in our society. 

Numerous researchers (Cai, 1998; Mathews & Clark, 2003; Zawojewski & Shaughnessy, 

2000) have reported that students have issues with the conception of the mean and that students 

can use the algorithm to find the mean but have no conceptual understanding of the mean. In this 

regard, the GAISE report (Franklin et al., 2007), NCTM (2000), and the CCSSM (NGA & 

CCSSO, 2010) have given some recommendations of different conceptions, fair share and 

balance point, of the mean that might help students understand the concept better. Interestingly, 

the authors have also recommended using the algorithm to find the mean by combining all data 

values and sharing fairly. The authors (Franklin et al., 2007) also recommend that the algorithm 

can be introduced to the introductory students at Level A and then later on in Levels B and C the 

students can develop a more sophisticated interpretation of the mean. The CCSSM (NGA & 

CCSSO, 2010) mentioned that for an odd number of data points, the median is the middle 
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number and that for an even number of data points, the average of the two middle values would 

be the median. 

The review has also revealed that all four of these curriculum documents agree with 

Makar (2014), who understood that the aim of statistics was for students to think of the average 

as representative of the data. Both NCTM (2000) and the NGA and CCSSO (2010) advocated for 

the analysis of the shape of the distribution when comparing the mean and median. NCTM 

recognized that students would have issue choosing the mean versus median and that students 

needed to see that the mean can be influenced by extreme values, with the NGA and CCSSO 

(2011) encouraging the analysis of the shape of the distribution when deciding not only the 

measure of center but also the measure of variability. Echoing the same sentiment, the GAISE 

report (Franklin et al., 2007) reiterated the need for students to understand the proper use of the 

mean and median as appropriate measures for numerical but not categorical data. 

Knowledge of curriculum and its components were derived from the available literature 

and curriculum documents (NGA & CCSSO, 2010; Franklin et al., 2007; Kader, Jacobbe, 

Wilson, & Zbiek, 2013; NCTM, 2000; Strauss & Bichler, 1998). The first two components focus 

on the “correct” way of conceiving the meaning of measures of center. Both curriculum 

documents (the GAISE report and the NCTM standards) present the mean as a leveling of data or 

fair share. These are two of the most prevailing conceptions of the mean and the best ways for 

the students to understand the mean before we introduce the algorithm of add-and-divide. In both 

documents, there are examples that teachers can use to introduce the mean to students. 

As per CCSSM (NGA & CCSSO, 2010) recommendations, students should understand 

that mean, median, and mode are ways of representing the data using a single number (p. 43). 

Another recommendation that made it to the framework was the idea that teachers should make 
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connections between measures of center and variability (p. 43). The idea of the mean being 

sensitive to extreme values comes forth in the fourth recommendation: that students should relate 

the choice of measure of center to the shape of the distribution (Kader et al., 2013; NCTM, 200; 

NGA & CCSSO, 2010). This is a major concept that students need to understand; it is also a 

major concept of which students usually tend do not have the right conception (Tarr & 

Shaughnessy, 2003; Zawojewski & Shaughnessy, 2000). What follows is a table showing the 

components of the framework and where they came from. 

 

Table 1 

Expected Framework Components of Knowledge of Content and Curriculum 

Code Description 

C1 Students should understand the median as a central point (Franklin et al., 2007). 
C2 Students should have a conceptual understanding of the mean: 

fair share, balance point (Kader et al., 2013; NCTM, 2000). 
C3 Students should understand that mean, median, mode is a way of representing the data 

using a single number (NGA & CCSSO, 2010). 
C4 Students should relate the choice of measure of center to the shape of the distribution 

and context the data were gathered (Kader et al., 2013; NCTM, 2000; NGA & CCSSO, 
2010). 

C5 Students should make connections between measures of center and variability through 
IQR and MAD (NGA & CCSSO, 2010). 

 

Knowledge of Content and Students 

Research on knowledge of students, related to measures of center, has concentrated 

around three major areas: conception of average (Mokros & Russell, 1995; Russell & Mokros, 

1990; Leon & Zawojewski, 1990; Watson & Moritz, 2000), conception of the algorithm for 

finding the average (Cai, 1998; García Cruz & Garrett, 2008; Zazkis, 2013), and which measure 

of center best represents the data (Cooper & Shore, 2008; García Cruz & Garrett, 2008; 
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Zawojewski & Shaughnessy, 2000). This part of the review is organized into three parts in which 

I try to present the research in a way that shows what knowledge students have and in what 

knowledge they might need more instruction. 

Conception of average. Leon and Zawojewski (1990) and Watson and Moritz (2000) all 

have concluded that students encounter difficulties with the conception of the average. The 

prevalent answer, among third to fifth graders, when asked about the average was bafflement, 

whereas with sixth or higher grade students, the answer was median or mode (Watson & Moritz, 

2000). In their work with 145 fourth, eighth, and college grade students, Leon and Zawojewski 

(1990) found that the statistical aspects of the mean were better understood by students than the 

abstract and representative aspects. Mevarech (1983) similarly found that the mean as a 

representative value was a difficult concept to grasp, but the mean as a computational construct 

was easier for students to understand. 

Mokros and Russell (1995) asked their participants to place prices in nine bags of 

potatoes chips so that the “typical or usual or average” price would be $1.38. The next question 

asked students to construct the distribution while taking into account data that were already 

placed by the interviewer. The authors found five dominant approaches to solving the problem: 

average as mode (5 students), average as algorithm (3 students), average as reasonable (4 

students), average as midpoint (6 students), and average as mathematical point of balance (2 

students). The authors found that students who thought of the average as mode constructed a 

distribution that was built around the center and that these students had issues constructing a 

distribution when the average value was not allowed to be part of the data. These particular 

students were not flexible with their problem solving and, at times, created algorithms and 

procedures that made little sense. Similar findings were previously reported by Russell and 
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Mokros (1990) that students in this category (modal) even though they knew the algorithm (add-

and-divide) no student tried to use it. 

Students that thought of the average as an algorithm were successful when they used the 

algorithm properly (Russell & Mokros, 1990); however, of the three students using this strategy, 

none used the algorithm effectively (Mokros & Russell, 1995). Russell and Mokros (1990) found 

that all three students using this strategy became confused, tangled in numbers, usually found 

unreasonable measures, and had issues reversing the algorithm to construct the data. These 

students understood that finding the average had to do with adding up and dividing, and they 

were eager to use this algorithm, but they “overtrusted the algorithm, and, blinded by this trust, 

they were willing to give up what they knew about reality” (p. 311). 

Students in the reasonable group used values that were based on their understanding, and 

they had a concept that the average was representative of the data (Mokros & Russell, 1990). 

Their concept was not connected to a precise construct, but the authors still believed it a critical 

foundation for students’ future development. These students indicated an average centered 

roughly within the rest of the data, made good use of the algorithm, and intertwined mathematics 

with real life (Russell & Mokros, 1995). Similarly, Makar (2014), working with 26 age eight 

students, found that the concept of reasonable helped students with their conception of average. 

However, this endorsement comes with the caveat that although reasonable conception of 

average is a good start, the aim of statistics should be to move the students toward a more 

aggregate reasoning such as: modal clump, signal and noise, balance point, and fair share. 

Students that conceived of the average as midpoint used strategies that were flexible and 

understood the place of the average in the distribution, and their strategies were such that mean, 

median, and mode were the same (Mokros & Russell, 1990). Most students in this group did not 
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use formal definitions but constructed their distributions to appear symmetrical, even at times 

suggesting that the median could be used as a shortcut for finding the mean. These students knew 

the algorithm for finding the mean and used it to check their answers; however, it seemed 

simpler to think that a higher value in the data had to be balanced by a smaller value. There was, 

however, a drawback to this method, the authors feared that these students would choose the 

middle of the range (between 0 and 9, it would be 5) rather than the middle of the data, finding 

the median. 

As discussed by Cai (1998), another conception of the average is the leveling off of the 

data. In his study with 250 sixth graders in the Pittsburg metropolitan area, Cai, with the help of 

a graph, asked students to find the number of hats needed to be sold the next day so that the 

average would be seven. Students used the average formulae and guess and check to find the 

answer; however, a small percentage (6%) of the students used the leveling off method. These 

students argued that because the average needed to be seven then the additional hats (over seven 

from each day) could be moved to the day in question, and then they would find the number of 

hats that still needs to be sold so that the day would have seven hats sold. Cai argued that the 

students were leveling off the data, so the average was 7. 

Knowledge of algorithm. As documented by Russell and Mokros (1995), students know 

the algorithm to find the mean, but they also documented that students do not have a conceptual 

knowledge of that algorithm. The fact that no student was able to use the algorithm backwards to 

construct the distribution could suggest that students only have a limited procedural knowledge 

of the algorithm for finding the mean. Both Cai (1998) and Watson and Moritz (2000) reported 

that the majority of sixth grade students knew the “add-and-divide” averaging algorithm or at 
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least were familiar with it, but only half (or fewer) of them were able to apply the algorithm to 

solve more complex problem-solving tasks. 

Several researchers have commented that for students from elementary school (Cai, 1998; 

Capraro, Kulm, & Capraro, 2005; Mokros & Russell, 1995; Watson & Mositz, 2000) to college 

(García Cruz & Garrett, 2008; Mathews & Clark, 2003; Pollatsek, Lima, & Well, 1981), dealing 

with the mean is a computational rather than a conceptual act. When asked to find the typical 

value of data presented in graph form, 134 sixth-grade students failed to use the graph but felt 

that the algorithm was more important and that the graph was useless (Capraro et al., 2005). 

When working with high school students, Zazkis (2013) found that when asked “what is the 

mean,” half of the students responded with just description of the algorithm, showing a lack of 

conceptual understanding. Similarly, Mathews and Clark (2003) reported that their college 

students could only find the mean through the algorithm with no conceptual understanding. 

Working with 186 undergraduate students, Cooper and Shore (2008) confirmed that only 44% of 

students were able to find the mean when data were presented in bar graph form, noting that 

students had difficulties maintaining the link between values on the horizontal axis and 

corresponding frequencies. 

Problems using the algorithm for finding the mean led Strauss and Bichler (1998) to 

investigate which properties of the average do students understand: (a) the average is located 

between the extreme values; (b) the sum of the deviations from the average is zero; (c) the 

average is influenced by values other than the average; (d) the mean does not equal one of the 

values added; (e) the average can be a fraction that has no counterpart in physical reality; (f) 

when one calculates the average, a value of 0, if it appears, must be taken into account; and (g) 

the average value is representative of the values that were averaged. In their study, the authors 
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included a total of 80 Israeli students ages eight, ten, twelve, and fourteen. For each property (a 

total of 8) the authors asked the children individually to answer five questions in story format. 

Here is an example of a story problem for Property A: 

Story medium for discontinuous quantity. "The children in a class decided to have a party 

at the beach. Everyone brought potatoes to put in the bonfire for a snack during the party. 

Yael brought the most potatoes—3. When they were ready to be eaten, the children 

decided to hand out all of the potatoes so that everyone would have the same number. 

When they were handed out, each child received 4 potatoes. Do you think this could 

happen? Why do you think this could [could not] happen?" (p. 69) 

It was reported that students performed poorly with Properties B, F, G. Because they could not 

ask an appropriate question, Property E was emitted from the data. 

Strauss and Bichler (1998) found that few children in each age group could conceptualize 

why the sum of the deviations was equal to zero and that the most used correct explanation was 

that the surplus should equal the deficit. With respect to Property G—the average is 

representative of the values that were averaged—the authors found that this was the most 

difficult property for students to understand. No 8-year-olds were able to answer the question 

related to Property G, and only 25% of 10-year-olds, 60% of 12-year-olds, and 65% of 14-year-

olds were successful. The lack of justifications prompted the authors to believe that students had 

difficulty understanding the task. Similarly, García Cruz and Garrett (2008), when working with 

college students, confirmed issues with Property G. They reported that no student showed 

relational understanding of the algorithm, failing to exclude outliers when finding the mean. 

With respect to Property F—when one calculates the average, a value of zero, if it 

appears, must be taken into account—the students were as troubled as with Property G, with less 
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than half the students correctly answering this question. The most prevalent justification was that 

"you don't have to take the zero into account because when you add or subtract, you don't add or 

subtract the zero." (p. 77). Similar results were reported by Mevaresh (1983) when working with 

college students and by Mooney (2002) when working with sixth graders. Mevaresh reported 

that 30% of students thought that 0 was the identity element and that when added to the scores, it 

would not change the mean (p. 419). On the other hand, Mooney (2002) reported that students 

used flawed procedures when finding measures of center and that one student ignored a data 

point of 0 when calculating the mean. 

It would be expected that if students have issue with the computation of the mean, then 

students surely will have issues with calculating the weighted mean (Gattuso & Mary, 1998; 

Mokros & Russell, 1995; Mevaresh, 1983; Pollatsek et al., 1981). When working with 37 

undergraduate students, Pollatsek, Lima, and Well (1981) found that a large proportion of 

students did not understand the concept of the weighted mean when asked the following 

question: 

A student attended college A for two semesters and earned a 3.2 GPA (grade-point-

average). The same student attended college B for three semesters and earned a 3.8 

GPA. What is the student’s GPA for all his college work? (p. 192) 

Students either added the two means and divided by two or added the means and divided by five 

semesters. The authors went so far as to say that “knowledge of the computational rule may 

inhibit the acquisition of more adequate (relational) understanding” (p. 202). Similar findings 

were reported by Mevaresh (1983), whose students, at a rate of 65%, thought that the average 

was a closed operation, getting the weighted means questions wrong. Gattuso and Mary (1998), 

when working with high school students, reported that students invented false formulas when 
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working with weighted means and that similar issues with ignoring weights of data were 

encountered in every problem. 

Although all previous authors reported issues with calculations, Russell and Mokros 

(1990) and Mokros and Russell (1995) reported issues with their students’ conceptions. Students 

that used the add-and-divide algorithm were generally successful; however, this strategy led 

others to confusion, hopeless entanglement in numbers, and unreasonable measures. The authors 

commented that even when the weighted mean was correctly found, the students did not believe 

that you could find the overall average because average was thought of as an approximation. 

Mokros and Russell (1995) reported that they could see a student “giving up what she knows 

about the world in order to apply a procedure that resulted in unreasonable (and 

unrepresentative) results” (p. 29). 

Mean vs. median. This title is not meant to conjure visions of war; however, it does 

cause most students to cringe because this is a question (which measure of center best represents 

the data) that students have trouble answering (Cooper & Shore, 2008; García Cruz & Garrett, 

2008; Zawojewski & Shaughnessy, 2000). Makar (2104) suggests that one aim in statistics is for 

students to think about average as representative of a data set when comparing groups. Mean vs. 

median asks the students to make a decision on which measure of center better represents the 

data, and although the mode is missing from the title, it does not mean that the mode is not part 

of this debate. As early as 1986, question items about statistics have appeared in the National 

Assessment of Educational Progress (NAEP), and as reported by Zawojewski and Shaughnessy 

(2000), the percentage of these items is increasing. This assessment is used to measure the 

progress of students at fourth, eighth, and twelfth grade in mathematics. According to 

Zawojewski and Shaughnessy (2000) and Tarr and Shaughnessy (2007), these assessments have 
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always included questions about measures of center, with the choice of mean or median as best 

representative of the data as a persistent presence among the questions. 

There were five questions in the 1996 NAEP that pertained to the choice between mean 

and median to represent data (Zawojewski & Shaughnessy, 2000); of these five, only the last two 

asked students to justify their responses. In the first three questions, only 22% of 8th graders and 

46% of 12 graders were able to find the mean from a frequency distribution. Similar difficulties 

with graphical displays of data were reported by Cooper and Shore (2008) and Capraro, Kulm, 

and Capraro (2005), whose students thought that the algorithm was more important that the 

shape of the data in the display. On the second question, only 31% of Grade 8 and 33% of Grade 

12 students responded correctly when prompted to find the median of nonsequential numbers. 

Similar findings have been found for PSTs as well: 25% of the teachers in Groth and Bergner’s 

(2006) study did not mention ordering data to find the median. 

The third question in the 1996 NAEP (as reported by Zawojewski & Shaughnessy, 2000) 

prompts students to choose the mean versus median, with 19 % of 8th and 28% of 12th graders 

being able to answer the first multiple-choice question. On question four, explain your thinking, 

only 2% of 8th graders were able to correctly answer, and on the fifth question, only 4% of 12th 

graders were successful. The authors hypothesized that when faced with the choice of mean or 

median, students would choose the mean without regard to context or distribution. Taking a 

sample of 200 responses, the authors found that students believed that the mean was the better 

choice regardless of the data, that the mean was what they considered average or typical, or that 

the mean was more accurate. 

In their study of the 2003 NAEP, Tarr and Shaughnessy (2007) reported similar findings 

to Zawojewski and Shaughnessy (2000) with a couple of difference. The 2003 NAEP 
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assessment: had increased the number of data and analysis questions by one, had larger emphasis 

on computation, and included only one question asking the students to explain their thinking 

when choosing the typical value of the data. On the multiple-choice question, the eighth-grade 

students went from 20% accuracy to 19% accuracy, a trend that followed the 2000 NAEP results. 

On the explanation question, the students had a 4% accuracy in 1996 and 2000 but had increased 

to only 5% by 2003. In this study, Tarr and Shaughnessy documented issues with outliers: 

Students still chose the mean even though the median would be a better choice, cementing the 

idea that students prefer the mean over the median. 

Conclusion. Two different curriculum documents (NCTM, 2000; NGA &CCSSO, 2010) 

and one curriculum framework specific to statistics (Franklin et al., 2007) were analyzed for their 

recommendations about what and how to teach measures of center in statistics at the middle 

school. Although the question of “which measures of center to teach” was not the issue, what 

knowledge students needed to have was the main focus of this synthesis. It was unanimously 

agreed that the median should be thought of as the middle of a data set and that the mode could 

be used early on as a typical value of the data. It was more difficult to get agreement on how to 

teach and conceptualize the mean. Although the CCSSM only gave computational reasoning as 

the conception of the mean, both Franklin et al. (2007) and NCTM (2000) gave at least one other 

way that students could think of the mean other than the algorithm. Franklin et al. conceptualized 

the mean as the fair share, whereas NCTM (2000) thought of the balance point as the best 

practice. 

Another conclusion was the acceptance that students would have issue choosing an 

appropriate measure of center to describe the distribution of the data. In this aspect, only NCTM 

(2000) was able to give a concrete method on how to tackle the issue, and they did it by trying to 
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get students, through modeling, to see that the mean was heavily influence by extreme values. 

These conclusions make the choice of topics for my vignettes a little easier, because it seems that 

I have to have a vignette that tackles the issue of which measure of center to use. A vignette 

needs to bring up the conflict between choosing the mean or the median with numerical data. 

Another overarching idea for a vignette needs to be the conception of the mean, having teachers 

think about the best practices while introducing the mean. Also, a couple of vignettes need to 

contrast the algorithm for finding the mean to the balance point and to the fair share. 

All components came from my review of literature and curriculum documents, and as 

seen in Table 2, every recommendation has a citation. Most of the components are stem from the 

misconceptions that students have about the mean and nature of data. If students had the right 

conception of the mean as fair share, balance point, evening out, then there would be no issue 

with considering an observation of 0 in the calculations or accepting the mean when it is not 

representative of the data. The reason that knowing the mean procedurally is in this list is 

because procedures need to be able to be reversed. They can be forgotten if not practiced, so if 

the student does not have a correct conception of the mean, then the procedure alone is not 

enough. If the procedure is all the student knows about the mean, then they are not able to 

answer simple questions about reversing the procedure (constructing a distribution when given 

the number of data and the mean) or justifying why one measure of center is better than another 

for a certain data distribution (Mokros & Russel, 1995; Tarr & Shaughnessy, 2003; Zawojewski 

& Shaughnessy, 2000). 

What follows KCS is the knowledge that teachers should have about their students’ 

thinking and learning of the content. For this study, KCS is the ability of teachers to identify 

what conceptions, misconceptions, or issues students have about the content and being able to 
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identify ways and strategies that students will use in answering questions. Keeping these ideas in 

mind, Table 2 shows my conceptualization (components) of what KCS is all about. 

 

Table 2 

Expected Framework Components for Knowledge of Content and Students 

Code Description 

S1 Students tend to think of minimums and maximums as outliers (Kader et al., 2013). 
S2 Students tend to ignore 0 in the data set when computing measures of center 

(Mooney, 2002; Strauss & Bichler, 1998). 
S3 Students tend to not order data before finding the median (Groth & Bergner, 2006; 

NCTM 2000). 
S4 Students tend to use the mode in the beginning to represent typicality (Franklin et 

al., 2007). 
S5 Students tend to ignore mean when it is not part of the data (Strauss & Bichler, 

1998, Cooper & Shore, 2008). 
S6 Students tend to have difficulty calculating weighted means (Gattuso & Mary, 

1998; Mokros & Russell, 1995; Mevaresh, 1983; Pollatsek et al., 1981). 
S7 Students tend to only know the mean procedurally (Cai, 1995; Cai, 2000; Mokros 

& Russell, 1995). 

 

Knowledge of Content and Teaching 

This part of the framework will focus on recommendations about how statistics should be 

taught from the perspective of curriculum and policy materials as well as the knowledge that 

teacher’s exhibit on the topic of measures of center. The same curriculum materials that have 

made recommended about what students should know, also introduce some recommendations 

about how the subject should be taught and what is expected of the teachers (NGA & CCSSO, 

2010; NCTM, 2000). With the introduction of the GAISE report (Franklin et al., 20007) and the 

release of a joint position statement from ASA and NCTM (2013), the statistics education 

community has offered recommendations and augmentations to both the CCSSM (2010) and 

NCTM (2000) recommendations. The ASA released the Statistical Teacher Education (SET) 
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report, designed as a companion to the MET II (Conference Board of the Mathematics Sciences 

[CBMS], 2012), that had direct implication for teachers. The MET II had identified statistics 

preparation of teachers as an area of concern, a feeling that was echoed by Batanero, Burrrill, 

and Reading (2011), suggesting that teachers are not likely to be prepared to teach statistics at 

levels suggested by the GAISE report (Franklin et al., 2007). 

Recommendations. With respect to the GAISE report (Franklin et al., 2007) the authors 

acknowledged that statistics is a relatively new subject and that many teachers may not have the 

necessary knowledge to teach it. The authors also mentioned that teachers do not clearly 

understand the difference between statistics and mathematics and what role context plays in 

doing and teaching statistics. Hence, the framework was designed to provide a conceptual 

structure for the teaching of statistics that gave a coherent picture of the curriculum. The main 

methodology for teaching the concepts of statistics was through the investigative cycle: 

• formulate questions that can be addressed with data and collect, organize, and 

display relevant data to answer them; 

• select and use appropriate statistical methods to analyze data; 

• develop and evaluate inferences and predictions that are based on data; and 

• understand and apply basic concepts of probability. (Franklin et al., 2007, p. 5) 

The progression of the ownership of the investigative cycle was something that was spelled out 

in the report, with teachers having a more direct role at Level A and progressing toward a more 

passive role in Levels B and C. The report suggested that students act as the collectors of data in 

Level A but that teachers can help students take advantage of their innate curiosity and help them 

formulate statistical questions for investigation. Another recommendation, at the early stages, 

was for teachers to capitalize on natural occurring errors, when collecting data, to help students 
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speculate about the impact on the final results. Because the authors suspected that teachers might 

not be prepared for some statistical procedures, they offer examples on simulations and other 

difficult concepts. 

As a direct reaction to the creation of MET II (CBMS, 2012), the ASA–NCTM 

Committee released the SET report (Franklin et al., 2015) not only as a companion but also as a 

supplementary resource. Franklin (2014) commented that the ASA–NCTM felt that the MET II 

had not gone deep enough on their recommendations for teaching of statistics. Even though there 

were some recommendations, they were concentrated on the teaching of mathematics, so SET 

was conceptualized as a detailed source for statistical pedagogy with a better map toward 

understanding of the evolution of statistical topics and concepts from K–12. Because the writing 

team for SET was headed by the same researchers as the GAISE report, SET was designed to 

build on existing K–12 standards as recommended by the GAISE report, the NCTM standards, 

and the CCSSM. 

The authors of SET (Franklin et al., 2015) suggested that there were three different goals 

when designing the document: to reach the appropriate audience for teacher preparation, to make 

recommendations and provide details for content and pedagogy, and to make recommendations 

for improving the training of teachers. The intended audience for the document was 

mathematicians and statisticians, mathematics educators, and policy makers. As reported by 

Franklin (2014), the writing team (Franklin et al., 2015) took the following six major 

recommendations from MET II  (CBMS, 2012) as a beginning foundation for their work. 

1. Prospective teachers need mathematics (statistics) courses that develop a solid 

understanding of the mathematics (statistics) they will teach. 
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2. Coursework that allows time to engage in reasoning, explaining, and making sense of 

the mathematics (statistics) that prospective teachers will teach is needed to produce 

well-started beginning teachers. 

3. Throughout their careers, teachers need opportunities for continued professional 

growth in their mathematical (statistical) knowledge. 

4. All courses and professional development experiences for mathematics teachers 

should develop the habits of mind of a mathematical thinker, such as reasoning and 

explaining, modeling, seeing structure, and generalizing. Courses should also use the 

flexible, interactive styles of teaching that will enable teachers to develop these habits 

of mind in their students. 

5. At institutions that educate teachers, teacher education must be recognized as an 

important part of a mathematics (statistics) department’s mission and should be 

undertaken in collaboration with mathematics (statistics) education faculty. More 

mathematics (statistics) faculty need to become deeply involved in PreK–12 

mathematics (and statistical) education by participating in preparation and 

professional development for teachers and becoming involved with local schools or 

districts. 

6. Mathematicians (statisticians) should recognize the need for improving mathematics 

(statistics) teaching at all levels. Mathematics (statistics) education, including the 

mathematical (statistical) education of teachers, can be greatly strengthened by the 

growth of a mathematics (statistics) education community that includes 

mathematicians (statisticians) as one of many constituencies committed to working 
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together to improve mathematics (statistics) instruction at all levels and to raise 

professional standards in teaching.  (Franklin, 2014, p. 3) 

As with the GAISE report, SET (Franklin et al., 2015) recommended that the teaching of 

statistics should be done thorough the statistical problem-solving process so that statistics topics 

could be developed through meaningful experiences. Staying with meaningful experiences, SET 

recommends that teachers preparation courses should be taught with an emphasis on active 

engagement and that lecture is not appropriate as a primary mode of instruction. With respect to 

pedagogy, the report emphasized the importance of connecting concepts in statistics with other 

areas in mathematics and how concepts in middle school built on elementary understanding. It is 

a little disconcerting that the report also recognized that at that time, there were no institutions 

offering courses specifically designed for preservice or in-service elementary teachers. 

A more direct recommendation was that teachers  

develop pedagogical content knowledge necessary for effective teaching of statistics. Pre-

service and practicing teachers should be familiar with common student conceptions, 

content-specific teaching strategies, content-specific teaching strategies, strategies for 

assessing statistical knowledge, and appropriate integration of technology for developing 

statistical concepts. (p. 14) 

Following that, the authors recommended that teachers should attend to common 

misunderstandings that students have with regards to statistics and develop strategies to address 

students’ conceptions. Further, it was recommended that teachers have pedagogical knowledge 

to assess students’ levels of understanding and plan for the steps needed to be taken to advance 

and develop students’ statistical thinking. 
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More precisely, and more pertinent to the teaching of statistics in middle school, the SET 

report (Franklin et al., 2015) gave some specific recommendations on the teaching of measures 

of center. In the problem-solving cycle, analyze data, the teachers were encouraged to recognize 

and use appropriate numerical summaries to describe characteristics of the distribution for 

quantitative data, such as mean or median for describing center, and range and IQR or MAD to 

describe variability. Also, teachers should recognize that the shape of the distribution, for 

quantitative data, influences the numerical summary for center and that the median is resistant to 

outliers. Keeping to the theme of comparison, teachers should realize that distributions are 

compared with respect to similarities or differences in center, shape, and variability and that the 

context of the original question is paramount in the comparison. 

Following the recommendations for each grade level, the SET report (Franklin et al., 

2015) gave examples of what an activity that brings up all the concepts previously discussed 

would look like. In the elementary example, it was expected that the teacher would help the 

students in writing a specific statistical question to investigate. The teacher was then expected to 

facilitate the data collection process by helping students determine how data would be collected 

and design an appropriate and feasible experiment. In analyzing data, the teacher was expected to 

use graphical displays and numerical summaries to help students identify patterns present in the 

variability pertinent to the question at hand. In the last step of interpreting results, teachers 

should help students using the results to answer the question investigated. In this example there 

was an example of the data collected, so the SET report gave actual recommendations for that 

specific situation and different ways to look at the data with graphical displays and numerical 

summaries. 
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The recommendations put forth by the ASA and NCTM joint policy paper (2013) were 

not as detailed as the SET or GAISE reports; however, they encompassed every stakeholder in 

the education of PSTs and continued education of in-service teachers. The paper emphasized the 

growing importance of statistics as a scientific field of study, and that teachers must have deep 

knowledge and understanding of both content and pedagogy. The paper recommended 

supporting in-service teachers by their administrators through opportunities for PD, and support 

by professionals creating PD to model effective teaching pedagogies and deeper understanding 

of statistical concepts, both boosting their knowledge of content, statistical thinking, and problem 

solving. For preservice-teacher educators, recommendations revolved around creating courses 

that familiarize future teachers with pedagogies appropriate for the classroom, as outlined by 

policy documents. Similar recommendations were given for faculty members who teach statistics 

and for state departments of education. 

Teacher knowledge of content. As mentioned by Russell and Mokros (1990) teachers 

have similar knowledge, or lack thereof, that their students have. This part of the review will 

concentrate on teachers’ (both preservice and in-service) knowledge and conception of the 

average and its incarnations as mean, median, and mode (Aemah, Asiedu-Addo, 2014; Begg & 

Edwards, 1999; Callingham, 1997; Gfeller, Niess, & Lederman, 1999; Groth & Bergner, 2006; 

Leavy, O’Loughlin, 2006); knowledge of the algorithm (Chatzivasileiou, Michalis, Tsaliki, & 

Sakellariou, 2011; Jacobbe, 2008); and the conflict that arise deciding on which measure of 

center better represents the data (Jacobbe, 2012). 

Conception of the average has been tested in two different ways: directly by asking 

participants to find the average from a set of data (Callingham, 1997; Chatzivasileiou et al., 

2011; Jacobbe, 2008) and indirectly (Mokros & Russell, 1990, Leavy & O’Loughlin, 2006; 
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Russell & Mokros, 1995) by asking participants to create the distribution once they are given the 

average. These two different methodologies give different results for what teacher’s knowledge 

looks like, but they offer similarly gloomy prognosis on the state of teachers’ content knowledge 

of measures of center. 

When directly asking participants to find a mean, median, or mode, researchers have 

found an appreciation of the add-and-divide algorithm without finding any evidence of 

conceptual understanding (Aemah & Asiedu-Addo, 2014). With 140 Ghanaian PSTs in two 

consecutive academic years, the authors found that most students could use the algorithm to find 

the mean of the data; however, when given the mean and asked what it meant, as many as 60% 

of students gave wrong answers, and less than 3% of students described the average as a 

representative value for the data set. Begg and Edwards (1999) asked their participants (22 

elementary in-service teachers and 12 PSTs): “What is average” and “what comes to mind when 

you think of average?” (p. 3). Results suggested a general lack of familiarity with the terms of 

mean, median, mode and suggested that there was a difference between the groups with PSTs 

coming out on top. With recognition of the mean, 55% of in-service and 67% of PSTs had the 

correct conception, with the mean only 33% and 83%, respectively, and mode only 37% of in-

service and 75% of PSTs. 

Similarly, when Groth and Burgner (2006) asked 46 PSTs to discuss similarities and 

differences between mean, median, and mode, they found that eight of them gave answers that 

only contained definition-telling, no strategies or comparisons between the measures. In their 

analysis, the authors thought of those eight PSTs’ answers as unistructural responses, at the 

multistructural level (21 PSTs) added a vague notion that mean, median, and more were tools 

utilized in analysis of data. At the relational level (13 PSTs), the authors saw responses that also 
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included recognition that those were measures of center of data or what is typical of the data in 

some manner. At the highest level, extended abstract (three PSTs), responses included a 

discussion about when one measure of center would be better than another. 

Indirect methodology was first conceived by Mokros and Russell (1990) and Russel and 

Mokros (1995) and expanded upon by Leavy and O'Loughlin (2006). Connections between 

Mokros and Russell and Leavy and O'Loughlin come in the identification of the strategies that 

participants (teachers) used in constructing the distribution. Although Mokros and Russell (1990) 

indicated four main strategies for solving the problem, the Leavy and O'Loughlin (2006) only 

identified three different strategies. However, there are similarities in the way that participants 

used mean to construct the distribution. When Mokros and Russell identified the first strategy as 

"average as mode,” Leavy and O'Loughlin used "strategies based on some manipulation of the 

mean algorithm.” From the excerpts, it can be seen that both groups of students used the mean as 

the mode and median and constructed the distribution by adding numbers around the mean. 

Because Leavy and O'Loughlin (2006) did not prompt the participants to not use the 

mean as a value of the distribution in the first task, they only had 3% of responses that did not 

use the mean, with 88% correct responses. In the second task, results changed from 88% to only 

64% correct answers. Incorrect responses increased from 5% in the unrestricted task to 16%, and 

the number of participants who did not attempt the task rose from 7% to 20%. An interesting 

finding was that it may be concluded that the understanding of mean as “middle” was certainly 

more dominant than the understanding of mean as “balancing point.” The notion of the mean as 

the middle of a distribution in which values were distributed evenly around the mean was 

demonstrated in 26% of the responses. 
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Knowledge of the algorithm is an important subject and has been researched by many 

(Begg & Edwards, 1999; Callingham, 1997; Chatzivasileiou et al., 2011; Jacobbe, 2008). 

Working with 130 Greek in-service elementary school teachers, Chatzivasileiou, Michalis, 

Tsaliki, and Sakellariou (2011) used Strauss and Bichler’s (1998) eight properties (previously 

explained in this review) to understand teachers’ knowledge. However, where this study differs 

is that the methodology used was that of Mokros and Russell (1995) in which they asked a 

similar question to the potatoes chip problem, asking teachers to create a distribution when the 

average was given. The authors confirmed the findings that Strauss and Bichler (1998) reported 

with 12- to 14-year-olds: that 26% of these teachers had similar difficulties when a value of 0 

was introduced in the data. The authors reported that their findings implied that teachers, even 

though they could apply the algorithm, had conceptual weakness with understanding of average 

as a measure that summarizes data that is representative of the values. The replies indicated that 

teachers were familiar with the terminology but had difficulties in using measures of center to 

solve real-life situations. 

Working with 100 PSTs and 36 in-service middle and high school teachers, Callingham 

(1997) asked his participants to find the average of a measurement data set with one clear outlier. 

The author found that only one teacher mentioned the outlier in calculating the average and that 

two teachers had eliminated the lowest and highest observations, competitive diving 

methodology, when finding the average. It is disconcerting that four teachers found a mean 

outside the range of values and made no attempt to correct their mistake. That fact prompted the 

author to suggest that these teachers had little understanding of the meaning of their calculations 

but applied the procedure without taking into account the question or the answer (Jacobbe, 

2008). Similar findings were reported by Begg and Edwards (1999): that all teachers showed 
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understanding of the algorithm but either partially understood it or did not notice mistakes in its 

application by students. 

Choosing the best measure of center is a concept that has its own recommendation for 

both teachers and students as well as a good chunk of the literature on the understanding of the 

conception of the average (Callingham, 1997; Groth & Bergner, 2006; Zawojewski & 

Shaughnessy, 2000). In the work that I just introduced from Callingham (1997), it is interesting 

that none of the teachers, when choosing the average of data with a clear outlier, chose to find 

the median; instead, they all chose to find the mean. Similarly, Jacobbe (2008) reported that 

when asked to comment on the differences between the mean and median, two of the three 

teachers could not explain what these measures represented, with one of them not even realizing 

there was a difference between these measures of center. 

Similar findings to Callingham (1997) were reported by Chatzivasileiou et al. (2011). 

When asked to choose the method that gave the more accurate results for measure of center, only 

33% of teachers chose the mean while excluding outliers. With 25% of the teachers choosing the 

mean of all values, 16% the mode, 13% the more detailed value (where all values had a one digit 

after the decimal, the chosen value had two digits after the decimal), and only 9% of 130 

teachers chose the median of the data as the average. While working with the results from the 

National Assessment of Educational Progress (NAEP), Zawojewski and Shaughnessy (2000) 

found that when given a choice, eighth- and 12th-grade students chose the mean over the median 

without consideration of the distribution of the data. 

Conclusions. It is easy to despair and to throw one’s hands up and say that teachers are 

just not prepared to teach statistics, and the evidence would surely support such claims. 

However, I see that there is a movement toward getting teachers better prepared, which is 
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evident from the ASA–NCTM collaboration on the Joint Position Paper and the publication of 

the GAISE and SET reports. So, from the recommendations, it is clear that statistics should not 

be taught as separate algorithms or just as lectures and that statistics should be taught through 

investigations and the use of the problem-solving process. Both elementary and middle school 

teachers need to have a better understanding of the concepts behind the measures of center, and 

they also need to be better prepared through pedagogy. Teachers need to learn what conceptions 

their students have, how best to improve students learning, and what strategies would best work. 

This review of teachers’ knowledge helps me understand the kinds of vignettes that I 

have to include in order to try to understand their knowledge of pedagogy. It seems realistic to 

think that a vignette needs to bring up the question of representativeness of the mean and what 

better way to do that than to use the Mokros and Russell (1995) ideas and use a vignette to create 

a distribution given the typical value. It would be easy to see that a prompt would have to ask 

teachers how we can change the problem to get at the misconception of mean as mode. I want 

the teachers to suggest not being able to use the mean as a point in the data. The idea of using a 

vignette to bring up the conflict between mean and median needs to happen, and also the 

inclusion of 0 as one of the points in the data, to bring up the issues both teachers and students 

had with Property F from Strauss and Bichler (1998). The concept of weighted means was well 

documented with the students, and it came up with the teachers, even though less often, so a 

vignette that brings up the calculation of the weighted mean should be part of the vignettes. 

This study was designed to understand what pedagogical knowledge middle school 

teachers bring to the teaching of statistics. Aspects of teachers’ KCS will be solicited through 

questions about student misconceptions and solving strategies. Aspects of teachers’ KCT will be 

brought up, analyzing procedural and conceptual teaching and talking about specific strategies 
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for teaching. Knowledge of curriculum will be analyzed through curriculum questions in the 

focus group interviews. All this is done to get a clear picture of what PCK in statistics looks like 

with in-service teachers, something that has not been done in the United States. 

These components were taken directly from the literature, curriculum documents, and 

recommendations in which the prevailing content was the investigative process. Starting with the 

GAISE report (Franklin et al., 2007), the main recommendation for the teaching of statistics was 

through “data collection design, exploration of data, and interpretation of results should be 

emphasized in statistics education for statistical literacy . . . [which] are heavily dependent on 

context” (p. 9). Franklin et al. (2007) recommended that the teaching of statistics should revolve 

around the investigative process: formulate questions, collect data, analyze data, and interpret 

results. From those recommendations come the first set of components of my framework. I 

concentrated on the first two levels because that is when measures of center are introduced and 

because those levels coincide with teaching in the elementary and middle school 

recommendations. 

It is logical to think that the recommendations that were put forth in the GAISE report 

(Franklin et al., 2007) would coincide with and be supported by the later recommendations from 

the SET report (Franklin et al., 2015). Hence the last two components speak to the point that 

teachings statistics should be through the investigative cycle while keeping in mind that teachers 

should always make connections to other areas of mathematics and that real data should be used. 

Making connections to other areas of mathematics would be beneficial in students realizing that 

statistics is related to mathematics and to give students a way to scaffold their learning from 

something that they are already familiar with. Real data would allow the students to be more 
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involved (active learning) and invested in the results and the recommendations of the 

investigation. 

KCT is the knowledge that combines the knowledge the teacher has about teaching and 

their knowledge about the content (statistics). For this study, KCT will refer to the teaching 

strategies (types of questions, activities, examples, statements) that teachers use during 

instruction. The creation of these components was easier because there are several documents 

that advocate for the teaching of statistics (CCSSI, 2010; Franklin et al., 2007, 2015; Kader et al., 

2013; NCTM, 2000). What follows in Table 3 is the conceptualization of the framework for 

KCT. 

 

Table 3 

Expected Framework Components of Knowledge of Content and Teaching 

Code Description 

T1 Teach statistics through the investigative process. 
T1a - Formulate Questions 
T1b - Collect Data 
T1c - Analyze data 
T1d - Interpret results 
T2 Connect statistics to other areas in mathematics. 
T3 Relying on exploration of real data. 
T4 Making effective use of technology and assessment. 

 

Expected Statistical Knowledge for Teaching Framework 

What follows is the complete framework for the conceptualization of PCK needed for 

teaching measures of center in middle school. I have to note that this might not be all the 

knowledge needed nor is it the only knowledge needed to teach. However, this framework is 



77 

derived from the research, which means that this is the knowledge that I examine in relation to 

the expected knowledge for teaching statistics. 

 

Table 4 

Expected Statistical Knowledge for Teaching Measures of Center 

Code Description 

Knowledge of Curriculum 
C1 Students should understand the median as a central point. 
C2 Students should have a conceptual understanding of the mean: fair share, 

balance point 
C3 Students should understand that mean, median, mode is a way of representing 

the data using a single number. 
C4 Students should relate the choice of measure of center to the shape of the 

distribution and context the data were gathered. 
C5 Students should make connections between measures of center and variability. 

Knowledge of Content and Students 

S1 Students tend to think of minimums and maximums as outliers. 
S2 Students tend to ignore 0 in the data set when computing measures of center. 
S3 Students tend to not order data before finding the median. 
S4 Students tend to use the mode in the beginning to represent typicality.  
S5 Students tend to ignore mean when it is not part of the data. 
S6 Students tend to have difficulty calculating weighted means. 
S7 Students tend to only know the mean procedurally. 

Knowledge of Content and Teaching 

T1 Teach statistics through the investigative process. 
T1a - Formulate Questions 
T1b - Collect Data 
T1c - Analyze data 
T1d - Interpret results 
T2 Connect statistics to other areas in mathematics. 
T3 Relying on exploration of real data. 
T4 Making effective use of technology and assessment. 
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Research on Animations 

As computing power (capturing, viewing, and sharing videos) has grown and become 

more sophisticated, so have the ways that teacher educators use videos in their practice 

(Danielowich, 2014). Videos have been incorporated from PD programs (Borko, Jacobs, 

Eiteljorg, & Pittman, 2006), methods courses (Gaudin, Flandin, Ria, & Chalies, 2014; Liston, 

2015; Santagata & Guarino, 2011), and computer learning environments (Meyer, Lampron, & 

Gazé, 2014) to the field of teacher noticing (Jacobs, Lamb, & Philipp, 2010; Star, Lynch, & 

Perova, 2011; Star & Strickland, 2008). Primarily, videos have been used in two different ways: 

as an artifact to be analyzed and as a tool to help develop knowledge. In the subsequent 

paragraphs, I synthesize the research on videos and explain the natural progression from videos 

to computer-generated animations for use in research. 

Videos as tools to be analyzed have been used since the Third International Mathematics 

and Science Video Study (1999; Hiebert et al., 2004), which gave video evidence of different 

teaching styles around the world. Jacobs, Lamb, and Philipp (2010) used video clips of teaching 

to study the noticing of children’s mathematical thinking through the eyes of K–3 teachers. 

Kersting, Givvin, Thompson, Santagata, and Stigler (2012) used classroom video clips of 

fractions to analyze teachers’ usable knowledge. Konig et al. (2014) presented video clips to be 

analyzed and interpreted by teachers with the goal of confirming that video analysis was as good 

as paper-and-pencil tests to assess general pedagogical knowledge. Similarly, Liston (2015) used 

video of a PST’s lesson to confirm the potential of videos and the “Knowledge Quartet” (p. 3) in 

framing teacher education programs. 

Videos have also been used widely in teacher education programs, be it PD or methods 

courses. Meyer, Lampron, and Gazé (2014) used videos, in a distant learning teacher training 
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program, to study the evolution of the teachers’ interaction with each other when analyzing 

videos. Santagata and Guarino (2011) examined ways that they used videos to develop 

elementary PSTs’ knowledge through teaching. Santagata and Guarino commented that the main 

purpose was for teachers to learn to appreciate the complexities of students’ thinking and ability 

with mathematics and that videos were a great vehicle for such teaching. Borko, Jacobs, 

Eiteljorg, and Pittman (2006) used videos as a tool to foster productive discussions about 

teaching in a PD program. In this program, the videos were from the participating teachers’ 

classroom and were used to create a community in which teachers felt comfortable discussing 

their own teaching and learning from others’ feedback. In a similar spirit, Danielovich (2014) 

used videos of teachers themselves teaching, to provide support for PSTs and to advance their 

thinking associated with goals they had for their own practice. 

It has been argued that videos are a great way to elicit teachers’ knowledge in general and 

pedagogy in particular (Kersting, 2008; Kersting, Givvin, Sotelo, & Stigler, 2010; Liston, 2015). 

These authors have argued that analyzing videos can be as powerful, if not more so, than the 

results that are achieved through the Learning Mathematics for Teaching (LMT; Ball et al., 2008; 

Hill et al., 2008; Hill & Lubienski, 2007) items alone. Another leap comes from Herbst, Chazan, 

Chen, Chieu, and Weiss (2011), who argued that comic-based representations of teaching can be 

powerful substitutions of videos, in seeing the mathematics taught in the lessons that were 

observed, allowing PST’s to explore decisions made in the classroom while teaching and 

supporting teachers in acting out classroom situations. Furthermore, Herbst et al. argued that 

comics could enable a high degree of control over the content as well as the possibility of 

highlighting issues that might not show up in most videos. 
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In their research, Herbst and colleagues (Chazan & Herbst, 2012; Herbst & Chazan, 

2015; Herbst & Kosko, 2014) have argued that comics can be used instead of videos in analyzing 

and helping teachers develop knowledge. The authors argue that comics allow the researcher to 

craft a situation that would otherwise not be found in videos. Another issue that was brought up 

by researchers in teacher noticing, teachers being distracted by situations other that the 

mathematics being assessed, can be alleviated through comics. Star, Lynch, and Perova (2011) 

and Star and Strickland (2008) found that PSTs were able to improve their noticing of a 

mathematics classroom; however, they still had issues with noticing tasks and with the actual 

mathematical content being discussed. Keeping in mind the ideas of Herbst and colleagues, I am 

using a comic, CGAs, in order to elicit teachers’ knowledge of pedagogy. As Herbst advocated, I 

am using comics because it gives me the opportunity to control the narrative and what teachers 

pay attention to. These CGAs concentrate on eliciting different aspects of teachers’ PCK when 

introducing the measures of center in middle school statistics. 

 

Chapter Summary 

The literature review is designed for me to give some evidence of the need for this study. 

I started this chapter by discussing where we, as researchers, started with the idea of PCK 

(Shulman, 1986). I discussed how Shulman did not think that content knowledge was the only 

knowledge needed to teach school mathematics. That mantle was taken by Deborah Ball and her 

colleagues at the University of Michigan, who later conceptualized the Egg Model (Ball & Bass, 

2003) for the knowledge needed to teach mathematics and called it MKT. This model showed 

the two major components of MKT: knowledge of content and PCK. 
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Later on, when conceptualizing the knowledge needed to teach statistics, researchers like 

Groth (2007) gave some evidence about why statistics was different from mathematics and that 

maybe the PCK models for teaching mathematics might need to be reconceptualized for the 

teaching of statistics. Several models (Batanero & Diaz, 2010; Burgess, 2007; Godino et al., 

2011; González, 2016; Groth 2007, 2013; Watson, 2001; Watson et al., 2009) have been put 

forth for what SKT should look like, and again knowledge of content and PCK for teaching 

statistics are major components. 

After a discussion of what all these models look like, I put forth my argument as to why I 

needed to create a framework that took the major components of PCK from Ball and Bass (2003) 

and the research present for teaching statistics. As Groth (2013) and other researchers have 

concluded, the framework for PCK (Ball & Bass, 2003) needs to be adapted to statistics, which 

is what I did with my conceptualization of the expected statistical knowledge needed to teach 

measures of center framework. I gave evidence of the curriculum recommendations put forth by 

research, and I laid out the research on the knowledge of measures of center that students have to 

support the components of the framework. I also have given evidence of what knowledge 

teachers have and the ways that research and other documents recommend that statistics be 

taught in school mathematics. That research has given birth to the components of the framework 

on teacher KCT. What I hope to have done with this chapter is to give some evidence supporting 

the need for this study and the decisions that I made that directed the methodology of this study. 
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CHAPTER III: METHODOLOGY 

 

Introduction 

In the previous chapter, I have highlighted some of the literature and, thus, situated this 

study in the context of PCK as it relates to statistics in middle school. With this study, I sought to 

understand the PCK that teachers bring to the teaching of statistics in middle school, specifically 

the introduction of measures of center. This chapter provides descriptions of the data sources, the 

methods used to analyze the data, and the rationale behind these decisions. I used a case study 

design in which the data were analyzed using qualitative methodology to look for themes and 

patterns. 

 

Research Paradigm 

My research paradigm for this study will be a postpositivist approach (Ernest, 1994). The 

field of mathematics education has been experiencing a paradigm shift in the last quarter century. 

We have moved away from the positivist approach of scientific research and random samples in 

order to validate our research and toward a more holistic view of research (Schoenfeld, 2007). 

With my research, I reveal a glimpse of the reality that the teacher experiences in the classroom 

through their interpretation and criticism of classroom situations. The teachers will have the 

opportunity to reflect on their own teaching, consider their students’ knowledge, and be exposed 

to at least one different interpretation of the measures of center that they might use in their 

classroom. Within this paradigm, I am not trying to present generalizations about the subject of 

my query; however, I am trying to give one possible vision of the reality of teaching statistics in 

middle school. 
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Participants 

In this study, I used purposeful sampling (Ernest, 1994) because I was looking for middle 

school teachers of mathematics who had taught statistics at least once in their career. The sample 

of teachers was derived from several school districts in the Midwest. All teachers volunteered for 

the study. Teachers were certified to teach middle school, and most of them had a specialization 

in mathematics, which was not required. I did not differentiate on the perceived competency of 

the teachers. Two different methods were used to solicit teachers to take part in the study. An 

email was sent asking for teachers who had taught the subject of statistics at least once who were 

interested in taking part in the study. Interested teachers then received a consent form to fill out 

and confirm their participation in the study. I also solicited participants at a mathematics 

conference for in-service teachers. 

The sample included eight teachers (see Table 5). Five of these teachers were solicited 

for participation at a mathematics teacher conference, one was just starting her graduate studies 

at a Midwestern university, and two were solicited from an email invitation sent to middle school 

teachers in the Midwest. Two of the teachers did not experience any coursework including data 

analysis during their undergraduate studies, three of these teachers did not have any methods 

course in their education that included data analysis, and three of them had not had any PD that 

included data analysis. The teachers were given a $30 Amazon gift card for participating in the 

online CGA portion of the data gathering. Only three of the teachers were available to take part 

in the second portion of the study, the semi-structured individual interviews, and they were again 

compensated for their time. 
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Table 5 

Responses to Initial Survey Questions 

 
Taught at  
least twice Content courses Methods courses 

Professional 
development 

Angela Yes Yes No No 
Jonathan Yes No No Yes 
Susan Yes No No No 
Jennifer Yes Yes Yes Yes 
Monika Yes Yes Yes Yes 
Brenda Yes Yes Yes Yes 
Miranda Yes Yes Yes No 
Kasy Yes Yes Yes Yes 

 

Procedure 

The data that were analyzed in this study were collected from the participants in three 

different stages, not every teacher participated in all three stages. The first stage of the data 

collection was the initial survey, which was designed to get the teachers thinking about the 

subject of statistics and to gather some background data (as shown in Table 5); all eight teachers 

completed the initial survey. The second (main) data source was a set of seven computer-

generated animations (CGAs), which all eight teachers completed. The last data source was the 

individual interviews, which only three teachers were able to complete. After I finished gathering 

data from the main data source, I took 2 weeks to look at the data available so that I could better 

design the questions in the individual interviews. For the first two stages, initial survey and 

responding to seven CGAs, the teachers could have been finished in one session; however, the 

interviews were conducted at least 3 weeks after the initial survey because of scheduling 

conflicts, as well as to give time to the researcher to conduct a cursory analysis of the data. This 

analysis was used to inform the questions that were used in the semi-structured interviews.  
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Instruments 

In the initial survey, aside from the background questions, I also included three additional 

questions (see Appendix B for the complete script). This initial questionnaire was designed to 

solicit teachers' knowledge of content, students, and teaching. The first question asked teachers 

“What major ideas do you want to bring across when teaching measures of center to your 

students?” This question was designed to get teachers thinking of important content and 

curriculum ideas that they would want their students to remember when leaving the classroom. 

The second question asked teachers “What challenges, have you seen, or do you expect your 

students will have in learning the content?” This second question was designed not only to get 

teachers thinking of their students’ struggles but also to bring up any persisting misconceptions 

that their students have. The last question asked: “How have you, or how do you plan to address 

those challenges?” In keeping with PCK ideas, this question prompts teachers to talk about their 

KCT by discussing ways they have addressed issues with teaching statistics. 

As mentioned above, the main source of data collection was responses to prompts from 

seven CGAs. These animations were designed to present teachers with several situations that 

could be encountered in the classroom. Animations were used because it gave me the 

opportunity to present teachers with the exact situation that I wanted with no distractions. Each 

animation starts with the teacher posing a question and giving students time to solve the 

question, and then students present solutions and pose their own questions. Once the animation 

ends, the teachers are prompted to answer questions designed to solicit knowledge related to 

curriculum, students, and teaching. One prompt asks teachers to evaluate which students has the 

most sophisticated answer, soliciting their KCS. One prompt asks teachers to respond to specific 
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student comments, soliciting their knowledge of students (recognizing student strategies) and 

their knowledge of teaching (responding with teaching strategies). 

The last data gathering opportunity came from the post-CGA responses in the form of the 

semi-structured interviews. An interview protocol was designed to ask the teachers about the 

three major components of the framework. This was done by reminding the participants of their 

responses and asking for clarifications or additions. It was seen fit to not repeat all the responses 

to the videos because there would arise the need to see all the videos again. So, I created one 

more video with three distinct sections, which were designed to bring up some of the more 

interesting situations encountered in the CGA’s, but the context was changed a little to not seem 

repetitive. In the first section, the teacher presents two very different distributions with the same 

mean and median, and then a student makes the observation and asks how this could be possible. 

All three teachers were asked if they had encountered the situation in their teaching and, if so, 

how they handled it. 

The second section asked the students to create a distribution when the mean was known. 

Again, there were two questions: “Have you ever tried this activity in your classroom,” and 

“How did or would your students answer this question?” The last section of the video introduced 

the students to 11 pieces of data representing the number of books that students read during the 

summer. A student quickly calculates the mean, and the teacher then introduces two more 

students (the first student has read eight books), and she asks: “How many books should this last 

student have read in order for the mean to stay the same?” The participants again were asked if 

they had done this activity in the classroom; then, they were asked how their students answered 

or how would their students answer. 
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Development of Computer-Generated Animation Protocol 

In this section, I introduce the different steps for creating the main instrument for data 

collection, including design and piloting. The main data collection instrument was developed in 

three steps: writing the script for the vignettes from research literature, creation of CGAs, and 

two piloting cycles. The vignettes were designed with the idea that the teacher in the animation 

would pose a question or an activity, and the students would respond to the questions. The 

prompt that are used after each vignette were specifically designed with the intention of 

assessing different aspects of teacher knowledge with regard to the teaching and learning of 

measures of center. The problems posed, as well as the students’ comments, were typical of 

examples from research on students’ knowledge of statistics (Cai, 1998; Russell & Makros, 

1990; Strauss & Bichler, 1998). A complete transcript of all vignettes with their corresponding 

prompts is available in Appendix A. 

In the first vignette, the teacher first introduces a set of data and then introduces a 

procedure for finding the mean, and uses the data to find an answer, then students are given data 

and asked to repeat the procedure to independently find an answer. The first vignette was divided 

into three portions in which the teacher introduced the procedures finding mean, median, and 

mode. The reason for the introduction of this style was so that teachers could have the 

opportunity to negate, or validate, this style of teaching and to discuss how they themselves 

taught the subject. The prompt, asked in all three portions of this vignette, asked the teachers to 

“comment on differences or similarities between the way you introduce the measures of center 

(mean, median, mode) and the way the teacher in this video did.” 

The content, of the second vignette was to discuss measures of center as “typical” instead 

of mean, median, mode. In this vignette, the teacher introduces data gathered from the students 
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(shoes) and ask students to find the typical weight. The data are not ordered, and at the end, there 

is a piece of data that seems like an outlier. One of the students finds the mean of the data, and 

another student eliminates the supposed outlier (with no comment on identifying the outlier) and 

finds the mean. A third student eliminates the smallest and largest data points and then finds the 

mean, and the fourth student, who considers the outliers, chooses to use the median (wrongly 

identified). Lastly, the first student comments on his confusion about always using the mean 

without consideration of distribution. Student responses and issues with the content were 

consistent with previous research (Tarr & Shaughnessy, 2003; Zawojewski & Shaughnessy, 

2000). The corresponding prompts were: 

1. Please identify which student or students seem to be struggling with the idea of measures 

of center and explain why. 

2. How would you help these students improve their conception (please talk about each 

child individually)? 

In the third vignette, the teacher gives data (again gathered from students) and asks 

students to find the representative number of pets for the class. The student responses are the 

main focus of the vignette, with issues related to the concepts of not including 0 in the 

calculations and not accepting a mean that is not representative of the data. In this vignette, 

students are also struggling with choosing the best measure of central tendency, with Sallie not 

accepting the mean because it was a rational (2.375) number that was not representative of the 

data and Joey calculating the mean without including a piece of data (0 pets for a student). All 

these issues and struggles are derived from the literature on students’ knowledge of measures of 

center (Cai, 1998; Russell & Makros, 1990; Strauss & Bichler, 1998; Tarr & Shaughnessy, 

2003). The corresponding prompts were: 
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1. How would you respond to Sallie's comment? 

2. How would you respond Joey's question about whether to include 0 in the calculation of 

the mean? 

In vignettes two and three, the prompts were designed to solicit teachers’ KCS, by identifying 

weak responses, and to solicit their KCT, by identifying strategies to help students. 

The fourth vignette was specifically designed with the goal of introducing teaching styles 

that were discussed in the literature. The fourth vignette introduced the idea of mean as fair share 

(NGA & CCSSO, 2010; Progressions, 2013; NCTM, 2000). The teacher allocates a set number 

of cubes (7, 6, 10, 9), representing money, to each of four students then asks the students to 

redistribute the cubes so that all had the same amount (8). The corresponding prompts asked: 

1. What concept of measures of center would you connect this activity to? 

2. Explain how you would make that connection. 

The fifth vignette highlighted the struggles that students have when calculating weighted 

means (Gattuso & Mary, 1998; Leavy & O'Loughlin, 2006). The teacher introduces a situation in 

which four men and two women are in an elevator, gives the average age of the men and the 

women, and then asks the students to find the average age of the people in the elevator. The 

prompts following this vignette asked the teachers how they would respond to specific student 

answers. The reasoning behind the prompts was for teachers to talk about their knowledge of 

teaching and to volunteer ways to help the students. Another reason was also for teachers to 

exhibit their KCS, by recognizing that some students had wrong conceptions. 

The sixth vignette asked a question adapted from the literature: If you have seven boxes 

of pencils with a mean of 15 pencils, what seven numbers could represent the number of pencils 

in each box? Students’ initial answers were also taken from the literature, with students 
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constructing the distribution modally (all seven observations were 15) or symmetrically (12, 13, 

14, 15, 16, 17, 18, 19). The prompts asked the teachers to comment on students’ thinking. The 

second part of this vignette followed the situation from Makros and Russell (1995), asking the 

students what they would do if the value 15 was not allowed to be used. The two prompts that 

followed this part of the vignette asked teachers to help students with the new development. 

The last vignette introduced a distribution (Figure 10) and its mean of $13.60, median 

$12, and mode as $11. The students were asked to decide which measure of center would 

appropriately represent the data. 

 

 

Figure 10. Distribution graph for CGA 7. Graph showing a distribution presented to the teachers 
in the seventh CGA. It shows how many students reported a given allowence. 
 

Issues with choosing the correct measure of center were identified by the literature (Tarr & 

Shaughnessy, 2003; Zawojewski & Shaughnessy, 2000). The corresponding prompts are: 

Prompt 1: Please identify which student/students seem to be struggling with the idea of 

measures of center, and explain why. 

Prompt 2: How would you help these students improve their conception (please talk about each 

child individually)? 

The first prompt was designed to get participating teachers talking about the students’ 

knowledge, conceptions, and responses individually, soliciting their knowledge of content and 
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students. The second prompt was designed to get teachers discussing ways to help students better 

understand the concepts of measure of center, this prompt was designed to solicit the teachers’ 

knowledge of content and teaching.  

Table 6 shows which component of the expected framework knowledge was solicited 

from each vignette. As an example, the second vignette, finding typicality from data of weight of 

shoes, could have solicited teachers to discuss their students’ understanding of the mean as well 

as which measure of center to choose, depending on characteristics of the distribution. The 

second vignette could have also prompted teachers to discuss their students understanding of 

outliers, issues with finding median, and the idea that students tend to ignore the mean when it is 

not part of the data. 

 

Table 6 

Vignettes to Framework Chart 

  Vignettes 

Code Description V1 V2 V3 V4 V5 V6 V7 

Knowledge of Content and Curriculum 

C1 Students should understand the median as 
a central point. 

ü     ü ü 

C2 Students should have a conceptual 
understanding of the mean: fair share, 
balance point 

 ü  ü ü ü ü 

C3 Students should understand that mean, 
median, mode is a way of representing the 
data using a single number. 

  ü  ü   

C4 Students should relate the choice of 
measure of center to the shape of the 
distribution and context the data were 
gathered. 

 ü     ü 

(Table Continues) 
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  Vignettes 

Code Description V1 V2 V3 V4 V5 V6 V7 

C5 Students should make connections 
between measures of center and 
variability. 

       

Knowledge of Content and Students 
S1 Students tend to think of minimums and 

maximums as outliers. 
 ü     ü 

S2 Students tend to ignore 0 in the data set 
when computing measures of center. 

  ü     

S3 Students tend to not order data before 
finding the median. 

 ü      

S4 Students tend to use the mode in the 
beginning to represent typicality. 

 ü     ü 

S5 Students tend to ignore mean when it is not 
part of the data. 

 ü ü     

S6 Students tend to have difficulty calculating 
weighted means. 

    ü   

S7 Students tend to only know the mean 
procedurally. 

 ü ü  ü ü ü 

Knowledge of Content and Teaching 

T1 Teach statistics through the investigative 
process. 

ü     ü ü 

 T1a - Formulate Questions        
 T1b - Collect Data        
 T1c - Analyze data  ü ü     
 T1d - Interpret results        
T2 Connect statistics to other areas in 

mathematics. 
  ü  ü   

T3 Relying on exploration of real data. ü ü ü ü  ü ü 
T4 Making effective use of technology and 

assessment. 
       

Note. Tick marks mean that that component of the framework was solicited by the corresponding 
vignette. 
 

Creation of Computer Generated Animations (CGA) 

In the next step, a web-based program (GoAnimate) was used to transform the vignettes 

into animations. I started looking online for different platforms, and GoAnimate was chosen for 
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its ease of use, multiple character options, and ease of changing backgrounds and imbedding 

graphs, audio, and pictures from outside of the program. 

The process of creating the animations became less daunting once I had finalized the 

vignettes. There were two different classrooms to choose from, lecture style and more private 

classroom, and I chose the classroom because I was able to see the teacher and the students in the 

same frame. 

 

 

Figure 11. Classroom used in the fourth CGA. This was a screenshot from the fourth CGA, 
which includes the teacher (left) and four students. Tony (raised hand) is the one speaking. 
 

 

Figure 12. Classroom used in the first three CGAs. This figure is a screenshot from the first 
CGA. In this shot, Sallie (standing, raise hand) is the one talking. 
 

This gave me the option of changing the teacher and changing the students, names, and what is 

in the background (as seen in Figures 11 and 12). The program allowed me to either include my 
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own recording for what was being said, or to allow the computer to read the transcription with 

different voices. There were only three male voices, which was fortunate because I was using 

three males as students, and multiple female voices, which gave me some choices for the four 

female characters. The program also allowed me to change the students’ actions within frames. I 

made the student talking get up and raise her or his hand in order for the viewer to distinguish 

which character was speaking. After the animations were finalized, I used Select Survey to create 

the platform with which the teachers would interact. Through Select Survey, I set up seven 

pages, each of which started by prompting the participants to watch a video (the animations) and 

then answer two to six prompts related to the animation. The following figure is a screenshot of 

what the teachers would have seen. 

 

 

Figure 13. Platform with which the teachers interacted. This is a screenshot of what the teachers 
interacted with when responding to prompts from the third CGA. As you can see on the top, 
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there is a shot of the CGA, and then there are the two prompts that the teachers were presented 
with. 
 

Pilot Study 

The first cycle of the pilot study was conducted with three middle school teachers who 

were working on their graduate studies at a Midwestern university. The participants were 

prompted to go through the whole study and were then asked to give some feedback on the 

animations, the prompts, and the ease of movement through Select Survey. After this process, 

some changes were made to the animations to include the name of the students at the bottom of 

the video (because the prompts were asking questions on what students said). I imbedded the 

video into the page (instead of a link) to make it easier for the teachers to navigate and to 

eliminate distractions. One of the animations was too long, and the teachers forgot what the first 

child said by the time the prompts were introduced. So, page one was partitioned into three 

different videos with each having its own prompt. Issues with the animations skipping or not 

working well, spelling, and others were also addressed. 

In the second cycle of piloting, the participants were two middle school teachers 

practicing somewhere in the Midwest. The purpose of this cycle was for final approval and 

practice with in-service teachers. After this cycle, I had to partition one more video, Video 5, into 

two parts to lessen the teachers’ confusion. Also, a couple of the prompts were changed from 

“How would you respond to student’s comment?” to “Explain how you would make that 

connection.” The prompt for the fourth animation was also changed from “What should the 

teacher’s next act be?” to “What concept of measure of center would you connect this activity 

to?” These changes were made because the participants seemed confused with what the question 
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was asking or because they gave general answers that did not tell us anything about their 

knowledge. 

 

Data Analysis 

The conceptual framework, that I have previously outlined, was used in the initial, first 

cycle coding of the data that teachers gave through their responses to the CGAs. On this first 

cycle of the coding, looking for patterns, I used descriptive coding (Miles, Huberman, & 

Saldana, 2014). Descriptive coding allowed me to assign a label to data to summarize the topic 

of a “chunk” of data. For the purpose of this study, the “chunk” of data that I used as the unit of 

analysis was a sentence or a collection of sentences. The teachers were themselves writing the 

answer to their responses, and they placed a period to represent that a thought has ended and to 

inform the reader that a new sentence, a new thought, is about to start. However, as I found in 

this analysis, a period is another way of taking a breather; therefore, multiple sentences were 

sometimes coded together. The coding, was done through Transana, a program similar to 

Envivo, which allows the researcher to attach codes to chunks of data and helps with analysis 

and display of data. 

In the first cycle of coding, I coded all the responses to the CGAs by assigning them one 

of the codes from the framework (C1 to T4). This was done by first understanding if the teacher 

was talking about curriculum, students, or teaching then identifying which component of the 

framework the teacher was discussing. There were instances in which the teacher was discussing 

two topics in the same sentence; hence, some sentences had multiple codes. However, there were 

times that the teacher discussed specific content without mentioning any of the components of 

the framework. In these instances, the statements were coded as “other” ideas about curriculum, 
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students, or teaching, and these statements were then analyzed in the second cycle of coding for 

patterns and themes. 

 

Knowledge of Content and Curriculum 

Statements that were coded as curriculum were statements in which the teacher was 

talking about the learning objectives that she or he wanted the students to have about the content 

of measures of center in middle school. These statements were not made in reference to what a 

particular student in the video was doing but were statements in which the teacher was talking 

about the curriculum of the class in general. There also was a question, Presurvey # 5, that 

specifically asked the teachers about these major ideas; therefore, statements from this question 

was coded as knowledge of curriculum. 

C1: Students should understand the median as a central point (Franklin et al., 

2007). The concept of the median is viewed as a quantity that has the same number of data 

values on either side of it, in an ordered set of data. Comments that will be coded as C1 are 

statements showing that the teacher understands that median is the middle value of an ordered 

data set. These statements have to include ideas of median as the middle of the data, median as a 

central point in the data, median as a location of the middle of the data, and median as a way of 

knowing that at most 50% of the data lie above or below the median value. 

C2: Students should have a conceptual understanding of the mean. 

C2a: Students should understand the mean as fair share (Kader et al., 2013; NCTM, 

2000). Even though students might be adept at finding the mean procedurally, they also have 

some ways of understanding the mean conceptually. Mean as a fair share is the idea that the 

mean represents what a person, amongst some, would have if things were divided fairly among 
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them. The GAISE report represents this with the length, in number of letters, of the name of a 

student by saying, “How long would our names be if they were all the same length?” In this case, 

a statement must show that the teacher understands the mean as a fair share by divided the 

quantity equally among several students and by the mean representing the number of things 

when equally shared. 

C2b: Students should understand the mean as balance point (Kader et al., 2013; 

NCTM, 2000). The mean is understood to be the point that balances all the data. If we were to 

place a data point two units to the left of the pivot (balance point), then the graph would tilt to 

the left; therefore, we need to place a data point two units to the right so that the graph would 

turn to balance. For statements to be coded as balance point, the teachers must understand that if 

the mean is x then placing a data point n spaces to the right must be countered with placing a data 

point n spaces to the left. 

C3: Students should understand that mean, median, and mode are ways of 

summarizing the data using a single number (NGA & CCSSO, 2010). What this component 

eludes to is the idea that we do not have to use all the data points to understand what the data 

represents. We can look at the measure of central tendency so that we can summarize the data by 

using only a single number. Statements coded as C3 were statements in which the teacher 

showed understanding that the data can be represented by a single number (mean median or 

mode). When asking for a number to represent the data (as in one of the videos), teachers should 

show that the mean median or mode could be useful 

C4: Students should relate the choice of measure of center to the shape of the 

distribution and context in which the data were gathered (NGA & CCSSO, 2010; Kader et 

al., 2013; NCTM, 2000). Most of the literature points to the need for students to look at the 
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distribution and context of the data when deciding which measure of center to use. Statements 

coded as C4 hinted at the teachers’ understanding that students should look at the whole data to 

decide on mean, median, or mode. When there are outliers in the data, it would be best to use the 

median. When the data are categorical, students should use the mode. When the data are 

symmetrical and there seem to be no outliers, students can use the mean. When the minimum (or 

maximum) is so far away from most of the data, students should use the median. Any statement 

that recognizes outliers and their impact on the mean outside the context of students was coded 

as C4. 

C5: Students should make connections between measures of center and variability 

through IQR and MAD (NGA & CCSSO, 2010). Students should understand that the same 

way that measures of center represent the distribution of the data with one number, measures of 

variability also represent the variability in the data using one number. There should be 

connections between the median and IQR and how the idea of the median helps explain the IQR, 

and the idea of the mean helps explain the MAD. IQR is the difference between Q3 and Q1, 

which are the medians of the upper and lower half of the data (identified again by the median). 

MAD is the average distance from the data to the mean; again, the interdependence between the 

mean and MAD should be highlighted. 

 

Knowledge of Content and Students 

A response was coded as students when the participants (teachers) were discussing, 

explaining, or analyzing the knowledge that students have. If a statement (sentence or response 

to prompt) mentioned a student by name or referenced students in general, then the statement 

was looked at through the lens of KCS. Numerous prompts ask teachers to respond to students’ 
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thinking and to identify students that are struggling with the content; responses to these prompts 

were first viewed through the same lens of KCS then through other lenses if applicable. There 

also was a question, Presurvey # 6, that asked teachers to identify challenges that students 

struggle with; this question was asked to solicit teachers’ KCS. 

S1: Students tend to think of minimums and maximums as outliers (Kader et al., 

2013). For a statement to be coded S1, the teacher must recognize, or acknowledge, the 

misconception or struggle that the students have by recognizing that students ignore min or max 

or classify them as outliers. 

S2: Students tend to ignore 0 in the data set when computing measures of center 

(Mooney, 2002; Strauss & Bichler, 1998). Again, this must be recognized as a misconception 

or a struggle by mentioning that the student is miscalculating the mean by ignoring the outcome 

of 0, or by recognizing that their (the teacher’s) students make similar mistakes or struggle with 

similar issues. 

S3: Students tend to not order data before finding the median (Groth & Bergner, 

2006; NCTM 2000). This should be recognized as a misconception or a struggle by mentioning 

that students make the mistake of not ordering the data before finding the median, or that that is a 

misconception that their students also have. Teachers might also recognize that they do bring up 

this idea, of ordering the data when finding median, with their students. 

S4: Students tend to use the mode in the beginning to represent typicality (Franklin 

et al., 2007). This is not a misconception but a conception that students use when first working 

with representing or using measures of center. For a statement to be coded S4 teachers must 

recognize that students start by seeing mode first, or that students are comfortable with the idea 
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of mode before getting to the mean and median, or by recognizing that they start with mode then 

mean and median because mode is easiest for students to see. 

S5: Students tend to ignore mean when it is not part of the data (Strauss & Bichler, 

1998, Cooper & Shore, 2008). Statements that were coded as S5 included ideas that students 

have issues accepting mean when it is a fraction, that students do not like to use the mean when it 

is a decimal, that students always try to recalculate when the mean is a decimal, or that students 

don’t like to use a decimal for a mean of discrete numbers. 

S6: Students tend to have difficulty calculating weighted mean  (Gattuso & Mary, 

1998; Mokros & Russell, 1995; Mevaresh, 1983; Pollatsek, Lima & Well, 1981).Statements 

were coded as S6 when the teacher recognized that the weighted mean is a difficult concept for 

students. 

S7: Students tend to only know the mean procedurally (Cai, 1995, 2000; Mokros & 

Russell, 1995). As mentioned earlier (NCTM 2000), this is a struggle for teachers: that students 

tend to use a procedure to find the mean but do not have a conception of what the mean 

represents. Statements were coded S7 if they recognized that students have no issue with the 

procedure but do not know what the mean represents; that the procedure is not a problem for 

students, but they have issues with the conception of the mean; or that students can find the mean 

but do not know how to use it. 

 

Knowledge of Content and Teaching 

Statements coded as teaching were statements in which the teacher was discussing their 

teaching methodology, what they do in class, what they would do in certain situations, and how 

do they respond to student comments. There were three prompts that asked teachers to discuss 
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similarities or differences in introducing measures of center, and several prompts asked teachers 

to comment on ways to help improve students’ conception of measure of center. There was also 

a question, Presurvey # 7, asking teachers to discuss how they planned to address challenges that 

students have. Answers to all these prompts were first viewed through the lens of KCT then 

through other lenses, as applicable. 

T1: Teach statistics through the investigative process (Franklin et al., 2007, 2015). 

This is where teachers had the opportunity to show KCT through the investigative process. For 

statements coded as T1, teachers discussed how they would get students to make simple 

investigations by gathering data then analyzing it to make a decision, how they get students to 

talk about the mean through the statistical process of investigation, how students conduct 

investigations in class to understand statistics, how they get students to gather data about a 

subject then analyze it to make decisions, or how to use measures of central tendency to make 

decisions about data gathered in class. 

T2: Connect statistics to other areas of mathematics (Franklin et al., 2015). The 

statements coded as T2 were statements that made connections between mathematics and 

statistics by connecting fractions to concepts of mean in statistics, by using algebraic thinking to 

help with statistical computations, by using fractions and probability to connect to statistics 

subjects, or how in class teachers use mathematical concepts that student know, like average, to 

connect to the mean and its meaning. 

T3: Relying on active learning and exploration of real data (Franklin et al., 2015).  

Statements coded as T3 included ideas about using real-life data to make the learning more 

active or to get the students more interested by use real-life data in class (exploring real-life data 
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makes the investigation more interesting) or comments about students’ being interested in the 

idea of using real data for their work. 

T4: Making effective use of technology and assessment (Franklin et al., 2015).  Here 

statements should have acknowledged that teachers use technology to get students more 

involved, how technology can help expedite the process and get to the interesting parts of 

making decisions or recommendations, or how technology helps students see the whole picture 

and make better decisions. Statements about the effective use of formative and summative 

assessment were also coded as T4. 

 

Second Cycle of Coding 

During the first cycle of coding, there were a lot of instances in which it was easy to 

discern what content the teachers were discussing but not as easy to identify a specific 

component of the framework. So, although it was easy to see that a teacher was discussing a 

student’s thinking, components of the curriculum, or teaching strategies, it was not apparent 

which component of the framework the statement fit. Therefore, during that first cycle, I had to 

introduce three new codes: Curriculum Other, Student Other, and Teaching Other. Curriculum 

Other, for example, was given for instances in which the teacher was talking about the 

curriculum but did not use any of the components that were supported by research or curriculum 

documents; the same was true of the Student Other and Teaching Other codes. 

The emergence of these three new codes made it necessary for me to look at all responses 

that were identified as “Other” to further analyze them. So, I took all the sentences that were 

coded as Curriculum Other and analyzed them to see what other components of curriculum 

teachers identified that were not evident in the literature. Similarly, I gathered all the Student 
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Other and Teacher Other statements separately so that I could further understand how teachers 

thought of their students and their teaching, apart from the literature. The emergence of these 

new codes made it necessary to evaluate, check, the trustworthiness of my coding. 

A fellow graduate student and researcher, who had experience in coding qualitative data 

and was familiar with teacher knowledge terminology and theory, was recruited to code some of 

the data for comparison. The data that this researcher was given was the initial responses to the 

CGA from four of the participating teachers, three of which were the data from the teachers who 

participated in the sem-istructured interviews. Even though the researcher is part of my IRB and 

has had the appropriate CITI training, the data that he received did not have any identifiers 

(pseudonyms were used in lieu of teacher names). After a discussion of what the components of 

the framework meant and a little background on the literature, the researcher started coding the 

data. The interviews were coded one at a time with the first transcript, as a practice, was one of 

the pilot study responses. With an initial agreement of 80%, all four transcripts were validated, 

and data analysis continued. 

From here, I continued the data analysis by first analyzing the Curriculum Other and 

finding patterns and general themes emerging. I combined all the sentences that were coded as 

Curriculum Other and started analyzing this data as a wholly new document. This coding was 

done similarly to the first cycle, through Transana, but this time, I was creating and assigning 

provisional codes to the data other than the framework. Later, by collapsing codes together, some 

codes emerged as the predominant ones. Because of the small amount of statements related to 

Curriculum Other, there was an instance in which a code was given for only two statements. 

Again, this only happened with Curriculum Other; the rest of the categories had at least eight 
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statements that were collapsed to constitute a category. Similarly, I worked with Student Other 

and Teaching Other, assigning codes and later collapsing codes into dominant themes. 

 

Ethical Issues 

In this section, I discuss ethical issues regarding this study. To ensure privacy, I am the 

only one that knows the identity of the participating teachers. Pseudonyms were used in 

discussing individual participants, and original data were kept on password protected computers 

and jump drives. The teachers were compensated for their time, and questions were answered 

about both content and methodology. Issues of validity, reliability, and credibility were 

addressed by using the pilot study, triangulation, multiple sources of data, and member checking. 

In conducting this research, I did everything possible to perform research that is beneficial to the 

field overall and would not harm the participants. 

As far as worthiness (Miles et al., 2014), I think that this study will be beneficial to 

teachers who are trying to improve their teaching. According to Shulman (1986), PCK is one of 

the main components of a teachers’ knowledge, and knowing more about their PCK and ways to 

improve it should be a main component of every teachers’ PD. My participants will have an 

opportunity to review my findings and to get information on how to better improve their PCK. 

As far as competence, having conducted previous work with statistics education research and 

having an advisor with more than 10 years of experience in statistics education research gives me 

enough experience to conduct this study. 

As far as benefits are concerned, I will make sure to make myself and other recourses 

available to teachers who are interested in understanding more about what their PCK looks like 

and how to better their knowledge. I will offer to come back after the study and give PD to all 
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the available teachers in the district about statistics education with a concentration on PCK. In 

terms of compensation of knowledge, all teachers who took part in responding to the CGA had 

the opportunity to think about their teaching and their knowledge of students. The teachers in the 

interviews were able to ask me questions, after we finished, about methodology and 

misconceptions. 

 

Validity, Reliability, and Credibility 

Validity is often defined as the quality and rigor of the data collected, reliability is 

defined as the dependability of the data, and credibility refers to the trustworthiness of the data 

(Simon, 2011). Regarding validity, the quality of the data collected was ensured by my piloting 

the CG’s twice before it was presented to the participating teachers. The content in the animations 

was based on findings from the literature and was also vetted by an experienced and published 

researcher in the field of statistical education. The prompts used were also vetted by a researcher 

who conducts and publishes research on the mathematical knowledge of teachers. 

Regarding reliability, or dependability of the data, a second researcher also coded the 

data. This second researcher was able to view the same animations and go through the prompts, 

just as teachers did, before he coded the data. After coding the data, we compared our coding, 

and an initial agreement of 80% was evident. This speaks to the validity of the coding and the 

reliability of my coding of the data from the teachers. Credibility of the data, or trustworthiness, 

was established by collaborating with one of the interviewed teachers: Analyzed data were 

presented to the teacher for reliability of interpretation. Only minor changes were made to the 

data after member checking, which speaks to the trustworthiness of the data presented. 
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Chapter Summary 

In this chapter, I put forth the method by which I conducted this study. I started by 

summarizing my research paradigm, postpositivist, and by introducing the participating teachers. 

These were eight practicing (in-service) teachers who had taught the subject of statistics in 

middle school at least twice, ranging in experience and education. Data collection was comprised 

of the development of the instruments used to collect the data and the pilot study conducted to 

improve and finalize the instrument. Data sources were discussed, including responses to 

prompts from the CGAs and the semi-structured interviews conducted. The analysis of data 

started with the explanation of the theoretical perspective and then the cycles of coding. 

Significance of the study was included, followed by ethical issues and validity, reliability, and 

credibility of the study. All this information was put forth so that the reader understands that this 

study is firmly grounded in theory and literature and to give arguments why this method was 

used. 
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CHAPTER IV: RESULTS 

 

Introduction 

This chapter presents the results of this study. This chapter will be organized in two 

major parts. The first part will be the PCK that the participating teachers displayed when 

answering prompts to CGAs. This part will be divided into three sections: knowledge of 

curriculum, KCS, and KCT. The second part of this chapter will be the profiles of the three 

teachers who participated in the second phase of data collection, the individual interviews. In this 

part, each of the three teachers will be profiled as to their knowledge of content, students, and 

teaching. 

 

Pedagogical Content Knowledge Through the Computer-Generated Animations 

Before I get into the individual components, I want to introduce Table 7, which gives a 

snapshot of the components of the framework and the count for each category. This table is 

designed to show the differences in the discussion between expected knowledge, based on 

literature and curriculum documents, and other knowledge related to a specific topic. As can be 

seen, only 34.2% of the comments were aimed at KCS; of those comments almost, two thirds 

were under other knowledge of students. As previously mentioned, the unit of analysis was one 

or two sentences, which constituted a thought. Within the data from the CGA, there were 322 

different statements. Eighty-two statements were coded within the framework, and the rest fell 

outside the framework. 
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Table 7 

Codes as Related to Framework 

Knowledge components 
Number of statements 

(n = 322) 
Percent of total 

statements 

Expected Knowledge of Content and 
Curriculum 

30 9.3% 

Other Knowledge of Curriculum 12 3.7% 

Total Curriculum Statements 42 13.0% 

Expected Knowledge of Students 38 11.8% 
Other Knowledge of Students 72 22.4% 

Total Student Statements 110 34.2% 

Expected Knowledge of Teaching 14 4.3% 
Other Knowledge of Teaching 156 48.4% 

Total Teaching Statements 170 57.2% 

 

Knowledge of Content and Curriculum 

As with the rest of this section, I first introduce the results of the prompts to CGAs from 

the first cycle of coding, which are compared to the framework, and then I introduce the results 

for the second cycle under “other.” 

 

Table 8 

Expected Knowledge of Content and Curriculum Components 

 Components 
Statements  

(n = 30) 
Teachers  
(n = 8) 

C1 Students should understand the median as a central point. 1 (3.3%) 1 
C2 Students should have a conceptual understanding of the 

mean: fair share, balance point 
15 (50.0%) 7 

(Table Continues) 
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 Components 
Statements  

(n = 30) 

C3 Students should understand that mean, median, mode is a 
way of representing the data using a single number. 

5 (16.7%) Teachers  
(n = 8) 

C4 Students should relate the choice of measure of center to the 
shape of the distribution and context the data were gathered. 

9 (30.0%) 4 

C5 Students should make connections between measures of 
center and variability through IQR and MAD. 

0 (0.0%) 4 

    

 

As shown in Table 8, there were 15 comments that discussed the second category C2—

students should have a conceptual understanding of the mean, through fair share or balancing 

point. When asked about how to make connections between a procedure and the concept of 

measure of center, Brenda said: “The end goal is for everyone to have the same amount.” To the 

same question, other teachers answered: “You are looking for the point where there is an even 

distribution of data” (Jennifer), and “I think I would have to link to through sharing things 

equally” (Monika), “So by them sharing their dollars, they averaged their money together” 

(Miranda). Similarly, Jonathan answered the same question, saying: “When finding the mean, we 

are finding if everyone put their items in a pile how much would each person get equally when 

redistributed.” 

The evidence for the third category, C3—students should understand that mean, median, 

mode is a way of representing the data using a single number—was mostly found when teachers 

were answering the question of “What challenges, have you seen, or do you expect your students 

will have in learning the content (measures of center)?” To this question, Angela answered, 

“mean and mode show the measures of center in different ways,” and Kasy said “That the idea of 

center takes on many forms.” Similarly, Brenda said: “I usually try to emphasize the measures of 

center can give different types of information with the same data,” and “they are all, in some 
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way, an average.” However, Jennifer said, “When each of the measures of center would make 

the most sense in describing a set of data.” 

With respect to the fourth category, C4—relating the choice of center to the shape of the 

distribution and context of the data gathered—only half of the teachers (for a total of nine 

comments) discussed the concept. Comments coded as C4 also came from the question about 

challenges that students have with the measures of center. Here, Angela said: “I would also like 

them to understand when there are extreme values as well in the data set.” Brenda said, 

“However, one measure might work better for particular types of data,” and Jonathan said, 

“Which measure of central tendency best describes data if there are outliers.”. 

This category (C4) was also elicited when asking about the kind of response the teacher 

would give to a comment by a student when he was confused about if we always use the mean. 

Angela wrote: “I would tell Joey the best time to use the mean is when there are no outliers in the 

data set.” This was a case in which the response was double coded because the teacher was also 

talking about her teaching strategy to a student question: direct teaching. Angela continues, 

without apparent direction, to make statements coded as C4: “It is best to use the median when 

there are outliers,” and “using the median will eliminate numbers that would exaggerate or throw 

off the measure of central tendency.” 

When commenting on how to help a student with her or his conception Susan said, “Joey 

needs to understand that there are outliers and using an outlier in the mean can significantly skew 

your data.” Similarly, Susan also responded, “I would talk with Sallie about the outlier and how 

that can help you choose which measure of central tendency is the best,” and “I would talk to 

Joey about the outlier in the group and how that might skew the mean.” 



112 

As seen in Table 8, the results indicated that only one teacher made one comment about 

the need for students to understand the median as a central point in the data. This comment was 

given by Angela when asked about the major ideas she wanted the students to come away with: 

“Some of the major ideas I want my students to understand is finding the center or middle value 

of the data set.” Another category that teachers did not report was the idea that students should 

make connections between measures of center and variability through the IQR and MAD; as 

seen from Table 8, there were no comments made in this category. 

 

Table 9 

Components of Curriculum Other 

Components 
Statements 

(n = 12) 
Teachers 
(n = 7) 

Students should understand differences between measures of center 2 (16.7%) 2 
Students should understand the terminology 7 (58.3%) 5 
Students should understand how to use measures of center 3 (25.0%) 2 

 

Other ideas related to curriculum. In the second cycle of coding, when looking at 

Curriculum Other, there were a total of 12 statements, these statements were coded within 

knowledge of content and students because most of these comments were answers to the second 

pre-survey question, which was designed to get teachers discuss their knowledge of content and 

students. With more than half of them (7) discussing Students should understand the 

terminology, three statements made about using measures Students should understand how to use 

measures of center, and two statements made about Students should understand differences 

between measures of center. When answering the question on what difficulties students have 

with measures of center, the following comment from Jonathan was coded as Students should 
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understand the terminology: “Math is a foreign language. You must understand the terminology 

first.” When asked what ideas the teacher wanted students to get out of the class, Susan replied, 

“Mean, Median, Mode, Range, IQR.” 

The comments coded as students should understand differences between measures of 

center came from a question on what major ideas teachers would want students to get out of the 

class. Jonathan answered, “The difference between them all,” and Monika said, “I think that 

getting students to actually understand the difference of each is major.” These responses were 

coded this way because even though they are discussing measures of center, the comments were 

too general to be coded within the framework. Responding to the same question, Angela 

answered, “I also want them to be comfortable using mean, median, mode, and range,” and 

Jennifer answered, “When to use mean, median, mode and range”; both comments were coded as 

Students should understand how to use measures of center. That last comment could have been 

coded as C4 - Students should relate the choice of measure of center to the shape of the 

distribution and context the data were gathered, however, the response did not make the choice 

of measure dependent on characteristics of the data, but was just a general idea. 

 

Knowledge of Content and Students 

The analysis of KCS reveals that most teachers mentioned most of the categories 

identified in the framework, except for the sixth and the second category, as seen in Table 10. 

Comments were coded as KCS when the teachers were commenting on the students’ responses, 

thinking, or struggles. 
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Table 10 

Knowledge of Content and Students 

 Components 
Statements  

(n = 36) 
Teachers  
(n = 8) 

S1 Students tend to think of minimums and maximums 
as outliers. 

14 (38.9%) 6 

S2 Students tend to ignore 0 in the data set when 
computing measures of center. 

0 (0.0%) 0 

S3 Students tend to not order data before finding the 
median. 

7 (19.4%) 4 

S4 Students tend to use the mode in the beginning to 
represent typicality. 

3 (8.3%) 2 

S5 Students tend to ignore mean when it is not part of the 
data. 

8 (22.2%) 5 

S6 Students tend to have difficulty calculating weighted 
means. 

1 (2.8%) 1 

S7 Students tend to only know the mean procedurally. 3 (8.3%) 3 

 

The first subcategory under KCS, S1—students tend to think of minimum and maximums 

as outliers. Of the eight teachers, six of them mentioned students’ struggle with thinking of 

minimum and maximum as outliers, for a total of 14 statements. Most of the comments coded as 

S1 came from comments made in respond to the prompts of two different videos, the second and 

seventh videos. In the second video, a student comments that he wants to throw away the outlier 

(maximum) and then find the mean, and another student wants to eliminate both min and max as 

outliers. To the first prompt of which student is struggling, Angela responded, “The students who 

seem to be struggling are the ones who just want to throw out the outliers without considering 

using mode, median, or mean.” Two teachers said: “Joey is taking what he thinks is the outlier 

out of the data and using the rest of the data” (Susan), and “Eric—doesn't understand that data 

can have outliers” (Monika). Commenting on a different prompt from the same question, Monika 

also comments: “Sallie is thinking that you automatically take out the largest and smallest.” 
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Similarly, other teachers commented: “Eric is eliminating data because he feels it is not relevant” 

(Miranda), and “Eric is not correct by just throwing out the 11.5 because it is an adult size shoe” 

(Angela). 

In response to the seventh video, students making a decision on which measure of center 

represents the data; Susan commented, “Brian—He uses the median because he doesn't want to 

include the outlier in the data set.” Also commenting on Brian’s response, Brenda said: “I don't 

think any of these answers would be wrong per-se. However, I would say Brian has the best 

answer with median and his comment about the extreme is great.” Angela also responded, “I 

would also tell him we cannot just ignore the outlier of $30.” 

The fifth subcategory, S5—students tend to ignore mean when it is not part of the data—

was identified in eight comments. These comments came from prompts for video three and video 

seven. In both instances, the mean is not represented in the data, and the students are struggling 

with choosing a measure of center to represent the data. Jennifer recognizes the struggle of the 

student: “Eric doesn't seem to understand that the mean will not always be a number in your data 

set and wants to use the mode just because it appears the most.” Following with comments for 

Eric, Monika said, “Eric—actual mean is not listed in data—seems to want only data from list,” 

and “perhaps he has not made the connection that the mean is not always one of the original data 

points.” Susan also comments that “Eric uses the mode and doesn't seem to understand that it's 

alright to have a number not in the data set.”. 

The third subcategory, S3—students tend to not order data when finding the median—

had comments from four participants who were able to identify the struggle. Only one of the 

teachers stated that “His misconception is that the numbers are in order when presented” 

(Jonathan), identifying a misconception that students have when finding the median. The 
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majority of the participants commented on a video in which Brian correctly identified the median 

as the needed measure of center but forgot to order the data. Comments ranged from “Brian is 

struggling because he did not order the data set from greatest to least” (Angela) to “he needs to 

first put the data set in order from greatest to least or least to greatest” (Angela). Similarly, 

another teacher, Brenda, stated that: “He also failed to line the data points up in order from least 

to greatest when finding the median,” and “he used the method of the median but did not 

organize the numbers from least to greatest” (Brenda). Brenda was the only participant to 

identify this struggle when asked about challenges students have with the content: “They also 

usually struggle to realize the data has to be in numerical order.” 

An issue arose with the fourth subcategory, S4—students tend to use the mode in the 

beginning to represent typicality—when only two of the teachers mentioned it with a total of 

three statements; even in those cases, mode was not specifically recognized as the beginning but 

just an easy thing for students to do. In this case, one teacher, Angela, mentioned: “Joey's 

thinking about the mean is using a mode method. He did a nice job placing the numbers on each 

side of the initial numbers,” and “Brian is looking at finding the mode. He wants to use the data 

for what he thinks most students get for allowance.” The other teacher, Kasy, stated: “Joey’s 

thinking about mean assumes that all the boxes have the same number of pencils.” These 

comments show that teachers know that mode is an easy representative of the data that students 

readily identify. 

The last component of KCS, S7—students know the mean only procedurally—was only 

coded three times from three different participants. These comments were in response to Joey 

commenting on two different situations: “Don’t we always use the mean?” and “I am confused, 

when do we use the mean and when do we use the median?” In response to the first question, 
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Jonathan commented, “Joey knows how to find the measure of central tendency, but does not 

understand how outliers might throw off the data too.” Susan responded: “Joey found the mean 

and doesn’t understand that the mean isn’t always the best representation of data.” In response to 

the second situation, Angela responded: “Joey would use the average or mean. He has a good 

grasp of finding the mean.” 

For the sixth element in KCS, S6—students tend to have difficulty calculating weighted 

means—only one teacher made one comment about students struggling with weighted means. 

Susan said, “Eric added one male and one female. He did not find the average age because there 

are more men than there are women.” In this comment, Susan recognizes that the student could 

not find the mean because of the differing number of males and females, and she also recognizes 

the mistake that the student made when he took the average of the averages as if there was only 

one male and only one female. Even though there was a video (3) that was constructed around 

the misconception that students tend to ignore 0 in calculating the mean when part of data, no 

comments were coded as S2. 

 

Other ideas about students. Student Other was a category in which the teacher was 

commenting on a student’s thinking, comments, or work, but the comments made could not be 

coded using the original framework. However, unlike Curriculum Other, this category made up 

almost two thirds of the comments that the teachers made about their students. This category was 

further analyzed to see if there would be any codes that could be attributed to the teachers’ 

comments and see if there were any prevailing ideas. So, on the second cycle of coding, Student 

Other had three different codes (as seen in Table 11). 
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Table 11 

Components of Student Other 

Components 
Comments 

(n = 52) 
Teachers 
(n = 8) 

Teachers explaining students’ conception of average 40 (55.0%) 8 
Students tend to have issues with outliers 8 (11.0%) 5 
Students’ struggles with other concepts of measures of center 24 (33.0%) 8 

 

As Table 11 shows, the first category—Teachers explaining students’ conception of 

average—was the most dominant category with more than half of the comments. Included in this 

code were all the ways that the teachers explained the students’ conception of average, without 

being specific about their meaning or direction or without relating the explanation to their 

students or what should be done in the classroom. Within this code, the participants explained 

the students’ thinking of average as balance point, fair share, or mode. Explaining the students’ 

conception of average as a balance point, Angela said, “Her data set had the same amount of 

digits on either side of the median center,” and Jennifer said, “Sallie did a good job thinking 

about how to keep everything balanced and equal to still have an average of 15.” These types of 

answers were solicited in the sixth video when the students create distributions with a 

predesigned average of 15. Answering the same prompts from the sixth video, Susan said, 

“Sallie understood that if 15 is in middle and if she branched out each direction that the mean of 

the two numbers would be 15.” 

On the conception of average as mode, as part of Teachers explaining students’ 

conception of average, Jonathan stated: “Joey's thinking is typical. The numbers must be the 

same. I think that is a great place to start with this type of problem.” Miranda stated: “Joey's 

thinking is correct. If the average is 15 all 7 boxes could have 15 pencils in them,” and “Joey 
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knows the average would be about the number in each so he knew that regardless of the actual 

number statistically they could all be 15.” Monika said, “I could be the easy way, or maybe he 

thinks all new boxes of pencils have the same amount,” and Angela stated that “Eric has a good 

point about using the mode the most common number in the data set.” On conceiving the 

average as fair share, Miranda explained: “Sallie is thinking more about the way to create an 

average of 15. 12 + 18 would average to 15, and so on with the rest of the numbers.” 

Under Teachers explaining students’ conception of average, there were some comments 

in which participants just tried to explain what the student was thinking or doing. When 

explaining students’ thinking Angela said: “She knew that 34 was the most common number in 

the word problem and that the average would be close to that,” and “Brian is correct that you 

cannot find the mean without knowing the exact numbers.” Both comments were given when the 

students were having issues with finding weighted average. Answering a different prompt, 

Angela explains: “Sallie is doing well thinking of using the median. There is an outlier of 30 and 

that increases the range of the data set; therefore, Sallie is correct in wanting to use the median.” 

Brenda explained, “Both of these students recognize the data might be skewed, but I see no 

reason as to why they should be eliminated.” Similarly, Jennifer explains, “He understands the 

concepts, he would just need to work on when to use mean, median, and mode. He asked a good 

question at the end.” 

Relating the students’ work in the video to the participants’ own students, one teacher 

commented: “Some of my students prefer to count from each end to determine the middle” 

(Miranda). When explaining what her students do when finding median, Susan said: “Then 

someone else will start crossing off numbers from the ends until we end up with a middle or 2 

middle numbers.” Monika explains Sallie’s use of symmetry in creating the distribution with a 
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mean of 15: “I feel like this is the way we teach it, so I'm not sure how much is just following a 

pattern and how much is truly her own thoughts.” In a separate issue, Susan explained: “I think 

Brian understands that 30 is the outlier and can skew the mean.” 

The code Students’ struggle with other concepts of measures of center was given when a 

teacher identified a struggle that students have without attempting to explain the students’ 

thinking. Some of the statements coded as struggle came from one of the first questions about 

struggles that participants had encountered with their own students. Answering that first 

question, Angela said: “The challenges that I have seen students experience are not fining both 

the mean and median when working with the measure of center.” Brenda commented: “They 

tend to have difficulty with understanding an odd data count for median,” and “some students 

have difficulty recalling which measure is which (vocabulary).” Jennifer commented: “My kids 

have a hard time remembering the difference between the measures center,” and “the vocabulary 

is difficult for my students to remember.” Jonathan explained: “The next challenge is finding 

measures of central tendency in forms other than a list of numbers (i.e., a frequency table).” 

Monika said, “Students tend to blend these together—they don't see what sets each apart,” and 

Susan said, “Finding mean, median, mode if a number in the data set is not given.” 

For Angela, the next time that she discussed students’ struggle came from the last 

(seventh) video when the prompt asked specifically about which student was struggling. Angela 

said: “Joey is struggling with trying to best represent the data,” “Eric is not understanding 

finding average,” and “he [Brian] is not just embracing the data set and using math to find the 

measure of center.” Answering the same prompt, Jonathan said, “Joey is struggling. Don't we 

always use the mean? He is trying to realize when is it okay to use another measure of central 

tendency.” On an earlier question, Miranda explained, “Typical weight of the shoes is the 
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average and Brian is struggling with the understanding how to determine the average.” Monika 

commented: “Brian—confusing meaning of mean and median—not confident of the definitions.” 

Students tend to have issues with outliers encompassed comments the teachers made 

about the students struggling with the conception of outliers or the impact that outliers can have 

on averages without specifying or connecting it to minimum and maximum.  Recognizing the 

issue, teachers commented: “She needs to work more on what outliers are” (Jennifer), “Brian 

seems to struggle with the mean. He seems to be taught or coached about outliers” (Jonathan), 

“Sallie does not understand the concept of outliers” (Kasy), “Sallie—doesn't seem to understand 

what an outlier actually is” (Monika), and “she doesn't understand that there doesn't have to be 

outliers” (Susan). Susan also commented on the impact that an outlier has on average “Joey 

needs to understand that there are outliers and using an outlier in the mean can significantly skew 

your data,” and “I would talk with Sallie about the outlier and how that can help you choose 

which measure of central tendency is the best.” That last statement was also coded as Teaching 

Other because Susan is also commenting on her teaching style: talking to or direct instruction. 

 

Knowledge of Content and Teaching 

The last component of PCK that the framework helped analyze was the KCT. The 

categories that made up this knowledge were devised such that teachers could show their 

knowledge by commenting on strategies that they used to teach the content to their students. As 

can be seen from Table 12, the last category—using technology effectively—was not represented 

in the data collected from the main data collection instrument. The first category was the use of 

the investigative process to teach statistics as recommended by the GAISE report (Franklin et al., 

2007). There were four subcategories in case a teacher showed knowledge of one aspect of the 
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process and did not show appreciation for the others. One teacher discussed the investigative 

process, specifically: “I give students a print out of shoes sizes from an imaginary shoe store, I 

have them find the mean, median, and mode and ask them to use that data to determine what 

sizes to buy” (Kasy). 

 

Table 12 

Components of Knowledge of Content and Teaching 

 Components 
Statements  

(n = 14) 
Teachers  
(n = 8) 

T1 Teach statistics through the investigative process. 1 (7.1%) 1 
  T1a - Formulate Questions 0 (0.0%) 0 
  T1b - Collect Data 2 (14.3%) 1 
  T1c - Analyze data 0 (0.0%) 1 
  T1d - Interpret results 1 (7.1%) 2 
T2 Connect statistics to other areas in mathematics. 1 (7.1%) 1 
T3 Relying on exploration of real data. 9 (63.9%) 6 
T4 Making effective use of technology and assessment. 0 (0.0%) 0 

 

Within that one statement, Kasy gave evidence not only of being aware of the 

investigative cycle but also of most of the components of the cycle. She explained how she gave 

students the data; hence, the students are not coming up with the questions nor are they 

collecting data for the investigation. However, Kasy’s students are analyzing the data, 

interpreting the results, and making recommendations based on data. On the other hand, Monika 

discussed: “I collect data from my students so that it means something to them—we also talk 

organizing the data and predict things about it.” In that statement, Monika shows that she is also 

aware of the investigative cycle and that she uses most of the stages. Like Kasy, Monika does not 

feel comfortable getting the students to decide what question will be investigated; however, 
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unlike Kasy, she does allow students to collect the data, organize it, and interpret the results. 

Similarly, Susan explains: “We then typically survey the students on their shoe size and find the 

mean,” which again shows the teacher being comfortable with the collection of data. 

The second component of the KCT was the connection of statistics to other areas of 

mathematics. This was a very elusive subject because only one teacher made only one comment 

that was categorized as “connecting to mathematics.” The comment was: “The other example 

would use fractions or decimals” (Jonathan). This comment was made in response to the first 

video in which the teacher was asked to comment on similarities or differences from the 

animated teacher and their own teaching. The prompt on that fist CGA was designed to get 

teachers talking about their teaching, soliciting their knowledge of content and teaching.  

The next component, KCT, was better represented, with six of the eight teachers making 

at least one statement that discussed relying on active learning and exploration of read data. Most 

teachers made comments about the use of real-world data: “I would provide several examples 

that would have a real-world word problem connected” (Angela), “It may be helpful … to go 

over different real world data sets and graphs” (Jennifer), “Through projects and activities, and 

Real World [sic] experiences” (Kasy), and “I like to use real world data, like student shoe size” 

(Miranda). Several also included comments about active learning through hands on activities: 

“This would be a good time to use hands-on activities (perhaps using less boxes to start)” 

(Monika), “I try to use activities that require the students not only to compute the measure, but to 

also use them to describe situations” (Monika), and “Use data that students have an interest in 

(music length of favorite songs, etc)” (Jonathan). 
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Other ideas about teaching. The category of Teaching Other included statements in 

which participants discussed some teaching aspect, questions to ask students, activities used to 

teach, and strategies employed in the classroom that did not make it to the framework. The 

reason why these statements were not coded within the framework was because most of them 

were not specific enough and did not pertain to statistics. This category was the one that 

encompassed more than 90% of all the statements made about teaching (156 of 170). However, 

after an extensive look at the categories, it came to my attention that none of those comments 

were pertinent to statistics. As seen in Table 13, the categories were such that they could have 

been under any content in mathematics. Hence, I do not include the comments made under 

Teaching Other in this study. However, as an example of teaching by using discussion, Brenda 

said, “It would be discussion and further examples,” and Jennifer explained, “I would also have a 

conversation with him about good mathematicians always trying a problem even if they aren't 

sure where to start.” Under teaching using direct/individual instruction, Brenda responded: 

“Brian requires further clarification on what the median is and does. I would show him the 

proper way to work the problem and explain why.” Similarly, Miranda stated: “Also in class I 

implement stations allowing for one-on-one instruction with the teacher and fluency practice of 

the skill.” 

 

Table 13 

Components of Teaching Other 

Components 
Statements 
(n = 156) 

Teachers 
(n = 8) 

Teaching through activities not related to real data 17 (11.0%) 7 
Teaching using direct/individual instruction 73 (47.0%) 8 

(Table Continues) 
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Components 
Statements 
(n = 156) 

Teachers 
(n = 8) 

Teaching by using discussion 23 (15.0%) 8 
Teaching procedures backwards 11 (7.0%) 6 
Teaching using questions as a strategy 32 (20.0%) 7 

  

Summary 

In the coding for the CGA responses, it was important to mention that the first cycle of 

coding sifted through the data with the purpose of trying to see how much of what the teachers 

discussed was indicative of what the research and literature say teachers should discuss. The 

framework was designed so that all the evidence from research, curriculum, and policy 

documents were included. After the data were sorted out, there were a lot of discussions that did 

not completely fit within the framework; hence, a second cycle of coding was needed to 

understand the rest of the statements made from the participating teachers. All the responses 

were taken together as a group so that I could discuss the knowledge that the teachers exhibited. 

In the following section, I discuss the knowledge that three of these teachers exhibited, not only 

in their CGA answers but also in the individual interview. The questions that were asked in the 

interviews were informed by the CGA responses as a group and individually. 

 

Three Teachers’ Profiles 

 

In this section, I profile the PCK of each of the three teachers who participated in the 

semi-structured interviews. I profile the participating teachers’ PCK by first giving some 

background information solicited from the initial survey. I continue by introducing responses 

that were coded within the framework, I will the introduce responses that were coded under the 
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category Other, later I will use the interview responses to augment the teacher’s profile. As a 

reminder, the Other responses were coded during the second cycle of coding when I took all 

comments that were not coded under any components of the framework, and I started to look for 

patterns in the data. The comments that were deemed to discuss curriculum (for example), but 

were not discussing a specific component from the framework, were further analyzed to find 

patterns within the data.  

 

Jonathan’s PCK  

 Curriculum. Jonathan is a middle school teacher in a school district in the Midwest. He 

has taught statistics before he responded to the CGA prompts and the semi-structured interview. 

In this first section, I will display the results to both his CGA prompts and the interview, as they 

pertain to his knowledge of Curriculum. Jonathan had only three statements, during the CGA, 

that were coded under knowledge of curriculum: two were coded as C2 and one as C4. The first 

statement, C2 – Students should have a conceptual understanding of the mean: fair share, 

balance point, was: “When finding the mean, we are finding if everyone put their items in a pile 

how much would each person get equally when redistributed”, and “I would use this in finding 

the mean.” This last statement was made in connecting an activity of fair share to the mean.  The 

statements coded as C4 – Students should relate the choice of measure of center to the shape of 

the distribution and context the data were gathered, came during the initial survey asking for 

major ideas to which Jonathan responded: “The difference between them all. Which measure of 

central tendency best describes data if there are outliers.” From the whole response only the 

second sentence was coded under C4. The first sentence was coded under Curriculum Other 

because to Jonathan they are two different thoughts (his own punctuation of finishing a thought). 
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Jonathan made two comments about curriculum that were outside the framework: “The 

difference between them all” which, as seen in previous paragraph, was part of the initial survey 

question asking for major ideas. The second statement was made when the initial survey asked 

the participants to talk about the challenges their students encountered: “Math is a foreign 

language. You must understand the terminology first.” I want to point out that this second 

question was asked with the intent of getting participating teachers to talk about their students’ 

knowledge, yet Jonathan kept talking in general terms without including his experiences with his 

students. Interestingly enough, when the same questions were brought up in the interview, and 

after being reminded of his previous answers, Jonathan did not have anything that he wanted to 

add to his previous statement. When further probed about the meaning of “The difference 

between them all”, Jonathan responded “I mean that understanding the meaning of them, one 

how to find them, and two how to use that knowledge to better understand that data.”  

Because there was a part of the framework that did not produce any comments, C5 – 

Students should make connections between measures of center and variability, I specifically 

asked all three interviewees about Mean Absolute Deviation (MAD) and Inter Quartile Range 

(IQR). Jonathan was asked if he had heard the term (MAD) and if he had used it in his class, he 

responded: “I have not”. And when asked if he had used the IQR, Jonathan responded, “No I 

have not used that one.” Jonathan was also asked about weighted means, he responded that he 

does ask questions about weighted means, but that he did not remember the types of content that 

he used to introduce the problem of weighted means. 

Students. When it comes to Jonathan’s knowledge of content and students, he only had 

two statements that were coded using the framework: “[the student’s] misconception is that the 

numbers are in order when presented” (S3 – Students tend to not order data before finding the 
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median) and “Joey knows how to find the measure of central tendency, but does not understand 

how outliers might throw off the data” (S7- students tend to only know the mean procedurally.) 

Jonathan also made five statements that were not coded within the framework, three statements 

about students’ struggle with other concepts of measures of center. From the initial survey, 

Jonathan stated the following: “The next challenge is finding measures of central tendency in 

forms other than a list of numbers (i.e. a frequency table.)”, “For most students, the idea of mean 

is always the right answer”, and “Joey is struggling. Don't we always use the mean?  He is trying 

to realize when is it okay to use another measure of central tendency.” Jonathan also commented 

on issues with outliers when he stated, “Brian seems to struggle with the mean.  He seems to be 

taught or coached about outliers.” 

During the survey, Jonathan was asked “What challenges, have you seen, or do you 

expect your students will have in learning the content?”. In the CGA prompts Jonathan 

responded with a statement about how mathematics was a different language and that 

terminology was very important. In the interview, he was asked to elaborate on his answer and if 

he wanted to add any other challenges that his students encounter with the subject: 

“The hardest part is basically, if we have an average what are some possible data, 

understanding that concept, make sure they understand that the sum divided by how 

many items, trying to get that concept down. That would be one problem, if I give the 

information in table form or in a histogram, what is my average what is my mode 

based on that information?” 

When asked about the misconceptions that his students displayed Jonathan said, “that 

they are all the same thing [mean, median, mode], if we say center but you know they do have 
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different meaning. And that is one thing that they have trouble understanding that there is a 

difference between them [mean, median, mode], and that is the part that we must understand.”  

Teaching. With respect to his knowledge of content and teaching, Jonathan was the only 

teacher that commented on T2 – Connect statistics to other areas in mathematics. He 

commented “One example is just like the one she used (teacher in CGA 1, traditional teaching of 

procedure). The other example would use fractions or decimals.” The first part of this response 

was codded under Teaching Other because of its generality, however the second sentence eluded 

to using fractions or decimals (topics in mathematics) when teaching statistics, hence this 

sentence was coded under T2. The only other comment made that involved the framework was 

solicited when asked about the challenges students have with the content. He stated that he used, 

“data that students have an interest in (music length of favorite songs, time spent on phone in a 

day, etc.)” This last statement was coded as T3– Relying on exploration of real data because 

Jonathan gave examples of real data he uses in the classroom to make the students more 

interested in his teaching, displaying his teaching style. 

Under the “teaching-other” category, Jonathan made comments that were coded as: direct 

instruction, discussions, questions, activities. On similarities or differences to the teacher in CGA 

1, Jonathan responded: “I say my technique is very similar. I would do at least two examples”, 

“In general I teach median the same way.  I first give the definition (middle number)”, and “Very 

similar techniques, show the definition, and look at examples.  The difference would be that I try 

to show bi- or tri-modal problems along with when there is no mode.” All these comments were 

coded under Teaching using direct/individual instruction because in all of them Jonathan 

mirrored, and confirms using, the direct instruction of the CGA teacher.  
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For Teaching by using discussion, Jonathan stated that he would: “Discuss each child's 

reasoning and have students debate which is correct”, “Discuss the outlier. What are the items 

weighed”, “[discuss] measuring what is being said to be true”, and “Have students discuss … 

why are they both 5?” In this last statement, Jonathan was referring to a student comment on the 

seventh CGA where the mean and median of two different distributions was 5. When it comes to 

the types of questions (Teaching using questions as a strategy) that Jonathan used, he mostly 

concentrated on gathering information: “What was the sum of all those 15's you wrote?”, “Make 

a list like you did? Is 11 on that list?”, “if we have an average what are some possible data?”, “If 

the mean is 8, what are some possibilities of money each student has?”. He also had some 

probing questions: “Do we really need to know everyone’s age?”, “Did the number of blocks we 

used change?”, and two reflection questions: “If you remove 15, what ideas do you have to keep 

that sum the same?” and “explain why your answer works.” 

When asked about improving the students’ conception of the measures of center in the 

CGA prompts Jonathan responded: 

“I turn this problem into pay rates at different jobs.  I try to make sure the mean is $15, 

the mode is $10, and the median is $11. Before we look at measures of central tendency, 

how much do you expect to get paid when you start your job.  What does this outlier do 

to your mean? As the president of the company, I advertise the mean to get people to 

apply for my company to work. As a worker, what number do you want to know?” 

This is an activity (Teaching through activities not related to real data) that he uses to get 

students to think about which measure of center to use. Other activities that Jonathan identified 

consisted of: “Next we will do a list of numbers with two middle numbers and try to discover 

how to find the middle of two numbers (i.e. 6 and 8, 11 and 12).” 
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During the CGA prompts, Jonathan was asked, “How have you, or how do you plan to 

address the challenges students have with the content?” He answered, “Provide problem solving 

opportunities to better understand mean, median, mode and use data that students have an 

interest in.” During the interview, Jonathan was asked how he would introduce measures of 

center, what activities he would use and why. He responded:  

“I usually have some sort of a survey on the board, how many pets, how many 

tv's, something like that. I use the definition of statistics—collecting, 

organizing, and interpreting data. So, I collected it, now we must start 

interpreting it. One way of doing it is by using the measures of central 

tendency.”  

As to the reason why he uses these activities:  

“I want them to go through the process of doing that ‘definition of statistics’. 

We have to collect data, how do we collect it, do we have to be specific? We 

get into misleading statistics later on.  Are you biased in your information? 

Let’s say you have a favorite baseball team, did you ask mainly people in your 

survey that were Cubs fans or Cardinal fans, where the case may be, or did you 

ask all girls or all boys? So we get into that biased information and how that 

changes everything.” 

Close to the end of the interview I asked Jonathan, “what does that process (investigative 

process) mean to you and how do you introduce it to the students?” He responded: “I start with, 

statistics is a chapter in our book, so I use that definition. Like collecting data, we have all these 

numbers that mean nothing to us. So now how do we organize them? ... We have frequency 

tables, line plots, those are the two that we talk about a lot. So now we start making some sense 
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out of it, then we start looking at the measures of central tendency. Then how to present that 

information.” During the interview, I made the comment that Jonathan seemed to always start the 

investigative process with gathering data, and sometimes allowing the students to gather that 

data. But, did he ever ask his students to come up with the questions to investigate as a way of 

involving the students and giving them ownership of the process? He responded: “No, and that is 

something that I need to get better at. I would like the students to come up with the questions. 

That would be great, but I cannot say honestly that I have done that.” 

 

Table 14 

Jonathan’s Profile Summary Chart 

Code Components 
CGA 

Protocol Interview 

C2 Students should have a conceptual understanding of the mean: 
fair share, balance point 

ü   

C3 Students should understand that mean, median, mode is a way 
of representing the data using a single number. 

 + 

C4 Students should relate the choice of measure of center to the 
shape of the distribution and context the data were gathered. 

ü  + 

CO Students should understand differences between measures of 
center 

ü   

CO Students should understand the terminology ü   

S1 Students tend to think of minimums and maximums as outliers.   
S3 Students tend to not order data before finding the median. ü   
S6 Students tend to have difficulty calculating weighted means.   
S7 Students tend to only know the mean procedurally. ü  + 

SO Teachers explaining students’ conception of average ü   
SO Students tend to have issues with outliers ü   
SO Students’ struggles with other concepts of measures of center ü   

(Table Continues) 
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Code Components 
CGA 

Protocol Interview 

 T1a – Formulate Questions  + 
 T1b - Collect Data   
  T1c - Analyze data  + 
  T1d - Interpret results  + 
T2 Connect statistics to other areas in mathematics. ü   
T3  Relying on exploration of real data. ü  + 
TO Teaching through activities not related to real data ü   
TO Teaching using direct/individual instruction ü   
TO Teaching by using discussion ü   
TO Teaching using questions as a strategy ü   

Note.  
ü Means that the teacher discussed the component during the CGA protocol 
+  Means that the teacher discussed the component during the Interview 

 

Summary. Table 14 shows the summary of Jonathan’s discussions during the CGA and 

the interview. Some of the components of the framework did not show up in the CGA responses 

but were discussed during the interview. Within this section, I have introduced the evidence of 

Jonathan’s knowledge of content and teaching (KCT), knowledge of content and student (KCS), 

and his knowledge of curriculum. Of the five identified components of the knowledge of 

curriculum, Jonathan only commented on fair share and relating the choice of measure of center 

to the distribution of the data. He did not discuss the other components of knowledge of 

curriculum: median as central point, mean median and mode as a way of representing the data 

with a single number, and make connections between measures of center and variability. 

Jonathan gave additional evidence of his knowledge of content and curriculum through his 

statements under Curriculum Other. These statements equally concentrated on the students’ need 

to see differences between measures of center and their need to know the terminology. 
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On KCS, Jonathan commented on his students ignoring 0 when finding the mean (S2), 

students’ lack of ordering data when finding the median (S3), and the tendency of students to 

know the mean procedurally and not conceptually. However, Jonathan did not comment on S1 – 

students tend to think of minimum and maximum as outliers, even though that was the major 

idea for one of the CGA’s. He also did not comment on other component of KCS, even though 

the opportunity arose several times in the CGA’s and in the semi-structured interview. Other 

comments on knowledge of content and students concentrated on explaining students’ 

conception of measures of center as well as highlighting students’ issues with outliers and 

struggles with other concepts of measures of center.  

Jonathan discussed during the CGA prompts some of the components of KCT that were 

identified by the framework, however his comment on T3 – Connecting statistics to other areas 

of mathematics was too fleeting to be considered a component of the knowledge that this teacher 

has. When discussing reliance on real data, Jonathan mentioned some of the data that he would 

be able to use (something students were interested in), also in a later example used data from 

salaries to create an activity.  In the interview, he discussed what he thought of as the “definition 

of statistics”, to include some more components of the investigative process by gathering, 

displaying and interpreting data. It should be mentioned that he also did not feel comfortable 

allowing the students to come up with the questions to investigate, something that teachers are 

expected to do (Franklin et al., 2007), and a concept that can and should be taught in the 

classroom. Jonathan also provided some additional evidence of his teaching through his 

comments under Teaching Other. Jonathan showed that he taught mostly through questioning 

and discussion.  
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Kasy’s Profile  

Kasy is a middle school teacher who has taught in a school district in the Midwest for the 

last 20 years. The Fall semester, when the survey and interview took place, was her first semester 

in a mathematics education Ph.D. program in a university in the Midwest. She has taught 

statistics in her career, she has had the opportunity to take both content and methods courses 

through here studies in the teaching of statistics, and she has had professional development 

geared towards teaching statistics in middle school. In this first section, I will present the results 

to both her CGA responses and interview, as they pertain to her knowledge of content and 

curriculum.  

Curriculum. The answers to the CGA prompts were not very indicative of her 

knowledge of curriculum because she concentrated on the teaching aspect of the questions, hence 

there were only three comments that were coded as components of knowledge of curriculum 

from the framework. When responding to the initial survey “asking for major ideas” Kasy said: 

“That the idea of center takes on many forms” which was codded as C3 -  Students should 

understand that mean, median, mode is a way of representing the data using a single number. 

When contrasting her teaching to the first CGA Kasy responded: “I give students in the class 

different numbers of popsicle sticks. Then they trade off until every student has the same 

amount,” was coded as C2 - Students should have a conceptual understanding of the mean as 

fair share, balance point. Later, when asked as to what concept she would connect a fair share 

activity to she just responded “Average”, which also was coded as C2. During the CGA 

responses Kasy did not have any statements that were codded under Curriculum Other. 

When asked in the interview to elaborate and add to response about what major ideas she 

wanted student to walk away with, Kasy said:  
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“So, … mean, let’s say you have popsicles, you have 5 I have 7, but if you are going to 

do fair sharing than we have 6 a piece. But that does not necessarily work with discreet 

number. So, if I wanted to know about shoe size… I would think of the mode. With the 

median you might try to line up kids to know who is in the middle …. So, different 

situations would call for different measures of center.”  

When pressed more: “the big one that different measures of center are appropriate for different 

types of data”, she then included an example with salaries and how outliers need to be 

considered in the measure of center you use. When responding to my inquiry about, C5 – 

Students should make connections between measures of center and variability, Kasy said that she 

does uses MAD with her 8th graders to discuss variability. IQR received the same answer that she 

does introduce it to her 8th grade students.  

Students. When answering CGA prompts, Kasy’s knowledge of content and students 

was comparable to her knowledge of Curriculum, very few comments were coded as knowledge 

of content and students. There was one comment under S4 – Students tend to use the mode in the 

beginning to represent typicality: “Joey’s thinking about mean assumes that all the boxes have 

the same number of pencils.” Under S7 - Students tend to only know the mean procedurally Kasy 

commented: “I want students to understand ideas and form meaning and not just perform 

calculations to get an answer”. Under Students Other Kasy had made comments about Students 

tend to have issues with outliers: “Sallie does not understand the concept of outliers” and under 

Teachers explaining students’ conception of average Kasy commented: “Joey is struggling with 

these ideas because he doesn't equate the numbers with their meanings.” 

When asked about IQR, in the semi-structured interview, Kasy responded that students 

had issues with finding IQR when it was an even number of pieces of data “Some of the 
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misconceptions like if it is an even number of numbers.” During the interview when asked to 

elaborate on challenges encountered through her teaching she responded: “Well one big 

misconception … is that when you are finding the median the numbers are in order”, “Just 

getting across to them that mean mode and median are still forms of centering data. Some 

students do not immediately grasp that idea without examples.” She then goes on to say that in a 

high stakes test there is always the same question about students being give six pieces of data 

and then asked what the seventh piece needs to be for the average to be a certain number. She 

identifies the misconception as: “Students would just find the average of the 6 scores.” During 

the interview, she also mentioned that:  

“One thing that I learned early in my teaching experience, my students tend to be more 

kinesthetic and so it's easier, more advantageous to do things where they are tactile. They 

learn better with tactile kinds of experiences. They also learn better when they see 

something prior to explaining, prior to the formal explanations. they already have some 

kind of understanding of what I am getting to so when they actually do the math, they 

understand why.” 

When asked about the choice of one of her activities, popsicle sticks for fair share, she 

explains that: “they have an idea of what average means. By the time students get to 6th grade 

they generally know how to calculate the average. So, they have some understanding of it as a 

computation but not as a conceptual idea, the first time I taught 6th grade I realized that at least 

50% of my students did not have a real conceptual understanding of what average was. So, this 

[popsicle activity] brings it home, that activity makes it clear.” Later, when reacting to the third 

video (11 scores mean of 5, then two more scores need to keep the same mean), the teacher said 
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“Initially half of them just find a new average, half do not necessarily relate the average and the 

total.”  

Teaching. Knowledge of content and teaching was more visible with Kasy, she made a 

lot of comments in her responses to CGA prompts and in the interview about the way that she 

taught. During the CGA prompts, she brought up different activities, popsicle sticks, data 

gathering on height and weight, that she uses with her students during her teaching. Coded as T1 

– Teach statistics through the investigative process, Kasy used data, shoe sizes, and asked her 

students to analyze the data by finding mean median and mode, and then she asked them to 

decide as to which measure of center to use. Then, with that data and measure of center in mind, 

she asked the students to make a recommendation to the store owner as to what shoe size he 

should buy.  

As T3 – relying on active learning and exploration of real data, Kasy responded to “how 

do you address challenges that students have?” with “Through projects and activities, and Real 

World experiences.” One of the projects discussed was her use of popsicle sticks to get students 

to understand fair share. She would give students different number of popsicle sticks and ask 

them to go around the classroom and trade until they all had the same number of popsicle sticks. 

When asked how did she know the students were done, the teacher answered: “I notice that 

eventually it gets quiet because everybody they run into has the same number.” She also uses 

books from the library, where she asks a number of students to make stacks with their library 

books. She then asks them to share until they all have the same number of books, then she 

changes the stacks and asks the students “now my average will be different, right?” and the 

students reaction: “and they will look at me like I am stupid and say, ‘Miss. it is the same 

number of books so it will still be the same average.’" 
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Under Teaching Other, Kasy made comments that fell under all the identified themes. 

There were four comments that were coded under Teaching procedures backwards: “Remember 

to have an average of 34 the total will always be the same.” This comment was made when Kasy 

was discussing how she would help students with the weighted mean question, where four men 

had an average of 34. Later she explains that: “I would ask him to determine how many pencils 

TOTAL I have in the same boxes and then how many pencils could be in each box.” This 

comment was in response to a question about students creating a distribution when given the 

mean. Another category that had similar number of comments was Teaching using questions as a 

strategy. Under this category Kasy commented: “There are 4 men with an average age of 34. 

What would the total be of these ages. What ages could the men have?” and “I would ask again, 

how many students are there and can we discard that student just because they don't have any 

pets.”  

During the interview I asked Kasy about the investigative process, and her modus operate 

which was to give students data and then ask to analyze and then make a recommendation, I 

asked her as to why she did not allow the students to come up with statistical questions to 

investigate. She responded that “No. And I will give you a reason why”, she then went to explain 

that she had tried once to ask the students for a question to investigate, and the response that she 

received was too far out of the norm that she did not feel comfortable allowing the students to 

explore that part of the investigative process. She added: “I think that those kinds of ‘turning 

over the learning to students’ is possible in maybe high school with older students who have 

some idea of the purpose of their education.” 

When asked as to how she would handle misconceptions, “I think that when students 

discover their own misconceptions, that is the whole idea behind tasks selection, is that part of 
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your teaching is to present problems where they will have an opportunity to encounter these 

misconceptions and then discus. Now once you have had your instruction then you give an 

appropriate task then you still have some students that do not understand it. Then you might need 

to explicitly state it, but to me that is always the last resort.”  

 

Table 15 

Kasy’s Profile Summary Chart 

Code Component 
CGA 

Protocol Interview 

C2 Students should have a conceptual understanding of the mean: 
fair share, balance point 

ü  + 

C3 Students should understand that mean, median, mode is a way 
of representing the data using a single number. 

ü  + 

C4 Students should relate the choice of measure of center to the 
shape of the distribution and context the data were gathered. 

 + 

S3 Students tend to not order data before finding the median.  + 
S4 Students tend to use the mode in the beginning to represent 

typicality.  
ü   

S7 Students tend to only know the mean procedurally. ü  + 

SO Teachers explaining students’ conception of average ü   
SO Students tend to have issues with outliers ü   

T1 Teach statistics through the investigative process. ü   
  T1b - Collect Data  + 
  T1c - Analyze data  + 
T3  Relying on exploration of real data. ü   
TO Teaching through activities not related to real data ü   
TO Teaching using direct/individual instruction ü   
TO Teaching by using discussion ü   
TO Teaching procedures backwards ü   
TO Teaching using questions as a strategy ü   
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Summary. Table 15 displays the summary of Kasy’s discussions during the CGA and the 

semi-structured interview. Kasy’s answers concentrated mostly on the teaching aspect of the 

CGA’s; hence, there were only three comments that were coded as components of curriculum 

knowledge from the framework, C3—representing the data using a single number, and C2— 

Students should have a conceptual understanding of the mean as fair share.  When asked in the 

semi-structured interview to elaborate and add to her response about what major ideas she 

wanted student to learn, Kasy reiterated how outliers need to be considered in the measure of 

center that you use. During the interview, Kasy used a situation in which she would include 

outliers for the purpose of getting students to understand that different measures are appropriate 

at different times. She also commented that she wanted her students to understand that mean, 

median, and more are forms of centering the data.  

During the CGA prompts, Kasy’s KCS was comparable to her knowledge of curriculum: 

very few comments were coded as KCS. There was one comment under about students using 

mode at the beginning (S4), and one comment about students knowledge of the mean only 

procedurally (S7). Under Student Other, Kasy had three different statements about the struggles 

students have with other concepts of measures of center. During the interview when asked to 

elaborate on challenges encountered through her teaching, she responded that her students 

assumed that data were ordered when finding the median. Kasy added evidence of her 

knowledge of content and students with a couple of statements under Students Other, one 

explaining students’ conception of average and one statement discussing issues students have 

with outliers. 

KCT was more visible with Kasy: she had a lot of comments in her responses to the CGA 

prompts and in the interview about the way that she taught. During the CGA, she brought up 
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different activities, popsicle sticks and data gathering on height and weight, that she uses with 

her students during her teaching. Kasy also commented that she used real-life data to the 

question about reacting to student struggles. One of the projects was her use of popsicle sticks to 

get students to understand fair share. She also uses books from the library for another project. 

Overall, Kasy’s knowledge of teaching was well balanced with activities and discussions about 

concepts of average; however, there were instances in which she did revert to direct instruction 

when the concept was more complicated: weighted means and finding the distribution when 

given the mean. With this last situation of finding possible data points when given the mean, 

Kasy went directly to the calculation and explained how if there were 10 observations and the 

average would be 5, then whatever the observations were they had to add to 50. Additionally, 

Kasy had multiple comments coded under Teaching Other, those comments were concentrated 

mostly on using questioning and discussion as a teaching tool. 

Overall, Kasy’s comments and evidence of her PCK reveal that she concentrated on the 

teaching aspect of her pedagogy. There were a lot of comments on how she taught and what her 

students would do in various situations. She was very comfortable discussing activities that she 

has used in her classroom and activities that she has used to get students to actively engage in the 

lesson. She commented on some of her students’ misconceptions and she has identified some 

areas where they might struggle with the measures of center. Her knowledge of curriculum was 

intertwined with her knowledge of students and teaching; hence, it might not have been as clear 

cut as other teachers, but her comments showed that her knowledge of teaching was more 

prevalent. 
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Monika’s Profile 

Monika is a middle school teacher somewhere in the Midwest, she reported during the 

survey that she had previously taught statistics to her middle school students for the last 20 some 

years.  Monika also reported that she has had classes both in content and methods courses in the 

teaching of statistics through her scholastic career, and she also has had professional 

development courses where statistics was discussed. She took the survey within the first week of 

November, and we conducted the interview within the first week of December of 2016, the 

interview was a Skype interview.  

Curriculum. Responding to CGA prompts, Monika’s knowledge of curriculum was 

limited to only a handful of comments that did not have a specific direction, but were scattered 

through the spectrum. As far as the framework is concerned, Monika only had two comments 

that were coded as C2 – Students should have a conceptual understanding of the as fair share, “I 

think I would have to link to through sharing things equally”, and “I think this connects to mean 

- average money.” Both comments were made from a prompt asking on what would a fair share 

activity could be related to, and how would it be related. When asked about the major ideas she 

wanted her students to take away from her class Monika she said: “I think that getting students to 

actually understand the difference of each is major.”  

When asked, during the interview, if there were any other major ideas that she wanted her 

students to come away with, Monika said: “No do not think so, with the CCSSM they brought a 

lot of statistics down to 7th grade that was covered in high school, so just the basic 

understanding.” When asked if she was familiar with MAD, Monika said that she was and that 

she was not able to cover MAD during statistics time but she use it during her Algebra 2 class. 

She also said that she is not able to make a lot of connections because she is not very 
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comfortable with the curriculum. When asked about IQR and how has she used it, Monika said: 

“Yes to know what it is but I have never had any application with it”, and “Yes, my students can 

make box and whisker’s plot, but I do not know how to relate that to real life, where do they use 

that.” When asked about weighted means “Not with the term weighted means, that is a new term 

to me. One thing I do, I have a list of basketball and baseball players’ heights. But I do not 

compare them to each other we just find the average of them. Now I wander if that activity is 

totally messed up. I'm going to go with NO, sorry.” 

Students. Monika’s knowledge of content and students was evident in a lot of her 

comments, when asked as to major struggles her students have with the comment she answered: 

“Students tend to blend these together - they don't see what sets each apart.” With respect to the 

framework Monika made comments about two of the categories under students. One of the 

comments was coded as S1 – Students tend to think of min and max as outliers, saying: “Eric - 

doesn't understand that data can have outliers.” She also commented on S5 – Students tend to 

ignore mean when it is not part of the data, “Eric - actual mean is not listed in data - seems to 

want only data from list.”, and “Perhaps he has not made the connection that the mean is not 

always one of the original data points.” 

The rest of the CGA comments pertaining to students were categorized under “Student-

Other”. In this category, Monika had most of her comments about how Students’ struggles with 

other concepts of measures of center, she also had comments about issues with outliers. Under 

issues with outliers Monika commented: “Eric - doesn't understand that data can have outliers”, 

“Sallie - doesn't seem to understand what an outlier actually is, she is over-generalizing the 

outlier”, and “so when they get to seventh grade they have no idea what to do with those things 

(outliers).” Comments under struggles with other concepts of measures of ceter: “Brian - 
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confusing meaning of mean and median - not confident of the definitions”, “He is using mean 

and median interchangeably and needs help understanding the difference”, “So they do not 

understand that median means something different than mean”, and “I think the hardest part is 

getting kids to understand the difference between the mean, median and mode, and that they 

represent different ideas.” 

There were comments that were coded as explaining students’ conception of average, or 

just acknowledging what the student was thinking. When responding to a prompt about a 

student’s thinking of the mean, Monika answers: “Joey has a good point - while most of us might 

think this is the 'easy' way, I would want to ask him why he thinks that”, and continues with “I 

could be the easy way, or maybe he thinks all new boxes of pencils have the same amount.” On 

the same video asked about a different student’s thinking: “I feel like this is the way we teach it, 

so I'm not sure how much is just following a pattern and how much is truly her own thoughts.” 

On the third student’s thinking she acknowledges that the student has a good grasp of the 

content: “since his box is gone - love his thinking - he is showing great insight into the problem.” 

During the interview when asked for the meaning of “understand the difference of each” 

Monika answered: “When you say which one is the better measure they do not know how to 

come up with anything but the average (mean), because that is what they are used to.” When 

reminded of the comments about outliers, in the survey, and asked to elaborate, Monika 

answered: “. Yes, it seems that that is anywhere in our curriculum, some teachers before me say 

just ignore them, they do not address them within our curriculum.” When asked to elaborate on 

the statements “students tend to blend those together”, and “they do not see what sets each 

apart”, Monika answered: “I think that I struggle with that because I was never taught it well. So, 

then I think they struggle because of that. I think it is something that I feel I need work on.” 
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When asked about other struggles, Monika responded: “statistics is always that last unit. It is 

always left off, if there is something that does not get to statistics, so every class is different.”  

Lastly, when asked about a comment on a student’s thinking, “Brian is showing great 

insight” Monika responded: “what I was thinking was that he understands the math behind what 

they are looking for, so he has insight into what mathematics needs to be done.” When urged to 

differentiate between Brian’s insight on concept or procedure: “More about the procedure, yes. 

Usually the ones that I thought were doing good were very well spoken. They could 

communicate the math, and I think that communicating the math shows understanding.” 

Teaching. Monika’s knowledge of content and teaching when responding to CGA 

prompts was displayed by a couple of comments that were coded within the framework, but a lot 

of comments were coded as “teaching-other”. For T1 – teach statistics through the investigative 

process, Monika commented: “I collect data from my students so that it means something to 

them - we also talk organizing the data and predict things about it.” With T3 – Relying on active 

learning and exploration of real data, Monika commented: “I would help Joey by building a 

model with him - this would be a good time to use hands-on activities” and later “I think that he 

needs to see how he can manipulate the change.”  

 The comments under “teaching-other” were mostly concentrated on Teaching through 

activities not related to real data, and comments that show Teaching using direct/individual 

instruction. On activities not related to real data Monika commented: “I try to use activities that 

require the students not only to compute the measure, but to also use them to describe 

situations”, “I would also love to give him to it to find possible ages for the men and women.” 

When commenting about similarities or differences with the teacher in the first video, Monika 

responds: “There are similarities here - I think that the information that I present is the same”, 
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“As I watch this, I'm wondering if I should assume this is all there is? The information that is 

presented is the same as what I do, but I give lots of examples - 2 modes, no modes” and 

comments that show that the teacher will use direct/individual instruction: “Eric - need more 

instruction and possible examples” and “she needs practice with data that doesn't include these 

(outliers), as well as more instruction.”  

The rest of the teaching comments were scattered through the categories with single 

statements that do not give a clear picture of a pattern. Single comments on reflective questions: 

“What does it mean when we have a part of a pet?”, or gathering information questions “How 

does that get reported in our findings?”, or probing comment “I would encourage her to justify 

why she thought 2 or 3 would be a correct answer.”  

During the semi-structured interview, I asked Monika if there were any other ways, 

excluding the survey, that she uses to help her students with measures of center, Monika 

responded: “I try to do activities where they have to look at real life materials, and where it 

might be applicable. I struggle with that myself. I try to do the common core approach of 

working within themselves and coming up with ideas on their own.” The next question was 

about how she introduces measures of center to her classes, “In the beginning, I try to relate it to 

things that they have already done. Where they have used averages before. They come to me 

with that basic knowledge, but then I try to use an activity where we are looking at real life 

numbers, to try to see the differences that each one is.” When asked if there were any other 

activities that she uses she responded that “with statistics I feel like I have to have it written 

down.”  

On the first part of the semi-structured interview CGA, students struggle with the idea 

that two different data sets have the same mean and median. When prompted as to how she helps 
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students in this situation Monika responds: “well usually I throw it back at my kids, because I 

work hard with the mathematical practices for them to communicate it. So, we actually throw it 

back at them and brake them up in smaller groups, and list what their ideas are, before I narrow it 

down with what the truth is.” When prompted to clarify Monika responds: “I think that I would 

probably tell them that each set of data is different, and that while they can have the same 

median and mean, that is why we look at the entire set of data.” In the second part of the video 

when the tables are turned and the students are asked to come up with the data, when given the 

mean, Monika recognizes that she does not use this as a statistical question. She uses the 

situation as an algebra activity with the purpose of “if they can talk someone else through it than 

that is huge” and “also a way to get to that part of your brain that stimulates the thought process 

differently.” 

As with the other interviews, I asked Monika about the investigative process and how she 

implements it in her classroom. She responds: “I was blessed to be part of the ‘Model Math 

Curriculum’ team from Illinois, so the Model Math materials that are on the ISBE website I was 

able to help create those, and we created a couple of activities and I used those.” When prompted 

to talk about the lack of student questions for investigation Monika responds: “I have to be 

honest again that is the part that gets left out. It depends on if I have time or not, I am sorry to 

have to admit that to you.” At the end of the interview the teacher asked me about my work, and 

after a little “elevator pitch” about my work she responds: “I have taught a long time and of all 

the professional development I have had, statistics is absolutely the weakest, and for that same 

reason it is the last thing on the textbook. I was lucky enough that when I had statistics questions 

I could ask a high school teacher.” 
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Table 16 

Monika’s Profile Summary Chart 

Code Component 
CGA 

Protocol Interview 

C2 Students should have a conceptual understanding of the mean: 
fair share, balance point 

ü   

C3 Students should understand that mean, median, mode is a way 
of representing the data using a single number. 

 + 

C4 Students should relate the choice of measure of center to the 
shape of the distribution and context the data were gathered. 

 + 

CO Students should understand differences between measures of 
center 

ü   

S1 Students tend to think of minimums and maximums as 
outliers. 

ü   

S5 Students tend to ignore mean when it is not part of the data. ü   
S7 Students tend to only know the mean procedurally.  + 

SO Teachers explaining students’ conception of average ü   
SO Students tend to have issues with outliers ü   
SO Students’ struggles with other concepts of measures of center ü   
  T1d - Interpret results ü   
T3  Relying on exploration of real data. ü  + 
  ü   
TO Teaching using direct/individual instruction ü   
TO Teaching by using discussion ü   
TO Teaching procedures backwards ü   
TO Teaching using questions as a strategy ü   

Note.  
ü Means that the teacher discussed the component during the CGA protocol 
+  Means that the teacher discussed the component during the Interview 

 

Summary. Table 16 displays the summary of Monika’s responses during the CGA and 

the interview. During the CGA, Monika’s knowledge of curriculum was limited to only a 

handful of comments that did not have a specific direction but were scattered through the 
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spectrum. As far as the framework is concerned, Monika only had two comments that were 

coded as C2—students should understand the mean as fair share—both comments were made 

from a prompt asking what concept of measures of center a fair share activity could be related to 

and to which concept it be related. During the interview, she said that she is not able to make a 

lot of connections because she is not very comfortable with the content. She also commented that 

students needed to see differences between measures of center and that teachers needed to be 

cautious throwing out terms like “outliers,” instead of looking at the whole data. When asked 

about IQR and how has she used it, Monika said that she uses the procedures but that she did not 

make a lot of connections to real-world problems. Hence, with respect to curriculum, Monika did 

not make a lot of comments, which prompts me to say that she showed a low knowledge of 

curriculum when compared to the expected knowledge advocated by curriculum documents and 

research.  

Monika showed a fair amount of knowledge of her students in comparison to the 

expected knowledge from the research. When asked about major struggles that her students have 

with the content, she answered that students did not see differences and tended to blend the 

measures of center. With respect to the framework, Monika made comments about three of the 

categories under students. One of the comments was coded as S1—students tend to think of min 

and max as outliers and S5—students tend to ignore mean when it is not part of the data. The 

rest of Monika’s CGA comments pertaining to students were categorized under Student Other. 

With respect to issues with outliers, Monika identified struggling students having issues 

recognizing outliers.  

The comments made show Monika’s KCT could be considered low to fair compared to 

the expected components from the framework. These findings were evident by a couple of 
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comments that were coded with the framework, but a lot of comments were coded as Teaching 

Other. For T1—teach statistics through the investigative process—Monika commented that she 

collected data from her students to make it more relatable, and then she had a discussion with her 

students about organizing and making predictions from the data. With T3—relying on active 

learning and exploration of real data—Monika commented that she would help a student by 

building a model with him using real data and hands-on activities. She did not go into detail 

about how this was going to be accomplished. The comments under Teaching Other were mostly 

concentrated on activities that she uses in the classroom and comments that show how teacher-

heavy, direct instruction, her teaching was. When commenting about similarities or differences 

with the teacher in the first video, Monika responds that she teaches the same way. The rest of 

the teaching comments were scattered through the categories with single statements that did not 

show a clear pattern. 
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CHAPTER V: CONCLUSIONS AND RECOMENDATIONS 

 

Introduction 

In this final chapter, I introduce the central finding of this study in understanding what 

potential components of PCK looks like with middle school teachers when teaching measures of 

center in statistics. I start by summarizing the study itself and then introduce some of the primary 

findings. I then describe the contributions to existing research and the study’s implications. I also 

introduce some of the limitations, followed by recommendations for future research in the same 

area. I conclude the chapter with a discussion of whether I need to add or omit any of the 

elements of the conceptual framework developed and, finally, by describing the study’s 

significance. 

 

Summary of the Study 

Statistics has been growing as a field of study (Shaughnessy, 1992) in the last 30 years, 

and as such, it has gained acceptance within curriculum documents (NCTM, 1989, 2000, 2006; 

NGA & CCSSO, 2010). However, as mentioned by Shaughnessy (1992) and Batanero et al. 

(1994), the preparation of pre-service teachers as well as PD for in-service teachers, has not 

caught up with the new developments in curriculum. Within the last 10 years there have been 

some publications to help with teacher preparation that have made recommendations for teaching 

statistics (Franklin et al., 2007) and for preparing teachers to teach statistics (Franklin et al., 

2015). However, as I have outlined in previous chapters, the research on teachers’ knowledge for 

teaching statistics is lacking (Batanero et al., 1994; Franklin et al. 2007; Shaughnessy, 1992, 

2007). 
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Although there is a growing body of research on PCK within mathematics (e.g., Ball & 

Bass, 2003; Ball & Hill, 2005; Ball et al., 2008; Hill & Lubienski, 2007; Hill et al., 2008; 

Shulman, 1986, 1987), the research within statistics has been mostly limited to frameworks and 

models of PCK. The existing research has concentrated on mapping what PCK should look like 

(Burgess, 2007; Godino, Batanero, Roa, & Wilhelmi, 2008; Groth, 2007, 2013; Watson et al., 

2008; Watson & Nathan, 2010) with limited research on what PCK does look like with in-service 

teachers outside of the United States (Burgess, 2009a, 2009b; Estrella et al., 2015; Ijeh, 2013; 

Wessels, 2014) and very limited research within the United States concentrating on PSTs (Groth, 

2014; Sorto & White, 2004). 

Since its introduction in 2010, the Common Core State Standards for Mathematics (NGA 

& CCSSO, 2010) have been adopted by most states (within the United States) as their primary 

curriculum document. While NCTM (1989; 2000; 2006) had advocated for statistics to be 

included as early as the first grade continuing to 12th grade, CCSSM deviated from that 

precedence and introduced statistics concepts in the sixth grade continuing to 12 grade. This 

change became the impetus behind this study and its concentration in the introduction of 

measures of center. Research has shown that students have issues with the conception of 

measures of center and which measure of center best represents the data (Mokros & Russell, 

1995; Russell & Mokros, 1990; Leon & Zawojewski, 1990; Watson & Moritz, 2000). Hence, 

teachers should know how to use the given curriculum, what conceptions or misconceptions their 

students come in with, and what the best way to introduce statistics (Batanero et al., 1994; 

Franklin et al. 2007; Shaughnessy, 1992, 2007). 

Although statistics has been gaining momentum within curriculum and standards 

documents, published to suggest how statistics should be taught, there has been little research 
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with in-service teachers in the United States to understand what knowledge they have with 

respect to teaching statistics. For these reasons, I designed a study to examine teachers’ 

knowledge with respect to teaching statistics in middle school. For this study, after examining 

several frameworks that were put forth by research, I found it necessary to create my own 

framework to adhere to the intersection of PCK and the topic of measures of center. I looked at 

existing research and curriculum documents, and I expanded on Hill et al. (2008) 

conceptualization of PCK by giving specific components to each of their three major ideas of 

pedagogy. 

When looking at the studies conducted in the 1990’s (Even, 1993; Even & Tirosh, 1995; 

Wilson, 1994) researchers were using classroom observation to get a glimpse of what knowledge 

teachers demonstrated. From observations researchers evolved their thinking on how to 

understand teacher knowledge. While observations have not lost their appeal and are still used 

today, researchers have adventured into creating assessment instruments to understand teacher 

knowledge especially pedagogical content knowledge (Ball et al., 2008; Hill et al., 2008; Hill & 

Lubienski, 2007; Watson, 2001). In this study, the adventure of creating assessment instruments 

has evolved into the use of animations (comics) to understand teachers’ knowledge. This 

methodology, as and argued by different researchers (Chazan & Herbst, 2012; Herbst & Chazan, 

2015; Herbst, Chazan, Chen, Chieu, & Weiss, 2011; Herbst & Kosko, 2014) presents an 

opportunity in understanding teacher’s knowledge. Following Herbst and his colleagues’ 

recommendations, I have used Computer-Generated Animations as the main instrument to 

analyze the characteristics of participating teachers’ knowledge when teaching measures of 

center in middle school. 
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To do what Herbst and his colleagues’ advocated I seven Computer-Generated 

Animations (CGA’s), whose content was taken directly from research and curriculum documents 

and asked the teachers to answer prompts designed to elicit evidence of their knowledge as it 

related to teaching statistics. The creation of the CGAs was started by first writing seven 

different vignettes that introduced different ideas, struggles, and concepts about measures of 

center as well as prompts designed to solicit participants’ knowledge of pedagogy. Once the 

vignettes were written, the CGAs were created using a web-based design program. After that, a 

web-based platform was created on which the teachers could view the CGAs and answer the 

corresponding prompts. The end-product was piloted three times and improved on for ease of 

viewing and information solicited. 

There were eight teachers who participated in the study, all of whom had taught statistics 

in middle school at least once during their career. Three of the teachers participated in semi-

structured interviews that were designed to further probe their thinking and to clarify any vague 

comments made in the CGAs. The interview questions were informed by an initial analysis of 

the data received in the CGAs, and an additional CGA was designed specifically for the 

interviews so that the teachers would not have to review all previous CGAs. The data were 

analyzed in two cycles. In the first cycle, the data gathered from the CGAs was analyzed using 

the codes from the conceptual framework. In the second cycle, the statements without codes 

were analyzed for emerging patterns and themes and were further categorized as other ideas of 

content, students, and teaching. Lastly, the three teacher interviews were used as supplemental 

data to better understand their pedagogical content knowledge.  
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Discussion on Teacher’s Pedagogical Content Knowledge 

This study had one major research agenda about the PCK teachers exhibit when teaching 

statistics in middle school. That agenda was further divided into three specific questions: 

1. What characteristics of knowledge of content and curriculum do middle school 

mathematics teachers exhibit when reflecting on teaching measures of center? 

2. What characteristics of knowledge of content and students do middle school mathematics 

teachers exhibit when reflecting on teaching measures of center? 

3. What characteristics of knowledge of teaching do middle school mathematics teachers 

exhibit when reflecting on teaching measures of center? 

Table 17 gives a visual of the level of response that each component of the framework 

was discussed by the participating teachers. The following sections will discuss how the three 

research questions were answered by the findings of this study. 

 

Table 17 

Expected Statistical Knowledge for Teaching Measures of Center 2 

Code Component 
Level of 
response 

C1 Students should understand the median as a central point. 12.5% 
C2 Students should have a conceptual understanding of the mean: fair 

share, balance point 87.5% 

C3 Students should understand that mean, median, mode is a way of 
representing the data using a single number. 50.0% 

C4 Students should relate the choice of measure of center to the shape of 
the distribution and context the data were gathered. 50.0% 

C5 Students should make connections between measures of center and 
variability. 0.0% 

S1 Students tend to think of minimums and maximums as outliers. 75.0% 

(Table Continues) 
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Code Component 
Level of 
response 

S2 Students tend to ignore 0 in the data set when computing measures of 
center. 0.0% 

S3 Students tend to not order data before finding the median. 50.0% 
S4 Students tend to use the mode in the beginning to represent typicality.  25.0% 
S5 Students tend to ignore mean when it is not part of the data. 62.5% 
S6 Students tend to have difficulty calculating weighted means. 12.5% 
S7 Students tend to only know the mean procedurally. 37.5% 

T1 Teach statistics through the investigative process. 12.5% 
  T1a - Formulate Questions 0.0% 
  T1b - Collect Data 12.5% 
  T1c - Analyze data 12.5% 
  T1d - Interpret results 25.0% 
T2 Connect statistics to other areas in mathematics. 12.5% 
T3  Relying on exploration of real data. 75.0% 
T4 Making effective use of technology and assessment. 0.0% 

 

Knowledge of Content and Curriculum  

The evidence supported by this study’s findings point to teachers being comfortable 

discussing certain components of their knowledge of content ad curriculum. The component that 

teachers were most comfortable discussing and showed evidence of was C2 - Students should 

have a conceptual understanding of the mean: fair share, balance point. As evident by table 17, 

87.5% of the teachers made a comment that was coded as C2. The components that teachers did 

not show a lot of evidence of, but still discussed, were C3 – Students should understand that 

mean, median, mode is a way of representing the data using a single number and C4 – Students 

should relate the choice of measure of center to the shape of the distribution and context the data 

were gathered. Both categories were discussed by 50% of the teachers. Lastly one teacher 

discussed C1 – Students should understand the median as a central point and no teachers 
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provided evidence of C5 – Students should make connections between measures of center and 

variability. 

There were only two questions that were the source of most of the codes for curriculum: 

one in the initial survey that asked about major ideas that the teachers wanted to bring across in 

their teaching, and one in the fourth CGA that directly asked what concept teachers would 

connect using a given activity. With respect to the concept of mean as fair share or leveling off 

data, the teachers made comment about it; however, almost all (14 of 15) comments came after 

the animated teacher (in CGA 4) demonstrated a fair share activity to the classroom and the 

prompt asked what concept to connect the activity to and how to use the activity in the 

classroom. 

Thinking of the measures of center as representing the data using a single number, the 

comments that were offered discussed the idea by mentioning that all measures of center gave 

different information about the data. As far as relating the choice of the center to the shape and 

the context of the data, the evidence given was concentrated mostly on singular points (outliers) 

and did not mention, nor discuss, the shape or the context of the data. The data about knowledge 

of content and curriculum reveals that teachers exhibit some ideas about measures of center that 

they keep coming back to. With the idea of the outliers skewing the data, the comments seemed 

to come back to that concept multiple times; however, there were also four teachers who did not 

give any evidence of a connection between outliers and their effect on the choice of which 

measure of center to use. No comments, during the CGAs or the interviews, discussed students 

making connections between measures of center and variability through IQR or MAD, which is a 

major recommendation from the CCSSM (NGA & CCSSO, 2010) in Grade 6. 
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Even though the components of the framework were based on curriculum documents and 

research, participants did not show evidence indicating that their knowledge matched what had 

been recommended by researchers. Similar findings were observed by Watson (2001), who 

reported that even though there were a lot of activity-based lesson plans at the primary level, 

there was almost no evidence a uniformity of curriculum. Watson also found that the major 

curriculum document, curriculum adopted by most Australian schools, was only used by a 

quarter of the secondary teachers, a finding that I might speculate could be confirmed by this 

study as well, in that most of participating teachers did not provide evidence of knowledge of 

content and curriculum.  

 

Knowledge of Content and Students 

KCS is the knowledge that teachers have when recognizing what conceptions, 

misconceptions, and strategies students use in solving statistical questions. This study showed 

that most teachers are comfortable, gave evidence of, discussing the fact that S1 - Students tend 

to think of minimums and maximums as outliers. This component of the knowledge of content 

and students was discussed by 75% (6) of the teachers, as shown in table 17. The table also 

shows that teachers gave some evidence of knowledge of components S3 through S7, but gave 

no evidence of component S2 - Students tend to ignore 0 in the data set when computing 

measures of center.  

There were numerous prompts that asked teachers to discuss topics that would reveal 

their knowledge of students. It should be mentioned that one of the initial survey questions asked 

specifically about challenges that students have, but only half of the teachers specifically 

identified a challenge that students have that was aslo identified by the research, with three of 
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these teachers concentrating on differences between measures of center. Those comments were 

not about making a choice about which measure of center to use but were about differences, in 

definition and computational algorithm, between the three measures of center. The other 

comment about challenges came from one teacher recognizing that students do not see the need 

to have ordered data when finding median. The rest of the comments were about vocabulary, 

with one teacher deviating completely to division in mathematics, without making any 

connections to statistics, and how her students had issue when dividing decimals. 

Three participants made at least three comments coded as S1—Students tend to think of 

minimum and maximum as outliers. Two of those teachers took the acknowledging of an outlier 

by a student as a given and commented on whether the elimination of said outlier was correct or 

not. One teacher commented that students should not just eliminate outliers and find the mean, 

whereas another said that was a good idea, recognizing that the outlier can skew the data. The 

third teacher acknowledges what the student is doing without passing judgment; interestingly 

though, this third teacher also recognizes that the students are eliminating what they “thought 

was an outlier.” The third teacher does not seem to agree with the assumption of the students that 

the min and max are outliers. This misunderstanding about outliers can stem from the lack of 

emphasis on dealing with outliers in the CCSSM (NGA, CCSSO, 2010); however, there was a 

good deal of emphasis placed on outliers by Kader, Jacobbe, Wilson, and Zbiek (2013), who did 

outline why outliers were important as well as how to identify an outlier. In this study, most 

teachers would readily acknowledge a student’s response instead of responding to the solution 

displayed. Similarly, Watson et al. (2008) reported that, at the low level, teachers were not 

successful at responding to student work or questions. Similarly Hashweh (1987) found that low 
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content knowledge teachers tended to reinforce preconceptions and incorrectly criticized correct 

student answers. 

 

Knowledge of Content and Teaching 

KCT is the knowledge that teachers display when deciding which instructional strategy is 

the most appropriate for a given classroom situation. KCT also incorporates the knowledge 

teachers have about different representations of a given topic.  The one component, about 

knowledge of content and teaching, that participants gave plenty of evidence about was T3—

relying on exploration of real data, as evidenced by six participants’ comments. Participating 

teachers did not give a lot of evidence to the rest of the components, as shown by table 17, where 

at most two teachers commented on T1b– Interpreting results, and no comments were given for 

T1a–Formulating questions, or T4–making effective use of technology and assessment.  

Of the six teachers who commented on T3, only two tried to recognize the actual context 

of the real data that they were using, and the rest of the teachers merely mentioned the use of real 

data. From the comments pertaining to KCT, only 8% corresponded to one of the codes created 

in the framework; the rest of the comments were attributed to other ideas about teaching. And as 

previously discussed, the comments made could have pertained to any subject within 

mathematics and were not specific to statistics. 

It was evident that participants mainly employed direct instruction, a finding corroborated 

by Ijeh (2013), who reported that most teachers taught the topic in a step-wise and mostly 

procedural fashion. As with Watson et al. (2008), who reported teachers giving generic 

suggestions to students work, my participants gave such vague suggestions that they did not even 

pertain to statistics. Similar, to the comments that Monika made (in the interview) that she did 
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not feel comfortable teaching because of her missing knowledge, Batanero and Diaz (2010) also 

reported that their teachers did not feel prepared to help their students. Hashweh (1987) and 

Carlsen (1993) also reported that teachers with low knowledge of content tended to not deviate 

from activities presented in books, showing that they were not comfortable teaching the subject. 

Overall, the knowledge of content and curriculum that these participants displayed 

centered on relating the choice of measure of center to a single point in the data, mostly outliers, 

but not to the shape or context of the data. These teachers also concentrated on the idea that 

measures of center give different information about the data but did not comment that they are a 

way of representing the data using a single number. On the KCS, these participants concentrated 

on students struggling with outliers, ordering data when finding the median, and ignoring the 

mean when it was not part of the data. Under KCT, participants concentrated on the need for 

relying on exploration of real data; however, only a couple gave examples of what that data 

wood look like. It was interesting to note that no teachers seemed comfortable allowing students 

to formulate their own questions for investigation, a finding that was also confirmed in the 

interviews. 

 

Limitations 

One of the more prevalent limitations in this study is the fact that I was only able to 

conduct this study with eight teachers and was only able to interview three of them. If I had had a 

larger sample of in-service teachers to work with, I might have been able to get more evidence of 

teachers commenting on more components of the framework. With a larger sample of teachers, I 

might have been able to further validate my assessment protocol. Another limitation would be 

the distribution of the prompts that I created. Most of the prompts ask participants to discuss 
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their teaching more than their knowledge of curriculum. This distribution of prompts might have 

contributed to the lack of comments about curriculum; however, I found it hard to create CGAs 

that would be more inclusive of curriculum knowledge.  

 

Discussion on Extending the Conceptual Framework 

I this section I will discuss the merits of changing or adding components to the 

conceptual framework, based on the data received. For every type of knowledge that was 

discussed in the conceptual framework, there were at least three additional categories that 

teachers commented on. When it comes to knowledge of curriculum, only one category (students 

should understand the terminology) had enough discussion to merit discussing inclusion in the 

framework. However, most of the comments were made in passing and did not fundamentally 

relate to the topic. Teachers only mentioned terminology as words that needed to be used and not 

as concepts that needed to be understood. So, for knowledge of curriculum, I do not think there is 

a category that would merit inclusion. 

Under the umbrella of KCS, there were four new categories that emerged from the data 

gathered by the CGAs. Three of these categories each made up around 20% of the data about 

students: students tend to struggle with other concepts of measures of center (21%), teacher 

explaining student thinking (19%), and students tend to struggle with the conception of average 

(17%). For the first category (conceptions of measures of center), I think that this category 

should be included in the framework. It is important for teachers to know that because the 

curriculum emphasizes at least two different conceptual models for measures of center, their 

students have issues conceptualizing measures of center. 
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For the category “students tend to struggle with the conception of average,” I would 

advocate for it to not be included in the framework because most of the comments were about 

how students struggle with the procedure, vocabulary, and recognizing differences in measures. 

This category was plagued with very general statements about student struggles, and few 

comments were made about specific misconceptions or conceptions that students have. The last 

category, “teacher explaining student thinking,” does not merit inclusion in the framework 

because most comments were about what the teacher thought the students was thinking or doing. 

This is an important category to discuss, but it does not seem feasible to expect that all teachers 

would explain their students’ thinking the same way, and the explaining of student thinking is the 

underlying expectation of the whole category of KCS. 

KCT was a category in which the discrepancy between the framework and the comments 

made was very wide. In this category, only 8% of the comments were directed to the framework, 

and the rest (92%) were other ideas about teaching. However, because most of the comments did 

not pertain to statistics, none of the categories merit inclusion in the framework. 

 

Recommendations 

Thoughts on Professional Development 

Because I only interviewed eight teachers, there is not enough information to generalize 

what PD should look like. However, here are my initial thoughts about what PD could look like 

based on what my participants did. I think that PD should first advocate for the introduction of 

median as a central point as well as ways of connecting measures of center to variability. PD 

should also emphasize that measures of center are all used as ways of representing data using a 

single number, PD should also emphasize the choice of measure of center to the shape of the 
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distribution and the context of the data gathered. Even though the findings suggested that 

teachers might have a conceptual understanding of measures of center, that does not mean that, 

as a topic, it should be omitted from the discussion. 

As with Carpenter, Fennema, and Franke (1996), exposing teachers to the way that their 

students think should be beneficial in getting teachers to better understand their students’ 

thinking and strategies that they use. The topics to concentrate on should be the idea that students 

tend to ignore 0 when calculating the mean and that student seem to have an easier time in the 

beginning if we start by introducing the mode. Other topics for discussion are the difficulty that 

students have with weighted means (Gattuso, Mary, 1998; Leavy O'Loughlin, 2006) and the fact 

that students can compute the mean procedurally without having a conceptual understanding. 

An activity that educators could employ would be the analysis of student work (Groth, 

2014). This activity would give teachers an idea of how students engage with different problems, 

giving teachers another insight into their students’ thinking. Getting teachers to understand their 

students’ misconceptions might make it easier for teachers to prepare for the inevitable moment 

when those misconceptions rear their ugly heads. From research (Russell & Mokros 1990), we 

know that teachers have similar prevailing ideas about measures of center as do their students. I 

think that one way to address this would be for PD, as well as university teaching, to create an 

environment in which the teachers would encounter their own misconceptions and have the 

chance to see how said misconception should be addressed. 

Using investigations to teach statistics has been a topic discussed in numerous curriculum 

documents (Franklin et al., 2007; NCTM, 1989, 2000, 2006; NGA & CCSSO, 2010), and this 

study found that teachers have some gaps in their knowledge. One topic to focus on would be 

allowing the students to pick the questions for investigation to give them ownership of the 
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process. This can be done by having teachers get acquainted with characteristic of good 

statistical questions. Teachers seemed reluctant to allow student to collect data and always 

presented them with a set of data, or if data were collected, it was something that students could 

do in class. The investigation would be richer if students were allowed to pick their data from 

different sources. 

Teachers should also discuss different types of tasks (Smith & Stein, 1998) that they 

introduce to their students to understand the progression of tasks as well as the need for higher 

level tasks to be created and used in the classroom. Tasks should be chosen to make connections 

to mathematics and other topics within statistics as well as to use technology effectively for 

teaching statistics. Even though activities were discussed in the study, teachers should be 

encouraged to come up with activities that highlight differences within measures of center as 

well as make connections to the types of questions asked and discussion developed in class and 

the teaching style. However, more research needs to be done with more teachers in order for us 

to generalize these findings. 

 

Recommendations for Research 

The next logical step in future research would be to further use and improve the CGAs as 

an assessment instrument, something that has already started with Herbst (2011), who argued 

that animations could work as well as videos in assessing teacher noticing of mathematics. As I 

mentioned in the limitations, I think that it would be beneficial to conduct this study again with a 

larger number of teachers to see if the results can be further refined. Another direction would be 

to use CGAs in understanding teacher knowledge in other aspects of statistics, such as 

variability, inferences, and statistical associations. Within the research on PD, it would be 
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beneficial to create the PD to include the topics mentioned above and then see how well that PD 

is helping in-service teachers. The creation of PD was one of the reasons for this study: I wanted 

to know in what areas PD would be more successful. 

 

Significance and Contributions of the Study 

This study contributes to the existing literature about the PCK that in-service teachers 

have in teaching statistics in middle school. As previous studies have shown (Batanero et al., 

1994; Olfos, & Mena-Lorca, 2015; Ijeh, 2013; Watson, 2001; Wessels, 2014), I found that 

teachers do not always display the knowledge that curriculum documents or hypothesized 

models would expect a teacher to have. Shulman (1986) commented that knowledge of 

curriculum was lacking with in-service teachers, and I found that only 13% of the comments 

made pertained to knowledge of curriculum. As previously discussed by Callingham (1997), 

teachers have limited understanding of the conceptual meaning of measures of center, as seen in 

the comments coded as C2 (students should have a conceptual understanding of the mean: fair 

share, balance point), and most of those comments came only after the activity was presented in 

the CGA (4). 

This study adds to the KCS literature by reporting on the challenges that teachers know 

their students struggle with. I discussed how teachers are aware of their students’ struggles with 

outliers, but teachers themselves might have similar misconceptions. Teachers exhibited 

awareness of student struggles with ordering data when finding median and not wanting to use 

the mean when it is not part of the data. I also reported that most of these participants were aware 

that students tend to think of minimum and maximum as outliers and attempt to eliminate 

perceived outliers when finding the mean. 
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This study also adds to information about teachers’ KCT, or lack thereof. Most 

participants did not make use of the investigative process, something that has been advocated for 

the teaching of statistics from NCTM (1989) to Franklin et al. (2007). This study also adds to the 

knowledge of how teachers use the investigative process, and the fact that teachers do not feel 

comfortable allowing students to come up with questions to investigate. Being able to come up 

with questions to investigate allows the student to take ownership of their learning and allows 

them to feel part of the learning process (Franklin et al., 2007). 

This study also adds to the literature on teacher noticing as well as using CGAs to 

analyze and find evidence of teacher knowledge. In this study, I used CGAs so that the 

participating teachers would not be distracted by environmental or student-driven conflicts. This 

is an innovative approach because the teacher was placed in a comfortable setting (at home) 

examining someone else’s work and hence gave a richer set of responses. Star and Strickland 

(2008) found that PSTs had issues with noticing tasks and the actual mathematical content being 

discussed because of classroom distractions. The use of CGAs also contributes to the literature 

put forth by Herbst et al. (2011) who advocated that comics (animations) could be used to solicit 

teachers’ knowledge of pedagogy. The authors advocated for comics because they could control 

the narrative and which details the teachers payed attention to.  

 

Concluding Thought  

This study has given me the opportunity to contribute to the research on teacher 

knowledge as it relates to teaching statistics in middle school. I had the opportunity to create 

several Computer-Generated Animations to help me gather the data used in this study. I had to 

establish my own conceptual framework to analyze the data collected. To a pessimist, the data 
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gathered paints a rather gloom picture of what pedagogical content knowledge looks like with in-

service teachers. However, my main goal was not simply to judge the participating teachers, but 

to give them an opportunity to write their own narrative, and to give researchers, like me, the 

data unto which they can create their own arguments and future research. This study give me the 

opportunity to contribute to the conversation as to how best to help improve teacher preparation, 

in school as well as professional development.   
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APPENDIX A: ANIMATION VIGNETTES 

 

Video1 

Part 1 

Board   1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4 

Mean = Add the numbers then divide 

by how many numbers there are 

Teacher: Today we will talk about the mean, median, and mode. concepts in our statistics unit. 

Here are a set of data that will help us understand these measures: 

In order for us to find the mean we just add the numbers and divide by how many numbers there 

are. 

As you can see, we found that the sum is 42, and because there are 15 numbers we divide 42 by 

15 to get 2.8, hence the mean is 2.8. Here is a set of data that I want you to practice with before 

we move on to the median. 

Eric: So, when I add the numbers I get 117, and dividing by 9, I get 13 as the mean. 

 

Prompt: Comment on differences or similarities between the way you introduce the mean and 

the way the teacher in this video introduced the mean. 

 

Part 2 

Teacher: To find the median we look for the middle number. Since there are 15 pieces of data 

that means the 8th number is our median. If we count from the first 1, we get the 8th number to 

be 3. Let’s practice finding the median with the data I gave you. 
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Sallie: Since there are 9 numbers, that means that the middle number is the fifth one. If I count 

from the 2 then the fifth number is 13, that means that 13 is the median. 

Teacher: If we have an even number of data then we look at the middle two numbers and add 

them and divide by 2 to find the median. From our previous data I am taking away the first 1. So, 

now we have 14 numbers. The 7th and 8th numbers, which are the two middle numbers, are both 

3, adding them up we get 6, dividing by 2 we get 3, hence again the median is 3. Find the median 

of you new data. 12, 12, 12, 13, 13, 14, 17, 21 

Brian: Since we now have 8 numbers, the middle two will be the fourth and the fifth ones. So, 

13 + 13 = 26, dividing by 2 we still get 13, our median did not change. 

 

Prompt: Comment on differences or similarities between the way you introduce the mean and 

the way the teacher in this video introduced the median. 

 

Part 3 

Teacher: Lets go to our original data. To find the mode we just look for the number that shows 

up the most. As we can see from my data the number that shows up the most is the 4. Go ahead 

and find the mode for your original data. 

Sallie: From our data, the number 12 shows up three times, so that has to be our mode, 12. 

 

Prompt: Comment on differences or similarities between the way you introduce the mean and 

the way the teacher in this video introduced the mode. 
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Video 2 

9.3, 9.1, 9.2. 9.2, 9.1, 9.23, 9, 9.1, 11.5 

Teacher: Yesterday, I weighed the shoes that were on the doorstep, and I got these results in 

ounces. What is the typical weight of the shoes? 

Joey: If I add up all the numbers, I get 85.03, and if I divide by 9, (the number of shoes), then I 

get 9.45 ounces as the average. 

Eric: Since the 11.5 seems too big, maybe they were a grownup's shoes, we take it out, if we add 

the rest up we get 73.53, then divide by 8 we get 9.19 ounces as the average. 

Sallie: If we eliminate the lowest and largest, because they are always outliers, then add and 

divide by 7 will give us an average of 9.21 ounces. 

Brian: It is true that there seems to be a really large number, the 11.5, so why not use the 

median, which can be found by crossing out the first and the last numbers, like 9.3 on the left and 

11.5 on the right. then we can eliminate the next two, 9.1 on the left and 9.1 on the right, all the 

way until there is only one number left. That will give us the median of 9.1 as the average. 

Joey: I am confused, do we not always use the mean to represent the typical number of the data? 

 

Prompt 1: Please identify which student/students seem to be struggling with the idea of 

measures of center, and explain why. 

Prompt 2: How would you help these students improve their conception (please talk about each 

child individually)? 
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Video 3 

0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4 

Teacher: In my fifth period class the 17 students had this many pets. One of them did not have 

any, five of them had one pet, 4 had two pets, three had 3, and four of them had 4 pets. If a 

grownup asked you as to what number represents how many pets a student in fifth grade might 

have. What would be your answer? 

Joey: So, if I add all those numbers up, I get 38, and if I divide by 16, I get the answer as 2.375. 

Sallie: How can this mean represent the data, since you can't have 2.375 pets? 

Brian: I thought we had 17 numbers for the 17 students, why did you divide by 16? 

Joey: Well. One of those students had no pets. So we do not need to count that. Is that right? 

 

Prompt 1: How would you respond to Sallie's comment? 

Prompt 2: How would you respond Joey's question about whether to include 0 in the calculation 

of the mean? 

 

Video 4 

Teacher: Students, here are some cubes representing your amount of money. James, you have 7 

cubes, Sandie you have 6, Tony 10, and you Emma have 9 cubes. Now, stack your cubes to show 

your individual allowance, and place them in the middle of the table so that we can compare 

them. I want you to think of a way to distribute the cubes, representing your money, so that you 

all had the same amount. 

Tony: Since I have 10 cubes, I can give one to Sandie, and now both James and Sandie have 7 

cubes, and me and Emma have 9 cubes representing our money. 



190 

Emma: Since two of us have 9 cubes and two have 7 cubes, why don't I give a cube to Sandie, 

that way we both have 8 cubes, and Tony can give one to James, so they also have 8 cubes. Now 

we all have 8 cubes, so we each have $8. 

Prompt 1: What concept of measures of center would you connect this activity to? 

Prompt 2: Explain how would you make that connection (from previous prompt). 

 

Video 5 

Teacher: In an elevator there are 4 men and 2 women, the average age of the men is 34 years 

old, and the average age of the women is 38 years old. What is the average age of the people in 

the elevator? 

Eric: Is the average not 36 years old? 34 + 38 is 72, if I divide that by 2, you get 36. 

Sallie: There are more men in the elevator, shouldn't the average be closer to 34? 

Brian: Because we do not know the exact age, of each person, how can we find the average? 

 

Prompt 1: How would you respond to Eric's Comment? 

Prompt 2: How would you respond to Sallie's Comment? 

Prompt 3: How would you respond to Brian's Comment? 

 

Video 6 

Teacher: Assume that I have seven boxes of pencils in my desk, and that I know the mean 

number of pencils in a box is 15. I want you to write down seven numbers that could represent 

the number of pencils in each box, so that the mean amount was still 15. 

Joey: I guess I can write the number 15, the number of pencils in a box, seven times. 
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Sallie: We can put 15 pencils in the middle, and then go to, 14 and 16, 13 and 17, 12 and 18 

pencils, like one in each side. 

 

Prompt 1: Please comment on Joey's thinking about the mean. 

Prompt 2: Please comment on Sallie's thinking about the mean. 

Prompt 3: Please comment on Brian's thinking about the mean. 

 

Teacher: Ok, now this next time, I want you to do this again, but we cannot use the number 15, 

and the number 11 has to be part of your data. 

Joey: If I can't use the 15 pencils seven times, then I have no idea how to do this. 

Sallie: Neither can I, since I can't use the 15 pencils in the middle. What number do I use to put 

the other numbers around? Do I use the 11? 

Brian: What if we multiply 15 pencils by 7 boxes to get 105 pencils, then I just have to find 

seven numbers to add to 105. Since I have to use the 11, I can have 6 boxes with 11 pencils,  and 

then one box with 39 pencils. Because 11*6 = 66 and 66+39 = 105 pencils. 

 

Prompt 4: How would you help Joey with the second task? 

Prompt 5: How would you help Sallie with the second task? 
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Video 7 

 

Teacher: The data presented in this graph represents the allowance of 20, 7th graders, and it has 

a mean of $13.6, a median of $12 and mode of $11. Which one of these measures, mean, median, 

or mode, would best represent the data? Please explain your answer. 

Joey: Well, the mean is the average of the data, so I would use $13.6 to represent the data. 

Eric: But $13.6 is not part of the data, so why not use the mode, $11, since that is what most 

students have? 

Sallie: What about the median, since that shows the middle of the data, why not use the median 

of $12? 

Brian: I think we should use the median. Just because a kid gets $30 from his parents does not 

mean that the average student will. The median is a better measure of center. 

Joey: Wait, when should we use the mean, and when do we use the median? 
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Prompt 1: Please identify which student/students seem to be struggling with the content, and 

explain why. 

Prompt 2: How would you help these students improve their conception (please talk about each 

child individually)? 
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APPENDIX B: INITIAL SURVEY QUESTIONS 

 

1. Have you taught data analysis in the middle school at least twice during your career as a 

teacher? 

a. Yes 

b. No 

2. Have you had any data analysis content courses, during your teacher education? 

a. Yes 

b. No 

3. During your teacher education have you taken any methods courses that included 

pedagogy in teaching topics in data analysis? 

a. Yes 

b. No 

4. During your career as a teacher have you participated in a professional development 

program geared towards teaching data analysis at the middle school level? 

a. Yes 

b. No 

5. What major ideas do you want to bring across when teaching measures of center to your 

students? 

6. What challenges, have you seen, or do you expect your students will have in learning the 

content (measures of center)? 

7. How have you, or how do you plan to address those challenges? 
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