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Review of the history of trigonometry content and pedagogy indicates the necessity and 

importance of trigonometry in the school curriculum (e.g., van Brummelen, 2009; van Sickel, 

2011). For example, understanding trigonometric functions is a requirement for understanding 

some other areas of science, such as Newtonian physics, architecture, surveying, and several 

branches of engineering. Research indicates that teachers have a narrow and inadequate 

understanding of trigonometry, researchers (e.g., Hertel, 2013; van Sickel, 2011; Weber, 2005) 

posited that learning trigonometry in a way that fosters and advances quantitative reasoning can 

help alleviate difficulties faced in the teaching of trigonometry. Examining participants’ 

reasoning is one way of determining if an instruction sequence promotes the desired 

understanding (Hiebert, 2003; Tall, 1996). Missing from the literature is investigative work that 

uncovers what kind of reasoning teachers use when engaged in a trigonometry instruction 

sequence that promotes quantitative reasoning.  

In this dissertation, I will examine pre-service secondary mathematics teachers’ reasoning 

about trigonometric functions when an instructional sequence (Hertel & Cullen, 2011) of 

trigonometric activities was used. Ultimately, this research is intended to shine more light on 

how a particular approach (line-segment) can influence prospective secondary mathematics 



 

 

 

teachers’ knowledge of trigonometric functions and will seek to benefit the pre-service teachers 

by developing a strong comprehension of trigonometric functions.  

 

KEYWORDS: Quantitative Reasoning; Creative Reasoning; Imitative Reasoning; Trigonometry; 

Line-segment Approach; Teaching and learning 
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CHAPTER I: INTRODUCTION 

Background 

Initially arising from the need to study and understand astronomy, trigonometry like other 

strands of mathematics (e.g., geometry, algebra) has a rich history from earlier centuries to the 

present day. The Greeks are considered the pioneers in the study of trigonometry and 

trigonometric functions (Kennedy, 1969; van Sickel, 2011). Particularly, Hipparchus of Nicaea, a 

Greek astronomer (190–120 B.C.) is regarded as the originator of modern trigonometry (van 

Sickel, 2011). Later, Ptolemy of Alexandria (85–165 A.D) made significant findings, like the 

sum and difference formulas, and the gnomon—used in learning the tangent function—that are 

still in use in the modern era (Maor, 1998; van Brummelen, 2009).  

Around 500 CE, with the Greek civilization declining, the ascending civilizations of the 

time—Indians and Arabs—continued to study trigonometry whilst focusing on the study of the 

heavens and modelling their natural world, and this contributed to the advancement of 

trigonometry as a subject (Hertel, 2013). With the successful invasion of the Arab world by 

Christians from Western Europe in the fifteenth century, European mathematicians (e.g., 

Johannes Muller von Konigsberg, Leonhard Euler) once again took the leadership mantle in 

developing trigonometry as a distinct branch of mathematics and analysis (van Sickel, 2011). 

Pedagogical Changes 

As a subject, trigonometry was taught in North American colleges, such as Harvard and 

Yale, as early as the eighteenth century (Gordy, 1933; Hertel, 2013), although there is evidence 

that some high schools may have offered it earlier to some students (Hertel, 2013). Primarily, 

from its discovery up to the late sixteenth century, trigonometry problems were solved using a 

geometric line-segment concept. That is, solutions were obtained without complicated 
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calculation but through geometric constructions. This approach defines the trigonometric 

functions as relationships between line segments in relation to a circle (see Figure 1) as opposed 

to being thought of as functions of angles. 

 

     𝑨𝑫̅̅ ̅̅ = sine  𝑪𝑫̅̅ ̅̅  = cosine 

     𝑩𝑬̅̅ ̅̅ = tangent  𝑭𝑮 ̅̅ ̅̅ ̅ = cotangent 

     𝑶𝑬̅̅ ̅̅ = secant  𝑶𝑮̅̅ ̅̅ = cosecant 

 

 

 

Figure 1. The line-segment definitions of trigonometric functions 

 In the later part of the sixteenth century, due to developments in symbolic algebra and 

analytic trigonometry, trigonometry started to shift from a geometric form to an analytic form or 

ratio approach (Maor, 1998, van Sickle 2011). As far as pedagogy is concerned, this change was 

ultimately realized in secondary school mathematics curriculum by the late nineteenth century 

(Allen, 1977; van Sickel, 2011). Even though this shift from line-segment trigonometry to the 

ratio —in which “trigonometric functions for angles between 0 and 90 degrees are defined as 

ratios of sides of a triangle” (van Sickel, 2011, p. 11)—was not without resistance from teachers 

(Cajori, 1890; van Sickel, 2011; Hertel, 2013), the ratio approach was the primary form of 

instruction by the twentieth century. 

  Mathematics education researchers’ (e.g., Hertel, 2013; van Sickel, 2011; Weber, 2005; 

Hoachlander, 1997) reviews of the history of trigonometry content and pedagogy indicates the 

necessity and importance of the subject in the school curriculum. For example, understanding 

trigonometric functions is a requirement for understanding some other areas of science such as 



 

3 

Newtonian physics, architecture, surveying, and several branches of engineering (Hoachlander, 

1997). Trigonometry also serves as a link between algebraic, geometric, and graphical reasoning, 

as well as acting as a significant precursor to understanding pre-calculus and calculus. Within 

other fields like surveying, the students’ deficiency in the knowledge of trigonometry has been 

cited to hinder instruction in these fields (Elgin, 2007).  

The modern approach to teaching this crucial course in the middle and secondary school 

curriculum mainly relies on the algebraic ratio approach, which unfortunately fosters 

memorization and very little in the way of reasoning (Blackett & Tall, 1991). The line-segment 

approach, which circumvents several issues that are related with the ratio approachapproach, is 

not often taught beyond the sine and cosine functions (Hertel & Cullen, 2011). 

Statement of the Problem  

Unfortunately, numerous researchers have described teachers’ understandings of 

trigonometry as narrow and inadequate (Akkoc, 2008; Fi, 2003, 2006; Thompson, Carlson, & 

Silverman, 2007; Topçu, Kertil, Akkoç, Kamil, & Osman, 2006). Researchers have identified 

issues with some of the foundational ideas needed to completely understand trigonometry. For 

example, teachers’ understanding of the radian as a unit of angle measure was not adequate, and 

consequently, they were much more inclined to use degree angle measures. Even in cases where 

they had some grasp of radians, secondary mathematics teachers were reported to be unable to 

describe a meaning of radian measure beyond certain conversion procedures—for converting 

between radian and degree angle measures—that they employed, even though the procedures 

were not meaningful to start with. (Fi 2003, 2006).  

Additionally, a study of pre-service teachers (Akkoc, 2008) found that teachers with less 

developed understandings of the radius as a unit of measurement in the teaching and learning of 
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trigonometric functions relied on only using a right triangle while explaining the concepts of 

trigonometry. Akkoc (2008) concludes by imploring mathematics educators to tailor their 

teaching of trigonometric concepts in ways that encourage concepts that promote understanding 

the radian as a unit of measurement. 

Teachers’ deep and strong attachment to their current high school curriculum and the 

meanings they have ascribed to that curriculum over time has also hindered successful teaching 

and learning of trigonometry concepts. For example, Thompson, Carlson, and Silverman (2007) 

investigated teachers working on several teacher-related tasks in trigonometry and found 

teachers to always commence with right triangles, as opposed to angle measure and the unit 

circle. Other teachers contended that trigonometry is primarily concerned with solving for 

measurements of a triangle. Such perceptions, notwithstanding their lack of coherence, dictated 

what teachers envisioned themselves teaching in a real class setting.  

A recurring theme in the studies discussed above is that of secondary teachers being 

heavily attached to meanings that did not echo reasoned understandings of trigonometry. Most of 

the teachers’ underlying but necessary understanding of trigonometry basics was insufficient, 

probably adding to the incoherence of their meanings and significances. 

Rationale 

The literature accessible has described teachers as holding very limited understandings of 

trigonometric functions. It is not farfetched to conclude that if teachers’ understandings are 

limited, their students’ understandings of trigonometry functions will most likely be limited as 

well. Although there are cited difficulties with learning trigonometric functions, the mathematics 

education community is grappling with sparse literature and educational research in this area 

(Moore, 2013). 
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Documented studies on this topic typically concern themselves with difficulties students 

find with trigonometry and suggestions to overcome them (e.g., Blackett & Tall, 1991). Other 

related literature on trigonometry education mainly presents studies comprised of teaching 

techniques for enhancing or replacing typical instructional techniques (Weber, 2005). However, 

Barnes (1999) notes that, while these instructive recommendations are fascinating and possibly 

valuable, they are principally not grounded in research or theory or their effectiveness is seldom 

evaluated. This study endeavored to steer away from that route and instead investigate the 

reasoning learners (in this case pre-service secondary teachers) of trigonometry engage in during 

instruction. 

            There is a wide-ranging agreement in the mathematics education fraternity that 

mathematics needs to be moved away from teaching techniques that promote passing paper-and- 

pencil assessments to instead focus on teaching that fosters understanding (National Council of 

Teachers of Mathematics [NCTM], 2000) including instruction in trigonometry (Weber, 2005). 

This informal agreement is based on numerous researchers’ findings that existing teaching 

practices of trigonometry courses do not appear to promote students’ understanding of these 

trigonometric and related functions (DeJarnette, 2014; Kendal & Stacey, 1997).  

With calls such as one from Hirsch, Weinhold, and Nichols (1991), that mathematics 

educators must desist from promoting “memorization of isolated facts and procedures and 

proficiency with paper-and-pencil tests [and move towards] programs that emphasize conceptual 

understanding, multiple representations and connections, mathematical modelling, and problem-

solving” (p. 98), some mathematics education researchers have recently begun to investigate this 

need in the teaching and learning of trigonometry. In these studies, (e.g., Moore, 2014; van 

Sickel, 2011; Weber, 2005), researchers have posited that one way to overcome this and other 
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difficulties faced in the teaching of trigonometry is to promote teaching that fosters and advances 

quantitative reasoning (see definition below). 

Moreover, as noted earlier, literature has emerged suggesting that using the line-segment 

definition of the trigonometric functions can be instrumental in promoting a relational 

understanding of trigonometry (Bressoud, 2010; Hertel, 2013; Hertel & Cullen, 2011; Maor, 

1998; Moore, 2010, van Sickle, 2011). In particular, Bressoud (2010) opined that: 

In the mid-nineteenth century, when those studying trigonometry were most likely to use 

it in navigation and surveying, defining these functions as ratios made sense. There is convincing 

evidence that this approach does help students working on this type of problem (Kendal and 

Stacey 1998). But today students are more likely to encounter the sine and cosine as periodic 

functions rather than as navigational aids. Biological, physical, and social scientists use them 

more often to model periodic phenomena than to find the unknown side of a right triangle. If we 

want our students to understand trigonometric functions as functions, then the historical 

definitions that describe them as relating two lengths—arcs and line segments—are more 

transparent. (Bressoud, 2010, p. 112) 

Furthermore, stemming from Skemp’s (1976) distinction between instrumental and 

relational understanding, researchers (e.g., Balacheff, 1988; Lithner, 2000; Sfard, 1991) have 

posited that one way to investigate if the desired understanding has been achieved or not is to 

analyze the students’ reasoning when justifying their solutions to the tasks given. Missing from 

the literature is investigative work that uncovers what kind of reasoning teachers use when 

engaged in a trigonometry instruction sequence that is based on the line segment approach. This 

study sought to contribute to the limited body of research literature on teachers’ understanding of 
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trigonometry by broadly answering this question while working with pre-service secondary 

mathematics teachers.  

Purpose Statement 

The main purpose of my research is to investigate the types of reasonings that pre-service 

secondary mathematics teachers exhibit and use in the process of learning trigonometry with 

instructional emphasis on quantitative reasoning through a line-segment definition of 

trigonometry. 

Research Question 

The research question that guided this study is: 

• What types of reasoning do pre-service secondary mathematics teachers engage in while 

participating in an instruction sequence on trigonometry that focuses on a quantitative 

reasoning approach.  

Definition of Terms 

Mathematical Reasoning 

 Among mathematics educators, there is no clear definition for the term reasoning (Ball & 

Bass, 2003; Lithner, 2008; Martin et al., 2009). For example, Ball and Bass (2003) state that 

“mathematical reasoning is no less than a basic skill” (Ball & Bass, 2003, p. 28), while others 

(e.g., Duval, 2002; Harel, 2006) consider only strict proof as mathematical reasoning. On one 

hand, it is assumed that there is a universally agreed upon implicit meaning for the term 

mathematical reasoning (or simply reasoning) (Yackel & Hanna, 2003), and on the other hand, 

the term is used in conjunction with and often interpreted as ‘proof’ (e.g., NCTM, 1989, 2000). 

And as such, it is crucial that we declare a particular meaning for reasoning in this study. 
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 It should be noted that when we express reasoning as being based on mathematical logic 

in the form of mathematical deduction and/or creating or analyzing proof, it may encourage 

students to regard mathematics as a mere set of procedures and drills, yet the goal of 

mathematical reasoning is to foster understanding (Martin et al., 2009; NCTM, 1989, 2000). 

Articulating reasoning as an act of creating and revising conjectures (Ball & Bass, 2003; Lithner, 

2008), or the process and product of student thinking (e.g., Martin et al., 2009) partly guided our 

adoption of the definition and later the theoretical framework from Lithner (2008). 

 In this study, reasoning “is the line of thought adopted to produce assertions and reach 

conclusions in task solving. It is not necessarily based on formal logic, thus not restricted to 

proof, and may even be incorrect as long as there are some kinds of sensible (to the reasoner) 

reasons backing it” (Lithner, 2008, p. 257). The attempt by students to make use of their current 

knowledge and understanding to justify how they solve a task at hand is what is central to the 

whole idea of reasoning. Put differently, reasoning is regarded as strategies and guiding 

principles students employ in order to make sense of a task. (Lither, 2008).        

Quantitative Reasoning 

Quantitative reasoning involves not only the quantity (which is the object of the 

reasoning) but also the actions and procedures (Piaget, 1970) that one performs during the 

thought process (Thompson, 1994) of solving a task. However, as is the case with other concepts 

in mathematics educations, there is no clear agreement on what is considered to be quantitative 

reasoning. Mayes, Peterson, and Bonilla (2013) defined quantitative reasoning as an application 

of one’s knowledge. This pertains to how one applies their knowledge to “mathematics and 

statistics applied in real-life, authentic situations that impact an individual’s life as a 

constructive, concerned, and reflective citizen” (Mayes, Peterson, & Bonilla., 2013, p. 6).  
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A clear distinction between the two definitions stems from what is regarded as key to 

quantitative reasoning. Thompson’s definition is concerned with quantification, whereas Mayes 

et al.’s definition emphasizes application. Inasmuch as application of knowledge is important, 

when referring to quantitative reasoning in this study, we adopted the definition from Thompson 

(1990), as quantification needed to be central to our approach. Therefore, quantitative reasoning 

(Thompson, 1990) refers to a learner mentally visualizing a situation, conceptualizing 

measurable attributes (called quantities) within this imagined state, and constructing 

relationships between these quantities. Central to this approach is the view that the analysis of 

the mental actions involved in conceiving a situation is primarily void of numbers and numeric 

relationships. Rather, the relationships among quantities is emphasized. 

Covariational Reasoning 

 Thompson (2011) refers to covariational reasoning as an essential component of 

quantitative reasoning., It is characterized with relating two quantities whilst focusing on how a 

change in one affects the change in another (Carlson, Jacobs, Coe, Larsen, & Hsu, 2002; 

Oehrtman, Carlson, & Thompson, 2008; Saldanha & Thompson, 1998). He further states: “The 

importance of covariational reasoning for modeling is that the operations that compose 

covariational reasoning are the very operations that enable one to see invariant relationships 

among quantities in dynamic situations” (Thompson, 2011, p. 46). In this study, some of the 

instructional tasks required students to engage in varying of quantities and reasoning about how 

the quantities covaried.    
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Line Segment Trigonometry 

Line segment definition of trigonometry is categorized as a form of quantitative 

reasoning as it brings the relationship between two quantities, in this case line segments and arcs, 

to the focus of instruction. A detailed definition for this context is provided in Figure 1 above 

Ratio Trigonometry 

 Adopting the definition used by van Sickel (2011), ratio trigonometry also known as right 

triangle trigonometry is an approach in which “trigonometric functions for angles between 0 and 

90 degrees are defined as ratios of sides of a triangle” (van Sickel, 2011, p. 11). The definitions 

of the basic functions are shown in Figure below. In the approach, the relationships between 

trigonometric functions are determined algebraically by some general relation of these quantities 

in connection with a triangle. 

Figure 2. The definitions of trigonometric functions in ratio trigonometry 

Unit Circle Trigonometry 

 In this approach to trigonometry, functions derive their meaning from a circle of whose 

radius is one. In particular, the sine and cosine functions are respectively defined as the y and x 

coordinates of a point on a unit circle.  

Outline of Study 

In this dissertation I will examine pre-service secondary mathematics teachers’ reasoning 

about trigonometric functions when an instructional sequence (Hertel & Cullen, 2011) of 
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trigonometric activities was used. Ultimately, this research is intended to shine more light on 

how a particular approach (line-segment) can influence prospective secondary mathematics 

teachers’ knowledge of trigonometric functions and will seek to benefit the pre-service teachers 

by developing a strong comprehension of trigonometric functions.  

The participants in this study were twenty secondary pre-service teachers enrolled in a 

technology-based mathematics content course in a medium sized Midwestern University in the 

United States. The trigonometry portion of the course was designed in such a way as to promote 

quantitative reasoning, by the professor assigned to teach it, who was also the principle 

investigator. 

All the participants volunteered to take part in the study in which I (the researcher) was a 

participant-observer during the six weeks of the study. The instructional sequence for the study 

consisted of six 2-hour and 40-minute instruction sessions open to all twenty-three students 

enrolled in the course (three students did not agree to participate). With the data collected, I 

categorized participants’ responses as either imitative or creative mathematically founded 

reasoning using Linthner’s conceptual framework for creative and imitative reasoning (Lithner, 

2008). Later analyses consisted of looking for patterns in reasoning as well as relationships 

between reasoning and the approach to trigonometric employed (i.e., ratio, line segment, unit 

circle).  

In Chapter 2, I describe a conceptual framework used for the study, and an overview of 

the research literature on trigonometry, and quantitative reasoning. In Chapter 3, I report on the 

methods for data collection, the rationale for choosing to study pre-service secondary 

mathematics teachers, and data analysis used for this study. In Chapter 4, I present the findings 

from each of the four tasks that were used to investigate students’ reasoning, as well as the 
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general findings from this investigative study. A summary of the general discussion about the 

findings is also provided. In Chapter 5, I provide an analysis of the results and conclusions drawn 

about patterns or themes that developed after I explored the types of reasoning that pre-service 

secondary mathematics teachers use in the process of learning trigonometry with instructional 

emphasis on quantitative reasoning through a line-segment definition of trigonometry. I then 

discuss the implications, limitations of the study and suggestions for the teaching and learning of 

trigonometry. Finally, directions for future research will be suggested.  
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CHAPTER II: THEORETICAL FRAMEWORK AND LITERATURE REVIEW 

In this chapter, I present the theoretical framework for the study. To investigate students’ 

knowledge of trigonometry, I examined the kind of reasoning they engaged in while acquiring 

knowledge of trigonometry. In this chapter, I also review the pertinent research literature on the 

teaching and learning of trigonometry, which to a large extent contends that learners and 

sometimes their teachers have inadequate understandings of this strand of mathematics. 

Theoretical Framework 

The main purpose of my research is to investigate the types of reasoning that pre-service 

secondary mathematics teachers exhibit and use in this process of learning trigonometry with 

instructional emphasis on quantitative reasoning. To examine pre-service teachers’ reasoning 

about trigonometry, I need to be able to detect and describe different types of reasoning in the 

realm of trigonometric functions.  

Mathematical Reasoning 

There are numerous theoretical frameworks that focus on mathematical reasoning, e.g. 

KOM (Niss, 2003). However, none particularly embody the detailed description of reasoning 

presented by Lithner’s (2008) framework used to distinguish between imitative and creative 

reasoning.  

Skemp (1976) offers a framework that aims to categorize the comprehension that 

facilitates students’ reasoning, in terms of instrumental and relational understanding. However, 

Skemp’s work did not present any additional specifications about reasoning. Similarly, almost 

two decades later, Wyndhamn and Säljö (1997) analyzed children’s mathematical reasoning 

while focusing on the content and rules in the students’ reasoning, as the students were working 

on tasks involving word problems. The results from the study contrast from the widely held 
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opinion that students generally succeed in resolving standard problems but labor to solve in new 

challenging situations. The researchers assert that “students are able to deal with a particular kind 

of difficulty” (Wyndhamn & Säljö, 1997, p. 381) and in so doing they initiate discussions 

involving different types of reasoning. Nonetheless, in their framework the authors provide no 

definition of reasoning, and they neither stipulate the different categories of reasoning, nor 

highlight any mathematical properties used as a basis for the reasoning. Fransisco and 

Hähkiöniemi (2011) differentiate between various types of foundations when investigating 

techniques students use to reason about algebra. The essential events were identified and 

interpreted whilst searching for evidence of algebraic ideas and the various ways of reasoning. 

Similar to Wyndhamn and Säljö’s (1997) study, a definition of what constitutes reasoning was 

not articulated, even though the authors concluded that according to the results, students were 

engaging in different types of algebraic reasoning. 

Other researchers (e.g., Krummheuer, 2007) have argued that exploring argumentation is 

one way of obtaining information about reasoning. In this study, he investigated students 

learning mathematics through partaking in activities that promoted collective argumentation. As 

much as the framework developed by Krummheuer (2007) effectively centers on data, deduction, 

warrant and supporting arguments, it neglects to address the different types of reasoning. 

Synonymously, in other studies (e.g., Voigt, 1994) in which researchers hold the view that 

reasoning is part of social interaction, there is no mention of the different types of reasoning. 

Moreover, there is also a possibility that argumentation may be overemphasized hence blurring 

the difference between argumentation and reasoning. To draw a distinction between 

argumentation and the different types of reasoning requires one to first define the terms.  
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Ball and Bass’s (2003) definition of reasoning when referring to mathematical 

understanding was premised on mathematical reasoning. They stated that reasoning “comprises a 

set of practices and norms that are collective not merely individual or idiosyncratic, and rooted in 

the discipline.” (Ball & Bass, 2003, p. 29). However, in their framework, they posit that 

reasoning is rooted in logic, thus making it more objective than subjective. This view of 

reasoning was not appropriate for the data in this dissertation because I needed to subjectively 

identify reasoning. A different framework, that deals with reasoning grounded in an 

understanding that is subjective, would be more appropriate for our study. Vinner (1997) does 

offer such a view of reasoning, by focusing on analytical and pseudo-analytical behavior. 

However, the concept of analytical behavior is not defined, rendering it challenging to use this 

framework when attempting to single out which of the students’ reasoning is or is not analytical.  

Sfard’s (2001) focal analysis framework was used by Farmaki and Paschos (2007) in 

studying the interaction between intuitive and formal mathematical thinking. Focal analysis 

offered Farmaki and Paschos an avenue to examine students’ mathematical thoughts, and 

cognitive operations. Results from analyzing data—from six activities—collected from one of 

the students who partook in the study revealed that it necessitated students to carry out multiple 

cognitive operations to be able to evolve from intuitive reasoning to formal argumentation. In the 

end, Farmaki and Paschos (2007) suggested a further investigation of this transition in reasoning 

if one were to make substantive conclusions concerning the mechanisms of knowledge 

construction. Inasmuch as Sfard’s (2001) analytical tool permits for a clear distinction 

concerning choices and arguments in students’ thinking and reasoning, it stills fall short of 

affording the researcher who opts to use it, an avenue to classify mathematical reasoning in 

different categories. 
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Although the different frameworks discussed above were successfully applied and used 

in the stated settings and studies, I required a framework in which reasoning is defined and the 

different categories of reasoning are clearly stated and described. Therefore, I elected to use 

Lithner’s (2008) research framework for imitative and creative reasoning because it not only 

defines reasoning but it also allows the classification of participant reasoning. This framework 

proposes a wide conception of mathematical reasoning inspired by Pólya (1954). 

In opting for Lithner’s framework, there were three underlying motivations. Primarily, 

the framework helps to distinguish between what is creative, mathematically, well-founded 

reasoning and what is not. Secondly, the framework considers reasoning as a line of thought 

adopted to produce assertions and reach conclusions in task solving. It does not have to be based 

on formal logic, and it may even be incorrect. It features the argumentation for the choice of 

methods and substantiations learners make while solving mathematical tasks. The classification 

and description of imitative and creative reasoning in this framework facilitated a thorough 

examination of the geneses and significances for each reasoning statement. Finally, in 

comparison to other frameworks, Lithner (2008) provides well defined concepts of reasoning in a 

well-formulated conceptual framework (Bergqvist, 2012). 

Several researchers have used Lithner’s (2008) framework to analyze data from different 

studies. For example, Sumpter (2009) employed this framework to investigate how beliefs 

influence upper secondary school students’ reasoning, and to find out whether reasoning and 

beliefs were gendered. Sumpter used Lithner’s (2008) and two other frameworks to explore 

affect and gender as aspects of mathematical reasoning. Prior to examining how beliefs influence 

students’ reasoning, the researcher used the framework to initially find out and characterize the 
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“type of mathematical reasoning students perform when solving mathematical tasks” (Sumpter, 

2009, pp. 3-4). 

Bergqvist (2012) also set out to understand the rationale used by university calculus 

instructors while creating calculus examination. The researcher was particularly interested in the 

kind of reasoning the instructors expected the students to display in their solutions to these 

questions. Lithner’s (2008) framework was used to classify the views of the instructors 

concerning the students’ reasoning. The results revealed that at the time of writing the 

examination questions, imitative reasoning dominated the instructors’ expectations from the 

students, as questions that may require creative reasoning were deemed “too difficult and lead to 

too low passing rates” (Bergqvist, 2012, p. 399).        

Finally, Jonssona, Norqvist, Liljekvist, and Lithner (2014) used the framework to 

investigate the learning of mathematics through algorithmic and creative reasoning by upper 

secondary school students in Sweden. The framework was used to distinguish between two 

teaching models, one based on students’ own creation of knowledge, denoted creative 

mathematically founded reasoning (CMR), and a procedure-based model of teaching, referred to 

as algorithmic reasoning (AR). In their study, students who went the CMR-based model were 

found to have performed better than those who underwent procedure-based instruction (AR). 

Lithner’s Conceptual Framework for Mathematical Reasoning 

With efforts by curriculum reform advocates geared towards teaching mathematics for 

understanding (Pirie & Kieren, 1994), there is need for the mathematics education community to 

know what typifies this understanding. One way to achieve this is to capture, categorize and 

analyze the types of mathematical reasoning that students exhibit when engaged in a particular 
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form of instruction (Hiebert, 2003; Tall, 1996). Lithner’s (2008) framework goes further to 

describe the reasoning that underlie the participants’ conceptions.  

To be able to investigate these justifications, explore and capture the different forms and 

key characteristics of mathematical reasoning, I draw from Lithner’s (2008) conceptual 

framework for creative and imitative reasoning (see Table 1) to describe what kind of reasoning 

pre-service secondary mathematics teachers engage in while participating in an instruction 

sequence in trigonometry that uses a line segment definition. More precisely, Lithner’s (2008) 

framework will be used as a classification tool for the sequences of reasoning the participants 

produced while solving tasks on trigonometry. 

The framework affords the researcher a basis to investigate students’ reasoning, primarily 

with regards to the difference concerning using existing (memorized or given) solution methods 

and creating or structuring the solution. The framework depicts the reasoning exhibited by the 

students as being dependent on the one’s erstwhile knowledge, guidance, or examples that are 

accessible when resolving the task. The framework lays out a sequence for reasoning that 

commences with the given task and proceeds to a solution, and the resulting reasoning is 

dependent on the task, the student’s opinions, and the social setting. 

Reasoning sequences. When resolving a task, a decision where to start from is necessary 

and crucial. Researchers (e.g., Schoenfeld, 1985) have reported that novice problem solvers, 

unlike the experts seldomly invest time into preparing and selecting appropriate reasoning 

sequences. The novices where noticed to quickly “dive in” and repeatedly adopted problem-

solving procedures that were inappropriate for the tasks. This process of solving a task, Lithner 

(2008) submitted that it can be viewed as a directed graph where accomplishment of a solution 

strategy (edges) are linked by a subtask and the reasoner’s momentary state of knowledge 
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(represented as vertices in Figure 3). The edges of the graph contain solution procedures that the 

reasoner chooses from, and implements to reason about and solve a specific subtask. Therefore, a 

particular task can be resolved by taking different paths throughout the graph. 

 

Figure 3. Reasoning sequence as depicted in Lithner (2008) 

Creative mathematically founded reasoning. Lithner (2008) classified reasoning in two 

major categories, creative and imitative reasoning, with the later having different sub-categories. 

When solving mathematical tasks, students gravitate towards a familiar solution method (i.e., by 

an algorithm or by recalling memorized answers). In cases where they cannot use known 

strategies, the student may attempt to re-create a forgotten one or construct a completely new 

reasoning sequence and linking it to the intrinsic mathematical properties essential for the task at 

hand. Such reasoning that involves both novelty and mathematically founded arguments, Lithner 

called it CMR. Lithner (2008) concluded that reasoning can be categorized as CMR if it fulfills 

the following three conditions: 

1. Novelty. A new (to the reasoner) reasoning sequence is created, or a forgotten one is  

    re-created. 

2. Plausibility. There are arguments supporting the strategy choice and/or strategy  

    implementation motivating why the conclusions are true or plausible. 



 

20 

3. Mathematical foundation. The arguments are anchored in intrinsic mathematical  

    properties of the components involved in the reasoning. (Lithner, 2008, p. 266) 

Lithner stressed that the creativity referenced here can be as simple as construction of 

known (to others) argument but a new reasoning sequence to the student solving the task.  

Imitative reasoning. Analogously, reasoning that is connected to either recalling a 

completed answer and simply writing it down (memorized reasoning) or performing a recalled 

procedure without connecting it to mathematical properties (AR) is referred to as Imitative 

reasoning (IR). Students that exhibit memorized reasoning (MR), recall complete answers to 

given tasks, coupled with just writing down the answers. On the other hand, AR was defined by 

Lithner (2008) as follows: 

Algorithmic reasoning (AR) fulfils the following two conditions. 

1. The strategy choice is to recall a solution algorithm. The predictive argumentation may 

    be of different kinds, but there is no need to create a new solution. 

2. The remaining reasoning parts of the strategy implementation are trivial for the  

    reasoner, only a careless mistake can prevent an answer from being reached.  (Lithner, 

    2008, p. 259) 

A reasoning is considered to be AR if the student retrieves the algorithm that leads to the 

solution either from memory, or it is availed in the instructions or retrieved from a worked 

example (Lithner, 2008). It is on this basis that Lithner further classifies AR into different sub-

categories. In familiar algorithmic reasoning (AR-F), the student chooses to use a particular 

algorithm because the task at hand is “of a familiar type” (Lithner, 2008, p. 262) and a known 

algorithm can be employed, whereas engaging in delimiting algorithmic reasoning (AR-D) 

entails the development of a set of algorithms depending on the surface knowledge the student 
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has about the task, and tries to use one algorithm at a time until one from the delimited set checks 

out. The final strand of AR is called guided AR. External help is key in this category. The help 

may be directly from another person, (e.g., instructor) in which case it is called person-guided 

(AR-PG) or from a textbook in different forms (e.g., worked example, theorem, etc.). This is 

referred to as text-guided (AR-TG). Noteworthy, in all cases of AR, the algorithm is not verified 

by the student before using it. 

To demonstrate the distinction between the two main different types of reasoning, IR and 

CMR, and to situate the reader as to what these reasoning types may look like in the context of 

this study, I present below the different cases in which different responses to the same prompts 

from the students in different tasks were coded differently.  

Question: Explain how you know that tan 𝜃 =
sin 𝜃

cos 𝜃
.  

Response 1: I will go like for the unit circle stuff, sin(θ)=y/r, cos(θ) = x/r and we know 

                    tan(θ) = y/x. If a student came to me and asked why cos(θ) = adj/hyp, I  

                    would say, SOH- CAH-TOA. 

Response 2: From SOH-CAH-TOA, we can get  

 

 

 

Response 1 was classified as IR. The student was only able to reproduce what was learnt 

from a prior trigonometry course. However, there is an implicit declaration that they simply 

memorized SOH-CAH-TOA and thus could not reason beyond the mnemonic. Response 2 was 

classified as CMR. The student was able to re-create a reasoning sequence that went beyond the 
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mnemonic and used it to define the different ratios while comparing the different outcomes from 

the quotients.  

Table 1 

Framework for Reasoning 

Type of 

Reasoning 

Variants Conditions 

Imitative  1. Memorized (MR) 1. The strategy choice is founded on recalling 

a complete answer. 

2. The strategy implementation consists only 

of writing it down. 

2. Algorithmic (AR) 1. The strategy choice is to recall a solution 

algorithm. 

2. The remaining reasoning parts of the 

strategy implementation are trivial for the 

reasoner, only a careless mistake can 

prevent an answer from being reached. 

• Familiar AR 1. The reason for the strategy choice is that 

the task is seen as being of a familiar type 

that can be solved by a corresponding 

known algorithm. 

2. The algorithm is implemented. 

 • Delimiting AR 1. An algorithm is chosen from a set that is 

delimited by the reasoner through the 

algorithms’ surface relations to the task. 

The outcome is not predicted. 

2. The verificative argumentation is based on 

surface considerations that are related only 

to the reasoner’s expectations of the 

requested answer or solution. If the 

implementation does not lead to a (to the 

reasoner) reasonable conclusion it is 

simply terminated without evaluation and 

another algorithm may be chosen from the 

delimited set. 

(Table continues) 
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Type of 

Reasoning 

Variants Conditions 

 • Guided AR  

o Text-guided AR 1. The strategy choice concerns identifying 

surface similarities between the task and 

an example, definition, theorem, rule, or 

some other situation in a text source. 

2. The algorithm is implemented without 

verificative argumentation. 

o Person-guided AR 1. All strategy choices that are problematic 

for the reasoner are made by a guide, who 

provides no predictive argumentation. 

2. The strategy implementation follows the 

guidance and executes the remaining 

routine transformations without 

verificative argumentation. 

Creative Creative mathematically  

founded reasoning (CMR)  

1. Novelty. A new (to the reasoner) 

reasoning sequence is created, or a 

forgotten one is re-created. 

2. Plausibility. There are arguments 

supporting the strategy choice and/or 

strategy implementation motivating why 

the conclusions are true or plausible. 

3. Mathematical foundation. The arguments 

are anchored in intrinsic mathematical 

properties of the components involved in 

the reasoning. 

Note. Adapted from “A research framework for creative and imitative reasoning,” by J. Lithner, 

2008, Educational Studies in Mathematics, 67(3), pp. 255–276. 

 

The table below summarizes the different types of reasoning, the affiliated codes that 

were used in categorizing the data, with descriptive examples of each code from the data. From 

the data reported, the only coded reasoning was that directly related to the identified task. For 

CMR I will identify each of the cases of CMR by chronologically labelling them (e.g., CMR1, 

CMR2). 



 

24 

Table 2 

Codes for Reasoning Types and Descriptive Examples from the Data 

Description Example from the data 

A. Imitative Reasoning N/A 

(a) Memorized Reasoning 

       (MR) 

What is the secant?  Ans : 1 + 𝑡𝑎𝑛2𝜃 = 𝑠𝑒𝑐2𝜃 

(b) Algorithmic Reasoning N/A 

1) Familiar AR (AR-F) 

 

Where is the secant function? (see )  

2) Delimiting AR (AR-D) 

 

Does anybody know what secant means? 

It is this line that cuts through? Or may be 

something to do with cosine? I give up. 

3) Guided AR (AR-G)  N/A 

(i) Text-guided AR  

(AR-TG) 

Wait, let me check (opens textbook). Secant line 

must cross the circle twice.  

(ii) Person-guided AR  

(AR-PG) 

 

Eron:  I think this green segment is the 

secant, but I am not sure why.  

Dr. 

Kay:  

What kind of triangle is created here 

with the radius, the tangent and the 

green segment? Does                   

anyone remember the Pythagorean 

identities? 

Eddie: Ah, I see now! It is the secant 

because this is a right triangle with 

the radius (equal to 1), the                    

tangent, and the green segment. 

That means we could use the 

Pythagorean Theorem which would 

tell us 1^2+tan^2 = (green 

segment)^2 and I remember that 

 1 + 𝑡𝑎𝑛2𝜃 = 𝑠𝑒𝑐2𝜃 so the                     

green segment must be equal to the 

secant 
 

(Table continues) 
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Description Example from the data 

B. Creative Reasoning  

(a) Creative mathematically  

     founded reasoning (CMR) 

 

Henry: You could go with the same thing we did 

for tangent. We know that this is secant must lie 

on this secant line, and if we translate this line to 

the graph and covary it with the arc, the resulting 

graph looks like this, (shows the graph of 

secant). Since the graph behaves like what we 

normally know as the graph of the secant, this 

line segment must be the secant.  

 

Literature Review 

The available research on students’ and teachers’ conceptions of trigonometry although 

limited set the foundation and rationale for how I designed this study. A popular theme was that 

both students and teachers’ understanding of trigonometry was not only limited but also 

fragmented. 

Students’ Understandings of Trigonometry 

There is scanty research literature on students’ understandings of trigonometry. 

Nonetheless, there has been significant research done in specific areas like trigonometric 

functions (Brown, 2005, 2006; Hardison, 2017; Weber, 2005), angle measurement (Hardison, 

2017; Moore, 2013), or the sine function (Demir & Heck, 2013; Wood, 2011). In these studies, 

researchers have mainly documented students as possessing limited and constricted 

understanding of trigonometry and a weak comprehension of angle measure (Brown, 2005). 

Many of the studies paint a grim picture of the status of trigonometry, however, recent studies 

show an emerging change in the trend. For example, in his work with a ninth-grade student, 

(Hardison, 2017) found that the student was able to develop an extensive quantification of the 

angle measure.  
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Weber’s (2005) comparative study on students’ understanding of the trigonometric 

functions revealed that students who were taught using Gary and Tall’s (1994) concept of 

procept in an experimental instruction developed a deep understanding of trigonometric 

functions in comparison to those who experienced a traditional definition-theorem-proof lecture 

method, whose understanding was reported as being limited after the semester long course. The 

experimental instruction required participants to reason about the values of trigonometric 

functions, by reasoning about properties of the anticipated output irrespective of the step-by-step 

algorithm involved. This required the students to make constant connections to the definition of 

the trigonometric functions in the tasks. Weber contends that it is this connection that helped 

students view tasks as entire objects to which they developed a reasoning processes that let to 

them having a better understanding of trigonometry when compared to those in the lecture-based 

group.  

Furthermore, Weber (2005) also reported that in the lecture-based group all students were 

unable to make progress on a question that required them to explain why “sin(x) is a function”. 

Moreover, after declaring their lack of knowledge of what a function was, the interviewer 

restated the question as “how do you know that sin (x) can only have one value for a given x-

value?” Other researchers (e.g., Carlson, 1998; Carlson & Oehrtman, 2004; Harel & Dubinsky, 

1992; Oehrtman, et al., 2008) have reported similar findings of students struggling to 

comprehend functions as a process, thus impeding their reasoning about the same. In contrast, 

their counterparts who underwent the experimental instruction managed to answer the same 

question by making a connection between the input and output of the sine function. Inasmuch as 

those in the experimental instruction group were taught using the unit circle approach, Weber 
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cautions that emphasis should be on having students understand the unit circle procedures as 

processes.  

Much of the research on the teaching and learning of trigonometry is rooted in examining 

particular trigonometry stances (e.g., right triangle, unit circle) or comparisons between two 

stances. For example, Weber’s (2005) caution had earlier been articulated by Kendal and Stacey 

(1997) who found that in teaching students using either the right triangle approach or the unit 

circle approach, those students using the latter model did not learn as much as those using the 

right triangle approach. Brown (2005) documents students’ difficulties interpreting within the 

unit circle stance, pointing out that they were unable to make a connection between a point on 

the unit circle to the graph of a corresponding function (e.g., the graph a of sine function). This 

disconnect between two representations implies a lack of conceptual understanding of 

trigonometry which researchers suggest benefits in using multiple representations. Schnotz and 

Bannert (2003), for example, found that if trigonometry instruction allowed for use of multiple 

representations, students were more likely to successfully solve the tasks presented to them. In 

fact, Kendal and Stacey (1997) found that even if students were taught using an algorithm, they 

would ably learn the concept as long as the algorithm was accompanied by a representation.  

Teachers’ Understandings of Trigonometry  

The struggle with trigonometry is not limited to secondary school students. Even pre-

service teachers with a record of having successfully completed a trigonometry course prior to 

the study, were found by Fi (2003) to be struggling with concepts of trigonometry. Specifically, 

Fi’s (2003) examination of these pre-service teachers pertained to their pedagogical and 

trigonometry content knowledge. Through using concept maps, interviews, card sorting, and a 

set of trigonometric problems, Fi encountered teachers having difficulties working with several 
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trigonometric functions. Fi’s interviews led him to attribute the teachers’ struggles to the 

instrumental approach they took while initially learning trigonometry. Moreover, on specific 

sections (e.g., trigonometric identities) Fi reported that the pre-service teachers have 

misconceptions and with the exception of fundamental Pythagorean identity, they labored to 

derive other identities, leave alone applying them. The pre-service teachers were also unable to 

reason about how the different attributes of trigonometric function (e.g., phase shift, vertical 

translations) can affect the nature of the corresponding graph.  

Other researchers (Akkoc, 2008; Thompson, et al., 2007; Topçu, Kertil, Akkoç, Kamil, & 

Osman, 2006) have not only reported teachers’ knowledge of trigonometry as being narrow, and 

limited, but also cemented. The researchers reported teachers as being deficient in dealing with 

the radian as a unit of angle measure. Rather, most teachers often times opted to using only 

degrees while measuring angles. For instance, Topçu, Kertil, Akkoç, Kamil, and Osman (2006), 

and Akkoc (2008) described teachers in their studies as viewing 𝜋 radians as being the number 

180 not the angle 180 degrees.  

The teachers’ difficulty with trigonometry are also documented by Moore, LaForest and 

Kim (2012). Before carrying out the intervention, the researchers found the two pre-service 

secondary mathematics teachers unable to describe the radius of a unit circle as being “one 

radius length”, even though they acknowledged that a unit circle has a radius of one. For 

example, one of the pre-service teachers specifically quantified the radius of a unit circle as 

being 1 inch. The teachers struggled to apply the given central angle and radius to determine the 

arc length. 
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Mathematical Reasoning 

 A dictionary (Webster) definition of reason is “the ability to think coherently and 

logically and draw inferences or conclusions from facts known or assumed” (Guralnik, 1982, p. 

1183). As stated earlier, in particular mathematical reasoning in this study “is the line of thought 

adopted to produce assertions and reach conclusions in task solving. It is not necessarily based 

on formal logic, thus not restricted to proof, and may even be incorrect as long as there are some 

kinds of sensible (to the reasoner) reasons backing it” (Lithner, 2008, p. 257). 

Sfard (1991) argues that students need to acquire both the operational and structural 

knowledge of mathematics in order to succeed at the subject, as one type of knowledge 

complements the other. In other words, although rote learning (operational knowledge or IR) is 

known to contribute to student difficulties, it is necessary in some cases.  

The influence of mathematical reasoning on mathematical learning has been examined 

and investigated from several viewpoints and at different levels of education. In Rowan, Chiang, 

and Miller’s (1997) study, the researchers established a connection between tracking how a 

student forms their knowledge and their performance in mathematics. In fact, Ball (2003) found 

it crucial for teachers to have knowledge of their students’ mathematical reasoning. Other 

researchers (Maher & Martino, 1996; 1998; Maher & Davis, 1995) have discussed how even at a 

young age, children are able to exhibit evidence of reasoning capability. This reasoning and 

justification are propelled by the children’s desire to make sense of a given problem, and to 

discern and develop patterns (Maher & Martino, 2000). It is this desire to provide convincing 

mathematical justifications by refining their solutions through discussion and negotiation with 

classmates that structures their reasoning (Weber, Maher, Powell & Lee, 2008; Maher, 2005). At 

a higher level, the NCTM (2000) clearly pronounces its stance on the significance of 
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mathematical reasoning. The standards stress that learning to reason is vital to understanding 

mathematics. By the end of high school, students need to be capable of employing mathematical 

reasoning to “produce mathematical proofs, and should appreciate the value of such arguments” 

(NCTM, 2000, p. 56). 

Mansi (2003) also argues that students should be helped to develop their mathematical 

reasoning well before they are tasked to engage in other forms of mathematics like writing 

proofs. Perhaps, Mansi (2003) proficiently captured the general rationale for why mathematical 

reasoning is important. While investigating the complexities concerned with learning to write 

proofs Mansi stated: 

Students’ overall ability to reason about mathematical ideas and make justifications for 

why a mathematical concept makes sense or why a procedure should be used is a 

powerful and necessary part of learning mathematics. Students who are not forming these 

reasoning and justification abilities throughout their learning of mathematics will most 

likely struggle with the notion of proof. (Mansi, 2003, p. 9) 

Although all the research presented here emphasizes the need for fostering mathematical 

reasoning in students, the types of reasoning to be stressed were hardly mentioned. Hiebert 

(2003) points to this as one of the main problems in mathematics education. There is tremendous 

effort invested in developing students as problem solvers, but with all the research and reforms 

put in place, the majority of students still engage in rote thinking (Hiebert, 2003). Furthermore, 

Lithner (2008) also argues that it is the rote thinking—later characterized as MR—that is at the 

center of the “learning and achievement difficulties [in mathematics]” (Lithner, 2008, p. 255). 

Basing on a number of empirical studies (e.g., Lithner 2003; 2004) the researcher was able to 

address the issue of rote learning by identifying the central attributes of IR and CMR.  



 

31 

Mathematical reasoning being dynamic and unique and individual-based, we adopted 

Lithner’s (2008) characterization of the different types of reasoning to investigate the types of 

reasoning pre-service teachers engage in while learning trigonometry. Several researchers have 

contended that mathematical reasoning is best evaluated by how a learner’s performs on 

geometric tasks (Mason & Moore, 1997; Wu, 1996). In other words, geometric reasoning 

follows from successfully establishing mathematical reasoning (Clements &Battista, 1992). In 

this study, we therefore engaged students in tasks that were based on line-segment trigonometry, 

which is geometry based and promotes quantitative and covariational reasoning. This set-up of 

the study we anticipated would be encourage the participating students to not merely complete 

given tasks, but also engage in some form of reasoning at the same time.  

Instructional Strategies 

 Numerous studies that have demonstrated techniques for teaching specific trigonometry 

topics (e.g.., Borba & Confrey, 1996, Clements & Battista, 1989, 1990; Keiser, 2000, 2004), 

while others have investigated instructional strategies for improving the teaching and learning of 

trigonometry as a whole (e.g., Hertel & Cullen, 2011, Moore, 2013; Weber, 2005). For example, 

while teaching function transformation, Borba and Confrey (1996) used the rubber sheet method 

to help students visualize graphical representations as being made of two transparent, ductile 

rubber sheets. Transformations were either defined as movements on the sheet of axes (i.e., 

horizontal transformation) or as movements on the sheet containing the curve of function inputs 

(i.e., vertical transformations). However, this approach had some limitations like difficulty in 

representing the shrinking and stretching effects on a function. 

 Kendal and Stacey (1998) measured progress from pre- to post-test of tenth graders who 

were instructed using either the unit circle approach or the ratio approach. From their findings 
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students who used a ratio approach had a statistically better performance than their peers who 

were taught using the unit circle approach. Moreover, they contend that the former group is well 

positioned to correctly identify trigonometric expressions required in solving given tasks. 

Furthermore, beyond not providing low achieving students an outlet to overcome their struggles 

in basic trigonometry, Kendal and Stacey found the unit circle method to actually make it harder 

for students to specifically learn trigonometric ratios. 

 On the flip side, Weber (2005) reported that college students’ understanding of 

trigonometric functions is hinged on introducing them to the unit circle first before the ratio 

method is used. He described the registered improvement in the experimental instruction group 

as being a direct result of their use of the unit circle model. Weber (2005) resolved that, “for the 

students who received the experimental instruction, … understanding the process used to create 

unit circle representations of trigonometric expressions appeared to be an integral part of their 

understanding of these function” (p. 107). Weber further claims that initially using the ratio 

method is of limited value for the learning trigonometric functions.  

 Other researchers (Hertel & Cullen, 2011; Moore, 2013, 2014) have proposed that using 

quantitative and covariational reasoning significantly fosters learning of trigonometric concepts 

like angle measurement, and trigonometric functions. Hertel and Cullen’s (2011) directed length 

approach while investigating twenty-three pre-service teachers working on trigonometric 

functions in a dynamic geometry environment (DGE) registered statistically significant growth 

in the students’ performance from the pre-test to post-test. This progress, the researchers contend 

was due to use of quantitative reasoning (i.e., directed length interpretation) and the DGE. 

Similarly, Moore (2013, 2014) suggested that an arc approach to angle measure can advance 



 

33 

coherent experiences for students, and improve their thinking, which facilitates conceptualization 

of trigonometric functions and trigonometry in general. 

 Although the literature review has revealed several instructional strategies and their 

registered successes in aiding students’ learning of trigonometry, the synthesized studies seem to 

fall short of conveying the importance of sense making. For example, Kendal and Stacey (1998) 

support the use of the ratio method while other researchers suggest the unit circle (e.g., Weber, 

2005) or the directed length approach (e.g., Hertel & Cullen, 2011), but in their study Kendal and 

Stacey (1998) appear to only be testing the students on procedural tasks. It is on the basis of the 

results from these tasks that the researchers categorize students as “successful” or not. I argue 

that investigating students attempting such tasks does not tell the whole story of why the students 

are “successful” at learning trigonometry. As noted by Doyle (1983), the nature of tasks is 

important in students’ work with mathematics that they “influence students by directing their 

attention to particular aspects of content and specifying ways of processing information” (Doyle, 

1983, p. 161). Therefore, further insights about how the participants reason would be helpful in 

drawing more inferences about the different types of approaches to learning trigonometry.  

The same could be said about Hertel and Cullen’s (2011) directed length approach or 

Moore’s (2013) arc approach to angle measure. Inasmuch as in both studies the researchers 

employed instructional sequences that promoted quantitative and/or covariational reasoning, the 

kinds of reasoning students exhibit while doing the tasks seem not to have been a central focus of 

their investigations. The type of reasoning students engage in is more important than their 

success on particular tasks. Moreover, the students could as well be engaging in rote learning or 

superficial reasoning (Hiebert, 2003), or as this study may later reveal, memorized reasoning for 

the most part. 
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In attending to a gap in the current research and owing to the wide-ranging use of 

trigonometry, I therefore find it valuable to examine students’ reasoning as they work with 

trigonometric functions, and in particular what type of reasoning is exhibited when students elect 

to use a given approach (i.e., unit circle, ratio, or line-segment).    

Summary of Chapter 

This chapter provided an overview of the conceptual framework (Lithner, 2008) that I use 

a basis to categorize students’ reasoning. A central component of this framework is that 

reasoning is not constituted of correct justifications utterances.  

The research available has documented the struggles both teachers and students 

experience in their quest to teach and learn trigonometry. Additionally, students and teachers 

were reported as lacking introductory reasoning abilities that are prerequisites to understanding 

trigonometric functions, although few research studies have examined the role of these 

foundational understandings. This chapter concluded by highlighting some suggested 

instructional strategies that can be used to improve the teaching and learning of technology. In 

the next chapter, I provide the methods for this study, which proposed ways explore the 

reasoning abilities of the students as they investigate and hypothesize about different 

trigonometric functions and relationships. 
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CHAPTER III: METHODS 

The principal focus of this investigative study is to examine the types of reasoning that 

pre-service secondary mathematics teachers exhibit and use in the process of reasoning about 

trigonometry with instructional emphasis on quantitative reasoning through a line-segment 

definition of trigonometry. With this goal in mind, it is imperative to consider the conceptions 

developed by pre-service teachers and their reasoning while working with the activities that are 

typically used for instruction in a secondary school trigonometry course. These were leveraged to 

help us understand the prospective teachers’ struggles, and hence be in a position to suggest 

ways to not only improve trigonometric instruction but to also add to the growing body of 

literature on the learning and teaching of trigonometry.  

Ultimately, this dissertation is intended to shed more light on how a particular approach 

(line-segment) influences prospective secondary mathematics teachers’ reasoning about 

trigonometric functions. This may benefit the pre-service teachers by developing a strong 

comprehension of trigonometric functions while exploring their reasoning when attempting 

trigonometry-based tasks 

Participants and Setting 

The targeted population of this study is pre-service secondary mathematics teachers who 

were in advanced stages of their teacher training program. This population was yet to engage in 

student teaching, but gained some field experiences, working with cooperating teachers in area 

high schools. All the potential participants had completed almost all their mathematics content, 

mathematics methods, and other required courses. The only courses they had pending were the 

ones they were attending at the time of this study, including the course in which data for this 

study was collected. Additionally, all but one participant—who was a junior and was not selected 
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to be part of the focus groups—were seniors, teaching some mathematics lessons to high school 

students in real classroom settings during their field experiences in the same semester. This 

targeted population had therefore acquired the familiarities of both an undergraduate 

mathematics major and a pre-service secondary school mathematics teacher at the end of her/his 

teacher training. 

Recruitment  

This study took place in a semester long technology-based mathematics content course 

for pre-service secondary mathematics teachers at a medium-sized Midwestern University in the 

United States of America. Participation was solicited from all 23 students enrolled in the course. 

All 23 students attended class for all 15 weeks of the semester, including the seven weeks in 

which data was collected. However, only 20 officially consented to having their data collected 

and released in publishable form. There were 11 male and 9 female students who participated in 

the study.  

The participants (henceforth referenced as students) were chosen on a volunteer basis and 

were not be compensated for their time. In order to acquaint myself with the students, and the 

classroom environment in the aforementioned course, I attended all the class sessions—as a non-

participating observer—prior to the seven weeks in which I collected the data for this study. This 

interaction prior to data collection was helpful in informing the selection of one of the focus 

groups. I selected these four members to be in the first group (henceforth referenced as Group A) 

because I had observed them thinking out loud and being willing to participate when working in 

a small group setting. The second group (henceforth referenced as Group B) was selected out of 

convenience as it just happened to be put together based on their willingness to participate in a 

different study that was running at the same time as my study. 
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Participants.  From the 20 students who agreed to participate in the study, eight students 

were selected to be part of the focus Groups, A and B. Because the members of Group B were 

selected as a set group from another study, I did not sit with these students during class and thus 

did not get to query their thinking while they were working. With this in mind, I will only 

highlight those in Group A based on my interaction with them over the six weeks of the study.  

Unlike Group B, which consisted of one male and three females, namely: Ben, Monica, 

Annaliese, and Andrea, Group A consisted of two males and two females namely: Suzie, Eron, 

Mark, and Eddie. All these students were in the first semester of their senior year and I provide 

more background about each below. 

Suzie was outgoing and always willing to speak her mind. However, she sometimes 

seemed unsure of her solutions and reasoning. Suzie routinely questioned her responses. 

Additionally, she intimated that prior to her college education she had not attended a 

trigonometry course. Mark was a very confident student who enjoyed working alone. Even in 

tasks that required students to work in pairs, he rarely engaged with Suzie his partner. Mark was 

always a step ahead of the rest group in terms of accomplishing the tasks. He was constantly 

exploring other concepts and going beyond what the instructor assigned. Eron and Eddie thrived 

in bouncing ideas off each other. Eddie’s mastery of the trigonometric ratios and identities was 

also notable.  

Course Overview  

The course was a semester long technology-based mathematics content course for pre-

service secondary mathematics teachers. The course was designed to focus on four roles of 

technology in the teaching and learning of mathematics: “(a) promoting cycles of proof (i.e., 

explore→conjecture→test/revise→prove); (b) presenting and connecting multiple 
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representations; (c) supporting case-based reasoning; and (d) serving as a tutee” (Cullen, Hertel, 

& Nickels, p. 5, in Press). Prior to the weeks which were the focus of this study, the students had 

completed three main activities; Exploring Quadratics, Series Problem Solving Task, and Excel 

can Solve Quadratics (Cullen, Hertel, & Nickels, in Press). These tasks were designed to engage 

students in promoting cycles of proof (Exploring Quadratics), supporting case-based reasoning 

(Series Problem Solving Task), and using technology as a tutee (Excel Can Solve Quadratics). 

The technology used during these activities was mainly GeoGebra, spreadsheets, and graphing 

calculators while the content covered was quadratics and sequences series.  

During class meetings students were working in cooperative four-person teams assigned 

by the instructor for some classroom tasks, discussion, and projects in which they were expected 

to be active participants. Students were seated at round tables with a laptop provided for each 

student. The instructor gave students times to engage in small group discussions, and later share 

their ideas on the board. I attended all the class sessions from which I used the first five weeks to 

acquaint myself with students, in order to get an idea of who among the potential participants 

exhibited positive dispositions towards working in a group and so that they would be familiar 

with me. In the subsequent weeks in which I collected data; I assumed a participant-observer 

role. My involvement in the focus group (I was always stationed at Group A’s table) was 

primarily to guide any discussion to a direction that was purposeful to this study while being 

careful not to overshadow the participants. 

The instructor, who had taught high school for six years, was in his ninth year of teaching 

at a university, working with pre-service secondary mathematics teachers. The goals for the 

course, as stated in the course syllabus were to (a) extend and enrich understanding of selected 

mathematics topics, (b) enhance knowledge of and fluency with mathematics technologies,  
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(c) address the roles of technology in the teaching and learning of mathematics, and (d) gain 

fluency in investigating mathematics topics beyond what is obvious. This was the ninth 

consecutive fall teaching this course, and he had conducted a prior study using the line-segment 

definition of trigonometry in a prior teaching of this course. The instructor’s focus when 

designing the lessons for trigonometry portion of this course was on quantitative/covariational 

reasoning. Employing lecture and direct instruction minimally, he aimed to give the students in 

the course an opportunity to deepen their conceptual understanding of trigonometry by engaging 

them in learning about the line-segment approach and making connections to geometry (i.e., 

chord, secant, tangent, complimentary) as well as connection among the different approaches 

(i.e., right triangle, unit circle, ratio, line-segment).  

The focus of the instruction was on quantitative reasoning (Thompson, 1990). According 

to the instructor this focus was highlighted in a few ways. At the beginning of the instructional 

sequence, when the students were working to determine if the given dynamic display of the 

chord and arc was describable as a functional relationship, the instructor insisted that the students 

did not use any numbers in their explanations. The purpose of this was to deter them from 

reasoning indirectly about the quantities by referencing the measures of the quantities. By doing 

this, the instructor hoped to push the students to reference the actual arcs and segments (i.e., 

quantities) when they described or explained their reasoning rather than reducing the quantities 

down to an abstracted numerical representation (e.g., it seems this is function is the sine function 

because when the angle is π

2
 the segment is 1). Additionally, when the students began to use 

numbers the instructor worked to direct their attention to the units being used. In particular, he 

had students build their own grid, in Geogebra, using the radius of a circle on both axes, as well 

as a coordinated display of the radius being dynamically marked off around the circle. Finally, 
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the instructor’s choice of using the arc angle as a quantity was purposeful in his mind. He was 

trying to avoid the use of angle as a quantity because it is more difficult to identify the object 

(i.e., quantity) than when using the arc as an object (i.e., quantity). 

Why Study Pre-service Secondary Mathematics Teachers?  

The following reasons underlie the decision to choose pre-service secondary mathematics 

teachers as the focus of this study.  

First, results of this study may have implications for teacher education programs 

concerning how future secondary mathematics teachers are trained as far as teaching and 

learning trigonometry is concerned. The mathematics education world agrees that what teachers 

know influences what they ultimately do in their classroom (Wilson, 1992), and therefore having 

a grasp of pre-service mathematics teachers’ reasoning may provide support and convalesce to 

the education of future teachers of mathematics. As Wilson (1992) stated, “analyzing the images 

of mathematics and mathematics teaching held by pre-service teachers is important because these 

teachers will significantly impact upon the nature of mathematics that will transpire in the future 

classrooms” (p. 1). 

Secondly, researchers who have conducted synonymous studies on students’ or teachers’ 

reasoning with trigonometric functions (e.g., Moore, 2010, 2014), have recommended that 

similar studies should be carried out with different populations from the ones they studied. In 

particular, Moore (2014) recommended that, “the research base on trigonometry would benefit 

from studies that extend the current work to other populations including pre-service teachers” 

(Moore, 2014, p. 51). 

Lastly, I have chosen to work with secondary mathematics pre-service teachers rather 

than pre-service teachers of lower grade levels because by the common core standards (CCSSI, 
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2010), trigonometric functions are part of high school standards (e.g., 

CCSS.MATH.CONTENT.HSF.TF.A.X).  

Study Design  

The study was conducted in a course that met for two hours and forty minutes, once a 

week for 15 weeks. The content of interest for this study was covered over a 7-week period, with 

the professor assigned to the course working as the instructor for all the sessions. The classroom 

instruction consisted of lecturing, individual and group work, and whole class discussion. The 

classroom was set up with a teacher chart that included a document camera, an interactive white 

board and a computer. Several topics including trigonometry were covered whilst highlighting 

the role of technology in achieving a deeper understanding of the topics. This sequence of 

instructional activities was delivered using a dynamic geometry environment (DGE) with the 

purpose of promoting quantitative reasoning through the line-segment definition of trigonometry. 

A synopsis for the 6-week instruction period is presented in Table 3, giving what happened in 

each week. The main topics covered in this study are included in Appendix B.  

Table 3 

Weekly Instruction Outline 

Week Instruction Goals  

Week 1 • Create geometric quantities in a DGE and examine the relationships between 

pairs of covarying attributes. 

• Interpret the meaning of an ordered pair in a given context. 

• Explain the benefits of using the radius of a circle as a unit in a trigonometric 

setting. 

(Table Continues) 
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Week Instruction Goals  

Week 2 • Extend student understanding of the chord function to the tangent and secant 

function. 

• Explain two methods for measuring an angle, one for radians, one for degrees and 

explain the units in each method. 

Week 3 • Extend student geometric understanding of the chord and tangent to the secant, 

and to the three co-functions. 

• Explain the benefits of using the radius of a circle as a unit in a trigonometric 

setting. 

Week 4 • Reason about the six trigonometric functions when the radius is not the unit. 

• Compare and contrast the use of radians and degrees in trigonometry. 

• Use a geometric interpretation of trigonometry to derive basic trigonometric 

identities. 

Week 5 • Compare and contrast the use of radians and degrees in trigonometry. 

• Use a geometric interpretation of trigonometry to derive other trigonometric 

identities. 

Week 6 • Use a geometric interpretation of trigonometry to derive the sum and difference 

formulas for sine, cosine, and tangent trigonometric identities. 

Written Work  

In order to classify students’ solution schemes, their relevant written classwork and 

weekly reflections were collected and analyzed. This included classroom notes, weekly 

reflections, assignments and group projects. 

Data Collection and Analysis Overview 

The data collected for the study included: 

• Videotaped teaching sessions (six 2-hour and 40 minute-sessions) 

• Student written work from the teaching sessions. 
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Data Analysis Procedure 

I first organized the collected data in the order it was gathered. My preliminary analysis 

consisted of viewing all recorded videos in the order they were captured. To gain an overview of 

each participant’s behaviors, understanding and reasoning pertaining to trigonometric function, I 

took notes while viewing the videos. I did a loose transcription of all the data in order to identify 

segments of the video irrelevant to the study at hand (e.g., segments in which the students are off 

task, students are engaged in learning to use the technology).  

After my initial analysis, the relevant portions of the classroom were fully transcribed and 

reanalyzed to include the participants’ and researcher’s statements, and actions. This was 

followed by creating possible explanations and descriptions for the reasoning and understandings 

exhibited by participants through their actions and utterances.  

Using Lithner’s (2008) framework, I examined classroom videos to classify reasoning 

exhibited by students, and then associations were sought between participant’s actions, by 

comparing, and contrasting the group’s actions over the progress of the six weeks for 

homogenies cognition, and abstraction. This analysis, was to reveal the “critical reasoning 

abilities needed for constructing connected and coherent understandings of trigonometric 

functions” (Moore, 2010, p. 52). 

Overview of Coding 

Unit of analysis. While classifying the different reasoning types based on Lithner’s 

(2008) framework to identify the types of students’ reasoning and strategies exhibited, I 

categorized the unit of analysis as a single sentence (utterance) by any participant, with or 

without justifying their statement. In the event that a block of statements was stated about the 
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same concept, the several mathematical statements contained therein were coded independent of 

each other.  

I also found any patterns and themes that stemmed from associating the different types of 

reasoning revealed in either having come from line-segment trigonometry, unit circle 

trigonometry or right triangle (ratio approach trigonometry). Eventually, a count of each type of 

reasoning, and teaching strategies about trigonometry was made, the emerging themes analyzed, 

and conclusions drawn. 

Summary of Chapter 

In this chapter, I described the research methods of this investigation into pre-service 

secondary mathematics teachers’ (referred to as students) reasoning about trigonometric 

functions. An instruction sequence that was based on the line-segment approach was 

implemented in order to promote quantitative and covariational reasoning.  

In the next chapter, I present the findings from selected tasks from the instruction 

sessions. In each task, I highlight the different types of reasoning exhibited by the students in 

their strategy choices, as well the trigonometry approach (ratio, unit circle, or line-segment 

approach) they may adopt.  
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CHAPTER IV: RESULTS AND DISCUSSION  

In this section, I present the findings from the instruction sessions. A typical session was 

a hybrid of instructor-led demonstration, group discussions, and working in pairs on a computer 

to construct a given task using a dynamic geometry software. 

Details about the general and group discussions, and the resulting forms of reasoning 

exhibited from two of the six groups will be presented. Data reported here were taken from five 

episodes identified by the researcher to have been focused on mathematical content rather than 

learning to use the technology itself. These episodes are focused around key tasks, which 

occurred during the study. 

Task 1: Identifying the Sine Function 

The goal of this task was to have students build geometric objects and then identify 

different attributes on/about the objects and observe the relationships between them as well as 

changes in the attributes. In this session, instruction focused on identifying functions in general, 

with particular emphasis on exploring the “chord function” using the connection between the arc 

length and the corresponding directed length as shown in Figure 4. 

  

 

 

 

Figure 4. Varying the arc length and the directed length, and the resulting graph 

An overview of the mathematical content registered from the students as they discussed 

the four parts of this task about functions is summarized in Table 4 below. Percentages of each 
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reasoning type used by the students are included, as well as a general view of the process that 

was taken to resolve this task at hand. 

Table 4 

Resolving Task 1: Is this a Sine Function? 

Percentages of 

Reasoning Strategies 

Task Part Math Content from students 

CMR Imitative   

 

25% 

 

75% 

 

 

What is a function? 

• f(x), g(x) 

• Table of values 

• Vertical line test 

• Dependent/Independent variables 

 

20% 

 

80% 

Chord: Is it a function?  

(see Figure 5 [a]) 

• x-coordinate and y-coordinate 

• Number of inputs 

• Parabola 

• Dependent/Independent variables 

• Sine function 

• Relation 

 

 

 

29% 

 

 

 

61% 

Directed chord: Is it a 

function? 

(see Figure 5 [b]) 

• Sine function 

• Arc length and chord length 

• Dependent/Independent variables 

• Stretched sine function 

• Amplitude 

• Negative cosine 

Directed half-chord: Is it a 

function? 

(see Figure 5 [c]) 

• Sine function 

• Arc length and chord length 
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Figure 5. Investigating the chord function 

Beyond highlighting the history behind the word sine from the mistranslation of the word 

“chord” (Bressoud, 2010), this exploration engaged the students in reasoning about what 

constitutes the independent variable—the angle size represented by the red arc—and the 

dependent variable—the blue directed half-chord—in relation to a sine function.  

This description first provides Group A’s – consisting of Suzie, Eron, Mark, and Eddie – 

reasoning and justification and then the general classroom’s reasoning and justification about the 

broad concept of functions. This is followed by a discussion of the dialogue about identifying 

and characterizing the sine function, and the various types of reasoning employed in this learning 

activity. 

To start the task, the instructor declared that he would be moving slowly in this session, 

with a focus on multiple representations as a role of technology. He also situated the topic of 

functions as one of the strands in the Common Core State Standards (CCSSI, 2010) for High 

School mathematics, namely: Number and Quantity, Algebra, Functions, Modeling, Geometry, 

and Statistics & Probability.  The instructor then elicited ideas from the students. The last 

column in each excerpt shows the codes to represent the types of reasoning (see Table 2). The 

statements are coded as either Imitative (I) or Creative reasoning (C). Those coded as Imitative, 



 

48 

are further categorized as either Memorized (MR) or Algorithmic (AR). AR has variants that 

include Familiar (AR-F), Delimiting (AR-D), and Guided (AR-G). The last hierarchy consists of 

subcategories of Guided Reasoning, which are AR-TG, and AR-PG. 

The instructor commenced the session by declaring his interest in focusing on the idea of 

functions, with the hope that the students would be pushed to think of them differently.  

Instructor: In my mind when someone says functions, I immediately think of something like 

f(x) = 3x + 2. Today I want us to think about geometric functions and I want to 

avoid using any numbers as long as we can. What are functions about? 

From the group discussions and later transitioning into individual responses, the students were 

able to recall certain information, and made reasonable claims about functions, but were unable 

to present lines of thought that would be justified as reasoning. The responses are given below 

Group A: Like the table, with x and y 

Ben:  Vertical line test 

Mark:  Like f(x) and g(x) 

Participants working in their groups described the concept of function based on what they 

could recall from earlier knowledge about functions. In particular, Group A members did not 

have a detailed discussion on the question posed by the instructor. When one of the participants 

(Eron) presented her view of functions as tables with x and y, the rest of the group agreed and 

had no further discussion.  

When prompted further by the instructor—during the whole classroom discussion—all 

the participants’ responses indicated that their perception of functions included tables, vertical 

line test and notations like f(x) and g(x). These were some of the notions related to functions that 

they presented.  

After this brief introduction about functions, using GeoGebra, the instructor created a 1-

dimension geometric object that served to generate examples used to examine the relationship 
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between components on a circle. The objective was to lay the foundation for exploring the chord 

function, purposefully avoiding the use of numbers. A half an hour into the teaching session, the 

instructor having constructed the circle, an arc along this circle from a fixed point (B) to a 

moving point (C) on the circle, and a vertical chord through the moving point, the participants 

constructed a similar object in GeoGebra (Figure 6).  

 

Figure 6. Covariation of arc BC and chord CD at different positions 

Students then deliberated on how altering the arc length affected the chord. With varying 

point C now animated counterclockwise, the instructor asked if what was on display could be 

regarded as a function. According to the instructor, this question was intentionally vague to force 

students to explicitly identify what it was they were considering as the attributes of the diagram 

that they were relating. After two minutes of group discussions (Excerpt 1), there was a whole 

class discussion (Excerpt 2) to address this question. Again, adopting Lithner’s (2008) definition 

of reasoning, from the data reported, I only coded reasoning was that directly related to the task 

of identifying a function, but for purposes of context, other statements are also included in the 

excerpts.  

Excerpt 1 

1 Eron:  It could be like the output. The point being…, I don't know if I can use       

the point again.                                                                                               

 

2     Suzie:  The line being the y-coordinate and the point being x-coordinate.  

3 Mark:  Thinking about the dependent and independent, the length of the arc is 

the independent variable and the length of chord is the dependent 

variable. 

 

4 Dr. Kay:  (With the instructor now at their table) Is the length of an arc a number?  
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During this interaction, the students’ reasoning on functions were littered with strategy 

choices that seemed to be familiar and memorized except for one case. In her interaction with 

Eron to determine if the object presented by the instructor constituted a function, Suzie explained 

that it was a function, with “the line being the y-coordinate and the point being x-coordinate.” 

This response seemed to come from her prior knowledge about similar tasks but without any 

justification. However, when Mark’s claim that “the length of the arc is the independent variable 

and the length of chord is the dependent variable”, was contested by Eddie, Mark was able to 

present a plausible argument to support his assertion (Line 6, Excerpt 1). 

Other students we also able to make progress on this activity. From their responses in the 

whole class discussion (Excerpt 2), they appeared to make a case for what would and what 

would not constitute a function. 

Excerpt 2 

5 Eddie: I don't see it that way. There are two spots on either side of the center, 

which means two inputs of arc lengths having the same chord as output. 

AR-F 

6 Mark:  I would say that is fine. Think about the parabola. Two x-values will 

give one y-value and it is still passing the vertical line test. So, it is okay 

if you have one output for two inputs. 

CMR1 

7 Eddie: Oh yeah, I see what you mean. AR-PG 

8 Mark:  But yeah, I agree with you if you are thinking about the inverse of the 

function. Think about the unit circle. At 0, we are zero, at 90, bang, at 1, 

at 180, we are at zero, and 270, bang.  

 

AR-F 

 

1 Dr. Kay:  Let us try to chat about this as a group. It seems a bit open ended or 

odd to just say, is this a function? What do we think, is this a 

function? (puts thumb is the air for a thumbs-up and a thumbs-down)  

 

2 Class: [Thumbs up in agreement]  

3 Dr. Kay:  Okay, Ben, tell me about that function (points to diagram).  

4 Ben:  I believe it is a sine function. I believe …  If we’re talking about, um, 

I’ll have to get this right. Position of the dot, the intersection would be 

the independent variable.  

AR-F 

5 Monica: He is crazy  
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When the instructor solicited more observations from the whole class, Ben claimed that 

the function in the task was a sine function. However, he reluctantly justified his argument 

backed up by numbers, using radians to quantify in his justification. With the students free to use 

numbers in their reasoning, the majority of the students were able to conclude that there was an 

interpretation of the relationship between the two one-dimensional objects that constituted a 

function.  

However, the instructor purposefully insisted that the class continue to think about this 

activity in terms of the “red thing” and the “blue thing” (referring to the colors of the arc and the 

chord). Things should be viewed as the “input, output, independent, and dependent variable”, he 

said. Furthermore, in an effort to confirm if the students were making mathematically founded 

arguments, there was dialogue about relations and functions. From their unison submission, it 

seemed that they had been reminded of what generally can be viewed as a function. 

6. Ben: And that length of the chord is the dependent variable. I believe that 

would be the sine function. Independent is the uh it’s referring to the 

position of the point C in radians and then the dependent is the length 

of that chord which would, should give you the sine function I 

believe. 

 

 

 

CMR2 

5 Smith:  Can we say arc length?  

6 Victor:  Independent variable: Length of arc  

Dependent: Length of chord 

AR-F 

7 Dr. Kay:  How about using numbers? [There was agreement not to use 

numbers] 

 

8 Victor:  There are four different arc lengths that give you the same chord 

length. 

AR-PG 

9 Dr. Kay:  Is this a function?  

10 Class [Yeah.] [Yes.] AR-F 
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In order to draw on this foundation about functions, the instructor and later the students—

working in pairs on their laptops— made copies of the two quantities (arc and the chord) and 

mapped them on the horizontal and vertical axes respectively and created a permanent record of 

the associated lengths. This resulted in a graph shown in Figure 7 and a subsequent change of 

thought from the participants. For example, equipped with hindsight, Ben stated that, “this is not 

a sine function as earlier predicted (Line 6, Excerpt 2). It is the absolute value function. It (the 

graphical representation) helps see one point and the two associated relationships (quantities).” 

 

 

 

 

Figure 7. The graph generated by relating the arc and the chord 

  After this interaction, the chord was replaced by a directed chord displayed as a vector 

from D to C, and with the students mapping the arc on the horizontal axis and the directed chord 

on the vertical axis of a cartesian-coordinate grid, a locus of the copy of the different chords and 

positions resulted in the associated graph of the function 𝑦 = 2sin(𝑥) (assuming the radius of the 

circle is the unit) as shown in Figure 8. Again, students were tasked to investigate how the 

change in the size of included arc affected the directed chord (Excerpt 3). This then transitioned 

into a connection to the origin of the word “sine”. Noticing that the directed chord did not yield 

the intended graphical representation, attention was then drawn to building a display that is 

Dr. Kay.  Can we switch the dependent and independent variables and still call it a 

function? 

Class [No.] 

Dr. Kay:  Do we still get a relation? 

Class [Yeah.] [Yes.] 



 

53 

consistent with the standard unit circle representation of sine where half of the directed chord 

was used as the value of the sine of the associated arc. In this case, the resulting geometric 

function (Figure 8) offered the students an avenue to adequately explain their earlier claims 

about the sine function. Most explanations referred to a diagram of the circle illustrating how 

when the arc changes as the arc moves along the circle in a counter-clockwise direction, the half-

chord goes back and forth between increasing and decreasing. 

 

Figure 8. Amy’s graph for comparing the arc length and directed chord length 

 
Figure 9. The sine (“directed half-chord”) function 

 

Excerpt 3 

1 Dr. Kay:  What do you think? (Pointing to a transformed version of the sine 

function stretched vertically, as shown in Figure 8). 

 

2 Ben:  It looks like the sine function. A vertically stretched version of the sine 

function. 

AR-F 
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3 Smith:  The amplitude is not 1 MR 

4 Andrea: I have known always the sine function to be measuring the length from 

the center to the circumference of the circle. Since we are dealing with a 

chord from one point to another on the circumference, it wouldn't be the 

same sine function that we think of but it would be a stretched one. 

 

CMR3 

5 Dr. Kay:  What is the problem with this picture? Without the circle, looking at 

only the graph, would someone be able to say if this is a sine function? 

 

6 Smith: Yes. Because the sine function has a few key characteristics, one being 

there is a period before it starts over. It starts between the top and 

bottom and they are equidistant from the line, and the curve hits the 

horizontal line 3 times. 

 

AR-F 

7 Andrea: I agree, but we have to restrict this to a certain domain. Because this 

could also be a negative cosine. 

CMR4 

 

To further the discussion, the instructor lifted the restriction on using numbers in their 

explanations to justify their claims of whether or not the displayed geometric construction 

represented a sine function. From the discussions in their different groups, the students initially 

had diverging views but ultimately realized that the graph represented a sine function or a 

function analogous to the sine function. 

Excerpt 4 

1 Dr. Kay What is the length of this? (pointing to the amplitude of the graph) 

How many of these will fit (referring to how many lengths 

equivalent to the amplitude will fit in the horizontal distance 

equivalent to a full revolution)? 

 

 

2 Eddie & 

Drew 

2π AR-PG 

3 Henry I think it is the sine function because, the values for which it is 

zero are shown as being at zero, and since we have no scale, we 

can assume that those points represent 0, π and 2π. And it goes up 

to 1 and down to -1. 

 

AR-F 
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4 Dr. Kay:  Henry said that lets call this (maximum of the graph – from the 

horizontal axis to the crest of the graph) 1 and call this (the 

horizontal) 2π ≈ 6. Will 6 of those fit here? 

 

5 Smith 3 not 6  

6 Dr. Kay:  We can't fit. I feel uncomfortable to just call this 1 (points to 

amplitude) and call that 2π (points to the horizontal axis). You can 

choose one and call it what you like but you don't get to choose 

both. I would say that is not the sine curve. Because when you get 

to call that 1, you don't get to call this 6.28 and some change. Does 

anybody know what sine means 

 

 The participants’ approaches to the task of justifying their understanding of the 

chord function indicated some considerable alterations in their strategy choices. There is 

evidence that participants had initially not regarded angle measure and by extension the 

reasoning about the chord function, as a procedure that engaged in using the arc length and 

thinking beyond the attributes of a familiar function, they had seen in prior encounters with the 

sine function. For example, even when the chord segment was changed to a directed one, and 

Andrea pointing out that the sine function measures the “length from the center to the 

circumference of the circle”, Smith and Ben did not utilize the length, position, and orientation of 

the directed chord to justify their reasoning.  

In summary, during this first instruction session in which students were tasked to identify 

what constituted a function, their reasoning strategies comprised of referencing various 

mathematical concepts (e.g., tables of values, f(x), and g(x)) from prior knowledge of the 

concept of functions, and implementing strategy choices of familiar algorithms (e.g., 

coordinating the value of one variable with changes in the other to create and reason about 

geometric objects like line segments and arcs). The task’s next focus of comparing the chord 

length and arc length resulted in students reasoning imitatively by only focusing on the amount 



 

56 

of change in the chord length in relation to the arc length without showing any discernment for 

the direction of the segments involved.  

 The students’ engagement in the directed chord-length part of the task resulted in creating 

imageries of measuring the arc length in terms of the number of radians. Beyond verbalizing that 

inputs for several arc lengths have the same chord lengths but with different directions, the 

students implemented AR-F to identify key characteristics of the sine function. While working 

on the task of constructing a geometric representation of the covariation between the directed 

chord and arc length, the students transitioned from algorithmic to CMR (see Excerpt 3). For 

example, in the same breath, while engaging in the directed-chord task, Ben was able to 

transition from claiming the it was a sine function to then asserting that it was “a vertically 

stretched version of the sine function” (Line 2, Excerpt 3). 

 The directed half-chord part of the task offered a context that some students leveraged to 

reexamine their earlier reasoning and reconstruct forgotten reasoning strategies and in turn 

created a reasoning sequence that led to a plausible conclusion that the function was a “chord” 

function. For instance, when working with the graph of  𝑦 = 2sin(𝑥), Henry explained that it 

was “the sine function because, the values at which it is zero are shown as being at zero, and 

since we have no scale, we can assume that those points represent 0, π and 2π. And it goes up to 

1 and down to -1”. However, Smith reasoned that if it were the sine function (𝑦 = sin 𝑥), six not 

three [as it were the case for  𝑦 = 2sin(𝑥)] lengths equivalent to the amplitude would fit in the 

horizontal distance equivalent to a full revolution.  
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Figure 10. Counts of students’ reasoning while investigating the "chord" function 

 The counts in Figure 10 indicate that participants for the most part justified their 

reasoning strategies about the chord function using variations of IR. As this was the first task, 

AR-F was dominant as students heavily depended initially on guidance from the instructor, and 

subsequently from their own reflection on the whole process of attaching meaning to quantities. 

Concentrating on getting familiar with the technology, and with the varying quantities in the 

diagram, while at the same time trying to interpret and cope with the instructor’s direction to 

avoid numerical values, might have encouraged students to heavily rely on their prior knowledge 

of functions, which led to 60% reasoning falling in the category of AR-F.   

 While investigating this task, in fourteen scenarios students offered mathematically valid 

justifications concerning the concept of a function. Of the fourteen instances, in four of them the 

reasoning was creative with students’ utterances that were novel, supported by plausible 

arguments, and founded on intrinsic mathematical properties, while ten of them were based on 

IR. There was one case of MR, with the other nine being AR, and more specifically AR-F. This 

is in tandem with Lithner’s (2008) assertion that “Familiar AR is common” (p. 268). 

A deeper look at the four cases of CMR exhibited in this task reveals three key features 

that supported students in these instances. The first relevant feature of the milieu is the students’ 

prior knowledge. Of the four instances of CMR in task one, three of them (CMR2, CMR3, 

CMR4) depended on the students’ prior knowledge. For example, when Mark invoked the 
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vertical line test (Line 6, Excerpt 1) to explain the concept of function to Eddie, his reasoning 

was considered CMR because he was able to re-create a reasoning sequence from his prior basic 

knowledge without necessarily just stating complete answers like in the case of MR. Also, 

Mark’s arguments maintained a logical validity in his plausible reasoning. For example, while 

explaining why even with two inputs and one output a function still exists, he went beyond 

stating—"think about the parabola”—something he knew beforehand, and guided the discussion 

in a direction that re-created (to Eddie) a correct reasoning. Moreover, Mark’s arguments were 

mathematically founded on the intrinsic mathematical properties of an example of a parabola, 

which he from his prior knowledge knew was a function.  

In all the three identified cases (CMR1, CMR2, CMR3), the students (Mark, Ben, and 

Andrea respectively) wouldn’t have been able to reason creatively about this task without the 

prior knowledge. Mark and Ben both invoked the idea independent and dependent variables, 

with Mark also pointing to an example of a parabola, while Andrea leveraged her knowledge of 

geometry of the circle and its properties to be able to make valid and plausible arguments about 

the concept of a function. In fact, as evidenced in Excerpt 3, it is only on the basis of her prior 

knowledge that Andrea was able to pull the majority of the class back from concluding that the 

relationship between a directed chord length and an associated arc length results in a sine 

function by making plausible arguments (Line 4, Excerpt 3) about the circle properties and the 

attributes of the sine function. Without that prior knowledge the students wouldn’t have been 

able to reach the plausibility and mathematical foundation requirements for CMR. The students 

were able to draw on this knowledge to navigate the task. 

The second key feature that supported students moving into CMR was particular 

instructional techniques. Of the four instances of CMR in task 1, the instructional techniques 
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played a role in one instance (CMR1). In this instance (and for much of the rest of the instruction 

session) the instructor not only encouraged students to work in groups but also used prompts that 

were purposefully vague so as to force students to explicitly identify what it was they were 

considering as the attributes of circle that they were relating. Furthermore, another of the 

instructor’s technique was to not permit students to use numerical values in their explanations. 

With the students limited from their go-to strategy it pushed them to think of the concept of 

functions differently, and in the due process Mark prevailed with arguments that did not depend 

on solution algorithms as in AR. Even when the instructor asked whether the “length of an arc is 

a number” (Line 4, Excerpt 1), Mark instead provided a valid argument by anchoring in the 

vertical line test as a property that can be used on graphs of functions. Perhaps Mark could not 

have achieved the level of creative reasoning he did at this stage in the task without some of the 

instructor moves identified here.  

Notably, the four instances of CMR did not all occur at the same time, rather at different 

intervals during the instruction session while students were working in a group. By taking a step 

back from leading the discussion and letting the students work in groups, in these instances the 

instructor not only avoided drawing students towards person guided IR but also afforded them 

access to other group members which helped them to be able to bounce ideas off of one another 

and produced some cases of creative reasoning. For example, when Smith stated “the sine 

function has a few key characteristics, one being there is a period before it starts over. It starts 

between the top and bottom and they are equidistant from the line, and the curve hits the 

horizontal line 3 times” (Line 6, Excerpt 3), Andrea’s response anchored in intrinsic 

trigonometric properties, that, “… but we have to restrict this to a certain domain. Because this 
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could also be a negative cosine” (Line 6, Excerpt 3) was borne out of the freedom students had to 

work in a group and share ideas and also not having the instructor as the center of the discussion.  

Task 2: Investigating the Tangent Function 

After Task 1, the students were asked “which function should we investigate next?”, and 

they all opted for the cochord (cosine) function. However, after emphasizing the necessity to 

explore a function not derived from other functions (i.e., cofunction), the instructor suggested 

investigating the tangent function next. With the understanding that geometric objects (e.g., 

chord and arc) can be used to develop an alternative view of trigonometric functions, for Task 2, 

the instructor requested the students to draw from the previous task (Task 1) to explore, and 

reason about the tangent function. 

Mathematical content registered from the students as they discussed the three parts of the 

task, namely: (a) identifying the tangent function in the diagram (with limited guidance or no 

guidance), (b) identifying attributes of the tangent function, and (c) identifying the tangent 

function in the diagram (Instructor-guided), is summarized in Table 5 below. 

Table 5 

Resolving Task 2: Investigating the Tangent Function 

Percentages Task Part Math Content from students 

CMR IR   

 

8% 

 

92% 

• Identifying the tangent function 

in the diagram (With limited 

guidance) 

• SOH-CAH-TOA 

• Tangent to a circle 

• Slope 

(Table Continues) 
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Percentages Task Part Math Content from students 

CMR IR   

   

100% 

• Identifying attributes of the 

     tangent function  

 

• Sine is zero 

• Cosine is zero 

• Undefined function 

• ASTC (All Students Take 

Calculus 

 

 

40% 

 

 

60% 

• What constitutes a tangent  

• Identify the tangent function in 

the diagram (Instructor-guided) 

• Opposite over Adjacent (SOH-

CAH-TOA) 

• exsecant 

• Tangent to a circle 

• See Figure 11 below 

 

Figure 11. Example of a tangent function 

In the first part of the task, the students had to identify the tangent function without any 

guidance from the instructor. They were tasked to answer the following question: In your group, 

discuss all that you know about the tangent function AND the word tangent from a geometry 

perspective. What do you need to add to your construction so that we can create the tangent 

function? The second part of the task was to use the attributes of the tangent function to help the 

students refine their conjectures made in the first part. The instructor asked the following 

questions. When is the tangent function 0, and when is it undefined? When is the tangent 

greater/less than 0? How do you know?  
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Based on their now refined conjectures, the students were requested to construct a 

graphical representation of the tangent function as the instructor revisited the earlier questions 

about the attributes of the tangent. Percentages of each reasoning type exhibited by the students 

are also included. In order to leverage knowledge that the students developed from the previous 

task about the chord function, the instructor asked them to “think about the picture we have, and 

what do we need to add to it to get the tangent function?” Having earlier been tasked to identify 

the tangent line in their groups, small group discussions ensued.  

Group A members seemed to lack the ability or inclination to reason about the tangent 

function without the instructor’s guidance. There was no discussion on the task from the 

members in Group A. Two of the four group members (Eddie and Eron) were catching up with 

building the previous task to its conclusion, while the others (Suzie and Mark) were not 

proceeding with the task at hand. In order to get them working, I probed Mark about the task, 

and all he could say was “we are really stuck on the tangent”. I probed further by asking Mark, 

what he understood by the term tangent, but before he could air his views, the instructor decided 

to refocus the direction of the discussion on the task by posing other questions about the 

attributes of the tangent function to the entire class (Excerpt 7).  

Conversely, while working on the same first part of the task—identifying the tangent 

function in the diagram—Group B members (Ben, Monica, Annaliese, and Andrea), also 

working in pairs (Ben with Monica, and Annaliese with Andrea), had a substantial dialogue as 

they attempted to describe the concept using geometry. In Excerpt 5, I present the interaction 

between Ben and Monica. 
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Excerpt 5 

1 Dr. Kay: Where is the tangent in that thing? (Pointing to the circle 

representation). Start figuring it out. Go! 

 

2 Monica: So, if we think about tangent in geometry, isn’t that like tangent 

to a circle? It’s like where it hits the circle at one point. So, are 

we gonna have two…? 

MR 

3 Ben: Yeah but when you talk about tangent, I, I usually think of slope. MR 

4 Monica: Uhm …  

5 Ben: Which, not to hold, this is the slope. (moving his mouse over the 

segment between the origin and the point on the ray). This 

(referring to the blue segment) over this (referring to the segment 

again between the origin and the point of the ray) is your slope. 

AR-F 

6 Monica Yeah  

7 Ben: Now how to do that here. So, one thing is for sure, we need a 

ray. No, we need a vector. From this (referring to origin) to this 

(referring to the point on the blue segment). And if I may, if I 

may, color this um 

AR-D 

8 Monica: Couldn’t you have done like this and then make it perpendicular 

to that. That would give you an …  

 

9 Ben: That would give you the tangent line. AR-PG 

10 Monica: The what exactly?  

11 Ben: But how do you, we like ‘cuz I assume the goal is to still do this 

without using numbers, right? We’re supposed to be able to 

ignore these (referring to the left column with numbers). Right? 

And if you make the line perpendicular to this then I don’t know 

how you’re other than calculating the slope (air quotes), I don’t 

know what’s that’s gonna do. 

AR-D 

 After Monica stated that the tangent “it’s like where it hits the circle at one point” Ben’s 

contention about the tangent being related to the slope altered the direction of the discussion. The 

students again described the concept of the tangent function without any connection to the 

geometric concept of a tangent line (i.e., touching but not crossing). Although the students’ line 

of thought represents the idea of tangent being defined as a ratio of sine to cosine, their 

explanation did not exhibit perceiving of the tangent in geometric terms.  
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   In an effort to initiate a dialogue about the geometric view of tangent, the instructor 

moved to their table and sought clarification on the end result of their current line of though. To 

this end, their concept of the tangent was still anchored on the concept of slope. Ben claimed that 

Monica wanted to add a ray to go through the variable point on the circle and then “do the 

perpendicular which is the tangent line”. He continued by reiterating the need to “talk about the 

slope of that tangent line if I’m not mistaken”, much to the chagrin of Monica who responded 

with a mere “Ugh”.  

 To justify his view point, Ben further described the need for considering the idea of a 

slope of the line segment when defining the tangent (Excerpt 6)  

Excerpt 6 

1 Ben: You do because the tangent function has zero at zero. So, the slope of 

this (referring to green ray), well it’s technically undefined because 

it’s (makes a vertical hand motion with the hand). Uh, and then at 90, 

wait hold up. That’s getting confusing because at 90 it’s gonna be 

zero. So, at 90, the tangent function is like asymptotic, right? 

There’re asymptotes here (positions his hands in a vertical way and 

shifts them to represent the tangent asymptotes), alright. And...  

 

 

 

 

AR-F 

2 Monica: At π and ... no at zero and π. AR-F 

3 Ben: At zero and π? MR 

4 Monica: Because tangent at 90 is ... So, it’s y over x. and then x is 1 at… y is 

zero and x is one. So that’s already zero so yeah at 90 it’s zero. Zero 

and π it’s undefined. Those are its asymptotes. 

 

CMR1 

5 Ben: Oh, I think I got confused because I thought it started at zero but this 

is an asymptote (pointing to the grid) and that’s an asymptote 

(pointing to the grid) and at this peak is where it crosses the x-axis. 

So, it is gonna (makes a motion to indicate a graph of the tangent 

function with his finger) something like that. 

 

AR-PG 

6 Monica: Yeah  

7 Ben: So, then what did you want to do with the tangent line is my 

question. 

AR-D 

8 Monica: Uh-huh, yeah. Well you just said … think back to geometry and 

that’s what I thought of.  

So, I don’t … but I, because I just don’t know what else you would 

do. 

AR-PG 

 

AR-D 
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Up to this point, Monica and Ben’s responses were typical of the dialogue in the other 

groups. The students’ reasoning thus far was devoid of the role the geometric figures played in 

their understanding of the tangent function. At this moment, the instructor interrupted the 

dialogue between Ben and Monica even though Ben still wanted more time to continue with the 

task. The instructor promised to set the students “free again” after asking a “couple of questions” 

to guide the discussion on the task. There was then a small side task in which the instructor had 

the students (as an entire class) think about the attributes of the function and hopefully lay a solid 

foundation for the students to fully grasp the idea of using geometry to define and investigate the 

tangent function (Excerpt 7). Additionally, the instructor wanted to be able to establish a baseline 

for the students’ reasoning related to answering these questions using their current knowledge of 

tangent function. This would provide an opportunity to compare this reasoning to their reasoning 

after being introduced to the tangent function defined as a direct line segment.  

Excerpt 7 

1 Dr. Kay: When is the tangent zero, undefined, positive, negative, and how do you 

know? 

 

2 Joshua: The tangent is zero when the sine is zero. AR-F 

3 Dr. Kay: How do you know that?  

4 Joshua: Because tangent is defined as sine over cosine, so when the numerator 

(sine) is zero, the tangent will be zero. 

MR 

 

5 Dr. Kay: When is it undefined?  

6 Class: [Chorus answers] When the cosine is zero AR-F 

7 Dr. Kay: Because?  

8 Class: [Chorus answers] When the denominator is zero the function is undefined. MR 

9 Dr. Kay: So, you guys are just thinking of the tangent as sine over cosine. How 

about when is the tangent positive or negative? 

 

10 Lauren: [Yells out] All students take calculus MR 

11 Dr. Kay: Tell me more about your idea   

12 Lauren: The first quadrant is when all the trig functions are positive, the second 

quadrant is when sine is positive, the third is when tangent is positive, the 

last is when cosine is positive. 

 

MR 

13 Suzie: [Seemingly surprised] What is this? Why is it even a thing?  
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14 Dr. Kay: I do not know about you guys, but this does not scream conceptual 

understanding to me, but it is what I talked about when I taught (high 

school). 

 

To further guide the discussion into viewing the tangent function through the geometric 

lens, the instructor purposefully decided to press the students on the attributes of the tangent 

function and the output of the tangent function at different points in a circle or for a varying 

angle measure. The students described the tangent being zero by looking at when the “sine is 

zero” and undefined by identifying when the “cosine is zero”. One student further described how 

she used the mnemonic ASTC (All Students Take Calculus) to determine when the tangent 

function is positive or negative. At this point, the instructor pointed out that from using the 

mnemonic ASTC, one would not exhaustively mention the other functions (e.g., secant) that are 

positive or negative in each of the four quadrants. 

With the instructor’s guidance, students were able to reason about the varying positions 

of the tangent line, attributes of the tangent function, and how the segment representing the 

tangent function covaried with the arc length. Although somewhat not totally immersing 

themselves in the mechanical step-by-step analysis that characterized the initial part of the task, 

the students while working on this part of the task largely exhibited MR. 

Next, when the instructor asked the class where the tangent line was, Mark described 

what the tangent means. Mark offered the following response: 

Dr. Kay: Where is the tangent line in the circle? You have a basic start (pointing to the 

circle representation). 

Mark: Is there a way that if you draw a segment or a line from the center to the point 

that’s being manipulated, could we, I know it’s still that same idea as sine over 

cosine, but could we look at the slope of that for the tangent?” [Mark then goes 

to the front to demonstrate what he wants to be done]. You get 0 at 2π. 
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Figure 12. Mark's idea of defining the tangent using slope with point C at different positions  

 Adding to his submission, when the variable point, C, was animated, leading to different 

values of the slope, Mark made further descriptions of the tangent but involving the use of 

numbers. To this end, the instructor interjected and reminded the class about his desire to avoid 

numbers as earlier stated and also focus on the tangent from a geometric perspective. In response 

to Mark’s conjecture, the instructor further stated, “this is cool, I think it might work, I have a lot 

of faith it may work but the question is, you used numbers and also we want to make a 

connection to the word tangent in geometry”.  

With the students input on how to add the tangent on the existing circle all debated and 

challenged by either their peers or the instructor, the instructor again asked the class to connect 

the word tangent to some part on the circle as they did for the chord while investigating the chord 

function in Task 1. Andrea then suggested using a perpendicular line to make a geometric 

tangent to the circle.  After the instructor added the suggested segment to the circle, some 

students used this external cue to chime in while alluding to the word tangent in geometry 

(Excerpt 8), while some were still not escaping from using numbers in their justifications and 

reasoning. At this point in the lesson, only one student (Andrea) had mentioned using the tangent 

line to the circle as guide to locate the tangent function rather than the slope or ratio of sine to 

cosine. 
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Excerpt 8 

1 Dr. Kay: Andrea what do you think?  

2 Andrea: To connect this to geometry, I drew a geometric tangent to meet that 

line at the variable point. 

 

 

 

 

CMR2 

3 Dr. Kay: How do you connect the word tangent similar to the way we connected 

the word chord?  

 

4 Smith: That is the tangent line to the circle, but it is not the tangent line itself. 

The tangent is the slope of that line.  

MR 

5 Henry Let us add a horizontal line from the center to meet the tangent line. 

 

 

 

AR-F 

6 Dr. Kay: Is that segment the tangent? (Pointing to the green segment, 𝐴𝐽̅̅ ̅). Chat 

in your groups for 20 seconds.  

 

 Group A spent no time talking about the task at hand. Mark paired up with Henry from an 

adjacent group and brainstormed what they thought might be the tangent. After about 30 seconds 

of chatting, Henry signaled to Mark (while pointing at the board) what he seemed to now 

consider to be the tangent. He further moved to the board and pointed at the exsecant (𝐵𝐽̅̅ ̅) as the 

tangent (Figure 13). At this point, Henry’s argument is based on his prior knowledge of ratio 

(right-triangle) trigonometry. The idea that segment 𝐵𝐽̅̅ ̅ diminishes as the arc length diminishes, 

and non-existent at the 90-degree mark, Henry’s argument can be thought of as being 

synonymous to the outcome of Ben and Monica’s earlier dialogue (Excerpt 6). This is an 

example of creative mathematical reasoning (CMR) which does not necessarily yield a correct 

answer.     
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Figure 13. Henry's second idea of the tangent 

 Immediately following this, the instructor halted the group discussions and solicited 

students’ input on the task. The instructor’s decision to suggest that students focus on the 

meaning of the word tangent as they did for the chord function was intentional. He hoped that 

students would identify the line segments that represents the tangent function to be part of the 

tangent lines to the circle, rather after this group activity, some referred to the exsecant as the 

tangent, while others from their attempts to recall past knowledge of right triangle trigonometry, 

they were still reasoning about the tangent from only the stance of ratio trigonometry. (Excerpt 

9). 

Excerpt 9  

1 Dr. Kay Okay! What do you think? Ben?  

2 Ben: I am thrown off because when the green thing (𝐴𝐽̅̅ ̅) is at zero 

degrees, the length is one, sine is zero at zero degrees which 

means tangent should be zero. I don’t think that is the tangent 

because when the variable point is at the starting point, the 

chord is zero but in this case the tangent is 1. So, I say the 

tangent is that short piece.  I think the tangent is the 

difference between the edge of the circle and the extended 

part of that tangent (referring to 𝐵𝐽̅̅ ̅ - the exsecant).  

 

CMR3 

 

 

3 Dr. Kay: So, Ben’s update to Henry’s conjecture is maybe we should 

just be looking at this piece (pointing at 𝐵𝐽̅̅ ̅). 

 

4 Smith: Oh yeah! That is a good one. AR-PG 
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5 Henry: I think the tangent is on the tangent line. (Goes to the board 

to demonstrate, see Figure 15) 

CMR4 

6 Class: Oh! Yeah! AR-PG 

7 Suzie: Yeah that makes sense. How did you know that? AR-PG 

 Eron Oh! Now I am convinced. Because if there are to be defined 

that way, they are not anymore, and that makes sense it is 

undefined, but they are not meeting anymore either, I am 

confused. Oh, wait, you need to go the opposite way and then 

be parallel like this (gesturing with her hands horizontally) 

(Figure 14). 

 

 

CMR5 

8 Dr. Kay: Is that piece the tangent? What things are you checking?  

 Class Yes AR-PG 

9 Eron: I think if you get to the perpendicular part, the lines are going 

to be parallel, so it is undefined (gesturing both the 

perpendicular and parallel positions) … Is that math, is that 

numbers? (Figure 14) If we think of tangent as opposite over 

adjacent, our angle is the central angle, which makes the 

opposite that green segment and the adjacent is equal to the 

radius which is one, so the green segment must be the 

tangent. 

 

 

 

CMR6 

 

10 Jackie: That makes sense. If you think of the length of the green line 

as it gets closer to the point at the top of the circle is going to 

be increasing infinity, which is what a tangent line does. I am 

concerned with what happens when we go past that point 

though. I know the tangent is periodic. 

 

 

CMR7 

 

       

 

              

 

Figure 14. Eron's demonstration of the tangent function 
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  Figure 15. The tangent function as identified by Henry 

Inasmuch as the majority of students seemed to agree that the “green line” (𝐶𝐽̅̅ ̅) was the 

tangent, Mark wanted to additionally venture into the idea of restricting domains for the 

functions, but the instructor pointed out to him that, “it is unnecessary at this stage.” Next, to 

move the discussion forward, the instructor suggested to construct a graphical representation of 

the tangent and check if the resulting graph matched what they expected (AR-F). As this was 

being done, Smith posited that, “Ben’s previous idea (Line 2, Excerpt 9) will also produce the 

tangent graph.” However, Mark pushed back on this assertion by stating that, “like we had for 

the chord function, the chord gave us a graph similar to that of the sine function but it was not 

actually the sine function (it was 𝑦 = 2𝑠𝑖𝑛(𝑥)), so even this one is close to the idea but it will 

not be the same.” Although Smith did not sound convinced, he settled with the idea that the 

tangent is “one of those two (𝐵𝐽̅̅ ̅ or 𝐶𝐽̅̅ ̅) but I don’t know which one” (AR-D).  

Analogously, Jackie suggested that, “let us go back to the unit circle with the concept of 

TOA (Tangent is Opposite over Adjacent),” and followed through by identifying ∆𝐴𝐶𝐽 as the 

one to be used to justify that 𝐶𝐽̅̅ ̅ is the tangent.  
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Figure 16. Jackie justifying why 𝐶𝐽̅̅ ̅ is the tangent, and a labelled model showing the tangent  

In this the eighth instance of CMR in this task, Jackie oriented herself to the situation by 

demonstrating on the board, tracing out what was the opposite, and adjacent sides relative to the 

angle at the center (∡𝐶𝐴𝐽), and explained that  “the green line is the tangent because when 

referring to the angle at the origin, this is 1 (pointing to the radius) the adjacent, and this is the 

opposite (pointing to the “green line” 𝐶𝐽̅̅ ̅) so the green line is the tangent since with opposite over 

adjacent, it is 𝐶𝐽̅̅ ̅ over 1”. Her submission was embraced by the rest of the students as she 

assumed her seat while other students were applauding. To move the discussion forward, the 

instructor responded by stressing the idea that the tangent should be part of the tangent line, and 

therefore Smith’s earlier submission about the exsecant, 𝐵𝐽̅̅ ̅, being the tangent was shelved. As a 

consequence of brief deliberation on how to account for the changing behavior (i.e., positive or 

negative) of the tangent function at different arc lengths, after the instructor proceeded by 

purposefully choosing to use a tangent line that was oriented vertically to generate a graphical 

representation of the line segment said represent the tangent function. The resulting graph is 

familiar to what the students expected (Figure 17), and  the rest of the session was spent with 

students constructing the graphical representation of the tangent function (Figure 18). 



 

73 

 

Figure 17. Instructor's geometric representation of the chord (blue) and tangent (green) functions 

 

 

Figure 18. Ben and Monica's graphical representation of the tangent function 

The counts (Figure 19) indicate that participants for the most part justified their reasoning 

strategies about the chord function using a variety of reasoning strategies.  

 

Figure 19. Counts of students’ reasoning while investigating the tangent function 
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On thirty-three occasions, students were able to articulate mathematically valid 

explanations concerning the concept of a tangent function. In eight of these cases, the reasoning 

was creative, with students either developing “new (to the students) reasoning sequences or re-

creating forgotten [ones]” (Lithner, 2008, p. 266). There was also a considerable number of 

instances (8) where students resorted to MR as a strategy choice to support their reasoning. 

Taken together, the rest of the students’ reasoning on this task was focused on AR in general, 

with all but one of the variants of AR evenly exhibited. As in the first task, getting around some 

aspects of the technology seemed to impede some students from engaging in any meaningful 

discussion. In such situations whenever the students where asked for a contribution towards the 

general debate, they opted for MR. The cases of guided reasoning resulted from students having 

either a blurred understanding or no knowledge of the concept of a tangent as a geometric entity 

and/or as a function.  

The registered number of cases of CMR registered in this task can all be traced back to, 

(a) the support of having access to the technology (CMR2, CMR3, CMR4, CMR5, CMR7), (b) 

students’ knowledge of other stances of trigonometry (CMR1, CMR6, CMR8), and (c) the 

support of working in a group (CMR5, CMR6).  

Although in some instances getting acquainted with the technology was somewhat of a 

challenge, in a number of instances in this task, having access to a computer and the Dynamic 

Geometric Environment (DGE) to work with, provided data that supported the students in 

reasoning creatively. The DGE presented students with a unique way of exploring and 

interpreting the tangent function using a directed length, by affording them an avenue to 

construct figures, identify specific attributes, quantify these attributes, and analyze the 

relationship between directed segment and the arc length by graphing them in a coordinate plane. 
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This connection between the directed length and the graph of the tangent function was easily 

made within a DGE. Similarly, students leveraged technology to realize how to connect the idea 

that parallel lines in the construction correspond with asymptotes in the graphical representation 

of the tangent. Beyond what they could easily conceive, technology helped “students transcend 

the limitations of the mind in thinking” (Pea, 1987, p. 91). For example, Eron and indeed the rest 

of the class, was able to creatively reason about the line segment, 𝐶𝐽̅̅ ̅ as being tangent (see Figure 

14) only after Henry’s demonstration using the DGE. In such a scenario, technology shifted the 

students’ focus of mathematical reasoning (e.g., Suzie, and Eron in Excerpt 9). In fact, even 

Henry’s salient identification of this novel (to Henry and the rest of the class) representation 

would not have been possible without the explicit feedback from the DGE. Because Henry 

finished the initial task earlier, he had time to explore while the rest of the class was completing 

the previous task, working on his own, he was able to generate graphical representations of 

different line segments until he identified one whose graph tallied with what he knew was the 

graph of a tangent function. In this instance, Henry leveraged the technology as a reorganizer to 

generate, explore and identify the tangent function.  

In tandem with Henry’s exploration mentioned above in which he used his prior 

knowledge to identify the graph of a tangent function, and similar to the events in task 1, there 

are scenarios of CMR that depended on the students having prior knowledge about multiple 

stances of trigonometry as well as understanding of geometry. The students were able to draw on 

their knowledge of tangent as opposite over adjacent (i.e., TOA from ratio trigonometry), and the 

knowledge of tangent geometrically. Case in point is Jackie’s submission while identifying the 

tangent segment when she explained that  “the green line is the tangent because when referring to 

the angle at the origin, this is 1 (pointing to the radius) the adjacent, and this is the opposite 
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(pointing to the “green line” (𝐶𝐽̅̅ ̅) so the green line is the tangent since with opposite over 

adjacent, it is (𝐶𝐽̅̅ ̅) over 1”. 

The progress into CMR also depended on the support of working in a group. Students in 

their groups and in the general class discussion had opportunities to build feasible arguments and 

critique the reasoning of their peers. Also, this arrangement provided students with platforms to 

convey their thinking and opinions, which facilitated the rest to understand and construct their 

arguments and reasoning around the same ideas. For example, Eron was able to reason in a 

creative mathematical way about the tangent function partly by developing her argument on the 

ideas of Ben and Henry (Excerpt 9). After Henry opined that the secant (𝐴𝐽̅̅ ̅) was the tangent line, 

the instructor had the students discuss in their groups to substantiate this claim. As an update to 

Henry’s initial conjecture Ben proposed that the exsecant (𝐵𝐽̅̅ ̅) was the tangent. These two claims 

seemed to have confused Eron until Henry correctly revised his conjecture and demonstrated on 

the board (see Figure 15) and identified 𝐶𝐽̅̅ ̅ as the tangent. To this Eron stated, “Oh! Now I am 

convinced. Because if there are to be defined that way, they are not anymore, and that makes 

sense it is undefined, but they are not meeting anymore either, I am confused. Oh, wait, you need 

to go the opposite way and then be parallel like this (gesturing with her hands horizontally) (see 

Figure 14). Her reasoning was not only novel but also plausible. Furthermore, when the 

instructor probed further, Eron and Jackie stated as below. 

Dr. Kay: Is that piece the tangent? What things are you checking? 

Eron: I think if you get to the perpendicular part, the lines are going to be parallel, so it is 

undefined (gesturing both the perpendicular and parallel positions) (Figure 14).  
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Jackie: That makes sense. If you think of the length of the green line as it gets closer to the 

point at the top of the circle is going to be increasing to infinity, which is what a 

tangent line does. 

Both students were able to provide arguments that were based on the mathematical 

properties of the tangent function and the back and forth process of engaging with other students 

in their respective groups and whole class discussion contributed to their transition to CMR. 

Task 3: Investigating the Secant Function 

 Following the extensive discussion in Task 2 on the details of the tangent function and a 

concise definition of the segment, students were also exposed to identifying when the function 

was positive and when it was negative in relation to the orientation of the segment. Then, during 

the same session, students were tasked to extend their geometric understanding of the chord and 

tangent functions to the secant function. Students were exposed to the same routine as described 

in the task investigating the tangent function for addressing the secant function. The instructor 

thus generated a similar pattern for investigating the secant function as summarized in Table 6. 

Also presented are percentages of each reasoning type adopted, and the mathematical content 

registered from the students as they completed the task at hand. 

Table 6 

 Resolving Task 3: Investigating the Secant Function 

Percentages Task Part Math Content from students 

CMR Imitative   

0% 100 % Identify the secant function in the 

diagram (With limited guidance) 
• SOH-CAH-TOA 

• Secant to a circle 

(Table Continues) 
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Percentages Task Part Math Content from students 

CMR Imitative   

11% 89% Attributes of the secant function  

 

• Cosine is zero 

• Undefined function 

• ASTC (All Students Take 

Calculus) 

30% 70% • What constitutes a secant  

• Identify the secant function in the 

diagram (Instructor-guided) 

• 1/cosine 

• exsecant 

• Secant to a circle 

 

Like in previous tasks, the students were working in their assigned groups. The instructor 

shared a pre-made file with all students so that the class could move forward from the same 

place. The instructor displayed that same file on the projector in GeoGebra (see Figure 20). As 

before, the constructed objects (arc, chord, and tangent) varied as point C was being translated on 

the circle.  

 

 

 

 

 

 

 

 

Figure 20. Variable point C and the associated objects 
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 Having been exposed to the basic object-to-graph relations addressing the positive and 

negative forms of the chord (sine), and tangent functions during previous tasks, students were 

tasked by the instructor to discuss in their groups “How you know when the secant function is 

positive and negative, when is it zero and when is it undefined?” Students in Groups A (Excerpt 

10) and B (Excerpt 11) had a brief deliberation on the questions at hand as presented below. 

Excerpt 10 

1 Eddie: Secant is undefined at π/2 and 3π/2 and then first quadrant and last 

quadrant when x and y are … oh no! 

MR 

2 Eron: When y is positive. Secant is cosine? MR 

3 Suzie: Uhm!   

4 Eron: Alright! Uh! In the first quadrant and fourth quadrant, yeah you are 

right.  

AR-PG 

6 Suzie: All Students Take Calculus (in a mocking voice). That is not true.  

7 Eddie Yeah! I learned it (the mnemonic ASTC) in pre-calculus  

 

Excerpt 11 

1 Andrea: (Appearing to refer to the diagram on the board) Based on that, it is 

never zero. I mean, if we look at secant as 1/cosine no matter what 

cosine is, it will never equal zero.  

CMR1 

2 Ben: Yeah, since it is 1/cosine it can be undefined but cannot be zero. CMR2 

3 Andrea: Yeah  

4 Ben: I can’t even remember what secant looks like   

6 Andrea: You mean what a secant looks like, or the graph?  

7 Ben: No, the secant function. My guess is it is the stationary point and the 

point we are moving. 

AR-D 

8 Andrea: What?  

9 Ben: I am now thinking about the secant on the circle. You know it crosses 

the circle twice, right? 

 

10 Group Yeah  

11 Ben: I think it is going from the stationary point (point B) to the point we 

are moving (point C) – (see Figure 20), that is all we have left. 

AR-D 

12 Andrea: Ohh!  

13 Ben: And so, if we talk about that, it does have a value of zero. Or would 

that just be considered undefined?  

I think if we are talking about the cosine, I am going to go to that 

triangle again (referring to ∆ABC, see Figure 20). Our x-value at zero, 

is one, which means our cosine value is one, making secant one there, 

AR-D 

 

CMR3 
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which means you flip over (gesturing a flip with his hand to make 180 

degrees) you get one. So, what happens at 90? That is when it is 

undefined again. [Instructor interrupts at this point to pause the group 

discussion]. 

 Group A’s attempt to briefly discuss the questions posed by the instructor did not 

generate much debate as the whole group seemed to go along with Eddie’s initial ideas about the 

attributes of the secant function, except for Mark who was not partaking in the discussion. In this 

situation, it was notable that the students again elected to reason about the secant function using 

their prior knowledge of ratio and unit circle trigonometry without any reference to line-segment 

trigonometry. Similarly, those in Group B reasoned about the secant function based on their prior 

knowledge of viewing secant as a quotient (sec(𝜃) = 1/cos(𝜃)). However, in their reasoning, 

they also incorporated an approach that used the arc and associated segment to evaluate the 

quantity (i.e., secant). For example, Ben stated “I think if we are talking about the cosine, I am 

going to go to that triangle again (referring to ∆ABC, see Figure 20). Our x-value at zero, is one, 

which means our cosine value is one, making secant one there, which means you flip over 

(gesturing a flip with his hand to make 180 degrees) you get one.” 

 With the group discussions temporarily halted, class reconvened, and the instructor 

encouraged the students to briefly think about how they came up with their reasoning about the 

attributes of the secant function. This general class interaction is presented below (Excerpt 12). 

Excerpt 12 

1 Dr. Kay: Remembering your experience of this, I want to get a rough sketch, 

an idea of how you know some of these important things. So, when is 

it (referring to the secant function) zero and when is it undefined? 

 

2 Student: Never zero AR-F 

3 Dr. Kay: How do you know?  

4 Student: Because of the graph. AR-F 

5 Smith: By definition the secant is one over cosine. MR 

6 Dr. Kay: How do you know it is one over cosine? “By definition” is a good 

statement in my book but we need to recall how we dealt with 
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defining the tangent. It seems to me that we memorized that secant 

goes with cosine. That is conceptual understanding, right? (Speaking 

sarcastically).  

7 Class Laughter  

8 Dr. Kay: I feel that is not a good way to learn or “know” trigonometry. But if 

this is the definition (pointing to sec(x) = 1/cos(x) on the board), fine. 

Smith says since we have a fraction, we just look at the denominator 

and see that we shall never get zero. Okay! 

What about when is the secant undefined and how do you know? 

 

9 Eddie When the cosine is zero. MR 

10 Dr. Kay: I suspect most of us looked at secant as one over cosine and 

remembered that cosine is the x-value in the unit circle and the x is 

zero and that is at 90 degrees and? 

 

11 Class: 270 degrees  

12 Dr. Kay: If we can get something here in the diagram, we might be able to talk 

about that in a different way. I am guessing we will reason the same 

for “when is it positive or negative”. Has anyone thought of how to 

find and add a secant to the diagram? Jackie what do you think? 

 

13 Jackie: I think I have an idea basing on when it, the secant, is undefined 

(explains what lines she considers to be secant lines and the 

instructor adds them to the circle on board) – Figure 21. 

AR-F 

14 Dr. Kay: Just like we had chord and tangent, not the whole line but just a 

section of it, are you saying it is this section?  

And if yes, does it match everything else know about the secant? It 

hits some of the points like intersecting the circle twice and ceasing 

to exist at 90 degrees. How about its size? How big should it be? 

 

15 Ben: A diameter, 2 radians. MR 

16 Mark: [On the board] I think the length of this thing right here is the secant 

(draws a segment from the origin to intersect the vertical tangent at 

an incline). 

I don’t know why. I don’t have a conceptual reason why but from 

looking at it, if we take this point (referring to variable point C) and 

move it to zero degrees, the length [of the secant] will be 1 and it will 

never be lower than 1 unless you wanna go negative.  

And it is the same idea as tangent when you are approaching this 

point right here (points to 90-degree position), it is also gonna 

become undefined as well. (see Figure 23) 

 

CMR4 

 

 

 

CMR5 

 Whereas the majority of the students were convinced that the secant function is never 

zero, hardly anyone was able to reason why that is the case without resorting to the popular but 
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“unproven” fact that sec(x) = 1/cos(x). Apart from one student who posited that secant was never 

zero “because of the graph”, all others described secant in terms its “definition”, indication that 

they were involved in MR and in some cases AR-F. For example, when Jackie was identifying 

what lines may be considered secant lines to the given circle, she clearly stated that she had “an 

idea basing on when the secant is undefined” (Line 13, Excerpt 12). When probed further for the 

special case when the secant line turns into a tangent line, she posited that it ceases to exist at 90 

degrees. Jackie and other students came up with such values like 90 degrees, and 270 degrees 

from the idea that it is when the x-value that represents the cosine is equal to zero. Again, “a 

strategy choice founded on recalling a complete answer” (Lithner, 2008. p. 258), and/or the 

remaining attributes of the secant “regarded as trivial for the reasoner” (Lithner, 2008. p. 259). 

 

Figure 21. Jackie’s idea of the secant 
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Figure 22. Is this the secant function?  

Mark’s submission shows traces of a student who is developing ways to reason about 

trigonometric functions using an approach—connecting the directed length and the graph of the 

function—"which is useful in addressing many of the difficulties students have with 

trigonometry concepts” (Hertel & Cullen, 2011, p. 1406). While Mark initially displays MR and 

AR-D when he stated that he did not have a conceptual reason for the decision he made about 

which segment represented the secant function (see Figure 23), in the same breath he was able to 

articulate a few attributes of the secant function, and consequently identifying the correct 

segment for the secant function, a show of CMR. This reasoning was most probably informed by 

the fact that while on the previous task (tangent function) he was also able to build the secant  

function (see Figure 23)—when he built a graphical representations for different segments and 

zeroed in on one that produced a familiar secant function graph— and made a “connection 
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between [the] directed length and the graph of [the secant] function with a DGE” (Hertel & 

Cullen, 2011, p. 1406). 

 

 

Figure 23. Mark explaining his reason for the choosing the red segment as the secant and his 

prior work on graphing the secant function 

After Mark’s explanation, the instructor acknowledged the direction the discussion had 

taken and encouraged further deliberations on the same (Excerpt 13). 

Excerpt 13 

1 Dr. Kay: Any reactions? [Mark’s] “piece” seems to fit the behavior of the 

secant. Like for the tangent function before, is this segment lying on 

a secant?  

 

2 Mark: (Moves to the board and adds a horizontal radius in the diagram). 

The idea is the opposite over hypotenuse, and that is the length of 

whatever happens to be the chord over 1, so we want it to be the 

AR-F 

 

AR-D 
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other way. We want 1 over the length of what our secant is going to 

be. And here we are looking at … (looks seemingly lost) 

3 Victor: Can we say hypotenuse over adjacent? MR 

4 Joshua: From before we identified this as the tangent, and this is a unit circle, 

so radius is 1, and from Mark’s idea this is the secant because 

tan2(𝜃) + 1 = sec2(𝜃). And so, this is the secant (Writing sec (𝜃) 

on the correct segment). See Figure 24 

 

CMR6 

5 Class: (As Joshua is writing the identity) Oh!  

6 Ben: (Talking to fellow group members) Is he teaching this? He has to be 

teaching this to remember it. 

 

7 Ben: That was really good. You must be teaching this right now.  

8 Dr. Kay: I cannot help but add this chord back. And looking at these triangles, 

I bet we can get some interesting stuff here. What do you think? We 

shall pick it up from there [next week] and also deal with when the 

secant is positive and negative. 

 

 Whereas Mark had earlier used the DGE to have a unique approach to the directed length 

interpretation of the secant function by drawing the correct figure and exploring the connection 

between the segment and the arc length and probing the resulting graph, when he labored to 

justify his initial claim after no other student volunteered to critique it, he seemed to be retreating 

into AR-F and ratio trigonometry. In fact, he posited that all that was needed was to figure out 

the opposite side and the hypotenuse, it gave Joshua a queue to work with a familiar identity, 

tan2(𝜃) + 1 = sec2(𝜃), (see Figure 24) to confirm that the segment Mark had identified was 

indeed the secant function. Although, all students were amazed at Joshua’s idea, those in Ben’s 

group insisted that the only way he could have been able to remember that identity was from his 

then current work with an area ‘cooperating teacher.’     
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Figure 24. Joshua’s strategy for verifying the segment that represents the secant function 

 The session was concluded with the instructor challenging the students to figure out how 

to update their drawings by including the directed length and graph for the secant function. Note 

that in the current version suggested by Mark, the segment representing the secant function is not 

vertical like the chord (sine) and tangent functions were. In the first two functions the sign of the 

functions was determined by noting when the vector was pointing up or down. This does not 

translate well to this version of the secant function because the vector is neither vertical nor 

horizontal. In the instructional session that followed a week later, the instructor carried on with 

having the students finalize the updating of the DGE file to include a version of the secant that 

was either vertical or horizontal. This process involved identifying when the secant function is 

positive and negative. 



 

87 

  After agreeing with Meghan’s submission on when the secant function is positive and 

negative, when she stated that, “it is positive in the first and fourth quadrants, because of the 

secant line and how it faces for any angle, and negative in the second and third quadrants”, and 

coming to a realization that it was challenging to construct the graphical representation of the 

secant function using the proposed segment 𝐴𝑂1
̅̅ ̅̅ ̅, the students led by Andrea constructed a two-

column proof to show that another segment 𝐴𝑄1
̅̅ ̅̅ ̅, was congruent to the earlier proposed segment, 

AO1
̅̅ ̅̅ ̅ (see Figure 26 and Figure 27).  

In opting to use this alternative segment that was oriented horizontally (i.e., 𝐴𝑄1
̅̅ ̅̅ ̅ ) as the 

directed length of the secant function, the students were not only able to reason with 

mathematical creativity about when the secant function is negative and positive, but they also 

accomplished the construction challenge they had earlier struggled with. 

 

Figure 25. Investigating when the secant is positive and negative 
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Figure 26. Andrea's proof for congruency of segments 

 

 

 

Figure 27. Andrea's initial proof for congruency of 𝐴𝑂1
̅̅ ̅̅ ̅ and 𝐴𝑄1

̅̅ ̅̅ ̅ 
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In response to Andrea’s two-column proof about the congruency of  𝐴𝑄1
̅̅ ̅̅ ̅ and 𝐴𝑂1

̅̅ ̅̅ ̅, the 

instructor once again prompted the students to consider when the secant is “positive and negative 

and how do you know?” However, this time he was varying the position of point C on the circle 

while the students responded to the same question at various positions of C (see Figure 25). At 

all different positions of point C, the students correctly identified when the secant function was 

positive and negative by using the orientation of 𝐴𝑄1
̅̅ ̅̅ ̅, neither relying on the mnemonic ACTS 

(All Students Take Calculus) nor on the fact that secant is a reciprocal of cosine as before.  

 After making these discoveries about the secant function and deciding upon which 

directed segment to use in the construction of the graphical representation of the secant function, 

the instructor requested the students add the secant function to the files they were building. The 

rest of the instruction session was used partly for students to update their files and the other part 

for the instructor to introduce the concept of cofunctions.  

Counts of the different reasoning strategies adopted by the students while working on this 

task are provided in Figure 28.  

 

Figure 28. Counts of students’ reasoning while investigating the secant function 

Although it is apparent that initially there was only one instance in which the students’ 

reasoning was characterized as being mathematically creative, as the instructional session was 

progressing towards its conclusion, students exhibited this type of reasoning, albeit coupled with 

some instructor’s guidance. For example, after the instructor prompted the students to consider 
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using a different segment than 𝐴𝑂1
̅̅ ̅̅ ̅ as a definition of the secant function, and students elected to 

use 𝐴𝑄1
̅̅ ̅̅ ̅ after proving that it was congruent to 𝐴𝑂1

̅̅ ̅̅ ̅, the students were able to correctly identify 

when the secant function was positive and negative. 

In nine cases, students’ reasoning was recorded as being algorithmic, while students used 

MR in only six scenarios. Furthermore, like in prior tasks, the only form of guided AR that was 

exhibited by the students while investigating the secant function was the AR-PG (Figure 28). 

The students’ actions and statements during this task were consistent with those exhibited in 

Task 2 sessions. Relative to the definition of a secant, the students continued to reason about 

what constitutes a secant function as reciprocal of the cosine function. In fact, in four of the six 

cases in which the students started off with such a premise, their strategy choices were founded 

on MR. Similar to the students’ submission in the previous task, the CMR (6) and some of the 

AR instances (3) were borne out of their ability to reason about the secant function as a 

quantitative relationship. 

Consistent with the observations from the earlier tasks, students did not only reason by 

relying on memorized concepts or by carrying out routine procedures but there were also several 

components of the milieu that contributed to their CMR.  In the six instances of CMR in Task 3, 

students leveraged or were supported by (a) the use of technology, (b) having prior knowledge 

about multiple stances of trigonometry as well as understanding of geometry, and (c) the teacher 

moves.   

There were four instances of CMR in Task 3 (CMR1, CMR3, CMR4, CMR5) that 

depended on the students having access to technology. By working in the DGE, students were 

able to generate and measure dynamic and interactive representations which facilitated them to 

be able to focus on looking for patterns and making and testing conjectures rather than on 
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drawing and measuring the different line segments and other variables. For example, when 

tasked by the instructor to investigate the attributes of the secant function, the students were 

presented with a pre-made file from the previous session (see Figure 20). While explaining to 

other members in the group about which segment is the secant function, Ben transitioned from, 

“I can’t even remember what secant looks like” to “And so, if we talk about that, it does have a 

value of zero. Or would that just be considered undefined? I think if we are talking about the 

cosine, I am going to go to that triangle again (referring to ∆ABC, see Figure 20). Our x-value at 

zero, is one, which means our cosine value is one, making secant one there, which means you 

flip over (gesturing a flip with his hand to make 180 degrees) you get one. So, what happens at 

90? That is when it is undefined again”. Ben’s latter stance about the secant function was only 

arrived at after he focused on the already generated file. This perhaps unintentional use of 

technology offered Ben and other group members not only an array of affordances to investigate 

the concepts related to the secant function; but also presented them an opening to question their 

thinking and revise their conjectures. Ben was able to re-create a forgotten reasoning sequence, 

by using arguments that were based on basic mathematical properties of the secant function. 

Even though Ben did not necessarily get to the correct answers, his submissions indicated a 

transition from MR to CMR with the aid of the technology. 

Furthermore, the use of the dynamic technology afforded students an interactive 

environment in which they investigated and visualized several representations of functions while 

dynamically covarying and linking line segments and arcs to graphs, which aided them in 

reasoning creatively. For example, when the instructor asked if anyone had “thought of how to 

find and add a secant to the diagram?”, Mark went to the front of the class and using the 

displayed figure on the board (see Figure 23) was able to identify the correct segment for the 
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secant function (Line 16 Excerpt 12). Like was the case for the tangent function, Mark while 

working ahead of the rest of the members of his group was to investigate different line segments 

and how they covaried with the given arc until he zeroed in on one that produced a graph 

familiar to what he knew was the graph of the secant function. Without utilizing this interaction 

and the back and forth feedback from the dynamic technology at play, Mark would probably not 

have been able to identify the correct segment for the secant function. Beyond the construction of 

the correct segment, he stated,  

I think the length of this thing right here is the secant (draws a segment from the origin to 

intersect the vertical tangent at an incline). I don’t know why. I don’t have a conceptual 

reason why but from looking at it, if we take this point (referring to variable point C) and 

move it to zero degrees, the length [of the secant] will be 1 and it will never be lower than 

1 unless you wanna go negative. And it is the same idea as tangent when you are 

approaching this point right here (points to 90-degree position), it is also gonna become 

undefined as well. (see Figure 23). 

He was able to create a new (to Mark) reasoning sequence that had supporting arguments 

from unit circle trigonometry and were founded on correct mathematical properties of the secant 

function. 

Secondly students’ CMR also depended on having prior knowledge about multiple 

stances of trigonometry as well as understanding of geometry (CMR1, CMR2, CMR5, CMR6). 

The students were able to draw on their prior knowledge of the secant function from unit circle 

and right triangle trigonometry to reason about the task, without which they would not be able to 

proceed in a mathematically creative way. For example, in the case of CMR1, without any 

guidance from the instructor, Andrea used a combination of her prior knowledge of the secant 
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function from right triangle trigonometry, and also referred to the diagram (see Figure 25) to 

make a plausible argument about some attributes of the secant function. When the instructor 

tasked the students to determine when the secant function is positive, negative, zero, and when it 

is undefined, Andrea opined to the other members in the group that “based on that (appearing to 

refer to the diagram on the board), it is never zero. I mean, if we look at secant as 1/cosine no 

matter what cosine is, it will never equal zero.” Andrea’s anchored her acceptable reasoning on 

her prior knowledge of the reciprocal identity from right triangle or unit circle trigonometry. 

Moreover, it is on the basis of her submission that the rest of the group (see Excerpt 11) was able 

to critique her and construct other viable arguments about the task at hand in a mathematically 

creative way.  

Furthermore, as stated earlier in the case of CMR 5, Mark would not have been able to 

identify the correct segment that represents the secant function without having prior knowledge 

of unit circle trigonometry and an understanding of the geometry of the graph of the secant 

function. In fact, in the process of explaining his strategy choice, Mark also hinted at having used 

some of his prior knowledge from right triangle trigonometry when (after adding a horizontal 

radius in the diagram) he argued that “the idea is the opposite over hypotenuse, and that is the 

length of whatever happens to be the chord over 1, so we want it to be the other way. We want 1 

over the length of what our secant is going to be.” It is on the basis of this explanation that 

Joshua (from a different group) picked a queue and presented a divergent reasoning founded in 

right triangle trigonometry but concurring with the segment Mark had selected. Joshua’s 

submission that “from before we identified this as the tangent, and this is a unit circle, so radius 

is 1, and from Mark’s idea this is the secant because tan2(𝜃) + 1 = sec2(𝜃). And so, this is the 

secant (Writing sec (𝜃) on the correct segment).” (See Figure 24). Evidently, Joshua used his 
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prior knowledge to re-create plausible reasoning that was forgotten to the rest of the class 

(judging by their reaction, see Lines 4 – 5, Excerpt 13), and combining a series of familiar AR 

with Mark’s initial strategy was sufficient to create mathematically founded reasoning about the 

secant function. 

A further study of the students’ collaborative reasoning on this concept of the secant 

function revealed instances of CMR that were a result of the instructor’s teaching moves (CMR2, 

CMR 4, CMR6). The instructor’s guidance and different teaching moves were measured and 

focused on aiding students to not be drawn towards person guided IR. The instructor 

implemented planned and situational teaching strategies that promoted students’ CMR. For 

example, statements like “how do you know when the secant function is positive or negative, 

zero, and when it is undefined?”, not only gave students an opportunity to choose how they 

individually and as a group reasoned about the task by engaging in a productive struggle to 

figure out several ways of solving the it, but also afforded the instructor an outlet to observe the 

class dynamics and used the information about what students were thinking to guide the 

instruction. Indeed, even after noticing that the discussion was skewed towards MR (see Excerpt 

12), the instructor continued probing students with questions such as: “How do you know it [the 

secant] is one over cosine?”, “Just like we had chord and tangent, not the whole line but just a 

section of it, are you saying this whole line or a section of it is the secant?”. Such questions 

encompassed more than the immediate intervention, as they encouraged students to further 

questions their current line of thinking and also make connection with what was done in the 

previous tasks with the chord and tangent functions. Consequently, as a group, the students 

continuously refined their conjecture and eventually were able to re-create forgotten reasoning 
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sequences that was founded on plausible mathematical properties of the secant function. (e.g., 

Mark, Line 6, Excerpt 12, & Joshua, Line 4, Excerpt 13). 

Co-functions  

 After creating the display of the three main trigonometric functions (chord, tangent, and 

secant), the students worked in their groups and then as a whole class embarked on discussing 

what the geometric meaning of the “co” in cofunction (cochord, cotangent, and cosecant) might 

mean and how this can be used to identify the cofunctions in the diagram in the DGE file. At the 

end of the session in which the students created the secant function, there was a brief discussion 

about the cochord function. This is not considered as one of the tasks I analyzed because the 

information derived from these tasks (investigating the cosine, cosecant, and cotangent) was 

deemed similar to that obtained from the first three tasks (i.e., investigating the sine, tangent, and 

secant functions).   However, the information presented here was still necessary to offer 

continuity and context of how the remaining functions were introduced. Responses from 

members of Group A (excluding Mark who was working alone) are presented below.  

Excerpt 14 

Eron: Okay! So why cochord is cochord? 

Eddie: Yeah. It is kind like the opposite of sine 

Suzie: I have no idea. 

Eron: I wish we would be graphing it at the same time. 

Me: I mean my point is where do you think it would be on the circle? (Eron points to 

the secant – green directed segment) 

 

Me: Which one? The green one? 

Eron  

& Eddie: 

Yeah, the green one. 
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Me: How about the secant? 

Eddie: That is the secant. 

Eron: Maybe it is the distance from the center to the chord. 

Eddie: I don’t know. I was gonna say, for 0, cochord will 

be one (as he moves the variable point C to the 90o 

mark), and the chord will be zero and they like 

kind of flip, right? 

 

Me: So, Eddie, by pointing, which one do you think is the cochord?  

Eddie: (Instead Eron points to the negative secant) 

Suzie: I agree with Eron 

Eddie: Yeah, I feel like it will be this way 

Me: Like from the center to here or there? 

 

Suzie & 

Eron: 

Yeah (Referring to the distance from the center to the foot of the chord function) 

Me: Or from here to here? 

Suzie: No, it cannot be the radius all the time. 

Me: So why do you think that is the case? 

Eron: Because of my previous knowledge, not because of anything else. 

Me: So, when will it be undefined? 

Eddie: Right here (moving the variable point C to the 90-degree mark). 

Eron: Wait, cochord is never undefined. 

Me: When is it 0? 

Suzie: When it is 0 it is zero. 

Eron: Duh! 
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 This dialogue is typical of what also happened when the students discussed the cotangent 

and cosecant functions. It is notable that initially the students did not leverage the “co” 

(complementary) part in the cofunctions. For example, while speaking about the cochord 

function, Eddie acknowledged that “Yeah. It is kind of like the opposite of sine” (Line 2, Excerpt 

14) but went ahead to identify the directed segment representing the secant as the cochord. When 

probed further he stated “I don’t know. I was gonna say, for 0, cochord will be one (as he moves 

the variable point C to the 90o mark), and the chord will be zero and they like kind of flip, 

right?” 

 However, the students were also notably wishing they could compare their chosen 

segment with a graphical representation, which is consistent with (Hertel & Cullen, 2011) when 

they suggest that the “connection between [the] directed length and the graph of a trigonometric 

function … easily made within a DGE … is useful in addressing many of the difficulties students 

have with trigonometry concepts” p. 1406). Indeed, in the subsequent session when presented 

with the opportunity to further their discussion about the cofunctions while at the same time 

working with the DGE (Figure 30) to construct the graphical representations of the cofunctions, 

the students identified and created the required line segments correctly. 

Figure 29. Suzie identifying the cofunctions 
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Figure 30. The geometric definitions for the trigonometric functions and their complements 

Task 4: Exploring Trigonometric Relationships 

With the three main trigonometric functions and their complements now identified and 

added to the same unit circle, the ground was set to explore the relationships between and among 

the different functions. While investigating the cofunctions, students were also tasked to develop 

two different diagram versions with the geometric definitions of three functions and their 

complements (Figure 31) 
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Figure 31. An example of the two diagrams embedded in one with the geometric definitions of 

trigonometric functions 

 

Figure 32. Construction of the two versions with the geometric definitions of three functions and 

their complements as highlighted by the instructor 
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The instructor then challenged the students to use “the two different diagram versions 

created above (Figure 32), the paper diagrams (e.g., Figure 31) the geometric definitions of the 

six functions, and your vast geometry knowledge, [to] make conjectures about relationships and 

prove them. Be prepared to share your proof(s) with the class.”  

Unlike in the previous tasks, students spent little time on building the functions in 

Geogebra. The instructor after letting the students draw all the functions on a paper diagram in 

two different ways, developed the two diagrams in the DGE and displayed them on the board for 

students to use as a reference when forming their conjectures. As it was an open-ended task, the 

students did not necessarily have a prescribed pattern for identifying the relationships, but 

nonetheless, a summary of the different classifications (i.e., relationships due to similarity of 

figures, or due to using the Pythagorean theorem) is provided in Table 7 along with percentages 

of each reasoning type exhibited, and the mathematical content registered from the students as 

they completed the task at hand.   

Table 7 

Resolving Task 4: Exploring Trigonometric Relationships 

Percentages Task Part Math Content from students 

CMR Imitative   

57% 43% • Identify the relationships 

using Pythagorean theorem.  

• 1 + tan2θ = sec2 θ 

• (cot 𝑥 + tan 𝑥)2 =  𝑐𝑠𝑐2𝑥 +  𝑠𝑒𝑐2𝑥 

46% 54% • Identify the relationships 

due to similarity of figures 

(triangles) 

• tan(𝑥) = 𝑠𝑒𝑐(𝑥)sin (𝑥) 

• [1 −  cot(𝑥)]2 + [tan(𝑥) − 1]2 =

 [sec(𝑥) −  csc(𝑥)]2 
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For this task, the students were working individually but they were also encouraged to 

discuss, share their findings in their assigned groups, and eventually with the whole class. In the 

following excerpts, I present the dialogue among the students in Group A (Eddie, Eron, Suzie, 

and Mark), followed by a general classroom discussion with some selected relationships between 

the trigonometric functions as presented by the students. 

Excerpt 15 

1 Suzie: What is the end game of this?  

2 Steve: How many do you think you can find?  

3 Eddie: All of them.  

4 Steve: Give me a number. I know there are three Pythagorean …  

6 Eddie: Oh, I thought there were only six of them. I thought they’re like 15.  

7 Suzie: There is a lot. There is a ton.   

8 Eron: I only know a few. I only know 1 + tan2θ = sec2 θ, a.k.a sin2 θ+cos2 θ. I 

also know 1/sin(θ) and similar ones. 

MR 

9 Eddie: I don’t know anything. How is it sin2 θ + cos2 θ = 1?  

10 Suzie: Because the radius of the circle is 1. In a unit circle, it is 1. AR-F 

11 Eron: You know you can think about it as a square. radius x radius = r2  

12 Suzie: (Pointing to the segments on the screen). We look at this triangle and 

this is the chord, and cochord and there is the radius, so sin2 θ + cos2θ = 

1. Not bad, and it is because I knew that (referring to the identity). 

 

 

 

 

 

 

CMR1 

 

 

13 Eron: One down.  

14 Suzie: I think you’ve an advantage if you already knew them. And that is all I 

knew. Uh, tangent squared minus one is … 

 

AR-F 
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 Student responses thus far, were mostly founded on the Pythagorean theorem and 

their prior knowledge of trigonometric identities. However, it is notable that Eron was also 

thinking of relationships beyond what one would usually characterize as an identity. For 

example, she listed that secant and tangent are parallel at the 900 mark (see Figure 33) as one of 

the relationships.  

 

 

15 Eron: You could go with the same thing. We know that this is perpendicular to 

this line, we know that this is going to be a right angle, and that this a 

cotangent, and that this blue including this purple is going to cosecant, 

so 1 + cot2 θ = cosecant2 θ. 

 

CMR2 

16 Eddie: Or one squared.  

17 Suzie: Heck yeah. And that’s the same 1 for secant and tangent. Or there is … AR-F 

18 Eddie: Yeah, because this one is 1 + tan2 θ = sec2 θ. (pointing to the sides of one 

of the triangles in the diagram,) 

CMR3 

19 Eron: Okay, now that we have what we knew …  
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Figure 33. Eron's conjectures 

While clarifying one of the relationships to another student, Suzie was able to reason 

creatively by using the segments and how they are related using the Pythagorean theorem (Line 

12, Excerpt 15) and she backed that up with clearly pointing to the segments in the diagram. 

However, in the same breath she surprisingly states that “and it is because I knew that (referring 

to the identity)”. Perhaps not yet coming to terms with the fact that she just stated an identity 

without necessarily recalling in from memory but by using the directed length interpretation to 

derive it.  

Almost all the students responded to the task of making conjectures about relationships 

among different function by only identifying the “commonly” taught identities. For example, 

after finding some of those “common” identities, Mark stopped working. “I give up. I only got 
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seven”, he said. A little later though, and not prompted, when he investigated his diagrams 

further, he was able to generate more relationships (see Figure 34) 

 
Figure 34. Mark’s trigonometric relationships 

Having explored and noted all the familiar relationships, the students struggled to 

develop more conjectures from the two diagrams. For instance, in Group A, I heard statements 

such as, “Okay, now we have what we knew …”, “Mark is throwing in the towel”, and “I give 

up. I only got seven”. This prompted me to suggest to them that “Whatever relationship you can 

come up with from the diagram [is okay]. You don’t have to know it [from before]”. This 

perhaps egged the students on, as they immediately started to explore their diagrams noting more 

conjectures. Amidst all this, some relationships were not instantly noticeable by all the students 

and in some cases, it took the help of their peers to explain the reasoning (Excerpt 16). 
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Excerpt 16 

1 Eddie: (Talking to Eron) Go to version 2 and see what happens. Go back to 

like the first quadrant. 

 

2 Suzie: What if we did (cot 𝑥 + tan 𝑥)2 =  𝑐𝑠𝑐2𝑥 +  𝑠𝑒𝑐2𝑥? (pointing at the 

computer screen while tracing out the different triangle parts she 

used). (see Figure 35) 

CMR4 

3 Eddie: I like it.  

4 Me: Suzie, can you talk to me about that?  

6 Suzie: Which one? The one I just wrote?  

7 Me: Yes  

8 Suzie: This is 90o, right? This is our chord which is sine, and this is … oh! 

you got me. This is true if ... but this bottom is not secant.  

CMR5 

9 Me: But the whole piece is secant.  

10 Suzie: Yeah, oh which is sec2 x – csc2 x CMR6 

11 Eron: Why did you subtract?  

12 Suzie: This is (sec x – cos x)2 plus this thing squared. CMR7 

13 Me: That thing is?  

14 Suzie: Sine, uhm chord squared is equal to tangent squared. Okay, that was 

pretty good, that was exciting. 

AR-PG 

15 Eddie: So, every single radius is 1?  

AR-PG 16 Eron: We are in radians, so we can call it 1 
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Figure 35. Suzie’s conjectures using the Pythagorean Theorem 

Like before, identifying the relationships and creating conjectures was entirely based on 

the Pythagorean theorem. However, in this case, unlike before, the students moved beyond using 

just prior knowledge of identities to facilitate their exploration of the new identities, but they 

ably justified their conjectures, and when probed further, they were able to notice their mistakes 

if any in the individual conjectures. These conjectures were novel in the sense that they involved 

positive and negative forms of the six trigonometry functions but not in the form of the 

relationships typically taught in trigonometry course at any level. Unlike in earlier tasks, there 

were several cases in which students were using CMR with almost no sign of MR. In fact, as 

shown in Excerpt 16, this part of the task made it nearly impossible for students to use strategies 

that were founded on recalling complete answers as they had not seen anything similar.  
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As shown above, nearly all the discussion was centered around identifying the right 

triangles in the two diagrams and using the Pythagorean theorem to make conjectures dealing 

with the relationships between and among the different trigonometric functions. I now present 

below (Excerpt 17) their response when I prompted them to consider using the concept of 

similarity of triangles to make more conjectures.  

Excerpt 17 

1 Me: In all scenarios you’ve used Pythagorean theorem, can you use 

something else, maybe you will get something. 

 

2 Mark: But there is another one you can get, I don’t remember how I got it 

exactly now, but I know it is there. 

AR-D 

3 Suzie: Now you are doing which triangle?  

4 Mark: I am doing 1 minus cotangent, so that you have that little bottom 

piece, and tangent minus, and then secant minus cosecant squared. 

That’s all I got. 

CMR8 

5 Me: How about similar triangles?  

6 Suzie: If we can make ratios for similar triangles. So, this is 1 (pointing to 

the radius, 𝐴𝐶̅̅ ̅̅ ), AE̅̅̅̅  is secant, right? So, 
sin(𝑥)

tan (𝑥)
=

1

sec (𝑥)
 and 

tan(𝑥) = 𝑠𝑒𝑐(𝑥)sin (𝑥). Oh! It is the same thing. (see Figure 36) 

CMR9 

7 Me: That is the whole idea behind this. You cannot use a statement you 

know yet. 

 

8 Suzie: Can I use the same triangle? (Noticing one of the intermediate steps 

she had written earlier). Oh, look at this, 
1

cos (𝑥)
=

sec (𝑥)

1
 

CMR10 

9 Me: Now that is the definition.  

10 Suzie: It is not a definition, it is from these ratios.  

11 Me: Right, but now you know where that comes from.  

12 Suzie Yeah  

13 Eron: You found out how to … explain to me Suzie.  

14 Suzie: Now you see these triangles are similar (Referring to triangle AEB 

and triangle ACH) – see Figure 36. 

 

15 Eddie: Are they all similar triangles?  

16 Suzie: Not all of them. 

17 Eron: Oh! This little one to the bigger one? Okay! AR-PG 

18 Eron: Maybe it will help me when I draw them out. Okay, where are we at?  

19 Mark: They are all similar. I am putting down my chip 10 out of 10 they are 

all similar. 
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Figure 36. Suzie's relationships due to similarity of figures 

Following the suggestion to consider similarity of triangles the students made more 

discoveries that involved reciprocal relationships. They also spotted congruent relationships that 

were not initially evident. For example, as Suzie was exploring that 
1

cos (𝑥)
=

sec (𝑥)

1
, she was also 

able to come to the realization that it was the same identity as tan(𝑥) = 𝑠𝑒𝑐(𝑥)sin (𝑥). This is 

captured in her drawing an arrow to link the two (see Figure 36) as well as in her explanation to 

Eron below. 

Eron: So, you did sine over tangent? 

Suzie: It is the same. I did tangent over sine and secant over 1. 

Eron: So, how did you know they are the same? 
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 However, as much as there was a notable number of cases with CMR as evidenced by the 

creation of new reasoning sequences with supporting arguments and plausible conclusions, there 

were also cases in which some students seemed not to make sense of what was going on. For 

example, even after Eron discovered particular relationships from the diagram, she did not quite 

register them as new conjectures because they were part of her prior knowledge. In fact, that 

inhibited her reasoning about subsequent relationships as she did not see a way out of the loop. 

When she had trouble proceeding, I queried her to explain her inability to reason about the task 

at hand. “What happened here lady?”, I probed while pointing at her work on the paper (see 

Figure 37). “I started it but could not proceed. Both sides were equal to cosine. But this alone 

would not mean anything”, she responded with a dejected look. “So now what?”, Suzie 

interjected. “You could do more”, I replied. “You could do them all using the same thing with 1 

and the cochord”, Suzie shot back. A seemingly confused Eron interposed, “I give up on that 

one” (referring to 𝑡𝑎𝑛( 𝜃) =
𝑠𝑖𝑛(𝜃)

𝑐𝑜𝑠(𝜃)
). This showed that, even at this stage in the instructional 

sequence, the students were still employing reasoning strategies in which the “outcome is not 

predicted” (Lithner, 2008, p. 263), evidencing traces of delimiting AR.  

Suzie: Oh, because I did this one (referring to ∆ACH), 1 over cosine, and then secant over 1 

(referring to ∆AEH). So that tells you that secant is 1 over cosine. 
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Figure 37. An example of a reasoning strategy with no predicted outcome 

  As Eron was still pondering on how to proceed, the instructor interrupted the group 

discussions and students’ attention was called to a general class discussion. The instructor 

inquired about how what the students were working on compared to their prior experience of 

trigonometry. Smith intimated that he actually got to learn a lot of relationship more than what 

he had learned [before]. “It was more enlightening”, he continued. Eddie pointed to the need to 

infuse such an experience on the high school trigonometry curriculum. He stated, “I think doing 

something like this definitely gives it substance, which is something I very much wanted to have 

in high school, which I think a lot of kids today would appreciate to have because I know when I 

was learning sin2 θ + cos2 θ = 1, I was like awesome. But then just moving on and just having to 

remember that.”  
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 Because of the unfamiliar nature of relationships that were expected from this task, the 

instructor called for volunteers to share their conjectures with the rest of the students. Andrea 

offered to present one of her conjectures on the board (see Figure 38). As a conclusion to her 

presentation, she offered the following explanation along with her written work; “I was focusing 

on this triangle right here. Triangle FGE and I got [cot(𝑥) − 1]2 + [1 − tan (𝑥)]2 =

 [csc(𝑥) − sec (𝑥)]2. I was challenged to change the setup, and I came up with almost a similar 

identity [1 −  cot(𝑥)]2 + [tan(𝑥) − 1]2 =  [sec(𝑥) −  csc(𝑥)]2.” 

 

Figure 38. Andrea’s diagram for exploring the relationships between the functions 

Several other relationships became evident to the students as they investigated the two 

versions of the geometric representations of trigonometric function. In the following couple of 

pages, I present some of these students’ conjectures that also reflect their CMR, given that each 

student was able to justify their novel work with “arguments that are anchored in intrinsic 

mathematical properties” (Lithner, 2008, p. 266) void of simply recalling and writing down 

complete answers or recalling algorithms. 
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Figure 39. Drew's exploration of the relationships among the functions 
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Figure 40. Monica's relationships from using the Pythagorean theorem 

 Up to this point, the instructor had engaged the students in focusing on the unfamiliar 

identities some of which are presented above. On a different note, the instructor revealed to the 

students how, as a high school teacher, his experience teaching trigonometry was pretty different. 

It was more focused on memorization of the identities than reasoning about them. To proceed 

when the attention was turned to the “basic” relationships, Jackie gracefully shared quite a 

number of them with the rest of the class (see Figure 41 & Figure 42). Synonymous with how the 

majority of the students had navigated the task of exploring the relationships between and among 

the different functions, Jackie’s strategies as CMR. Jackie’s presentation stretched until the end 

of the day’s teaching session, and before departing for the day, the instructor promised to 

continue with the same task in the next session with more focus on the reciprocal identities.  
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Figure 41. An example of an exploration involving familiar relationships 
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Figure 42. Jackie’s colorful relationships which were shared with the whole class 
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In the previous instruction session, students successfully accomplished the task of 

identifying both the usual and some less-obvious relationships among and between the 

trigonometric functions from the geometric representations of these functions (see Figure 32). In 

the first part of this new instruction session we picked up from where we left off, using a list of 

identities from the website http://www.themathpage.com/atrig/trigonometric-identities.htm, the 

instructor invited students “to make nice formal proofs of a selection of identities from the list” 

using the two versions of the diagrams (Figure 43) that were worked on the previous week. 

Different groups were assigned to prove one of each of the reciprocal identities and the 

tangent/cotangent identities. The instructor stressed the need for the proofs to be geometric in 

nature and “should not include any algebra steps if possible! (Also, it should be possible.)”  

Version 1       Version 2 

 

 

 

 

 

 

 

Figure 43. Two definitions for each trigonometric function 

Group A members (Eron, Suzie, Eddie and Mark) were assigned to prove the identities  

𝑐𝑜𝑐ℎ𝑜𝑟𝑑(𝜃) =
1

𝑠𝑒𝑐𝑎𝑛𝑡(𝜃)
  and 𝑡𝑎𝑛𝑔𝑒𝑛𝑡(𝜃) =

𝑐ℎ𝑜𝑟𝑑(𝜃)

𝑐𝑜𝑐ℎ𝑜𝑟𝑑(𝜃)
 . Their actions and notes offered insights 

into their justifications and reasoning (Excerpt 18). Initially, Suzie and Mark are each working 

http://www.themathpage.com/atrig/trigonometric-identities.htm
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individually while Eddie is working with Eron. However, midway through the discussion as the 

students seemed to have trouble progressing, they regrouped and shared ideas as a group.   

Excerpt 18 

1 Eron: Okay! So, we wanna show …, so we probably wanna find similar 

triangles. So, we do 𝑐𝑜𝑠𝑒𝑐𝑎𝑛𝑡(𝜃) − 𝑐ℎ𝑜𝑟𝑑(𝜃) (referring to version 2). 

CMR11 

2 Eddie: So, we can’t use that secant = 1/cosine?  

3 Eron: We probably have to prove it but for now I am going to assume it is. 

What were you guys going to do to prove they are?  

And using Angle-Angle property. Okay! Are we allowed to use what 

cosecant is? 

CMR12 

 

 

4 Eddie: No  

5 Mark: What version are you guys using?  

6 Eron: Why? Are you looking at a better one?  

7 Mark: Yeah. Version 1 is straightforward.  

8 Eron: What triangles are you looking at?  

9 Mark: I am looking at ∆AKC and ∆ADJ  

10 Eron: The cosecant is confusing me. What is cosecant? Do you think it is AJ̅? 

And AE̅̅̅̅  is secant? 

 

AR-PG 

11 Eddie: Yeah, I agree.  

12 Mark: Then change of plans. AR-PG 

13 Eron: So, we can’t use that secant = 1/cosine?  

14 Eddie: No. So we can’t use these triangles anymore?  

 Whereas the students in Group A were headed in the right direction, for some reason they 

appeared to be held back by fact they could not easily distinguish between the secant and 

cosecant as they were overlapping on the same segment AJ̅ in version 1. It is worth recalling that 

identifying two different versions of each function was part of the task from the previous week’s 

session. In the meantime, the instructor had displayed the same diagrams on the interactive white 

board, which I leveraged and asked them to identify where the segment representing the secant 

function starts and ends. Looking at the version on the smartboard, Eron exclaimed, “Oh, oh! I 

think it stops at E. So, we can use triangle ∆AHC and ∆ABE.” With the functions identified, the 

students then continued to work on the task (Excerpt 19).  
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Excerpt 19 

1 Eron: And AC̅̅̅̅  is the cochord then?  

2 Eddie: That is 1  

3 Mark: That looks …  it turned out pretty well.  

4 Eron: So, we have AC̅̅̅̅
AE̅̅̅̅⁄  which is 1 𝑠𝑒𝑐𝑎𝑛𝑡⁄  , and so saying cochord = AH̅̅ ̅̅ ? CMR13 

5 Suzie: Yes  

6 Eron: How do we get that? AR-D 

7 Suzie: Because it obvious to me AR-F 

8 Eron: Will you say that in a proof? (She proceeds to prove that ∆AKC is 

congruent to ∆AHC.). (See Figure 44) 

 

9 Suzie: I don’t think it’s the current position of the cochord that matters. What 

matters is how we define the cochord. 

AR-F 
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Figure 44. Eron's work on the reciprocal identities 

 As revealed above (Excerpt 19 and Figure 44), Eron with the help of her peers in the 

group was able to reason creatively about the reciprocal relationship between the cosine and 

secant. However, even though her explanations and writings were dominated by CMR while 

proving that the tangent function is equivalent to the ratio of sine to cosine, “the initial strategy 

implementation followed guidance” (Lithner, 2008, p. 264) from Eddie. After executing the 

remaining routine steps to conclusion, Eron later acknowledged, “Okay! I am just used to 

similarity using different triangles not on the same triangle.” After, as a class we quickly chatted 
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through the three main Pythagorean identities as well as the two additional identities included in 

the collection on the website.  

Concerning the task of exploring the relationships between and among the trigonometric 

functions a few cases of IR arose but unlike in the previous tasks there was convincing evidence 

that students were not only able to provide new reasoning sequences but also used strategies that 

were rooted in fundamental mathematical properties. While engaging in this activity, novel 

relationships were discovered. For example, it was a common occurrence to see students with 

relationships like the ones in Figure 45 below 

 

Figure 45. Some of Justin’s relationships from the exploration. 

As a whole, Task 4 offered students several avenues to exhibit their reasoning. Of the 30 

registered cases of reasoning, 16 were categorized as strands of IR. However, in only one of 

these cases the strategy choice was founded on recalling memorized answers. This pales in 

comparison to the other tasks in which quite a number of MR cases were registered (Figure 46).  

  

Figure 46. Counts of students’ reasoning when exploring the relationships between functions 

 Notably also, there was an increase in the instances of person guided AR. This is 

significant because in all the recorded five cases, the students were seeking clarifications that 
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eventually led them to justification and reasoning that was mathematically creative. Furthermore, 

unlike in prior tasks, in which students exhibited CMR in few instances, half of the strategies 

were identified as CMR. Most of the cases of CMR in this task were borne out of guidance from 

an external source. Also, the almost nonexistence of MR is attributed to both the familiarity 

students had with quantitative reasoning (i.e., line-segment trigonometry) at this stage in the 

instruction, and perhaps to the nature of the task, as it did not afford them a chance to use 

strategies that were dependent on recalling complete answers.  

 Analysis of the data builds a picture of the different mechanisms and workings of the 

instructional setting that aided students towards CMR. The main influence in almost all the 

recorded case of CMR was the established prior knowledge of geometry, including the 

Pythagorean theorem, similarity and congruence of triangles. The remaining instances of CMR 

were a result of the instructor’s teaching techniques and students’ understanding of geometry.   

All but one (CMR 5) of the fourteen total instances of CMR registered in this task were 

supported by students having prior knowledge and an understanding of geometry. In six 

instances (CMR1, CMR3, CMR4, CMR6, CMR 7, CMR10) the students were able to draw on 

their knowledge of the Pythagorean theorem and realized how to connect the idea that the sides 

of right triangles in a unit circle correspond with line segments that represent different 

trigonometric function.  For example, after Eron stated from memory the identities, “1 + tan2θ = 

sec2 θ, a.k.a sin2 θ+cos2 θ”, and Eddie sought for guidance on “how is it sin2 θ + cos2 θ = 1?”, 

Suzie while pointing to the different segments of the circle on her computer screen offered the 

following explanation; “we look at this triangle and this is the chord, and cochord and there is the 

radius, so sin2 θ + cos2θ = 1 (see Figure 47) below. 
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Figure 47. Suzie's demonstration of a trigonometric relationship 

 Notably, perhaps due to the deliberate immersion into quantitative reasoning (considering 

the three tasks prior to this) and the use of geometry, Suzie found herself subconsciously 

reasoning creatively about the identity. This is evidenced in her concluding remarks, in which 

she stated that, “Not bad, and it is because I knew that (referring to the identity). However, she 

could not have been further from the truth. Suzie did not just recite the relationship from memory 

like Eron before her. Rather she leveraged her knowledge of geometry (even if it was not 

apparent to her) to generate a fundamental trigonometric relationship. Suzie re-constructed a 

reasoning sequence from her prior knowledge of geometry by identify the specific segments that 

are related by a particular right triangle, used the identified segments and attached the meanings 

from different trigonometric functions, which provided reasons for verification of the plausible 

validity of her reasoning. Suzie’s reasoning was also mathematically founded and provided 

cogency by anchoring in central properties of the components in the reasoning: the relation 

between the legs of a right triangle and its hypotenuse. 

This breakthrough set the foundation for other group members to identify other 

relationships using the Pythagorean theorem. For example, Eddie (pointing to the sides of one of 

the triangles in the diagram) submitted that “Yeah, because this one is 1 + tan2 θ = sec2 θ.” 
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Although still adamant that knowing the identities beforehand plays a role in being able reason 

about them creatively (see Line 14, Excerpt15), using the Pythagorean theorem, Suzie was able 

to create a new identity, which is safe to say hitherto had not been known to any of the students. 

Suzie pointing at the computer screen while tracing out the different triangle parts argued that. 

“What if we did (cot 𝑥 + tan 𝑥)2 =  𝑐𝑠𝑐2𝑥 +  𝑠𝑒𝑐2𝑥?” She also argued that 𝑠𝑒𝑐2𝑥 −  𝑠𝑖𝑛2𝑥 =

 𝑡𝑎𝑛2𝑥. With some probing from the instructor, she revised the second relationship to replace the 

term 𝑠𝑒𝑐2𝑥 with (sec x – cos x)2 in the identity (see Figure 35). In the general class discourse, 

Andrea (from a different group) also depended on her prior knowledge of the geometry to create 

a couple of novel (to her and perhaps all her peers) and plausible conjecture; [cot(𝑥) − 1]2 +

[1 − tan (𝑥)]2 =  [csc(𝑥) − sec (𝑥)]2, and [1 −  cot(𝑥)]2 + [tan(𝑥) − 1]2 =  [sec(𝑥) −

 csc(𝑥)]2, which were justified with supporting logical and valid reasoning based on the 

Pythagorean theorem. Without any prior knowledge of geometry, none of the stated 

trigonometric relationships could have been generated without the students engaging in IR.   

Similarly, albeit with initial egging from the instructor, students were able to creatively 

reason about more trigonometric relationships. In some instances (e.g., CMR8, CMR11, 

CMR13) basing their CMR on the similarity relationship between particular triangles, whereas in 

others (e.g., CMR 9, CMR14) the congruence of triangles provided the foundation that supported 

the students in realizing how to relate and connect different line segments from the different 

triangles. For example, Eron was able to reason creatively about the reciprocal relationship 

between the cosine and secant and also 𝑡𝑎𝑛𝑔𝑒𝑛𝑡(𝜃) =
𝑐ℎ𝑜𝑟𝑑(𝜃)

𝑐𝑜𝑐ℎ𝑜𝑟𝑑(𝜃)
 by leveraging her prior 

knowledge of similarity of triangles as shown in Figure 48 below. 
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Figure 48. Eron's work on the reciprocal identities 

Secondly, students’ CMR also depended on the particular teaching moves adopted by the 

instructor. Students leveraged the peer interaction in their small groups to achieve various 

plausible outcomes. The deliberate setting up students for small-scale group work and following 

it up with whole class dialogue, generated a platform for students to communicate their thinking 
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(as conjectures) and which gave access to others not only critique but also build on them. 

Furthermore, in this collaborative discussion, the students resolved contrasting viewpoints and 

consequently created new or re-created forgotten reasoning sequences. Such avenues seldomly 

occur in a traditional lecture setting. For example, at the beginning of the task Eron stated, “I 

only know 1 + tan2θ = sec2 θ, a.k.a sin2 θ+cos2 θ. I also know 1/sin(θ) and similar ones.” This 

was a case of IR, as she was only recalling complete answers from memory. However, after she 

gained access to Suzie’s idea of reasoning creatively about the same trigonometric function (see 

Line 12, Excerpt 15), Eron stated, “you could go with the same thing. We know that this is 

perpendicular to this line, we know that this is going to be a right angle, and that this a cotangent, 

and that this blue including this purple is going to cosecant, so 1 + cot2 θ = cosecant2 θ.” This 

instruction technique in which the students were not subjected to traditional tutorial or lecture 

setup, played a fundamental role in facilitating Eron in being able to build on her peer’s idea to 

create a novel (to her) reasoning sequence that was mathematically founded on the properties of 

the Pythagorean theorem to eventually transition from IR and engage in CMR. 

Acting as an intermediary also helped the students enhance their understanding of the 

concepts and they were able to reason creatively. Aware of the fact that technology is just a tool, 

the instructor effectively leveraged the DGE to support student engagement, and reasoning but 

not as an end onto itself. The students at times pointed to the segments on their computer screens 

while making arguments to support their strategy choices. Also, the instructor intentionally 

interjected in various group interactions to point the discourses in the direction of CMR. Some 

examples include, “In all scenarios you’ve used Pythagorean theorem, can you use something 

else, maybe you will get something”, and “How about similar triangles?” These subtle 

interjections led students to explorations in which the formulated and creatively reasoned about 
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sets of conjectures which they otherwise would never have been able to without such teacher 

moves. Another glaring example where instructor use of technology and intentional interjection 

led to CMR is the case Andrea in CMR10. She stated: “I was focusing on this triangle right here. 

Triangle FGE and I got [cot(𝑥) − 1]2 + [1 − tan (𝑥)]2 =  [csc(𝑥) − sec (𝑥)]2. I was challenged 

[by the instructor] to change the setup, and I came up with a similar identity [1 −  cot(𝑥)]2 +

[tan(𝑥) − 1]2 =  [sec(𝑥) −  csc(𝑥)]2.” 

 

Figure 49. Andrea’s diagram for exploring the relationships between the functions 

 Andrea constructed novel reasoning sequences when determining the functions for each 

leg of the different right triangle used. She had not practiced any tasks that are analogous to the 

one before her, and though her basic knowledge of length of a line segment is used it does not 

furnish her with the complete answer or a solution algorithm as in the case of MR or AR. Also, 

Andrea had arguments to back up the plausible validity of her reasoning. The arguments were 

not just amplifying something known beforehand (the Pythagorean theorem in this case) but 

influenced the strategy choices and the approach implemented and resulting in new knowledge 

(to Andrea). Finally, Andrea’s arguments were mathematically founded and took into account 

the core properties of the components in the reasoning: the trigonometric functions representing 
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each segment, and the relation between the legs of a right triangle and its hypotenuse (see Figure 

49) 
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CHAPTER V: CONCLUSIONS 

In this study I explored the types of reasoning that preservice secondary mathematics 

teachers use in the process of learning trigonometry with instructional emphasis on quantitative 

reasoning through a line-segment definition of trigonometry. In this chapter I summarize my 

findings, provide a general description of the strands of reasoning (Lithner, 2008) through a 

discussion of plausible answers to the research question that guided the study. This question was: 

• What types of reasoning do preservice secondary mathematics teachers engage in while 

participating in an instructional sequence on trigonometry that focuses on a quantitative 

reasoning approach?  

Types of Reasoning 

Students’ Reasoning Strategies 

In Table 8, I present an overview of the counts of students’ reasoning strategies from all 

four tasks, indicating the number of times the students engaged in IR and CMR. The data 

presented in Table 8 does not differentiate the different strands of IR that the students engaged 

in. A more detailed consideration of the several forms of IR adopted by the students in the 

different tasks is provided in the next subsection. There were 65 instances of IR throughout the 

four tasks, and 10 of those instances occurred during Task 1. Similarly, there were 32 instances 

of CMR throughout the four tasks, and 4 of those instances occurred during Task 1. 
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Table 8  

Students Reasoning Strategies 

Task Students’ Reasoning Strategies Total 

 Imitative Reasoning 

(IR) (N=65) 

Creative Mathematical 

Reasoning (CMR) (N=32) 

 

 

Task 1: Chord function 10 (16%) 4 (13%) 14 (15%) 

Task 2: Tangent function 26 (40%) 8 (25%) 33 (34%) 

Task 3: Secant function 15 (23%) 6 (19%) 21 (22%) 

Task 4: Trigonometric  

             relationships. 

14 (22%) 14 (44%) 28 (29%) 

Total 65 (67%) 32 (33%) 96 (100%) 

 Results of the qualitative analysis of the reasoning strategies from the instructional 

sequence as a whole indicate that there were twice as many instances of IR than instances of 

CMR during the study. In general, Task 1 (Chord function) elicited the smallest percentage of 

instances of reasoning (15%), whereas Task 2 (Tangent function) produced the greatest 

percentage of instances of reasoning (34%) from the whole instructional sequence.  

Imitative reasoning. The further analysis presented in Table 8 indicates that in about 

67% of the reasoning instances, students’ reasoning strategies were either based on recalling and 

writing down complete answers (MR) or on a solution algorithm (AR). As we progressed 

through the tasks, there was an initial increase in instances of IR (Task 1 to Task 2) but from 

Task 2 (Tangent functions) to Task 4 (Trigonometric relationship), the instances of IR declined 

(Table 8).  

A more in-depth look at the distribution of the different strands of IR (see Table 9) shows 

that students engaged in MR only one in every four instances in which they reasoned imitatively. 
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The qualitative analysis indicates 14 out of 16 (88%) of all coded instances of MR to have 

occurred when students were reasoning about the tangent (Task 2) and secant (Task 3) functions 

(Tangent function – 8 [50%], and Secant function – 6 [38%]). In comparison, AR represented 48 

out of 64 (75%) of the coded instances of IR, with 18 of the 49 (37%) being in Task 2 (Tangent 

function), 15 of the 48 (27%) coming from Task 4 (Trigonometric relationships), Task 1 (Chord 

function), and Task 3 (Secant function) each having nine instances (18%). These results show 

that in utilizing their prior knowledge of trigonometry to navigate the tasks, students heavily 

depend on recalling solution algorithms instead of memorized complete solutions. In the 

particular case of trigonometric relationships, these numbers indicate that in all but one of the 14 

instances of IR, students could only reason using pre-specified procedures (AR). 

Table 9  

Students' Imitative Reasoning Strategies 

A further scrutiny of the findings reveals that in all the instances when students used 

reasoning schemes that were coded as IR, their strategies had emanated from the ratio and unit 

circle definitions of trigonometry. This is was perhaps due to the fact that at the beginning of 

Task Students’ Imitative Reasoning Strategies 

 Memorized Reasoning (MR) 

(N=16) 

Algorithmic Reasoning (AR) 

(N=48) 

Task 1: Chord function 1 (6%) 9 (18%) 

Task 2: Tangent function 8 (50%) 18 (37%) 

Task 3: Secant function 6 (38%) 9 (18%) 

Task 4: Trigonometric  

             relationships. 

1 (6%) 13 (27%) 
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instruction unit, the line-segment idea was still a new concept to the students. This observation is 

consistent with previous research (e.g., Kendal & Stacey, 1998; Moore, 2013, 2014, Thompson 

et al., 2007, Thompson 2008) about the impact of ratio and unit circle approaches of instruction 

have on the learning of trigonometry and the difficulties students encounter while dealing with 

trigonometry and trigonometric functions and. That is not to say that the ratio and unit circle 

approaches do not provide opportunities to reason creatively. I posit that students’ ability to 

reason is curtailed by how the ratio and unit circle concepts are initially introduced to them. A 

similar call was made by Weber (2005) and earlier by Kendal and Stacey (1997). Weber (2005) 

stated that even though students in his experimental instruction group who were taught using the 

unit circle approach performed better than their counterparts in the lecture-based instruction 

group, emphasis should be on having students understand the unit circle procedures as processes. 

Creative mathematical reasoning. Of all the coded responses from all four tasks, 

students engaged in CMR one in every three instances of the whole instructional sequence. 

Furthermore, 14 of the 32 instances (44%) of CMR originated during Task 4. As we progressed 

through the tasks, there was a registered comparable increase in instances of CMR.  

Also, important to note is that at the beginning of the instruction unit (i.e., Task 1 & Task 

2) when students were still novices at using the technology and the line-segment approach, there 

are 12 instances of CMR (out of 32 total instances of CMR) that were recorded, despitethe 

prevalence of the unit circle and ratio trigonometry approaches by the students.. This is an 

indication, that, not all instances of creative reasoning occurred when the line segment approach 

was emphasized. When the students used the unit circle and ratio approach appropriately, they 

were sometime able to reason creatively. In fact, researchers (e.g., Kendal & Stacey, 1997; 

Schnotz & Bannert, 2003) found that even if students were taught emphasizing procedures and 
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algorithms (versus concepts), they would ably learn a concept as long as the algorithm was 

accompanied by a representation. It is this use of representations that line-segment approach 

brought to the fore which the students utilized to transition their reasoning from AR to CMR.  

Notably, on specific concepts of trigonometry (e.g., trigonometric identities), Fi (2003) 

reported that the preservice teachers have misconceptions, and with the exception of the 

fundamental Pythagorean identity (i.e., 𝑠𝑖𝑛2𝜃 +  𝑐𝑜𝑠2𝜃 = 1), they labored to derive others, leave 

alone applying them. However, in Task 4 of this study—which addressed the concept of 

relationships between and among trigonometric function—students’ reasoning was evenly 

distributed between CMR (14 instances) and IR (14 instances; see Table 8). Furthermore, I 

contend that CMR was more prevalent in Task 4 (44%) due to: 1) the line-segment approach, 

which was deliberately and systematically promoted by the instructor was well-established, and 

2) the availability and opportunity to use the different geometric definitions for the same 

trigonometric functions3) the students’ vast geometry knowledge to explore several conjectures, 

and 4) prove them using the different geometric definitions. 

Remarks on Lithner’s Framework 

In the preceding sections I delineated a scientific motivation for this research project. 

Along with offering added clarity and context to other studies carried out by earlier researchers, I 

established a rationale for choosing Lithner’s (2008) framework to analyze the data in this study. 

In the following paragraphs, I reflect on the use of Lithner’s (2008) framework by providing a 

critique of it in the specific context of trigonometry in a geometric setup, zooming out to identify 

which of the critiques apply outside the context of the present study. More explicitly, I discuss 

the difference between the distinctive forms of reasoning within the line segment approach to 

trigonometry. 
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Lithner (2008) alluded that an essential variable in learning mathematics is the reasoning 

that students actuate in relation to particular tasks. In this study, two main types of reasoning 

were exhibited: CMR and IR. In general, identifying both CMR and IR was not challenging 

because there is no ambiguity in defining their differences. CMR included a novel reasoning 

sequence, which could be justified and was centered on mathematical foundations. The other 

main category, IR, characterized by rote learning was divided into two strands: MR, in which the 

student, for instance, solved a problem by recalling a full answer from their prior knowledge, and 

AR, when a problem is solved by recalling and applying a given algorithm.  

Unlike MR, which was routine to recognize, identifying AR was challenging in the 

context of this study. This was due to several factors unique to this study. For example, the 

content was not algebraic in nature and thus did not lend itself to following an algebraic 

algorithm as described in Lithner’s examples. In its current state, Lithner’s (2008) framework 

was not well suited to pinpoint which reasoning can be categorized as AR because in this 

instructional sequence of the line-segment approach there were no particular algorithms for the 

students to follow in solving the given tasks. In fact, this challenge is not limited to this study but 

may also extend to other non-algebraic contexts. In its present state, AR can be easily identified 

if there is a recurring numerical task-solving process that depends on algorithmic support (i.e., a 

known algorithm is utilized to resolve a given task). If we accept this view of AR, then it 

becomes clear that there is no sufficient requirement to categorize any reasoning in a geometric 

context as AR.  

Given that much of the uncertainty and confusion regarding AR is a direct consequence 

of lack of agreed upon and unambiguous definitions in the geometric context, I contend that a 

more encompassing title for AR is warranted. With hind sight, using this framework in a non-
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algebraic context may require the AR to be renamed Guided Reasoning (GR) with four strands:  

(a) Procedure Guided Reasoning (P-GR) – in which a solution strategy choice is made by 

familiar geometric setup but void of plausible arguments, (b) Text Guided Reasoning, (c) Person 

Guided Reasoning, both as defined by Lithner (2008), and (d) Delimited Guided Reasoning – 

when a student cannot reason about a task, regardless of any form of guidance from an external 

guide.  

However, it should also be noted that the ambiguity and challenge in identifying AR as 

according to Lithner (2008) could be attributed to the fact that in all the tasks observed in this 

study, the instructor did not provide worked examples (from a person or text) for the students to 

practice. Thus, they did not get to use any algorithms that they knew, and the students were not 

likely to be successful with the tasks posed using only IR. It seems as though this is aligned with 

what Lithner suggested is desirable in a mathematics classroom; that is to say, we need to get 

students engaged in more CMR. Instances in which the use of IR is suppressed and the use of 

CMR is promoted, the framework seemed to be lopsided. There are fine categorizations of IR 

(i.e., MR, AR-F, AR-D, AR–PG, and AR–TG) but only one for CMR. If a goal of mathematics 

educators is to promote CMR, the framework would be more powerful if it provided finer detail 

of the types of CMR. 

Implications 

 The findings presented in this dissertation have significant implications for the teaching 

and learning of trigonometry in that they highlight the different ways students reason while 

studying trigonometry. In particular, the findings suggest that when the different definitions of 

trigonometry (ratio, unit circle, and line-segment) are used in conjunction with each when 

appropriate, it leads to learners creating new (to the reasoner) reasoning sequencings or 
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recreating a forgotten one. The results emphasize that providing such tailored instruction is 

essential for students to engage in more CMR that builds upon their thinking than IR. 

 The students intoned concerns about the way they were taught trigonometry in high 

school. They claimed that they had not learned relationally (Skemp, 1976) and that the struggles 

they occasionally exhibited during the instructional sessions discussed here may have stemmed 

from their deficiency in conceptual understanding. Knowing that these future teachers did not get 

a good understanding of trigonometry when they were in high school, and the setup of the 

college curriculum is such that this deficiency is not going to be addressed in their standard 

mathematics curriculum—as it is often presumed that students have the requisite comprehension 

of those areas —at the undergraduate level, they are then likely to continue the cycle of teaching 

the topic procedurally to their own high school students. 

As is evidenced in this study, in many instances in the first weeks of the study, the 

students’ strategy choices were founded in the line-segment approach mostly when they were 

alerted to think along that line, or when they could easily imitate what had seen in the previous 

tasks. Otherwise, they retreated to the ratio and unit circle approaches. However, they also 

indicated that they "find the line-segment approach both thought-provoking and valuable” 

(Eddie), which implies that this rarely used approach of teaching and learning trigonometry 

would be fascinating and engaging for students of trigonometry. In particular, based on 

differences between the tasks in which reasoning was coded as being creative and the tasks that 

did not, findings from this study also suggest that in teaching and learning trigonometry students 

might have more success retaining trig knowledge with more opportunities to reason about 

relationships. 
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Zooming out and reflecting on the tasks as a unified activity, over the course of the study, 

specific questions did arise about CMR. Some of these include: Can the entire collection of 

activities be recommendable for other populations? Could CMR be achieved without the 

technology, working in groups, or without specific teacher moves? Could it work with high 

school students (who might not have the same student competencies that the undergraduate 

majors do)?  

Based on the analysis of the data, I posit that the activity is better suited for a population 

that has prior knowledge of geometry and other stances of trigonometry. In contrast, this 

instruction would be an appropriate instructional approach for a group of preservice secondary 

mathematics teachers (PSTs), as they were found to have the necessary background knowledge 

of trigonometry and geometry. For these PSTs, beyond offering them an avenue to engage in 

CMR, this approach allows them an opportunity to review their trigonometry content that they 

could be teaching the following school year. The activities presented in this study appear to fall 

in a sort of Goldilocks zone. That is to say, the activities depend on topics within the secondary 

curriculum but are still challenging enough to provide opportunities for preservice teachers to 

engage in CMR. For the same reasons, I anticipate that in-service secondary mathematics 

teachers would also benefit from engaging with the activities based on the line-segment 

approach. Additionally, in as much as technology was crucial in the initial stages of the 

instructional sequence, it was not required when investigating the relationships between the 

trigonometric functions. This suggests that this instructional sequence could be adapted for a 

methods course or capstone course for the same population of PST.  

Beyond these two particular groups, my study provided little support to determine if the 

instructional sequence would be appropriate. However, based on goals and realities of other 
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populations and contexts I think there are a few other populations to consider. First, I think that 

this instruction would not be well suited for high school students unless they had the background 

knowledge of all of the different approaches of trig (e.g., unit circle, ratio), and in other 

components of the milieu (e.g., geometry) that support CMR. Unfortunately, I think it would be 

difficult to justify investing the additional time for the majority of high school students. There 

are far too many topics in the high school curriculum that are already not taught and learned well 

that will be applicable to more students than trigonometry. Additionally, I am not confident that 

replacing what students are currently doing with respect to trigonometry in high school with this 

instruction would be successful because it seemed that much of what the students in this study 

drew upon to produce CMR was prior knowledge of trigonometry. They were pulling from the 

ratio and unit circle approaches in many instances. Without that background knowledge, I am not 

confident that high school students would be equipped to engage with the material in the same 

way.  

There is at least one other group of students with which we could consider using this 

instruction. Undergraduate students who are not mathematics education majors would in theory 

have the necessary prerequisite knowledge of geometry as well as the ratio and unit circle 

approaches to trigonometry. Could this instruction be appropriate for them? My initial reaction is 

yes it would be appropriate, however, there are some differences in these populations which 

might cause issues. The undergraduate who would be in a course for which trigonometry is 

appropriate may not have the same interest and curiosity in mathematics as secondary 

mathematics PSTs. I think it would be likely that the motivation to invest in this instruction for 

this population would not be as high as it was for the participants in this study.  
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Finally, the literature I reviewed did not give a benchmark for how much CMR is 

considered good enough or how little IR and MR should be tolerated. Without some benchmark 

it is difficult to evaluate the instructional sequence made up of the four tasks. However, it is 

worth noting that in all the instructional sessions of this study CMR was required. In my opinion, 

the students do not necessarily have to have all instances of their reasoning to classified as CMR 

to be productive. Some of the concepts needed to achieve CMR are indeed forms of AR that 

students build on to eventually achieve CMR. A few instances of IR that are not the end in 

themselves but a catalyst to achieving CMR can be tolerated in any given task. This however 

should be taken with caution to guard the students from yet again falling in the loop of IR as the 

main or only reasoning strategy. Additionally, one may wonder, was the reasoning elicited 

through this instructional sequence evidence that can support promoting instruction on 

trigonometry that focuses on the line-segment definition over other approaches (e.g., ratio, unit 

circle)? Although this study may not be able to answer that question, it does provide a 

description of the reasoning elicited, which could be compared to reasoning elicited when using 

other instructional approached. Studies to establish comparisons between the reasoning elicited 

from the unit circle approach and ratio approach could be helpful. 

Limitations of the Study 

This dissertation study has at least three limitations. First, the students were all preservice 

secondary mathematics teachers in their final semester before student teaching. Apart from those 

who may have had a chance to teach trigonometry as part of their work during clinical 

experience, most of the participants had taken years without sitting in a trigonometry class. The 

students’ responses and reasoning were therefore largely influenced by what they could recall 

from their previous learning experiences. If one uses a different group of participants, for 
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example, students who are being introduced to trigonometry for the first time, the results may be 

different. 

Thompson (2008) reported how right triangle trigonometry instruction in U.S. schools is 

dominated by the use of the mnemonic, SOH-CAH-TOA, and special right triangles. The 

students are then presented with numerous exercises that are intended to focus them on solving 

lengths of segments in a triangle. There is therefore a dearth of tasks to use in studying concepts 

like trigonometric ratios. With this shortage of extant tasks to explore the students’ reasoning, I 

opted for a course that was focused on teaching mathematics with technology and having 

trigonometry as one of the areas to investigate. The findings of this study are therefore reported 

from such tasks that the instructor used to achieve the course objective (i.e., learning to use 

technology to support the teaching and learning of mathematics). Perhaps, if another study 

focuses on different tasks regarding trigonometry, students may exhibit different reasoning 

approaches. 

 During the data collection process, I focused on students’ responses and written notes. 

Constrained to students’ spoken words, gestures while explaining, and written notes during the 

instruction sessions, it is possible that occasionally students may have concealed their thoughts 

and not write them down or even verbalize them. My inferences were therefore from the 

students’ utterances, notes, and actions in terms of gestures, and their work on the computers as 

they were using the dynamic geometry environment.  

Recommendation for Future Research 

The results of this study provide insight into the reasoning of preservice secondary 

mathematics teachers in regard to trigonometry. It was not envisioned and should not be read as 

a study to contribute to the pessimistic findings of previous studies that have reconnoitered the 
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same group. On the contrary, the focus was on college students as a whole and the results of this 

study should be viewed through the lens of someone investigating post-secondary participants.  

As I reflected on what the data from this study told me about the appropriateness of the 

instructional sequence, I ran into some frustration because the literature I reviewed does not give 

a benchmark for how much CMR is considered good enough or how much IR can be tolerated. 

Without some benchmarks it is difficult to evaluate the instructional sequence made up of the 

four tasks. Therefore, future research related to this will be important. I do contend, as did other 

researchers (e.g., Hirsch, Weinhold, & Nichols, 1991; Markel, 1982; Weber, 2005), that 

knowledge of trigonometry is necessary if students are “to mathematicize the world around them, 

problem solve, and develop an appreciation for the relevance and utility of mathematics” (Fi, 

2003, p. 214). Therefore, learning how much creative reasoning is needed to achieve this will be 

an important addition to the field.  

I can say, however, that every task required CMR. In my opinion, the students do not 

necessarily have to have all instances of their reasoning to classified as CMR for their learning 

experience to be seen as productive. Some of the concepts needed to establish CMR are indeed 

forms of IR (particularly forms of AR) that students build on to eventually achieve CMR. A few 

instances of IR that are not the end in themselves but a catalyst to achieving CMR can be 

tolerated in any given task. This, however, should be taken with caution to guard the students 

from yet again falling in the trend of IR as the main or only reasoning strategy. Additionally, one 

may wonder—was the reasoning elicited through this instructional sequence evidence that can 

support promoting instruction on trigonometry that focuses on the line-segment definition over 

other approaches (e.g., ratio, unit circle)? Although this study may not be able to answer that 

question, it does provide a description of the reasoning elicited, which could be compared to 
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reasoning elicited when using other instructional approaches. Studies to establish comparisons 

between the reasoning elicited from other trigonometry instruction could be helpful. 

One final suggestion for further study is to pick up where this study leaves off. I have 

identified the types of reasoning that occurred when students engaged with the instructional 

sequence and shown that CMR does in fact appear to be exhibited by the students. What is 

missing, however, is understanding what in particular in the instruction supported CMR.  

Although I did not set out to investigate the question: what aspects of the milieu 

encouraged the students to engage in CMR? I could not help but be engaged by the question as I 

analyzed my data. The following discussion explores my cursory thoughts on this question to 

support those who may choose to investigate the question more deeply in the future. 

Components Supporting CMR 

In numerous studies, researchers have demonstrated techniques for teaching specific 

trigonometry topics (e.g., Borba & Confrey, 1996, Clements & Battista, 1989, 1990; Keiser, 

2000, 2004), while others have investigated instructional strategies for improving the teaching 

and learning of trigonometry as a whole (e.g., Hertel & Cullen, 2011, Moore, 2013; Weber, 

2005). The recommendations from all these studies are diverse and they advocate for either the 

ratio approach (e.g., Kendal & Stacey, 1998), or the unit circle approach (e.g., Weber, 2005) and 

more recently the line-segment approach (e.g., Clements & Burns, 2000; Hertel & Cullen, 2011). 

Some researchers have recommended an amalgamation of more than one approach (e.g., Moore, 

2013). Because researchers have also recommended instructional techniques that promote CMR, 

as it has been found to be essential in the learning of mathematics (e.g., Lithner, 2015; NCTM, 

2000), in the course of this study, I noticed several key components that seemed to spark this 

CMR, and these included: (a) the support of having access to the Dynamic Geometry 
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Environment (e.g., representations, feedback),  (b) the support of working in a group, (c) the 

instructor’s teaching moves, and (d) the students’ competences (e.g., prior knowledge). Below, I 

give a brief summary of each of these components.  

Technology. From the qualitative analysis of students’ work I noticed CMR about 

trigonometric concepts seemed to have been fostered by working in a Dynamic Geometric 

Environment (DGE). In several instances the technology perhaps provided feedback that 

supported the students in realizing several concepts and allowed them to reason creatively about 

them. For example, in Task 2, students utilized their access to technology to connect the idea that 

parallel lines in the construction correspond with asymptotes in the graphical representation of 

the tangent. In particular, the students had the opportunity to explore the properties of 

trigonometric functions and relate them to different graphical representations. This unique access 

and interaction, which was essential in aiding the students to engage in CMR, not only allowed 

students to construct segments representing the trigonometric functions, but also to identity and 

quantify specific attributes of these quantities. This allowed the students to focus on how the 

corresponding graphs were transformed when the different components were varied in a 

coordinate plane (Hertel & Cullen, 2011). How much of this technology was required, is still an 

open question for investigation. 

Access to a group. The support of working in a group was another component that 

appeared to contribute to students’ engagement in CMR. With the help of the instructor, the 

students engaged in mathematical discourse in their small groups as well as with the whole class 

that helped them reason creatively. This arrangement helped students (a) work with and rely on 

one another, and (b) work in small groups before sharing in the large groups. In the small groups, 

students came up with or refined ideas with partners, or the instructor, and discussed ideas as a 
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group to investigate and reason about the tasks. In my opinion, this inspired students to formulate 

conjectures as well as reason and reach plausible conclusions founded on their own mathematical 

knowledge and the implicit properties of the trigonometric functions without relying on the 

authority of the instructor. In the general class discussion, when the students discussed their 

ideas, they listened to different perspectives, and engaged in sense-making, which resulted in 

CMR. Moreover, this is consistent with what the Common Core State standards (CCSSM) and 

NCTM have advocated for. According to the CCSSM, students must not only be able to explain 

and justify their thinking, but also “construct viable arguments and critique the reasoning of 

others” (CCSSI, 2010, p. 6). Similarly, the NCTM (2000) Communication standard states that 

students should be able to: 

• organize and consolidate their mathematical thinking through communication,  

• communicate their mathematical thinking coherently and clearly to peers, teachers and 

others,  

• analyze and evaluate the mathematical thinking and strategies of others, and  

• use the language of mathematics to express ideas precisely. (NCTM, 2000, p. 63).  

However, future research can further probe if there is an undeniable connection between 

group work and promotion of CMR. 

Student competences. The students’ CMR also depended on their competences mainly 

in form of their prior knowledge of geometry. In all but a few instances, the prior knowledge 

students possessed played a key part in their ability to engage in CMR. Analysis of the data 

points to the need for students to have prior knowledge about multiple approaches of 

trigonometry (e.g., T2CMR1 - first CMR instance in task 2, T3CMR6), and geometry (e.g., 

T2CMR2, T3CMR5, T4CMR1, T4CMR2, T4CMR3) to be in position to engage in mathematical 
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reasoning that is novel, plausible and founded in mathematical properties of the trigonometric 

functions. Even though the basic knowledge from other approaches of trigonometry (e.g., SOH-

CAH-TOA from ratio trigonometry) is required, this knowledge does not provide students with 

complete solutions algorithms as in the case of AR or MR. In fact, students leverage this prior 

knowledge to construct new (to the reasoner) or re-construct forgotten reasoning sequences that 

lead to CMR. The students were also able to draw on their knowledge of geometry in form of the 

Pythagorean theorem, similarity and congruence of triangles to construct plausible arguments. 

Consistent with Hertel and Cullen’s (2011) observation that the directed length approach 

can be used to circumvent difficulties students encounter, results from this study indicate that 

whenever there was no use of geometric figures in the students’ strategies, there were limited 

instances of CMR registered. Although for other approaches of trigonometry this issue can be 

reconciled by giving students avenues that lead them to make geometric connections, my 

findings suggest that students were more inclined to make use of geometry under the line-

segment approach. For example, Task 2 (Excerpt 7), when investigating the attributes of the 

tangent function, all strategies were void of any form of geometry and the reasoning was all 

imitative. 

Findings from this study indicate that prior knowledge can promote CMR, not only in 

helping the students re-create a reasoning sequence from this prior knowledge, but even when 

creating new (to the reasoner) plausible reasoning sequence. Furthermore, prior knowledge of 

unit circle and ratio trigonometry was beneficial, not only for learning of procedures, but also for 

correct transfer of the conceptual structure, which was essential in achieving CMR.  

Teacher’s moves. Viewing the data from the six sessions as a whole, there was a 

collection of several teacher moves that I contend did not only lay a platform for students to 
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promote CMR but also to avoid drawing them towards person-guided algorithmic reasoning. 

Among others, these moves included: (a) encouraging discussions, (b) assigning open-ended 

tasks, and (c) utilizing technology strategically. The promotion of student collaborations enabled 

students to bounce ideas off of each other, making it possible to shift from IR to CMR (e.g., 

T1CMR1). Several researchers (e.g., Balacheff, 1991; Ball & Bass, 2003; Maher, 2005; Yackel 

& Hanna, 2003) have acknowledged the significance of students constructing arguments to 

corroborate their solutions to different questions and then justifying these with reasons. In 

intentionally setting up students to work in groups, having general class discourse, and asking 

questions that stimulated further justification, I posit contributed to students engaging in CMR. 

The open-ended tasks supported students to stretch their reasoning as they developed and 

rationalized their solutions (e.g. T4CMR9).  

Technology was crucial in this study, but the instructor deliberately orchestrated moves 

to assure that the technology did not cloud the trigonometric content. This intentional use of 

technology kept the mathematics and not the technology as the focus of instruction. And in not 

always providing pre-made files of the tasks, the students were in some instances able to 

effectively explore the DGE and result in a case of CMR (e.g., T2CMR4, T3CMR4). Even 

though not many of the instances of CMR can be directly attributed to a particular teacher move, 

there is number of them that were an implicit byproduct because the instruction techniques 

facilitated the other components (e.g., technology, group work) in promoting CMR. However, 

because this study did not set out to investigate the effect of the teacher moves in particular, it 

seems to be an area that can be further studied to either confirm or dismiss mu hypothesis. 

One final suggestion for further study would be to follow up with PSTs who engaged in 

this instructional sequence. Would these PSTs teach trigonometry differently from PSTs who 
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had not engaged in the line segment approach to trigonometry? If they did teach differently, 

would it have any measurable difference in their students understanding of trigonometry? If not, 

it would be difficult to suggest this instructional sequence for other PSTs as improved student 

understanding should be the ultimate goal for our research.  
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APPENDIX A: WEEKLY STUDY OUTLINE 

Weekly Study Outline  

 In-class focus group Whole class 

 

Week 1 

• Functions: 1-D geometric objects→1-D 

geometric objects 

• Chord, tangent, and secant functions 

 

 

 

 

 

 

Week 2 

• Chord, tangent, and secant functions 

• Measuring an angle 

 

 

 

 

 

 

Week 3 

• Measuring an angle 

• Secant function 

• Co-functions 

 

 

 

 

 

 

Week 4 

• Radians vs degrees 

• Trigonometric identities 

 

 

 

 

 

 

Week 5 

• Basic identities 

• Transcendental functions 

 

 

 

 

 

 

Week 6 

• Sum and difference formulas 
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APPENDIX B: IDENTIFIED TASKS 

Week Task Chosen 

 

Week 1 

• Functions: 1-D geometric objects→1-D 

geometric objects 

• Chord, tangent, and secant functions 

 

 

Function: Identifying the function (sine)- 

Task 1 

 

Week 2 

• Chord, tangent, and secant functions 

• Measuring an angle 

 

 

Properties of the tangent and secant 

functions – Task 2 

 

Week 3 

• Measuring an angle 

• Secant function 

• Co-functions 

 

 

 

Task 2 – Secant Function 

 

Week 4 

• Radians vs degrees 

• Trigonometric identities 

 

 

Task 3 – Exploring Trig Identities 

 

Week 5 

• Basic identities 

• Transcendental functions 

 

 

Task 4 – Comparing sine and tangent 

 

Week 6 

• Sum and difference formulas 

 

 

 

 

Task 5 – Sum formulas for sine, and cosine  

Half angle for tangent 
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APPENDIX C: TIMETABLE 

Timetable for Research Completion to Graduate in August of 2019 

Degree Requirements Date 

Proposal September 2017 

IRB approval September or October 2017 

Collect Data October to December 2017 

Degree Audit May 18, 2018 

Proposal Approval Form May 18, 2018 

Right to Defend October 12, 2018 

Last Day for Oral Defense July 15, 2019 

Final Deposit Filing July 22, 2019 

Degree Completion Date August 10, 2019 
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