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A STUDY OF COVID-19 MORTALITY UNDER VARYING PATIENT FRAILTY

ALISON N. SIFUENTES

33 Pages

Modeled the spread and mortality of COVID-19 throughout the city of Chicago. By

incorporating group frailty into a classic SEIR infectious disease model, we were able to

differentiate the population of Chicago by their response to COVID-19. Three age groups

with different COVID-19-induced death rates were examined, and the model sought to

showcase the multiplicative deviation of each age group death rate from the average

disease-induced death rate. This adjustment for different death rates among age groups

accounted for heterogeneity within the population, and sought to introduce a more

accurate manner for modeling the spread of infectious diseases.
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CHAPTER I: INTRODUCTION

Infectious disease modeling is used to mimic, analyze, and interpret the spread of

infectious diseases through a population. Two common models used for infectious disease

spread are compartmental models and agent-based models [1]. Compartmental models

organize a population into classes differentiated by health status as directly related to the

infectious disease in question [1, 13]. For example, these models consider everyone who has

not contracted the disease to be susceptible, those who have contracted the disease to be

infected and arguably infectious, and those who have recovered from the disease (or died

from the disease) to be recovered. In this way, compartmental models are able to group

individuals within a population into classes based on their disease status. The flow of

individuals from one class to another is visually depicted in Fig. (1). In this diagram,

individuals flow between the three states: S (Susceptible), I (Infected), and R (Recovered).

Each arrow moving between classes is associated with a set of parameters. These

parameters showcase the rate at which individuals move out of one class and into the next

[13].

Figure 1: Compartmental model with three classes: S, I, and R. The parameters β and
γ each represent flow rates between classes. In this diagram, β is the rate at which the
susceptible become infected and γ is the rate at which the infected recover.

For compartmental infectious disease models, it is important to note that all

individuals within a population of interest are assumed to fall within one of these classes

[1, 13]. In this way, the model assumes that all susceptible people move into the infected

class at the same rate. Similarly, the model assumes that all infected individuals recover at

the same rate. Therefore these rates are considered average rates at which individuals

move between classes, as the model does not leave room for individualistic choices / health
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/ resources that realistically affect the rate at which individuals become infected and

recover. Unlike compartmental models, agent-based models are able to accommodate

individualized data such that these models consider the choices / health / resources of each

person in the population. Agent-based models however require enormous amounts of data

to accurately reflect how individuals within a population interact with one another. To

model the spread of infectious diseases without the need for large amounts of data and

knowledge pertaining to local movements within a population, compartmental models are

typically more widely used. The number of classes that a compartmental model contains,

the rates at which each class flows into the next class, and the overall complexity of

compartmental models can vary. This variation in compartmental model building provides

a flexible and reliable method for analyzing the spread of infectious diseases [1].

One longstanding method for describing and analyzing the spread of infectious

disease is the compartmental SEIR model. The SEIR model subdivides the population into

four classes: the susceptible, the exposed, the infectious, and the recovered / removed. The

SEIR model then models the rate at which people in a population move between these four

different states [1]. The diagram in Fig. (2) represents a basic SEIR model with its

corresponding flow rates.

Figure 2: Compartmental model with four classes: S, E, I, and R. The parameters β, ζ,
and γ each represent flow rates between classes. In this diagram, β is the rate at which
the susceptible become infected, ζ is the rate at which the exposed move into the infectious
class, and γ is the rate at which the infected are removed from the infectious class.

For the SEIR model, most individuals begin as susceptible to an infectious disease,

and upon interacting with and contracting the disease from infectious individuals, they

move into the exposed population [13]. This is illustrated in Fig. (2) between the S
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(Susceptible) and E (Exposed) compartments. The exposed population consists of

individuals who have contracted the disease but have yet to show symptoms. Despite the

lack of symptoms, it is possible for individuals within the exposed population to spread the

disease, as the exposed may become contagious a few days before symptoms start. The

specific infectious period, whether beginning before or at the start of symptoms, is

dependent on the disease and is often based on disease-specific medical knowledge. Since it

is difficult to truly estimate the size of the exposed population that is contagious before

symptoms appear, the infectious class is considered to be everyone displaying symptoms

and thereby visibly identifiable as infectious. Therefore, those exposed will enter into the

infectious population based on whether or not they are symptomatic. This movement is

outlined between the E (Exposed) and I (Infectious) compartments in Fig. (2).

Once in the infectious class, individuals can move out of this class upon recovery

from the disease, or as a result of mortality - thus moving into the recovered / removed

class. The recovered / removed population consists of individuals who have died either due

to the disease or other causes, as well as individuals who are immune to contracting the

disease after initial survival (this is dependent upon the disease, as there are some diseases

where recovery doesn’t offer immunity from reinfection). For those diseases offering

immunity upon recovery, there will be no arrow stemming from the recovered class to the

susceptible class. For those diseases where reinfection is possible, there can be an arrow

connecting the recovered class to the susceptible class. Altogether, population movement

between the susceptible, exposed, infectious, and recovered / removed classes is dependent

on the infectious disease of interest, as flow rates between classes depend on the

epidemiological rates predetermined by medical research.

It is important to note that flow rates between classes for an SEIR model treat all

individuals as having an averaged susceptibility, exposure, mortality, and recovery response

to a given infectious disease. This falls back onto the basic model assumptions of the SEIR

model. The model assumes that as individuals move between classes, there is homogeneity
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of individuals as well as spatial-temporal homogeneity [1, 17]. The focus of this work is to

take a closer look at how different age groups within the population respond to the

transitions between the S, E, I, and R states. We may assume, for example, that all

infectious individuals recover at the same rate. However, due to differing health and

immune system factors, not everyone with a given disease will respond in the same manner.

The factors influencing individual response to a disease contribute to an individual’s

"frailty." The term frailty from a medical viewpoint encompasses those attributes or

characteristics placing some of the population at an advantage and others at a disadvantage

during a disease outbreak [11]. Variation in frailty regarding health status is one way of

introducing heterogeneity within a population. The overall health and responsiveness of

individuals within a population can shed light on the spread of infectious diseases.

One method for incorporating heterogeneity within an SEIR model is to break down

the typical susceptible, exposed, infectious, and recovered / removed classes into

subclasses. These subclasses can be defined by epidemiological research differentiating a

population by physical attributes such as age, sex, and/or race. Subclasses may also be

organized via attributes concerning post traumatic stress disorder (PTSD), access to

healthcare, and location. Altogether, subclasses allow for differentiation within a

population. For example, instead of assuming that all infectious individuals recover at the

same rate, we can break down the infectious class into subclasses distinguished by access to

healthcare. The rate at which individuals recover may differ depending on individual access

to healthcare and healthcare quality. By dividing the infectious class into subclasses based

on healthcare access, the model more accurately depicts the flow of individuals moving

between the infectious and recovered / removed classes. In this way, subclasses allow for

differentiation within a population containing noticeable clustered responses to an

infectious disease. These models containing subclasses to further explain the spread of

infectious disease and understand the underlying dynamics occurring within a population

are referred to as meta-population models [1].
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Regarding factors differentiating individuals within a population into subclasses, one

can examine group frailty. Frailty, in a medical sense, marks a difference in response due to

varying health factors [4]. From a mathematical standpoint, frailty is a multiplicative effect

on the hazard function of a group of individuals [15]. Moreover, frailty, in terms of disease

modeling, represents a multiplicative effect on the response of individuals who have

contracted a disease. Those individuals considered to be more frail, whether due to internal

characteristics or external circumstances, undergo a multiplicative effect on their

corresponding death rate. This work incorporates the concept of frailty to develop an SEIR

meta-population model accounting for heterogeneity within classes, as well as a method for

estimating the multiplicative effect distinguishing this heterogeneity as a result of frailty.

The multiplicative effect due to frailty is defined as the frailty parameter. To demonstrate

one method for estimating the frailty parameters within a meta-population model, we

sought to model the spread of the coronavirus COVID-19 throughout the city of Chicago in

Illinois.

Coronaviruses are a subset of viruses causing illness in animals and sometimes

humans depending on the development of the virus. Coronaviruses can have differing

effects on animals and humans if infected, but most commonly these viruses lead to

respiratory complications. In humans particularly, these viruses can range in their

symptomatic seriousness as someone infected may display typical common cold-like

symptoms, while someone else may experience respiratory failure and pneumonia [2].

Different pathogen strains of coronavirus have emerged within the last two decades. Most

notably are SARS, MERS, and COVID-19. SARS led to an outbreak in the years

2002-2004, while MERS led to an outbreak in 2012. COVID-19 is the name given to a

strain of coronavirus, SARS-CoV-2, leading to the global pandemic in 2020. This virus is

an infectious disease spreading from person to person with an infection rate higher than

that of SARS and MERS during their respective outbreaks [2]. COVID-19 symptoms range

as they do for most strains of coronaviruses, however common symptoms indicating
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infection include a consistent cough, fever, shortness of breath, and body aches. Infected

individuals may also experience a sore throat, loss of taste and smell, diarrhea, as well as a

recurring headache [3]. Some individuals infected with COVID-19 may develop

COVID-related pneumonia, a serious complication in which the air sacs within the lungs

become infected. If pneumonia develops, patients may experience a phlegm-filled cough in

addition to COVID-19 symptoms [4].

The symptoms experienced by individuals infected by COVID-19 vary in their

seriousness and longevity. Some infected individuals may recover quickly and experience

mild symptoms while others may take as long as 3-6 weeks to recover from more serious

respiratory complications. Although infected individuals of all ages have undergone serious

symptoms and required hospitalizations, older populations are considered at high risk for

COVID-19 [5]. This risk is attributed to the relationship of age and comorbidities.

Comorbidities describe the accumulation of existing factors / conditions that can impact

response to an immediate or primary condition, such as a disease. Some conditions

occurring together that can be considered comorbidities include hypertension, high

cholesterol, diabetes, dementia, and more [6]. Comorbidities are associated with age as the

number of comorbidities accumulated increases as age increases [8]. Individuals over the

age of 65 are especially associated with having developed more conditions in co-occurrence,

thus having developed more comorbidities [8]. These comorbidities lead to complications

regarding individual response to diseases such as COVID-19. Since age is associated with

development of comorbidities and increased risk factors, age can be considered a factor

differentiating a population by their response to a disease, or by their individual frailty.

Alongside comorbidities serving as a link between age and frailty, age has been

defined as a frailty itself. A study examining pneumonia risk factors considered age a

frailty factor, defining frailty as "a distinct clinical syndrome characterized by a decrease in

physiological reserve and resistance to stressful situations, making individuals more

vulnerable to health problems” [9]. Another study provides evidence that age increases
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rates of chronic disease and impairments [10]. Whatsmore, one study formally defined

aging as "changes in immune response impairment of alveolar macrophage function and

increase in cellular apoptosis during sepsis, leading to a greater severity of infection” [11].

This study went on to suggest that "biological age should be more routinely assessed to

guide clinical decision making in older patients in general and, in particular, to help

clinicians identify older patients with pneumonia who might benefit from ICU admission."

While this study focuses on pneumonia rather than COVID-19, pneumonia is a possible

complication of COVID-19, and it is important to note the risk associated with age in

non-COVID pneumonia patients. This study determined that age was a frailty affecting

mortality of pneumonia patients [11].

As a result of this evidence and available data, throughout this work, we consider

frailty in the context of age. This means that as we proceed towards accounting for

variation due to "frailty," and build upon the compartmental SEIR infectious disease

model, we are really examining the effects of aging on patient response to an infectious

disease. While frailty can account for any internal or external attribute impacting

individual response to a disease, we focus in on aging as a characteristic marker for frailty.

However, we continue to refer to variation in response to disease through the general term

"frailty" throughout this work as our model and method may be modified to address

variation due to any factor affecting frailty. Yet for our specific case study, the term

"frailty" is considered interchangeable with ageing.

Since age is considered a frailty, we have decided to differentiate a COVID-19

affected population by age group. The goal is to create a metapopulation model

incorporating age group frailty and to use the COVID-19 outbreak as a case study. Since

frailty is a multiplicative effect on the hazard function, or death rate, it is of interest to

focus the frailty within the model on COVID-19 mortality rates. From a public health

standpoint, older individuals are presumed at higher risk for COVID-19, such that they are

more likely to undergo worsened symptoms and may require hospitalization [5]. To
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mathematically estimate just how age affects an individual’s frailty for COVID-19

mortality, age group death rates were estimated using data collected from the city of

Chicago.

The city of Chicago was among the “hot spots” when the COVID-19 outbreak

reached the United States. The terminology “hot spot” refers to a location in which the

number of cases arose rapidly. Hot spots also refer to locations containing more cases than

most other locations in the country at the time. The city of Chicago, as well as the entirety

of the state of Illinois, took immediate response to rising case numbers and concerns

regarding COVID-19. As a result of measures put in place to limit the spread of COVID-19

throughout Illinois, the number of in-person interactions among Chicago residents was

forcibly lessened for the majority of the outbreak. This consistent and immediate response

marked Chicago as an adequate place to model. Moreover, the consistency of the

Chicago-central outbreak was considered a good measure for meeting the assumptions of

the compartmental SEIR model.

The adequacy of compartmental SEIR models depends largely on homogeneous

interaction, spatial homogeneity, and temporal homogeneity [1, 13]. Modeling the entirety

of the United States, for example, would break the assumption of homogenous interaction

as not everyone in the United States is interacting with an equal number of people each

day. Even modeling on a smaller scale, say the entirety of Illinois, breaks the assumption of

spatial homogeneity as people living in rural areas theoretically interact with fewer people

daily when compared with people living in urban areas. Averaging interaction and infection

rates across rural and urban areas may lead to spurious conclusions if left unacknowledged.

Chicago, as a centralized and strictly urban location, was considered to be more consistent

in its number of daily in-person interactions. In addition, Chicago more closely meets the

assumption of spatial homogeneity (as an all urban location) than the state of Illinois or

the entirety of the United States. Furthermore, Chicago remained uniform in it’s lockdown

policy for the majority of the outbreak, only opening up once the number of daily cases
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was lessened. Using the Chicago-central outbreak as a case study, data collection and the

method for introducing frailty to different age groups is outlined in the Methods section

below.
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CHAPTER II: METHODS

II.1 Collecting Data

II.1.1 Organizing Population Data Collected from the City of Chicago Data

containing daily COVID-19 mortality counts and confirmed COVID-19 case counts was

collected from the City of Chicago website and published to HealthData.gov. This data

contained the number of COVID-19 deaths as well as confirmed cases for varying

demographics within Chicago. More specifically, the dataset included COVID-19 mortality

and case counts for eight different age groups: ages younger than 18, ages 18-29, ages

30-39, ages 40-49, ages 50-59, ages 60-69, ages 70-79, and ages 80 and older. As an

overview, the total COVID-19 mortality and confirmed case counts for each age group are

included below in Table (1).

Table 1: Covid-19 Age-Stratified Confirmed Cases, Number of Deaths
Age Group Confirmed Cases Number of Deaths Death Rates

< 18 2,636 2 0.000758725
18-29 10,090 18 0.001783944
30-39 9,521 65 0.006827014
40-49 9,612 142 0.0147732
50-59 9,024 289 0.032025709
60-69 6,400 573 0.08953125
70-79 3,477 652 0.187517975
80-89 2,751 893 0.324609233

II.2 Data Exploration

II.2.1 Combining Age Group Data for Frailty Estimation The data in Table (1).

provides the total number of COVID-induced deaths and confirmed COVID-19 cases for

eight age groups. When investigating differences in frailty, it is not especially important to

look at each of these particular age groups separately. Instead, we want to focus on groups

displaying obvious differences in the number of deaths per the corresponding number of

confirmed cases. Examining a bar graph of the number of confirmed cases per age group,
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shown in Fig. (3), notice that the majority of COVID-19 cases are among age groups 2-5,

corresponding to ages 18-59. Interestingly, despite there being more cases within these age

groups, age groups 2-5 have fewer total deaths than age groups 6-8. A bar graph for

age-stratified total COVID-19 deaths is provided in Fig. (4).

Figure 3: Age group total confirmed cases for COVID-19 as of July 5, 2020.

To gain a visual perspective on how the number of deaths within each age group

compares to the corresponding number of cases, age group death rates were plotted in Fig.

(5).
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Figure 4: Age group total deaths for COVID-19 as of July 5, 2020.

Figure 5: Age group death rates for COVID-19 as of July 5, 2020. Deaths rates are calculated
per 100,000 people.

The overall shape of the bar graph for age group death rates is similar to the overall

shape of the bar graph for age group deaths. The shape of the bar graph for age group

confirmed cases, however, is not similar to that of the graph for deaths and death rates.

This indicates that the proportion of deaths to the number of cases is not the same for
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each age group. These proportional differences reflect the difference in response to

COVID-19, such that not all age groups respond the same. Since age groups 6-8

maintained high death rates while age groups 2-5 had lower death rates, these clusters of

age groups were each grouped together into two separate groups. Furthermore, the

youngest age group within the dataset was included as a separate third group. This

grouping was completed to showcase noticeable variation in response to COVID-19. If the

original eight age groups collected from the city of Chicago dataset were each utilized for

comparison, we would expect that some age groups, such as age groups 2-5, would have

similar estimates for frailty. Therefore, we would expect those similar age groups to have

similar estimations for the number of cumulative deaths. To avoid having excess similar

groups, and to focus on the variation as a result of age, the data was reorganized to display

three age groups rather than eight. These three age groups contained individuals less than

18 years old, individuals between 18-59 years old, and individuals 60 years old and older.

These stratified age groups are in accordance with public health advice differentiating older

age groups as being more at risk. Bar graphs for total confirmed cases, total deaths, and

death rates for the organized three age groups are outlined in Fig. (6).
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(a) Age group total confirmed cases as of July 5th, 2020.

(b) Age group total deaths as of July 5, 2020.

Figure 6: Age group COVID-19 confirmed cases, deaths, and death rates as of July 5th,
2020.

These three groups exemplify the difference in COVID-19 death rates among age

groups. The death rate for the eldest age group (ages 60 years and older) appears much

higher from a visual standpoint. To examine just how much more at risk older groups are,

we used the data for all three age groups to estimate the frailty for each group. The frailty

for each group indicates the multiplicative deviation from the average death rate, thereby

showcasing the higher or lower mortality rates experienced by different age groups.
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(c) Age group death rates per 100,000 people as of July 5, 2020.

Figure 6: Age group COVID-19 confirmed cases, deaths, and death rates as of July 5th,
2020.

II.3 Estimating Frailty Using Age Grouped Data

Frailty is a multiplicative effect on the death rate that differentiates a population by

some characteristic putting some individuals at an advantage and others at a disadvantage.

More specifically, the frailty parameter is an estimate for the multiplicative deviation of

differentiated group death rates from the overall average death rate. The average death

rate stems from the total number of deaths out of the size of the population at risk (in our

case Chicago). Therefore, when calculating the frailty parameter, we find the multiplicative

deviation of each group death rate from the overall death rate calculated using the data at

hand.

Table 2: Total Deaths and Cases for Age Group Data
Age Total Deaths Population Size Deaths / Pop. Group Proportion
< 18 2 576,625 0.000003468 0.212107167
18-59 514 1,676,504 0.000306590 0.616689381
60+ 2,118 465,426 0.004550670 0.171203452
All 2,634 2,718,555 0.000968897 1.0
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We find the average death rate by first calculating the number of deaths divided by

the size of the population. According to 2020 estimates, the estimated population size of

Chicago was 2,718,555. Thereby, the average death rate is 2,634 divided by 2,718,555. This

gives an average death rate of 0.000969, or 96.89 deaths per 100,000 people. If there was no

frailty, this death rate is the average expected death rate per each age group. However,

since some age groups are advantageous in their response to COVID-19 while others are at

a disadvantage, this weighted average death rate is not the reality for each age group.

Frailty parameters are then used to indicate each age group’s deviation from the average

death rate. These parameters are estimated by finding the multiplicative deviation of each

age-specific death rate from the weighted average death rate. Frailty parameter estimation

is outlined below.

Table 3: Frailty Parameter Estimation
Age Age-Specific Death Rate Average Death Rate Frailty Parameter
<18 0.000003468 0.000968897 0.003579801
18-59 0.000306590 0.000968897 0.316432351
60+ 0.004550670 0.000968897 4.696752426

These three frailty parameter estimates - 0.00357980, 0.316432351, and 4.696752426

- are the multiplicative factors showcasing each age group’s deviation from the average

death rate. Using each frailty parameter, the goal was to more accurately reflect

age-stratified mortality for COVID-19 and build a mathematical method of frailty into the

classic SEIR infectious disease model. This method sought to tie together medical

knowledge of frailty with disease spread. To investigate the adequacy of including these

frailty parameters, we built an SEIR model with incorporated frailty.

16



CHAPTER III: MODEL

III.1 Developing a Meta-population SEIR Model

III.1.1 The Basics To develop a meta-population SEIR model, the typical SEIR model

was first examined as a base for building upon. This basic preliminary SEIR model is

included below.

dS

dt
= −βS(I/N) (1.1)

dE

dt
= βS(I/N)− ζE (1.2)

dI

dt
= ζE − γI − δI (1.3)

dR

dt
= γI (1.4)

In Eqs. (1), β is the rate at which susceptibles and the infectious interact and at which the

disease is spread, ζ is the rate at which the exposed move into the infectious class, γ is the

rate at which the infectious move into the recovered class, and δ is the disease-induced

death rate. The parameter N is also included to represent the total size of the population

being examined. Thereby, N is the sum of each class, or N = S + E + I + R. We divide

the infectious class by N for Eq. (1.1) and Eq (1.2) to showcase the proportion of infectious

people within the population interacting with the susceptible. The parameters β and δ are

calculated based on population dynamics and collected data, whereas the parameters ζ and

γ stem from medical knowledge regarding the disease. More specifically, ζ is the reciprocal

of the average latent period of a disease, and γ is the reciprocal of the average infectious

period of a disease multiplied by the percent of recoveries [16, 18]. It is important to note

that the flow rates between the susceptible and infectious classes are based on horizontal

incidence (where β represents the interaction between the susceptible and infectious)

[16, 18]. Furthermore, the flow rates between the exposed to infectious class and the

17



infectious to recovered class are based on the transfer rate of individuals between classes

[16]. This means that ζ and γ are the rates at which people move out of the class. Note

that this base model does not include a birth rate or death rate so that the total

population size is assumed to be constant. While Eqs. (1) demonstrates the flow of

individuals between classes, the goal was to create a meta-population model such that at

least one class contains subclasses serving to introduce controlled heterogeneity into the

model. As a result, the base model was built upon by creating subclasses for each of the

age groups within Table 1.

III.1.2 Introducing Subclasses There are three age groups in Table 1: ages less than

18, between 18-59, and greater than 60. Since frailty is an effect on the disease-induced

mortality rate for different age groups, subclasses were constructed within the infectious

and recovered classes of the SEIR model. The assumption here is that everyone is equally

susceptible to contracting COVID-19, and since the rate at which exposed individuals move

into the infectious class is based on the latent period of the disease, it is additionally

assumed that the rate ζ is the same for all age groups. In terms of frailty, some individuals

may be at an advantage and others at a disadvantage once they’ve contracted COVID-19

and their body is battling symptoms. Therefore the difference in frailty is incorporated into

the infectious class where individuals either recover or die as they are battling the disease.

As a result, these differences in response to the disease are showcased by creating

subclasses within the infectious class of the SEIR model and altering the disease-induced

death rate. These subclasses are visually depicted in Fig. (7).
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Figure 7: SEIR model with subclasses subdividing the infectious class.

Each of the infectious subclasses, labeled as I1, I2, and I3, mark a differentiation in

the population. The frailty will be introduced regarding each infectious class’s

COVID-19-induced death rate. For now, this intermediate model with subclasses is

represented using the system of differential equations in Eqs. (2).

dS

dt
= −βS(I1 + I2 + I3)/N (2.1)

dE

dt
= βS(I1 + I2 + I3)/N − ζE (2.2)

dI1

dt
= p1ζE − γI1 − δI1 (2.3)

dI2

dt
= p2ζE − γI2 − δI2 (2.4)

dI3

dt
= p3ζE − γI3 − δI3 (2.5)

dR

dt
= γI1 + γI2 + γI3 (2.6)

Proportions of the population in the form of p1, p2, and p3 were included in each infectious

subclass equation to reflect the number of people in each age group. These proportions

were collected by dividing the number of people per age group by the total number of
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people within the population. If these proportions had not been included, then the model

would assume that all Exposed move into I1, I2, and I3. Instead, we need for those exposed

to move only into one of those three classes, so the proportions dependent on age group are

used to ensure not all exposed move into each infectious subclass.

III.1.3 Introducing Frailty While Eqs. (2) creates three subclasses within the

Infectious class, it does not differentiate mortality rates between the three classes. To

differentiate mortality rates and account for differences in response to COVID-19, the

frailty parameters were introduced. These parameters are labeled as φ1, φ2, and φ3, such

that they correspond to each age group. Since frailty is a multiplicative effect on the death

rate, the overall COVID-19 death rate δ was left in the model, and each of the frailty

parameters φi, where i = 1, 2, 3, were introduced as multiplicative factors on δ. This was

intended to showcase the average death rate and the deviation of each age group from this

average as a result of differing frailties. The final model with frailty parameters φi is shown

below in Eqs. (3).

dS

dt
= λ− βS(I1 + I2 + I3)/N − µS (3.1)

dE

dt
= βS(I1 + I2 + I3)/N − (ζ1 + µ)E (3.2)

dI1

dt
= ζE − (γ + µ+ φ1δ)I1 (3.3)

dI2

dt
= ζE − (γ + µ+ φ2δ)I2 (3.4)

dI3

dt
= ζE − (γ + µ+ φ3δ)I3 (3.5)

dR

dt
= γI1 + γI2 + γI3 − µR (3.6)

dD1

dt
= φ1δI1 (3.7)

dD2

dt
= φ2δI2 (3.8)
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dD3

dt
= φ3δI3 (3.9)

The model in Eqs. (3) includes the frailty parameters φi as well as parameters for the

natural introduction and removal of individuals to and from the total population. The

parameter λ represents the population birth rate and the parameter µ represents the

non-COVID-death rate. [13] The parameters λ and µ enable for the size of the total

population to grow and diminish from natural causes, such that the disease-induced death

rate is not the only way in which people leave the population. These parameters for

introducing and removing people to and from a population are important if an outbreak is

long-lasting and natural births and deaths would greatly effect the results. If an outbreak

occurs more quickly, it is not always necessary for these parameters to be estimated. We

leave these parameters as a part of the finalized model so that the model itself can be

flexible for different outbreak lengths. While natural birth and death occurrences are

considered within the model, the model does not allow for immigration and emigration.

Additionally, equations D1, D2, D3 were included to examine the cumulative number of

disease-induced deaths per each age group. These equations are focused on the number of

COVID-19 induced deaths within their corresponding infectious subclass. This was the

final model constructed to be used for analysis.
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CHAPTER IV: RESULTS

To examine how adequately this model reflects the number of deaths within each

age group, the software program R was utilized. Initial conditions for each class size were

originally input as whole numbers of the entire city of Chicago population. These class

sizes were then scaled to be proportions of the entire population for simpler interpretation.

Note that N = S + E + I1 + I2 + I3 + R + D1 + D2 + D3, where N is the total size of the

population. For studying the spread of COVID-19 in Chicago, the total population is the

estimated Chicago population size of 2,718,555 people. Using this total population size,

initial conditions were set as outlined below in Table (4).

Table 4: Initial Conditions
Class Initial Values Proportion
S 2,718,555 1
E 40 40/2,718,555
I1 10 10/2,718,555
I2 10 10/2,718,555
I3 10 10/2,718,555
R 0 0
D1 0 0
D2 0 0
D3 0 0

Parameter estimations were calculated using the data collected from the City of

Chicago, as well as medical knowledge regarding how COVID-19 spreads. Please note that

the average COVID-19-induced death rate was more recently estimated at about 0.5

percent [14]. This estimate was used to calculate the disease-induced death rate. The

resulting parameter estimations are depicted below in Table (5).

Using these parameter estimations, the model was run using the language R for a

total of 1,500 time steps, where each time step is set as one tenth of a day. A series of

graphs were output within R for referencing the change in size of each class over time. The

size of the susceptible, exposed, infectious, and the recovered classes are illustrated in Fig.
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Table 5: Parameter Estimations
Parameter Description Estimate

λ Natural birth rate 0.0
β Interaction rate 0.115
µ Natural death rate 0.0
ζ Exposed becoming infectious 0.2
γ Recovery rate 0.1 * 0.995
δ Covid-induced death rate 0.1 * 0.005
φ1 Frailty parameter for group 1 0.003579801
φ2 Frailty parameter for group 2 0.316432351
φ3 Frailty parameter for group 3 4.696752426

(8).

Figure 8: SEIR epidemic, where the size of the susceptible, exposed, infectious, and recovered
classes are displayed against time. Note that the size of the infectious subclasses is small
compared to the size of the total population, so it difficult to examine the change in size for
these subclasses with a full model plot.

It is difficult, however, to examine how the size of each infectious subclass changes

over time when viewing a complete model of all classes on the same plot. This is because

the overall size of each infectious class is small compared to the total population size of

Chicago, and thus this portion of the graph remains small. We can, however, examine the
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change in size of the susceptible and recovered classes within Fig. (8). While the size of the

susceptible class decreases over time as more of the susceptible population becomes

infected, the recovered class increases over time and grows most rapidly during the peak for

each infectious subclass. As the size of the infectious subclasses decreases, the number of

recovered individuals begins to increase at a slower rate and eventually plateaus as the

outbreak comes to an end. Since it is difficult to examine the outbreak for the full model

plot regarding the number of people who become infected, the infectious subclasses were

graphed separately from the entire model. In addition to this plot, a plot of the total

confirmed COVID-19 cases was included for comparison.

Figure 9: Number of daily COVID-19 confirmed cases for each age group.
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Figure 10: Size of the infectious class for each age group. The size of the infectious class
is depicted as a proportion of the entire Chicago population. Age Group 1, Age Group
2, and Age Group 3 refer to Infectious Class 1, Infectious Class 2, and Infectious Class 3
respectively.

According to the graph of the infectious subclasses, Age Group 2 (the green line)

has the highest peak. The larger peak for Age Group 2 can be explained by the actual size

of the age group, as Age Group 2 contains everyone between the ages of 18-59. Age Group

1 (the red line) and Age Group 3 (the blue line) both have peaks much lower. Notice that

the size of the infectious class is greater for Age Group 1 than for Age Group 3. This graph

shows that the eldest age group does not have as many cases as the other age groups. This

variation between age groups is consistent with the data for Confirmed COVID-19 cases.

For the actual collected data, there are more cases occurring with Age Group 2 than any

other age group. Furthermore, there are more cases for Age Group 1 than for Age Group 3.

It is interesting to note that the eldest age group has fewer cases yet contains the highest

number of COVID-19 deaths. Comparison of COVID-19 mortality data with the model

output is illustrated below.

The focus of this work was to incorporate the concept of frailty within an infectious

disease model, where frailty affects death rate. Since the focus is to examine how
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accurately our method of frailty models the number of COVID-19 deaths per age group, we

compare the mortality data collected with the model output for deaths more closely. The

plots for the number of daily COVID-19 deaths and the number of cumulative deaths

predicted by the model are illustrated below.

Figure 11: Number of daily COVID-19-induced deaths for each age group.

If frailty was not included within the model, the cumulative number of deaths for

each age group is proportional to the number of cases within each age group, as illustrated

below.
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Figure 12: Cumulative COVID-19-induced deaths for each age group when no frailty pa-
rameters are included. Cumulative deaths are depicted as proportions of the entire Chicago
population.

When frailty is accounted for, the cumulative number of deaths for each age group

more closely reflects the actual data collected, as shown below.

Figure 13: Cumulative COVID-19-induced deaths for each age group when frailty is ac-
counted for. Cumulative deaths are depicted as proportions of the entire Chicago population.
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Using the frailty-inclusive model, the number of deaths predicted within Age Group

3 is higher than the number of deaths predicted in both Age Group 1 and Age Group 2

combined. This difference in predicted number of deaths between age groups is consistent

with COVID-19 mortality data, where Age Group 3 has a couple thousand

COVID-19-induced deaths, while Age Group 1 has at most two deaths and Age Group 2

has fewer than Age Group 3 but more than Age Group 1. Please note that the model

graph of predicted deaths does not take the same shape as the plot of the raw mortality

deaths. This is attributed to the fact that the model counts deaths cumulatively rather

than as daily counts. The size of the D1, D2, and D3 subclasses changes over time in that

each subclass increases most rapidly during the peak of the size of their corresponding

infectious subclasses. The subclass D1 however, has very few deaths occur so this peak is

difficult to examine visually. The subclass D2 grows at a faster rate than D1 but at a

slower rate that D2. In this way, Age Group 2 does not reach a large cumulative number of

COVID-19-induced deaths. Subclass D3 however, increases in size most rapidly at the start

of the outbreak and throughout the peak. This rapid increase in the number of

COVID-19-induced deaths within Age Group 3 is a result of the frailty parameter φ3

indicating a much larger death rate for the eldest age group. Therefore, Age Group 3

maintains the highest count for cumulative COVID-19-induced deaths. To compare the

cumulative predicted number of COVID-19-induced deaths over the course of the outbreak

with the current available data, we examine the percentage of error. The percentage of

error gives a comparison of how closely the model’s cumulative data reflects the actual

number of deaths. For the actual number of deaths predicted over time, as well as the

calculation for the percentage of error, see the Table (6) below.

Table 6: Percent Error for the Number of Deaths
Age Group Actual Deaths Model Deaths Absolute Error Percent Error

0-17 2 2.34 0.34 16.76
18-59 514 599.17 85.17 16.57
60+ 2,118 2,416.48 298.48 14.09
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Overall, the model predicts a greater number of deaths than the current data

contains.This overestimation is attributed to the fact that the model predicts the total

number of deaths over the entirety of the outbreak, and the outbreak in Chicago is still

ongoing. Therefore, the model is forecasting age-specific deaths past the current data.

Please note that Chicago appears to be nearing the end of the first outbreak and is

experiencing fewer deaths each day.
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CHAPTER V: CONCLUDING REMARKS

In conclusion, this work focused on the concept of frailty and how variation in

response to an infectious disease can impact typical infectious disease models. Frailty was

incorporated as a multiplicative deviation differentiating age group death rates from the

average disease-induced death rate. In this way, frailty was used to showcase how many

more times an age-specific death rate differed from the overall average death rate. The

2020 COVID-19 outbreak in Chicago, Illinois was used as a case study to examine how well

incorporated frailty parameters model mortality. While the model reflects the data well,

the model does follow the assumption that contacts between individuals within a

population were consistent from the very beginning to the very end of the outbreak. In

actuality, these contact rates changed over time as the city of Chicago first implemented a

lockdown and later began to slowly lift social distancing guidelines. These changes in

guidelines are important to consider as the number of contacts affects the average expected

number of new cases to arise from one singular case, known as the basic reproduction

number. Within the model, the basic reproduction number is held constant, whereas

realistically this number has changed over time. In this way, the model falls short by taking

an averaged basic reproduction number and attributing it to the entire outbreak.

Furthermore, our model is based on current data as the outbreak continues to take shape.

Data is continually being collected and as this data changes, our model theoretically

would need to be adjusted to better reflect updated parameter estimations. As a result of

data limitations, our model is dependent on the available data. Our model is also

dependent on medical knowledge regarding the disease of interest - COVID-19. New

research is continually being conducted to better understand COVID-19 and the parameters

depend on the current understanding of how COVID-19 spreads. Two important parameter

estimations stem from the length of the incubation period and infectious period for

COVID-19. It is currently unknown whether these periods differ among age groups. As a

result, it was assumed for the model that these periods were uniform across age groups. If
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these periods actually differ as a result of age, the model would further need to be updated.

All in all, our parameter estimates and our frailty calculations are dependent on the

development of our medical knowledge of COVID-19 and ongoing data collection.
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