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Background: Recent advances in the field of wearable technology are now at a peak in the 

sports field and the medical field. The validity, reliability, and application of such systems are 

still under research and yet to be revealed. 

Purpose: This study aims to design and constructing the Inertial Measurement Unit (IMU) 

hardware with the required software to collect accelerometer data for potential use in human 

movement studies and test the efficacy of the collected IMU accelerometer data by comparing 

it with the motion capture data. 

Methods: In this study, the IMU sensor is coupled with the Arduino, loaded with software code 

used for data collection. To test the efficacy, the sensor was placed on the lumbar region during 

quiet standing task and an exaggerated sway of random high amplitude anteroposterior and 

mediolateral deviations of the model in tandem stance. A correlation analysis was conducted 

to assess the relationship between the measured signals as a form of comparison.   

Results:  The construction of the sensor was successful with certain limitations and the 

correlation analysis results varied for across trials.    Comparisons conducted for the X and Y 

axes values ranged from weak to strong, while Z axis comparisons were generally weak. 

Conclusions: The aims of the study were successful, although the results were not anticipated. 

The IMU sensor appears to be viable for biofeedback applications. However, the acceleration 

patterns varied across trials, which is most likely attributed to discrepancies in sampling 

frequency, accumulated noise, and signal processing procedures.  Further research is needed to 

optimize data collection and processing procedures when constructing the IMU for human 

movement research. 

Keywords: Motion Capture, Sensor, Biofeedback, Inertial Measurement Unit. 



 

DEVELOPING AND COMPARING SENSOR FOR MOVEMENT ANALYSIS AND 

BIOFEEDBACK 

 

 

UMAIYAAL VASUDEVARAJA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A Thesis Submitted in Partial 

Fulfilment of the Requirements 

for the Degree of 

 

MASTER OF SCIENCE 

School of Kinesiology and Recreation 

ILLINOIS STATE UNIVERSITY 

2020 



 

© 2020 Umaiyaal Vasudevaraja 

  



 

DEVELOPING AND COMPARING SENSOR FOR MOVEMENT ANALYSIS AND 

BIOFEEDBACK 

 

 

UMAIYAAL VASUDEVARAJA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

COMMITTEE MEMBERS: 

 Adam E. Jagodinsky, Chair 

 Rishi Saripalle 

 Micheal Torry 



 

ACKNOWLEDGMENTS 

I wish to express my sincere appreciation to my supervisor, Professor Dr. Adam E. 

Jagodinsky, who has guided and encouraged me to be professional and do the right thing even 

when the road got tough. Without his persistent help and support, the goal of this project would 

not have been realized. 

 I would also like to show my deepest gratitude to my professor, Dr. Rishi Saripalle, 

who had supported me with all the technical difficulties that I have faced in the completion of 

the project and guided me along the thorn path till the end, providing me with endless support 

and confidence.  

 I would also like to thank professor, Dr. Michael Torry as my class advisor and the lab 

assistant, Abby along with all the friends for their assistance. Special thanks to Illinois State 

University Graduate School for allocating the graduate research fund, for which it would have 

been a tough time without their help.  

  Nevertheless, it is lucky to meet a friend, Ares, and Mithra, in this land to help and 

accompany me as a family and support me overcome the difficulties with all their might. I 

would also like to thank Illinois state university for providing me a chance to explore the 

fascinating field of kinesiology and recreation.  

 Last but not the least important, I owe more than thanks to God, Almighty for being 

graceful and my family members which include my parents, my younger brother for their 

financial support and encouragement throughout my life. Without their support, I can't finish 

my college and graduate education seamlessly.  

U.V. 

 

 

i 



 

CONTENTS 

  Page  

ACKNOWLEDGMENTS                                                                                                          i 

TABLES                                                                                                                                   iii 

FIGURES                                                                                                                                  iv 

CHAPTER I: INTRODUCTION                                                                                              1 

CHAPTER II: MATERIALS AND METHODS                                                                      3 

     Inertial motion sensor                                                                                                           3 

     Arduino uno                                                                                                                          4 

     Software                                                                                                                                5 

     Procedure                                                                                                                              5   

CHAPTER III: RESULTS                                                                                                         8 

CHAPTER IV: DISCUSSION                                                                                                 12  

CHAPTER V: CONCLUSION                                                                                                14 

REFERENCES                                                                                                                         15  

APPENDIX A: ARDUINO SCRIPT                                                                                       18 

APPENDIX B: PYTHON SCRIPT                                                                                         19  

APPENDIX C: MATLAB SCRIPT                                                                                        20 

  

  



 

TABLES 

   Table   Page 

1. Correlation of X, Y, Z axis in Normal and Exaggerated sway trials 8 

2. Correlation of pre and post data processing for normal sway trials 8 

3. Correlation of pre and post data processing for exaggerated sway trials 8 

  

iii 



 

FIGURES 

Figure  Page 

1. Flow diagram representing the sensor measurement 3 

2. Inertial sensor coordinates as applied to the body 3 

3. Connection of the Arduino with the sensor 4 

4. Normal Sway trail 1 9 

5. Normal Sway trail 2 9 

6. Normal Sway trail 3 10 

7. EXG Sway trail 1 10 

8. EXG Sway trail 2 11 

9. EXG Sway trail 3 11 

 

 

 

 

 

iv 



 

1 
 

CHAPTER I: INTRODUCTION 

Inertial measurement units (IMU) are a widely available technology used to obtain 

information about the motion of an object or body. IMU technology falls under the category of 

Micro-Electrical-Mechanical-Systems (MEMS), which are notable for their small size, low 

power consumption, increased functionality, and low fabrication costs via mass productions 

using a modular design methodology [2]. IMUs are generally composed of an accelerometer, 

gyroscope, and magnetometer, used to measure the acceleration, rate of rotation (measured in 

degree/s), and the magnetic fields. Of these three, accelerometer markets are dominated, with 

silicon micromachining representing around 90% and of the makeup of accelerometer design, 

and the rest piezoceramic type [3].  

 IMU production is prevalent within many industrial sectors, yielding a wide selection 

of hardware components and networking platforms. The IMU sensor is widely used and is 

known for its accuracy, sensor support, and the low cost of the sensor measurement. When 

connected with the Arduino and coupled with a data logging shield consisting of an onboard 

SD drive and real-time capture RTC, the IMU can be efficient in collecting and storing data 

and timestamp. [7].  When compared with the Arduino nano new 33 BLE sense [23], the IMU 

sensor used is cost-effective, simple to use, and is used in a variety of applications apart from 

the clinical field. It is also known for its use in the research and development of biofeedback 

in clinical and performance fields [4]. The availability of robust and cost-effective sensor 

technology has opened the door for widespread use in the human movement sciences [23]. 

 Previous applications of IMU in human movement sciences include gait analysis [8], 

inertial head tracker[9], post-stroke arm rehabilitation[10], arm posture correction[11], and 

exoskeleton design for rehabilitation[12] ], etc. Hence IMU can enable us to measure the body 

orientation, motion, direction, and physiologic state of the moving human body, making IMU 

technology ideal for biofeedback applications. Biofeedback is a technique of providing 
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biological information to a user in real-time. Biofeedback can be implemented to provide 

additional sensory information about body equilibrium to the brain [4]. Since IMU technology 

can provide a robust and cost-effective means for capturing human movement metrics, 

implementing IMUs for biofeedback applications in human movement studies is a plausible 

option.   

To implement wearable IMU technology for biofeedback applications in future studies 

of human movement, the aim of this study is as follows: (1) to design and construct IMU 

hardware with the required software to collect accelerometer data for potential use during 

human movement studies; and (2) to test the efficacy of the custom IMU by comparing 

accelerometer results to motion capture results. 
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CHAPTER II:  MATERIALS AND METHODS 

 A diagram outlining the integration of hardware and software elements that make up 

the custom IMU sensor is shown in Figure 1. The hardware is an integration of the Arduino 

and 9-DoF IMU sensor. 

 

 

 

     Fig 1. Flow diagram representing the sensor measurement. 

Inertial Motion Sensor 

The inertial Motion Sensor used here is the 9 DOF sensor, which has three sensors 

embedded in it. The 3 axis Accelerometer which tells us the direction down towards the earth 

in 3 D space. The other is a 3-axis magnetometer that can sense where the strongest magnetic 

force. The third is a 3 gyroscope that can measure spin and twist. This sensor combines data to 

project a human in 3D space.  

                                              

Fig 2. Inertial sensor coordinates as applied to the body. 

 

9 DOF Sensor

(Adafruit lsm9dof1)

Arduino UNO

(Arduino code)

Recording the data 
from the accelerometer

(Python)

Saved in the  form of 
CSV files
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The inertial sensor is used to calculate the acceleration of the moving human body, and 

Figure 2 represents the sensor coordinates as applied to the body, from the 'drift’(the 

accelerometer like the motion capture system first determines the position and then calculates 

the acceleration which are calculated inside the sensor, which causes a drift-change in position) 

produced in the sensor for calculating the acceleration [33].                                          

Arduino UNO 

Arduino UNO is a microcontroller board based on ATmega328P. It has 14 digital 

input/output pins (of which 6 can be used as Pulse width Modulation (PWM outputs), 6 analog 

inputs, a 16 MHz quartz crystal, a USB connection, a power jack, an ICSP header, and a reset 

button. It contains everything needed to support the microcontroller [23]. Being neither a 

microcontroller nor a microprocessor, Arduino UNO is simply a development board. A set of 

digital and analog input/output (I/O) pins is equipped in the board and it may be interfaced with 

various expansion boards and other circuits based on ATMEL microcontrollers which is also a 

microprocessor [13].  

 

 
Fig 3. Connection of the Arduino with the sensor 
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The Arduino Uno has several facilities for communicating with a computer, another 

Arduino board, or other microcontrollers. The ATmega328 provides UART TTL (5V) serial 

communication as shown in Figure 3, which is available on digital pins 0 (RX) and 1 (TX). An 

ATmega16U2 on the board channels this serial communication over USB and appears as a 

virtual com port to software on the computer. The 16U2 firmware uses the standard USB COM 

drivers, and no external driver is needed. However, on Windows, a .inf file is required. Arduino 

Software (IDE) includes a serial monitor which allows simple textual data to be sent to and 

from the board. The RX and TX LEDs on the board will flash when data is being transmitted 

via the USB-to-serial chip and USB connection to the computer (but not for serial 

communication on pins 0 and 1). A Software Serial library allows serial communication on any 

of the Uno's digital pins [23]. 

Software 

The Arduino is programmed, using C++ (Annexure 1), based on the requirements for 

the data collection concerning the acceleration with the accelerometer of the LSM9DOF sensor. 

The sensor is placed on the body and the axis of the sensor placed is represented as in figure 2. 

The program is then uploaded to Arduino, the sampling frequency is set to 119 Hz, raw data of 

the accelerometer were calibrated, and the collected data is saved to the external storage using 

a python code (Annexure 2). In short, the IMU sensor is connected to the Arduino as shown in 

Figure 3 and the code for the Arduino program(Annexure 1) runs the LSM9DS1 sensor with a 

frequency of approximately 192 Hz and the measured values of the sensor are then recorded 

and stored in the form of datasheets with the help of the python code(Annexure 2).  

Procedure 

Following the construction of the IMU, the IMU was implemented to assess its 

accuracy. The readings of the sensor are recorded in a closed environment, i.e., the 

Biomechanics Lab of the School of Kinesiology and Recreation, Illinois State University.  
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 The intended application of the custom IMU sensor is to provide feedback on a potential 

user of their body’s motion during common bipedal tasks.  To test the viability of the custom 

IMU sensor for this type of application, the custom IMU sensor and gold standard optical 

motion-capture cameras (10 cameras, 200Hz; Vicon) were implemented during normal and 

exaggerated sway scenarios to allow for comparison between the two modes of measurement.  

A standard plug-in-gait reflective marker set was utilized to create a rigid linked-segment 

model representing the human body so that motion capture measurement of the model’s center 

of mass (COM) could be made.  Furthermore, the custom IMU was attached to the lumbar 

region of the model to measure sway accelerations.  Previous studies have indicated that the 

placement of the sensor on the lumbar region resulted in valid sway measurements [15-19].   

Trials lasting approximately 30 seconds were conducted under two conditions: normal 

sway (three trials) and exaggerated sway (three trials).  Normal sway trials were meant to mimic 

the behaviour of quiet standing.  The exaggerated sway condition consisted of random high 

amplitude anteroposterior and mediolateral deviations of the model in tandem stance. For each 

trial, a motion stimulus projected along the vertical access of the model was introduced at the 

beginning and end of the trial to provide a point of synchronization across the motion capture 

and sensor datasets.   

The plug-in-gait model allowed for the estimation of the model's center of mass location 

through built-in algorithms within the motion-capture software (Vicon Nexus).  Thus, the 

three-dimensional position of the model's COM was collected for each trial to allow for the 

eventual comparison to the acceleration data collected from the custom IMU. 

Post-processing of the IMU and motion capture data was conducted using a custom 

MATLAB code (MATLAB, MathWorks, Inc, MA, USA). First, the sensor axes are modified 

to match the motion capture axes such that the sensor X axis is flipped, and the Y and Z axes 

are interchanged. Several samples within the sensor data time series erroneously recorded as 
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missing entries, which were removed before signal filtering. Sensor signal noise was removed 

using a third-order one-dimensional median filter.  

The acceleration of the motion capture COM position data was calculated through 

double differentiation. Following differentiation, COM acceleration was filtered using a third-

order median filter, and the signal was smoothed using a moving average technique with a 

window size of 100 frames. Following signal processing of the sensor and motion capture data, 

several steps were taken to facilitate comparison between the two signals.  First, data of both 

sets are then trimmed so that both sensor and motion capture time series were aligned relative 

to the motion stimulus that was presented at the beginning and end of each trial. The motion 

capture data was then resampled to match the sampling rate of the sensor series. Finally, both 

sensor and motion capture data were normalized to have a common amplitude scale. 

Specifically, both data series were normalized to the respective maximum value. The resulting 

acceleration is then stored and processed (Annexure 3). Correlation analysis was conducted to 

indicate the spatiotemporal relationship between signals. The correlation results were 

interpreted as small/weak for ranges 0.1 to 0.3, medium/moderate for 0.3 to 0.5, and 

large/strong for 0.5 to 1.0, regardless of positive and negative linear correlation. The correlation 

was done three times between raw acceleration data, filtered acceleration data, and the 

normalized data, to explore the effect of data processing on the relationship between signals. 
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CHAPTER III: RESULTS 

 Table 1 shows the correlation of X, Y, Z-axis after normalization among the trials, and 

Table 2 and 3 represents the correlation of X, Y, Z-axis among all the trials pre and post data 

processing of Normal sway and Exaggerated sway.  

Trials Normal 

Sway 1 

Normal 

Sway 2 

Normal 

Sway 3 

Exaggerated 

Sway 1 

Exaggerated 

Sway 2 

Exaggerated 

Sway 3 

Correlation 

(in X) 

-0.02 

 

0.57 

 

0.31 

 

0.62 

 

0.35 

 

0.18 

 

Correlation 

(in Y) 

0.24 

 

0.44 

 

0.22 

 

0.63 

 

0.05 

 

0.1 

 

Correlation 

(in Z) 

0.1 0.15 

 

-0.13 

 

-0.06 

 

-0.08 

 

-0.03 

 

Table 1. Correlation of X, Y, Z axis in the Normal and Exaggerated Sway trials.  

  Normal 1 Normal 2 Normal 3 

  RAW Filter Normalize RAW Filter Normalize RAW Filter Normalize 

X -0.01 -0.04 -0.02 0.21 0.01 0.57 0.16 0.14 0.32 

Y 0 -0.03 0.24 -0.04 0.06 0.44 -0.11 -0.03 0.22 

Z 0.01 -0.1 0.1 0.43 0.04 0.15 0.1 -0.13 -0.13 

Table 2. Correlation of pre and post data processing for normal sway trials 

  EXG 1 EXG 2 EXG 3 

  RAW Filter Normalize RAW Filter Normalize RAW Filter Normalize 

X 0.52 0.61 0.62 0.31 0.33 0.35 0.14 0.18 0.18 

Y -0.36 -0.55 0.63 -0.08 -0.05 0.05 -0.03 -0.06 0.1 

Z -0.27 -0.01 -0.06 -0.2 0.02 -0.08 -0.03 -0.21 -0.03 

 

Table 3. Correlation of pre and post data processing for exaggerated sway trials 
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The plotted normalized graph is depicted below from fig 4 to fig 9 for all trials of 

normal and exaggerated sways.  

  

 
 

Fig 4. Normal Sway trial 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5. Normal Sway trial 2  
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Fig 6. Normal Sway trial 3  

 

 

 

 
Fig 7. EXG Sway trial 1  
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Fig 8. EXG Sway trial 2  

 

 

 

 

Fig 9. EXG Sway trial 3 
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CHAPTER IV: DISCUSSION 

The construction of the IMU sensor hardware to collect and record the accelerometer 

data of the sensor LSM9DS1 to measure acceleration is the main goal of the project. The study 

was successful enabling the constructed IMU to collect the data. The study also focused on the 

comparison results of the IMU sensor with the motion capture system. The results varied across 

trials from strong to weak with, a very weak correlation on Z-axis throughout the trial.  

Although the data from the sensor is collected, there was difficulty in recording the data 

from the Arduino, from setting the baud rate, since it determines the transmission rate between 

the computer and the Arduino. For some unknown reasons the data recorded from the Arduino, 

has several data errors, and there were missing data points. Apart from using python code, we 

have also tried other software to collect the data from the Arduino, regardless there were data 

errors, and comparatively, the customized python code was the most reliable among them. We 

had trouble coding the accelerometer to have a constant frequency throughout all the trials. the 

default sampling frequency of the sensor is 119 Hz [22,23], however, we have collected the 

data at a varying rate of 191 - 192 Hz. The sensor sampling rate was fluctuating for every trial, 

which makes the sampling of data unreliable. The change in the sampling rate may be due to 

the triple transmission of data from the sensor. The data is transmitted from the sensor followed 

by the Arduino and then the python code, this transmission might decrease the sampling rate. 

The other applications to record data such as “coolterm” and “teraterm” (other software used 

record the data from the Arduino), variation in frequency. Error accumulation is a common 

possible error in accelerometer data. These error accumulations may be due to the continuous 

collection of data, while the sensor is powered using the USB cable. One way to overcome this 

may be changing the sensor to an accelerometer and placed in multiple parts of the body 

preferably the sternum and lumbar [27-29,15-19] and then using a sensor fusion algorithm [30]. 
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After fusing if we still have some missing points or random values in the sensor, we can use 

Kalman Filter [30], which can help identify the nearest value of the sensor. 

The anticipated results of the comparison of the motion capture and the IMU sensor are 

to be similar, however results varied across trials. From Table 1 we can see the correlation of 

the normalized data points to vary among the trials and ranges from weak, moderate, and 

strong. However, the Z-axis has a weak correlation among all the others. The correlation value 

of the pre-processed data was also calculated, and it shows there was an improvement, overall, 

among the coordinates of the trials. Of these, data processing steps appeared to have the least 

influence on Z-axis correlation values. The plotted graphs show us that there were some similar 

signal patterns with some phase shifts among the trials with the exclusion of the Z-axis.  

Correlation results for the Z axis may be explained by the longitudinal axis where 

movement is done rarely, or by the internal fictitious force experienced by the sensor while 

moving whereas the accelerometer measures the position and velocity based on the pressure 

exerted in the inner axis of the sensor[33]. The sampling rate of the motion capture system is 

200 Hz, whereas the sensor is approximately 192 Hz. Therefore, the data is resampled and 

normalized. The data processing might affect the original data collected from the sensor. This 

can also be done by some other algorithms such as decision tree[31], Principal component 

analysis(PCA) [32], however, these machine learning algorithms are complicated in process 

and have their disadvantages, henceforth, it is still valuable to perform normalization. 

However, when this sensor is to be used in the outdoor or sports it might have good use since 

we are not concerned about the sampling frequency of the sensor. This requires further research 

on how to control the sampling frequency of the sensor, as well as to collect the data without 

errors. Further research is required to compare the data, or probably designing the sensor with 

a new algorithm.  
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CHAPTER V: CONCLUSION 

 The current study shows that the successful construction of the sensor has data errors 

and the comparison among the sensor and the Vicon varies among the trials for pre and post 

data processing from weak to strong. These days accelerometers are cost-effective, readily 

available sensors, and can be embedded in many devices, such as smartphones, activity trackers 

that include Virtual Reality as well. They are easy to use and non-invasive for the individuals. 

Since the accelerometers are easy to coalesce, the virtual reality feedback with the help of a 

sensor should be feasible. The importance of visual biofeedback as already explained can give 

effective results in the field of training and rehabilitation, which can be a future work of this 

project. 
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APPENDIX A: ARDUINO SCRIPT 

 

#include "Arduino_LSM9DS1.h" 

void setup() { 

   Serial.begin(115200); 

   while(!Serial);         //Wait for serial connection 

   delay(10); 

   if (!IMU.begin()) { 

    Serial.println("Failed to initialize IMU!"); 

    while (1); } 

  IMU.accelUnit=METERPERSECOND2; 

   

  // Link to the source code. https://github.com/FemmeVerbeek/Arduino_LSM9DS1 

  // Check the above link (Section 4) for setting the desired frequency  

   IMU.setAccelODR(5); // Value 4 - 238Hz for Accel & Gyro; 10Hz for Magno 

  //IMU.setAccelODR(3); // Value 3 - 119Hz for Accel & Gyro; 5Hz for Magno 

   

  // Calibration values 

  IMU.accelOffset[0] = -0.031748;   IMU.accelOffset[1] = -0.013127;   IMU.accelOffset[2] = 

-0.005296; 

  IMU.accelSlope [0] = 0.992983;   IMU.accelSlope [1] = 0.994812;   IMU.accelSlope [2] = 

0.998038; 

  IMU.gyroOffset[0] = 0.846509;   IMU.gyroOffset[1] = 1.105225;   IMU.gyroOffset[2] = -

0.271899; 

  IMU.gyroSlope   [0] = 1.290758;   IMU.gyroSlope   [1] = 1.150051;   IMU.gyroSlope   [2] = 

1.223229; 

  IMU.magnetOffset[0] = 25.492554;   IMU.magnetOffset[1] = 14.613647;   

IMU.magnetOffset[2] = 4.839478; 

  IMU.magnetSlope [0] = 1.166290;   IMU.magnetSlope [1] = 1.137117;   IMU.magnetSlope 

[2] = 1.118424; 

   

  

} 

 

void loop() {   

  // Acceleration 

  float uncalAX, uncalAY, uncalAZ; 

  float calAX, calAY, calAZ; 

 

  IMU.readRawAccel(uncalAX, uncalAY, uncalAZ); 

  IMU.readAccel(calAX, calAY, calAZ); 

 

  Serial.print(uncalAX);Serial.print(","); 

  Serial.print(uncalAY);Serial.print(","); 

  Serial.print(uncalAZ);Serial.print(","); 

  Serial.print(calAX);Serial.print(","); 

  Serial.print(calAY);Serial.print(","); 

  Serial.print(calAZ);Serial.print(","); 

   

}   
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APPENDIX B: PYTHON SCRIPT 

 
import serial 

import csv 

import sys 

import serial.tools.list_ports 

from datetime import datetime 

 

ser = None 

connected = False 

 

def checkPorts(): 

    global connected 

    ports = [tuple(p) for p in list(serial.tools.list_ports.comports())] 

    #print(ports) 

    com3Port = [port for port in ports if 'COM3' in port] 

    if len(com3Port) is not 0 and 'COM3' in com3Port[0]: 

        connected = True 

    else: 

        connected = False 

 

def checkSerialConnection(): 

    global ser 

    global connected 

    while ser is None: 

        checkPorts() 

        if connected: 

            ser = serial.Serial('COM3', 115200) 

            print ("connected") 

            ser.flushInput() 

 

def readData(): 

    global connected 

    #IMPORTANT: Change the file name ("data.csv") to different names for different motions. 

    with open("sample2.csv", "w", newline='') as f: 

        data ="" 

        while connected: #and datetime.datetime.now() < nextMin: 

            try: 

                ser_bytes = ser.readline() 

                data = str(ser_bytes, 'utf-8') 

                ts = datetime.now().strftime('%H:%M:%S') 

                data = ts+","+data 

                print(data) 

                strsplit = data.split(",") 

                 

                writer = csv.writer(f, delimiter=",") 

                writer.writerow([(x) for x in strsplit]) 

            except Exception: 

                checkPorts() 

                print("Error converting - " + data) 

                print("Keyboard Interrupt") 

 

if __name__ == "__main__": 

    checkSerialConnection() 

    readData() 
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APPENDIX C: MATLAB SCRIPT 

 
%% Umaiyaal Thesis Code %% 
close all; 
clear all; 
clc; 
 
data = xlsread('EXG S&V_3_192 Hz'); 
%sens data col 14,15,16; vicon data col 18,19,20 
% (possibly) calculate cal sens data multiply col 10,11,12 by 1000 (11 = z; 12 =y) 
% remove missing values from sensor data (col 14,15,16) 
% filter sensor data using medfilt1 -- for loop 
% resample com data to match sensor 
% trim data to elimitate Z synch peaks 
    % look at Z sensor plot to determine cut points 
    % input start and end point indeces to set range 
% calculate com acceleration -- pad if necessary 
% plot sensor and com accelerations for comparison 
%% DATA PROCESSING 
%remove 'errant' zeros and NaNs from series 
sax = nonzeros(rmmissing(data(:,14))); 
say = nonzeros(rmmissing(data(:,15))); 
saz = nonzeros(rmmissing(data(:,16))); 
%filter sensor using 3rd order median filtering to remove noise 
fsax = medfilt1(sax); 
fsay = medfilt1(say); 
fsaz = medfilt1(saz); 
figure(1); 
plot(fsax); 
figure(2); 
plot(fsay); 
figure(3); 
plot(fsaz); 
pause = input('Pause here to remove remaining sensor noise'); 
%grab com data from spreadsheet 
comx = data(2:end,18); 
comy = data(2:end,19); 
comz = data(2:end,20); 
%calculate vicon com accel - pad if necessary 
com_ax = medfilt1(gradient(gradient(comx))); 
com_ay = medfilt1(gradient(gradient(comy))); 
com_az = medfilt1(gradient(gradient(comz))); 
%smooth vicon com accel data 
scom_ax = smoothdata(com_ax,'movmean',100); 
scom_ay = smoothdata(com_ay,'movmean',100); 
scom_az = smoothdata(com_az,'movmean',100); 
figure(4); 
plot(scom_ax); 
figure(5); 
plot(scom_ay); 
figure(6); 
plot(scom_az); 
pause = input('Pause here to remove com noise'); 
%check sensor z axis plot to set cut points 
plot(fsaz); %check cut points 
trim1 = input('first cut frame'); 
trim2 = input('last cut frame'); 
%trim sensor series to eliminate start/end indicator spikes 
tfsax = fsax(trim1:trim2); 
tfsay = fsay(trim1:trim2); 
tfsaz = fsaz(trim1:trim2); 
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%determine cuts for com data by using trim 1&2 as percent of series 
t3 = trim1/length(fsax); 
t4 = trim2/length(fsax); 
trim3 = round(length(scom_ax)*t3,0); 
trim4 = round(length(scom_ax)*t4,0); 
%trim vicon series to eliminate start/end indicator spikes 
tcomx = scom_ax(trim3:trim4); 
tcomy = scom_ay(trim3:trim4); 
tcomz = scom_az(trim3:trim4); 
%resample vicon data to match sensor series 
comx2 = resample(tcomx,length(tfsax),length(tcomx)); 
comy2 = resample(tcomy,length(tfsay),length(tcomy)); 
comz2 = resample(tcomz,length(tfsaz),length(tcomz)); 
%% DATA COMPARISON 
vicon = [comx2,comy2,comz2]; 
sensor = [tfsax,tfsay*-1,tfsaz]; 
%normalize sensor data to surround mean (~zero) 
N = size(sensor,1); 
M = size(sensor,2); 
sensmean = mean(sensor); 
for ii = 1:M 
    for jj = 1:N 
    sensnorm = sensor(jj,ii)- sensmean(:,ii); 
    Sensnorm(jj,ii) = sensnorm(:,:); 
    end   
end 
output1 = [Sensnorm,vicon]; 
%absolute value of vicon and norm sensor data 
output_abs = abs(output1); 
%scale data to maximum 
output1_max = max(output1); 
O = size(output1,1); 
P = size(output1,2); 
for kk = 1:P 
    for ll = 1:O 
    scale = output1(ll,kk)/output1_max(:,kk); 
    output2(ll,kk) = scale(:,:); 
    end 
end 
 
 
figure(7); 
plot(output2(:,1)); 
hold on 
plot(output2(:,4)); 
 
figure(8); 
plot(output2(:,2)); 
hold on 
plot(output2(:,5)); 
 
figure(9); 
plot(output2(:,3)); 
hold on 
plot(output2(:,6)); 
 
xlswrite('EXG_3_output',output2); 
%  
% [locx,xI] = max(sens_ax); 
% [locy,yI] = max(sens_ay); 
% [locz,zI] = max(sens_az); 


	Developing and Comparing Sensor for Movement Analysis and Biofeedback
	Recommended Citation

	tmp.1606248004.pdf.LRSH2

