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EMBEDDING FACTORIZATIONS

ANNA JOHNSEN

72 Pages

Let V be a set of n vertices for some n ∈ N and let E be a collection of h-subsets of V .

Then G = (V,E) is an h-unifrom hypergraph and we refer to V as its vertex set and to E

as its edge set. We say that G is complete and denote it by Kh
n if every h-subset of V is

contained in E. If every edge in E is repeated λ times, we say G is λ-fold. Specifically,

λKh
n is the complete λ-fold n-vertex h-uniform hypergraph with an edge set containing λ

copies of every h-subset of V . In this case, we denote the edge set by E(λKh
n).

Let r = (r1, r2, . . . , rk) for some r1, r2, . . . , rk ∈ N. An r-factorization of λKh
n is a

partition of E(λKh
n) into subsets F1, . . . , Fk such that all elements of V are included at

least once in Fi and are included exactly ri times in Fi for all i ∈ {1, . . . , k}. Each such

subset Fi is called an ri-factor. A partial r-factorization of λKh
m is a partition of E(λKh

m)

into F1, . . . , Fk such that each vertex in V (λKh
m) is included at most ri times in each color

class Fi for i ∈ {1, . . . , k}. Two vertices are adjacent in a hypergraph if some edge in the

hypergraph contains both vertices. An ri-factor Fi is connected if for any arbitrary pair of

vertices x, y ∈ V , there is some sequence of vertices x,w1, w2, . . . , y with each consecutive

pair adjacent in Fi. In this case, we say that Fi consists of only one component. If we

assign some color i to every h-subset in E(λKh
n) for i ∈ {1, . . . , k}, we call this a k-coloring

of λKh
n . An r-factorization of λKh

n is a k-coloring of E(λKh
n) such that edges of each color

i ∈ {1, . . . , k} induce an ri-factor.

Let r = (r1, r2, . . . , rq) and let s = (s1, s2, . . . , sk) where ri, sj ∈ N for all

i ∈ {1, . . . , q}, j ∈ {1, . . . , k}. Motivated by an embedding problem of Peter Cameron and

the work of many others, we show that for n ≥ hm, the obvious necessary conditions that

ensure that an r-factorization of λKh
m can be extended to an s-factorization of λKh

n are



also sufficient. For n ≥ hm, we also establish the necessary and sufficient conditions under

which an r-factorization of λKh
m can be extended to a connected s-factorization of λKh

n .

For n ≥ (h− 1)(2m− 1), we find necessary and sufficient conditions under which a

partial r-factorization of λKh
m can be extended to an r-factorization of λKh

n in which each

ri-factor is connected. We also prove a similar result extending a given partition of any

sub-hypergraph G of λKh
m to a connected r-factorization of λKh

n .

KEYWORDS: r-factorizations, embedding, edge-coloring, hypergraphs, amalgamation,

detachment
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CHAPTER I: INTRODUCTION

I.1 Definitions and Notation

A hypergraph G is a vertex set V (G) paired with an edge set E(G) containing subsets of

the vertex set. All hypergraphs in this paper are h-uniform; that is, |e| = h for all

e ∈ E(G). We write G := Kh
n if G is the complete n-vertex h-uniform hypergraph whose

edge set E(G) is the collection of all h-subsets of the vertex set. The degree of a vertex

v ∈ V (G), denoted by deg(v), is the number of edges e ∈ E(G) such that v ∈ e. In this

thesis, we allow multiple edges. The multiplicity of an edge e, denoted by mult(e), is the

number of times e occurs in E(G). In particular, in λKh
m, each h-subset of V (λKh

m) occurs

λ times, so mult(e) = λ for all edges e ∈ E(λKh
m). The degree of a vertex v ∈ V (G),

denoted by deg(v), is the number of occurrences of the vertex v in edges in E(G). If the

degree of every vertex in V (G) is exactly r, then G is r-regular.

A k-coloring of G is a mapping f : E(G)→ [k] where [k] := {1, . . . , k}. We may also

consider such a coloring as a partition of G into color classes G(j) each induced by edges

with color j for j ∈ [k]. An r-factor is a spanning r-regular subhypergraph of G; that is, a

subhypergraph of G which spans all vertices in V (G) and in which the degree of every

vertex is r. For r = (r1, . . . , rk), an r-factorization of G is a k-coloring of G where for

j ∈ [k], G(j) induces an rj-factor of G and a partial r-factorization of G is a k-coloring of G

where for j ∈ [k], G(j) induces a spanning subhypergraph of G in which the degree of each

vertex is at most rj. An (partial) r-factorization is an (partial) r-factorization with

r = (r, . . . , r). A partial 1-factorization is often called a proper coloring.

Given a 1-factorization of Kh
n , if you think of the set V of vertices as the set of points, the

set E of edges as the set of lines, and 1-factors as parallel classes, then for every point

v ∈ V and for each line ` in E, there is exactly another line `′ which is parallel to ` (that is,

contained in the same parallel class as `) and contains v. Hence, a 1-factorization is

sometimes called a parallelism.

A vertex v in a connected hypergraph G is a cut vertex if there exist two non-trivial
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sub-hypergraphs I, J of G such that I ∪ J = G, V (I ∩ J) = {v}, and E(I ∩ J) = ∅. A

sub-hypergraph W of a hypergraph G is an v-wing of G if (i) W is non-trivial and

connected, (ii) v is not a cut vertex of W , and (iii) no edge in E(G)\E(W ) is incident with

a vertex in V (W )\{v}. A v-wing W is large if V (W ) 6= {v}, and is small if V (W ) = {v}.

Let ωv(G), and ωLv (G) be the number of v-wings, and the number of large v-wings in G,

respectively. Let c(G) denote the number of components of G.

Example: Hypergraph G with cut vertex v, ωv(G) = 6, and ωLv (G) = 2.

G

I

J

v

v-wings in G

I

J

v

v

v

vv

v

We say that a hypergraph G is connected if it consists of only one component. Equivalently,

G is connected if for any arbitrary pair of vertices x, y ∈ V (G), there is some sequence of

vertices x,w1, w2, . . . , y ∈ V (G) such that each consecutive pair of vertices is adjacent in G.

Note that a 1-factor in h-uniform G with more than h vertices is not connected. Thus, if an

rj-factor in G is connected (and |V (G)| > h), then we must have that rj ≥ 2. Moreover, if a

component of a color class of λKh
m is rj-regular, then there is no way to extend it to a

connected rj-factor in λKh
n .

I.2 Problem Statement and Motivation

In this thesis we find:

1. conditions that ensure an r-factorization of K6
m can be extended to an s-factorization

of K6
n

2. conditions that ensure an r := (r1, . . . , rq)-factorization of λKh
m can be extended to

2



an s := (s1, . . . , sk)-factorization of λKh
n ,

3. conditions that ensure a partial r := (r1, . . . , rk)-factorization of λKh
m can be

extended to an r-factorization of λKh
n , and

4. conditions that ensure a partial r := (r1, . . . , rk)-factorization of any subhypergraph

of λKh
m can be extended to an r-factorization of λKh

n .

We are particularly interested to complete our extensions in such a way that each color

class is connected and we identify the conditions under which this is possible.

The main source of interest in these problems dates back to an 18th century problem of

Sylvester [12] which asked for a 1-factorization of Kh
n . Another source of interest is

non-associative algebra and design theory. In 1945, Hall proved the following result.

Theorem I.2.1 (Hall, 1945, [18]). Given a rectangle of n− r rows and n columns such that

each of the numbers 1, 2, . . . , n occurs once in every row and no number occurs twice in any

column, there exist r rows which may be added to the given rectangle to form a Latin square.

Nearly seventy years ago, Ryser generalized this result and found the necessary and

sufficient conditions that ensure an r × s Latin rectangle can be embedded into an n× n

Latin square.

Theorem I.2.2 (Ryser, 1951, [29] Theorem 2). Let T be an r × s Latin rectangle based

upon the integers 1, 2, . . . , n. Let N(i) denote the number of times that the integer i occurs

in T . A necessary and sufficient condition for T to be extended to an n× n Latin square is

that for each i ∈ {1, 2, . . . , n},

N(i) ≥ r + s− n.

In graph theoretic terms, this is equivalent to finding the necessary and sufficient

conditions under which a proper edge-coloring of the complete bipartite graph Kr,s can be

extended to a a one-factorization of Kn,n.

3



In 1960, Evans proved the following further result.

Theorem I.2.3 (Evans, 1960, Theorem 2 [15]). For any n, an incomplete n× n Latin

square can be embedded in a t× t Latin square for any t ≥ 2n.

In graph theoretic terms, this is equivalent to extending a partial 1-factorization of

F ⊆ Kn,n using n colors to a 1-factorization of Kt,t, given t ≥ 2n.

Cruse provided a symmetric analogue of Ryser’s theorem by finding the necessary and

sufficient conditions under which an r × r symmetric Latin rectangle can be embedded into

an n× n symmetric Latin square.

Theorem I.2.4 (Cruse, 1972, [14] Theorem 1). Let T be an r × r symmetric Latin

rectangle based on the symbols 1, 2, . . . , n, where n > r. Denote by N(i) the number of

occurrences of the symbol i in T . In order for T to be extendible to an n× n symmetric

Latin square based on the symbols 1, 2, . . . , n, it is both necessary and sufficient that

1. N(i) ≥ 2r − n for every symbol i ∈ {1, 2, . . . , n}, and

2. N(i) ≡ n (mod 2) for at least r of the symbols i ∈ {1, 2, . . . , n}.

In graph theoretic terms, this result is equivalent to finding conditions under which a

proper edge-coloring of the complete graph Kr (this is the complete graph Kr with a loop

on each vertex) can be extended to a one-factorization of Kn.

In the 1970s, Baranyai resolved the problem posed by Sylvester in the 18th century,

establishing two necessary and sufficient conditions under which Kh
n is r-factorable.

Theorem I.2.5 (Baranyai, 1973, [12] Corollary 2). Kh
n is r-factorable if and only if h | rn

and r |
(
n−1
h−1

)
.

Following the resolution of Sylvester’s problem by Baranyai, Cameron asked the following

question.

Problem 1 (Cameron, 1976, [13] Question 1.2). Under what conditions can partial

parallelisms be extended to parallelisms?
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Embedding structured factorizations has been studied by various authors. In the 1980’s,

Hilton introduced a technique called amalgamation, which has been very effective in

solving a wide range of problems [1, 2, 3, 16, 20, 23, 27]. One example of this is an early

result of Hilton in which he found conditions that ensure a partial 2-factorization of Km

can be extended to a connected 2-factorization of Kn [21].

Theorem I.2.6 (Hilton, 1982, [21] Theorem 2). Let 1 ≤ r ≤ 2n+ 1. An edge-coloring of

Kr with n colors c1, . . . , cn can be extended to a Hamiltonian decomposition of K2n+1 in

which each color class of the edge-coloring of Kr is incorporated into a Hamiltonian circuit

of K2n+1 if and only if each color class of the edge-coloring of Kr consists of at most

2n+ 1− r disjoint paths (counting a vertex of Kr with no edges of color ci on it as a path

(of length 0) of ci).

Hilton also used this technique in results pertaining to Latin squares in 1987 [22].

A third source of interest is Marcotte and Seymour’s theorem (1990) [26] that establishes

necessary and sufficient conditions for a proper k-coloring of a subgraph of a multiforest G

to be extended to a proper k-coloring of G.

A proper coloring can be viewed as a partial 1-factorization or as an almost 1-factorization

(in an almost r-factor, we allow the vertex degrees to be r or r − 1).

A breakthrough in the direction of settling Cameron’s question was a result of Häagkvist

and Hellgren [17] in 1993 that settled the problem of embedding a 1-factorization of Kh
m

into a 1-factorization of Kh
n , proving that a 1-factorization of Kh

m can be embedded into a

1-factorization of Kh
n if and only if h | m, h | n, and n ≥ 2m.

Higher edge-connected analogues of Hilton’s results have also been proven. For example,

Rodger and Wantland proved an analogue of Hilton’s result giving necessary and sufficient

conditions for embedding a proper edge coloring of Km into a 2-edge-connected

k-factorization of Kn.

Theorem I.2.7 (Rodger and Wantland, 1995, [28] Theorem 3.2). Let v < kn+ 1. An

5



n-edge-coloring of Kv can be embedded into a 2-edge-connected k-factorization of Kkn+1 if

and only if

(i) degKv(i)(v) ≤ k for every v ∈ V (Kv(i)),

(ii) for every component C of Kv,
∑

v∈V (C) degKv(i)(v) ≤ k|V (C)| − 2,

(iii) if C is a component of Kv(i) and e is a cut edge of C with C1 and C2 being the

components of C − e, then there exist v1 ∈ V (C1) and v2 ∈ V (C2) with

degKv(i)(v1) < k and degKv(i)(v2) < k,

(iv) n is odd if k is odd, and

(v) kn+ 1 ≥ 2v − 2ε/k,

where ε = min1≤i≤n |E(Hi)| and Hi is the subgraph induced by the edges colored ci.

Johnson proved a more general analogue of Hilton’s result giving necessary and sufficient

conditions for embedding a factorization of Km into a s := (s1, . . . , sk)-factorization of Kn

where each si factor is `i-connected given ` := (`1, . . . , `k).

Theorem I.2.8 (Johnson, 2003, [25] Theorem 8). Let n, t, K, and L satisfy the following

conditions

(A1)
∑t

i=1 ki = n− 1,

(A2) if n is odd, then each ki is even,

(A3) for 1 ≤ i ≤ t, `i ≤ ki, and

(A4) if n ≥ 3, then `i = 0 if ki=1.

and let α = n−m. A factorization G1, . . . , Gt of Km can be embedded into a factorization

F1, . . . , Ft of Kn in which, for 1 ≤ i ≤ t, Fi is a ki-regular `i-edge-connected graph if and

only if the following conditions hold:

6



(I) for 1 ≤ i ≤ t, degG(i)(v) ≤ ki for each v ∈ V (Km),

(II) for 1 ≤ i ≤ t, αki ≥ εi,

(III) for 1 ≤ i ≤ t, if `i = 1, then α ≥ 2ωi − εi − 2

ki − 2
,

(IV) for 1 ≤ i ≤ t, if `i = ki, `i is odd and ωi ≥ 2, then α 6= 2, and

(V) for 1 ≤ i ≤ t, Hi is `i-edge-connected.

In 2003, Hilton et al. [24] found necessary and sufficient conditions for a given coloring of

Kt to be embedded into a connected k-factorization of Km.

Theorem I.2.9 (Hilton et al., Theorem 3.1, [24]). For 1 ≤ i ≤ n and 1 ≤ j ≤ ωi, let G(i)

be the subgraph of Kt that is induced by the edges colored i, and let Ci,1, . . . , Ci,ωi
be the

components of G(i). If G(i) has maximum degree at most k, let

εi,j =
∑

v∈V (Ci,j)
(k− degG(i)(v)) and let εi =

∑
1≤j≤ωi

εi,j. Let k ≥ 3 and α = kn+ 1− t. An

n-edge-colored Kt, with color classes G(1), G(2), . . . , G(n) (where possibly some color

classes contain no edges), can be embedded in an n-edge-colored Kkn+1 in which each color

class is a connected k-factor if and only if

1. degG(i)(v) ≤ k for each v ∈ V (Kt) and for 1 ≤ i ≤ n,

2. εi,j ≥ 1 for 1 ≤ i ≤ n and 1 ≤ j ≤ ωi,

3. α ≥ max{εi/k : 1 ≤ i ≤ n},

4. α ≥ max{2ωi−εi−2
k−2 : 1 ≤ i ≤ n}, and

5. if k is odd, then n is odd.

Hilton’s amalgamation technique has recently been applied to hypergraphs by Bahmanian

[8, 5, 11] and inspires the proofs of the results in this thesis. In fact, the following theorem

concerning the reverse of amalgamation, called detachment, is foundational to the results

in this thesis.

7



Theorem I.2.10 (Bahmanian, 2012 [5] Theorem 4.1). Let F be a k-edge-colored

hypergraph and let g : V (F)→ N be a simple function. Then there exists a simple

g-detachment G (possibly with multiple edges) of F with amalgamation function

Ψ : V (G)→ V (F), g being the number function associated with Ψ, such that:

(A1) degG(v) ≈ degF(u)/g(u) for each u ∈ V (F) and each v ∈ Ψ−1(u),

(A2) degG(j)(v) ≈ degF(j)(u)/g(u) for each u ∈ V (F), each v ∈ Ψ−1(u) and 1 ≤ j ≤ k,

(A3) multG(U1, . . . , Ur) ≈ multF(um1
1 , . . . , umr

r )/Πr
i=1(
(
g(ui)
mi

)
) for distinct u1, . . . , ur ∈ V (F)

and Ui ⊂ Ψ−1(ui) with |Ui| = mi ≤ g(ui) for 1 ≤ i ≤ r, and

(A4) multG(j)(U1, . . . , Ur) ≈ multF(j)(um1
1 , . . . , umr

r )/Πr
i=1(
(
g(ui)
mi

)
) for distinct

u1, . . . , ur ∈ V (F) and Ui ⊂ Ψ−1(ui) with |Ui| = mi ≤ g(ui) for 1 ≤ i ≤ r and

1 ≤ j ≤ k.

In 2016, Bahmanian and Newman completely settled the question ‘Under what conditions

can an r-factorization of K3
m be extended to an s-factorization of K3

n?’ with the following

theorem.

Theorem I.2.11 (Bahmanian and Newman, 2016, [4] Theorem 16). An r-factorization of

K3
m can be embedded into an s-factorization of K3

n if and only if

(C1) 3 | rm, 3 | sn;

(C2) r |
(
m−1
2

)
, s |

(
n−1
2

)
;

(C3) 1 ≤ s/r ≤
(
n−1
2

)/(
m−1
2

)
;

(C4) n ≥ 3m/2 if 1 < s/r <
(
n−1
2

)/(
m−1
2

)
;

(C5) n ≥ 2m if s = r;

(C6) sm
(
n−m
2

)
≥
(
n−1
2

)
if m(s− r) is odd and s/r =

(
n−1
2

)/(
m−1
2

)
.

8



Bahmanian and Newman also generalized Häagkvist and Hellgren’s result by proving the

following theorems.

Theorem I.2.12 (Bahmanian and Newman, 2017, [10] Theorem 1.7). Let n, m, h, and r

be positive integers satisfying the following necessary conditions.

n ≥ 2m, h | rm, h | rn, r |
(
m− 1

h− 1

)
, r |

(
n− 1

h− 1

)
.

Additionally, assume that

gcd(m,n, h) = gcd(n, h).

Then there exists an r-factorization of Kh
n containing an embedded r-factorization of Kh

m.

Theorem I.2.13 (Bahmanian and Newman, 2017, [10] Theorem 1.8). Let n, m, h, r, and

s be positive integers satisfying the following necessary conditions.

h | rm, h | sn, r |
(
m− 1

h− 1

)
, s |

(
n− 1

h− 1

)
.

Additionally, assume that the following conditions hold, where k = gcd(m,n, h).

gcd(m,n, h) = gcd(n, h), n ≥ 2m 1 ≤ s

r
≤ m

k

[
1−

(
m− k
h

)/(
m

h

)]
.

Then there exists an s-factorization of Kh
n containing an embedded r-factorization of Kh

m.

The results in chapter IV are generalizations of the following recent results with some

added conditions pertaining to connectivity of factorizations.

Theorem I.2.14 (Bahmanian, 2018, [7] Theorem 4.1). For n ≥ 4.847323m, any partial

r-factorization of K4
m can be extended to an r-factorization of K4

n if and only if 4 | rn and

r |
(
n−1
3

)
.

9



Theorem I.2.15 (Bahmanian, 2018, [7] Theorem 5.1). For n ≥ 6.285214m, any partial

r-factorization of K5
m can be extended to an r-factorization of K5

n if and only if 5 | rn and

r |
(
n−1
4

)
.

A recent result along the same lines as Marcotte and Seymour’s theorem from 1990 is that

of Harrelson, McDonald, and Puelo [19] in 2018, which makes progress towards similar

results for planar graphs that are not necessarily multiforests. Among other things, they

establish the necessary and sufficient conditions for a proper k-coloring of a subgraph H of

a planar graph G to be extended to a proper k-coloring of G when k ≥ ∆(H) + ∆(G) + 4.

Another recent result of Bahmanian is the following generalization of Baranyai’s theorem,

establishing necessary and sufficient conditions under which λKh
n is r-factorable into

connected ri factors.

Theorem I.2.16 (Bahmanian, 2019, [6] Theorem 1.2). Let r = (r1, . . . , rk). Then λKh
n is

r-factorable if and only if h | rin for 1 ≤ i ≤ k and
∑k

i=1 ri = λ
(
n−1
h−1

)
. Moreover, for

1 ≤ i ≤ k, if ri ≥ 2, then we can guarantee that the ri-factor is connected.

Baranyai’s theorem and this generalization identify the ‘obvious’ necessary conditions for

the results in this thesis; that is, the necessary divisibility conditions for λKh
n to be

r-factorable or r-factorable, respectively.

The result in chapter II mirrors the following results found in [9].

Theorem I.2.17 (Bahmanian and Haghshenas, 2019, [9] Theorem 1.2). For n ≥ 4m, an

r-factorization of K4
m can be extended to an s-factorization of K4

n if and only if the

following conditions hold.

4 | rm, 4 | sn, r |
(
m− 1

3

)
, s |

(
n− 1

3

)
, 1 ≤ s/r ≤

(
n− 1

3

)/(
m− 1

3

)
.

Theorem I.2.18 (Bahmanian and Haghshenas, 2019, [9] Theorem 1.3). For n ≥ 5m, an

r-factorization of K5
m can be extended to an s-factorization of K5

n if and only if the
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following conditions hold.

5 | rm, 5 | sn, r |
(
m− 1

4

)
, s |

(
n− 1

4

)
, 1 ≤ s/r ≤

(
n− 1

4

)/(
m− 1

4

)
.

The following theorem is a generalization of these results with an added condition to

guarantee connectivity.

Theorem I.2.19 (Bahmanian, Johnsen, Napirata, 2021+). For n ≥ hm, an r-factorization

of λKh
m can be extended to a connected s-factorization of λKh

n if and only if s ≥ r + 1 and

h | rm, h | sn, r | λ
(
m− 1

h− 1

)
, s | λ

(
n− 1

h− 1

)
, 1 ≤ s

r
≤
(
n− 1

h− 1

)/(
m− 1

h− 1

)
.

In chapter III, we further generalize this theorem and also identify the necessary conditions

to guarantee connectivity of the resulting factorization.

In both chapters, the theorems pertaining to connectivity of r-factors found in [8] are also

directly applied. In particular, we use the following result.

Theorem I.2.20 (Bahmanian, 2020, [8] Corollary 7.4). Let G be a partial r-factorization

of λKh
m and let H be the hypergraph obtained by adding a new vertex α and new edges to G

so that

mult(αi, X) = λ

(
n−m
i

)
for each 1 ≤ i ≤ h, and X ⊆ V (λKh

m) with |X| = h− i.

A partial r-factorization of λKh
m can be extended to a connected r-factorization of λKh

n if

and only if the new edges of H can be colored such that

degH(i)(v) =


r if v 6= α,

r(n−m) if v = α,

∀i ∈ [k], (I.1)
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and

ωα(H(j)) ≤ (r − 1)(n−m) + 1 ∀i ∈ [k], (I.2)

where k := λ
(
n−1
h−1

)/
r ∈ N.

Here, the first condition guarantees that we can extend the partial r-factorization of λKh
m

to an r-factorization of λKh
n and the second condition guarantees that each individual color

class λKh
n(j) will be connected. This condition is also useful when extending partial

r-factorizations to connected r-factorizations, where r = (r1, . . . , rk).

I.3 Identities

The following combinatorial identities are used often in this thesis.

Lemma I.3.1. For n ≥ m ≥ h

∑h

i=0

(
m

i

)(
n−m
h− i

)
=

(
n

h

)
(I.3)

∑h−1

i=1
i

(
m

i

)(
n−m
h− i

)
= m

[(
n− 1

h− 1

)
−
(
m− 1

h− 1

)]
. (I.4)

Proof. First, we will show that

∑h

i=0

(
m

i

)(
n−m
h− i

)
=

(
n

h

)
.

Suppose we have a set X of n vertices. We could consider two subsets of these vertices: one

subset U including m vertices and one subset V including the remaining n−m vertices.

We count the number of ways to choose h-subsets from the set X. There are
(
n
h

)
ways to

choose an arbitrary h-subset of X.

These subsets may all be defined based upon the number of vertices from U contained in

them. Each subset contains some i vertices from U , where 0 ≤ i ≤ h. The remaining h− i

12



vertices in any subset are contained in V . Since there are
(
m
i

)(
n−m
h−i

)
edges containing

exactly i vertices from the subset U , it follows that there are
∑h

i=0

(
m
i

)(
n−m
h−i

)
total

h-subsets of X.

Hence we conclude that

∑h

i=0

(
m

i

)(
n−m
h− i

)
=

(
n

h

)
,

as desired.

Next, we will show that

∑h−1

i=1
i

(
m

i

)(
n−m
h− i

)
= m

[(
n− 1

h− 1

)
−
(
m− 1

h− 1

)]
.

A proof of this second identity can be found in [9]. We include the proof here for the sake

of completeness.

Let F be the hypergraph with V (F) = {u, v} and edge set E(F) = {uivh−i, 0 ≤ i ≤ h− 1}

such that mult(uivh−i) =
(
m
i

)(
n−m
h−i

)
for 0 ≤ i ≤ h− 1. Each edge of the form uivh−i adds i

to the degree of u in F . Thus, the degree of u in F is equal to
∑h−1

i=1 i
(
m
i

)(
n−m
h−i

)
.

Let u1, . . . , um be the m vertices in Kh
m and let Kh

n have vertex set u1, . . . , um, v1, . . . , vn−m.

Then we may obtain the hypergraph F by identifying m vertices u1, . . . , um in Kh
n\Kh

m by

the vertex u and the remaining n−m vertices by the vertex v. The degree of any ui in

Kh
n\Kh

m is equal to
(
n−1
h−1

)
−
(
m−1
h−1

)
. Thus, the degree of u in F is equal to m

[(
n−1
h−1

)
−
(
m−1
h−1

)]
.

Therefore,

h−1∑
i=1

i

(
m

i

)(
n−m
h− i

)
= degF u = m

[(
n− 1

h− 1

)
−
(
m− 1

h− 1

)]
,

as desired.
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CHAPTER II: EMBEDDING FACTORIZATIONS WHEN h = 6

Suppose that an r-factorization of K6
m is given. Each color class is an r-factor and within

each r-factor, the number of edges (which is an integer) is equal to mr/6 (the number of

vertices multiplied by the degree of each vertex divided by the number of vertices per

edge). Thus, the existence of an r-factorization of K6
m implies that 6 | rm. Moreover, since

the degree of each vertex in K6
m is

(
m−1
5

)
and the degree of each vertex in color class K6

m(j)

is r, we must have that r |
(
m−1
5

)
. Thus, in order to extend the given r-factorization of K6

m

to an s-factorization of K6
n, the following conditions are necessary.

6 | rm, 6 | sn, r |
(
m− 1

5

)
, s |

(
n− 1

5

)
. (II.1)

Let the number of colors in the r-factorization of K6
m and in the s-factorization of K6

n be q

and k, respectively. Then we have the following additional necessary conditions.

r ≤ s, q ≤ k (II.2)

In this chapter, a quintuple (n,m, s, r, 6) is admissible if it satisfies conditions (II.1) and

(II.2). We shall show that

Theorem II.0.1. For n ≥ 6m, an r-factorization of K6
m can be extended to an

s-factorization of Kh
n if and only if (n,m, s, r, 6) is admissible.

Throughout the rest of this chapter, we shall assume that (n,m, s, r, 6) is admissible, the

number of colors in the given r-factorization of K6
m is q, the number of colors in the

s-factorization of K6
n is k, and
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κ1 := {1, . . . , q}, κ2 := {q + 1, . . . , k}, κ := κ1 ∪ κ2.

Let G be the hypergraph K6
n\K6

m. We refer to the m vertices in V (G) ∩K6
m as the old

vertices in G and we refer to the remaining n−m vertices in V (G)\K6
m as the new vertices

in G. We shall reduce the problem of extending an r-factorization of K6
m to an

s-factorization of K6
n to the problem of coloring a 2-vertex hypergraph F with

V (F) = {u, v}. Before describing E(F), we need to introduce some more notation. An

edge of the form uivj (or a uivj-edge) is an edge in which vertex u occurs i times and

vertex v occurs j times. When we color the edges of F , we use degF(j)(v) and multF(j)(e) to

denote the degree of v and the multiplicity of e, respectively, in color class F(j). The

following describes the edge set of F .

mult(uiv6−i) =

(
m

i

)(
n−m
6− i

)
for 0 ≤ i ≤ 5. (II.3)

In fact, F is obtained by identifying all the m old vertices of G with a vertex u, and

identifying all the remaining n−m new vertices with a vertex v. We say that G is a

detachment of F , and F is an amalgamation of G.

In order to extend the r-factorization of K6
m to an s-factorization of K6

n, we need to color G

with k colors such that each color class of K6
n with edge set E(G) ∪ E(K6

m) induces an

s-factor for color j. In each r factor in the given r-factorization of K6
m, we have that the

degree of each vertex is r. Thus, coloring in such a way would require the degree of the m

old vertices in V (G) to be s− r in G(j) for all j ∈ κ1, the degree of the m old vertices to be

s in G(j) for all j ∈ κ2, and the degree of the n−m new vertices in V (G) to be s in G(j)

for all j ∈ κ. If we can obtain such a coloring, then in the amalgamation F of G,

degF(j)(u) = m(s− r) for j ∈ κ1, degF(j)(u) = sm for j ∈ κ2, and degF(j)(v) = s(n−m) for
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j ∈ κ. More importantly, by the following lemma, which is an immediate consequence of a

result of Bahmanian (see [5, Theorem 4.1]), the converse of the previous statement is also

true.

Lemma II.0.2. An r-factorization of K6
m can be extended to an s-factorization of K6

n

provided the hypergraph F described above can be colored so that

degF(j)(x) =


m(s− r) if x = u, j ∈ κ1,

sm if x = u, j ∈ κ2,

s(n−m) if x = v, j ∈ κ.

(II.4)

II.1 Proof of Theorem II.0.1

Suppose (n,m, s, r, 6) is admissible. We proceed by coloring the six types of edges in F to

meet the degree conditions in Lemma II.0.2.

Lemma II.1.1. We can color the edges of the form u5v such that

5 multF(j)(u5v) ≤


(s− r)m for j ∈ κ1;

sm for j ∈ κ2.
(II.5)

Proof. To show that this is possible, we need to show that

mult(u5v) ≤ q

⌊
(s− r)m

5

⌋
+ (k − q)

⌊sm
5

⌋
.

We have
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5q

⌊
(s− r)m

5

⌋
+ 5(k − q)

⌊sm
5

⌋
≥ q((s− r)m− 4) + (k − q)(sm− 4)

= ksm− qrm− 4k

≥ ksm− qrm− 4ks

= m

[(
n− 1

5

)
−
(
m− 1

5

)]
− 4

(
n− 1

5

)
.

Thus, it suffices to show that

m

[(
n− 1

5

)
−
(
m− 1

5

)]
− 4

(
n− 1

5

)
− 5

(
m

5

)
(n−m) ≥ 0.

We have
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m

[(
n− 1

5

)
−
(
m− 1

5

)]
− 4

(
n− 1

5

)
− 5

(
m

5

)
(n−m)

= m

(
n−m

5

)
+ 2

(
m

2

)(
n−m

4

)
+ 3

(
m

3

)(
n−m

3

)
+ 4

(
m

4

)(
n−m

2

)
+ 5

(
m

5

)
(n−m)− 5

(
m

5

)
(n−m)− 4

(
n− 1

5

)
= m

(
n−m

5

)
+ 2

(
m

2

)(
n−m

4

)
+ 3

(
m

3

)(
n−m

3

)
+ 4

(
m

4

)(
n−m

2

)
− 4

[(
m− 1

5

)
+

(
m− 1

4

)
(n−m) +

(
m− 1

3

)(
n−m

2

)]
− 4

[(
m− 1

2

)(
n−m

3

)
+ (m− 1)

(
n−m

4

)
+

(
n−m

5

)]
= (m− 4)

(
m− 1

3

)(
n−m

2

)
− 4

(
m− 1

5

)
− 4

(
m− 1

4

)
(n−m)

+ (m− 4)

[(
n−m

5

)
+ (m− 1)

(
n−m

4

)
+

(
m− 1

2

)(
n−m

3

)]
≥ (m− 4)

(
m− 1

3

)[(
n−m

2

)
− m− 5

5
− (n−m)

]
≥
(
n−m

2

)
− m− 5

5
− (n−m)

≥
(
n−m

2

)
− 1

5
(m− 5)(n−m)− (n−m)

= (n−m)

[
1

2
(n−m− 1)− 1

5
(m− 5)− 1

]
≥ 1

2
n− 7

10
m− 1

2
≥ 23

10
m− 1

2
≥ 0.

Lemma II.1.2. We can color the edges of the form u4v2 such that

4 multF(j)(u4v2) ≤


m(s− r)− 5 multF(j)(u5v) for j ∈ κ1;

sm− 5 multF(j)(u5v) for j ∈ κ2.
(II.6)

Proof. Based upon our coloring of the first type of edges (see II.5), the right-hand sides of

the inequalities in II.6 are nonnegative. Thus, to show that this is possible, we need to
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show that

mult(u4v2) ≤
∑

j∈κ1

⌊
m(s− r)− 5 multF(j)(u5v)

4

⌋
+
∑

j∈κ2

⌊
sm− 5 multF(j)(u5v)

4

⌋
.

We have

4
∑

j∈κ1

⌊
m(s− r)− 5 multF(j)(u5v)

4

⌋
+ 4

∑
j∈κ2

⌊
sm− 5 multF(j)(u5v)

4

⌋
≥
∑

j∈κ1
(m(s− r)− 5 multF(j)(u5v)− 3) +

∑
j∈κ2

(sm− 5 multF(j)(u5v)− 3)

= q(m(s− r)− 3) + (k − q)(sm− 3)− 5 mult(u5v)

= ksm− qrm− 5

(
m

5

)
(n−m)− 3k

≥ ksm− qrm− 5

(
m

5

)
(n−m)− 3ks

= m

[(
n− 1

5

)
−
(
m− 1

5

)]
− 5

(
m

5

)
(n−m)− 3

(
n− 1

5

)
.

Thus, it suffices to show that

m

[(
n− 1

5

)
−
(
m− 1

5

)]
− 5

(
m

5

)
(n−m)− 3

(
n− 1

5

)
− 4

(
m

4

)(
n−m

2

)
≥ 0.

We have
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m

[(
n− 1

5

)
−
(
m− 1

5

)]
− 5

(
m

5

)
(n−m)− 3

(
n− 1

5

)
− 4

(
m

4

)(
n−m

2

)
= m

(
n−m

5

)
+ 2

(
m

2

)(
n−m

4

)
+ 3

(
m

3

)(
n−m

3

)
− 3

(
n− 1

5

)
= m

(
n−m

5

)
+m(m− 1)

(
n−m

4

)
+m

(
m− 1

2

)(
n−m

3

)
− 3

[(
m− 1

5

)
+

(
m− 1

4

)
(n−m) +

(
m− 1

3

)(
n−m

2

)]
− 3

[(
m− 1

2

)(
n−m

3

)
+ (m− 1)

(
n−m

4

)
+

(
n−m

5

)]
= (m− 3)

[(
m− 1

2

)(
n−m

3

)
+ (m− 1)

(
n−m

4

)
+

(
n−m

5

)]
− (m− 3)

[
(m− 4)(m− 5)

20

(
m− 1

2

)
+
m− 4

4

(
m− 1

2

)
(n−m) +

(
m− 1

2

)(
n−m

2

)]
≥
(
m− 1

2

)[(
n−m

3

)
− (m− 4)(m− 5)

20
− m− 4

4
(n−m)−

(
n−m

2

)]
≥
(
n−m

3

)
− (m− 4)(m− 5)

20
− m− 4

4
(n−m)−

(
n−m

2

)
≥ (n−m)

[
1

3

(
n−m− 1

2

)
− (m− 4)(m− 5)

20
− m− 4

4
− 1

2
(n−m− 1)

]
≥ 1

6
(n−m− 1)(n−m− 2)− (m− 4)(m− 5)

20
− m− 4

4
− 1

2
(n−m− 1)

=
1

6
(n−m− 1)(n−m− 5)− (m− 4)m

20

≥ 1

6
(5m− 1)(5m− 5)− 1

20
(m− 4)m

=
1

60

(
50(5m− 1)(m− 1)− 3m2 + 12m

)
=

1

60

(
247m2 − 288m+ 50

)
≥ 0 when m = 6.

The following completes the proof.

d

dm

(
247m2 − 288m+ 50

)
= 494m− 288 > 0 when m > 6.
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Thus 247m2 − 288m+ 50 is increasing and positive for m ≥ 6, so we conclude

247m2 − 288m+ 50 ≥ 0.

Lemma II.1.3. We can color the edges of the form u3v3 such that

3 multF(j)(u3v3) ≤


m(s− r)− 4 multF(j)(u4v2)− 5 multF(j)(u5v) for j ∈ κ1;

sm− 4 multF(j)(u4v2)− 5 multF(j)(u5v) for j ∈ κ2.
(II.7)

Proof. Based upon our coloring of the first two types of edges (see II.6), the right-hand

sides of the inequalities in II.7 are nonnegative. Thus, to show that this is possible, we

need to show that

mult(u3v3) ≤
∑

j∈κ1

⌊
m(s− r)− 5 multF(j)(u5v)− 4 multF(j)(u4v2)

3

⌋
+
∑

j∈κ2

⌊
sm− 5 multF(j)(u5v)− 4 multF(j)(u4v2)

3

⌋
.

We have
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3
∑

j∈κ1

⌊
m(s− r)− 5 multF(j)(u5v)− 4 multF(j)(u4v2)

3

⌋
+ 3

∑
j∈κ2

⌊
sm− 5 multF(j)(u5v)− 4 multF(j)(u4v2)

3

⌋
≥
∑

j∈κ1
(m(s− r)− 5 multF(j)(u5v)− 4 multF(j)(u4v2)− 2)

+
∑

j∈κ2
(sm− 5 multF(j)(u5v)− 4 multF(j)(u4v2)− 2)

= q(m(s− r)− 2) + (k − q)(sm− 2)− 5 mult(u5v)− 4 mult(u4v2)

= ksm− qrm− 5

(
m

5

)
(n−m)− 4

(
m

4

)(
n−m

2

)
− 2k

≥ ksm− qrm− 5

(
m

5

)
(n−m)− 4

(
m

4

)(
n−m

2

)
− 2ks

= m

[(
n− 1

5

)
−
(
m− 1

5

)]
− 5

(
m

5

)
(n−m)− 4

(
m

4

)(
n−m

2

)
− 2

(
n− 1

5

)
.

Thus, it suffices to show that

m

[(
n− 1

5

)
−
(
m− 1

5

)]
− 5

(
m

5

)
(n−m)− 4

(
m

4

)(
n−m

2

)
− 2

(
n− 1

5

)
− 3

(
m

3

)(
n−m

3

)
≥ 0.

We have
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m

[(
n− 1

5

)
−
(
m− 1

5

)]
− 5(n−m)

(
m

5

)
− 4

(
n−m

2

)(
m

4

)
− 2

(
n− 1

5

)
− 3

(
m

3

)(
n−m

3

)
= m

(
n−m

5

)
+ 2

(
m

2

)(
n−m

4

)
− 2

(
n− 1

5

)
= m

(
n−m

5

)
+ 2

(
m

2

)(
n−m

4

)
− 2

[(
m− 1

5

)
+

(
m− 1

4

)
(n−m)

]
− 2

[(
m− 1

3

)(
n−m

2

)
+

(
m− 1

2

)(
n−m

3

)
+ (m− 1)

(
n−m

4

)
+

(
n−m

5

)]
≥ (m− 2)(m− 1)(n−m)

1

4

(
n−m− 1

3

)
− 2

(
m− 1

2

)[
1

60
(m− 3)(m− 4)(m− 5)

]
− 2

(
m− 1

2

)
(n−m)

[
1

12
(m− 3)(m− 4) +

1

6
(m− 3)(n−m− 1) +

1

3

(
n−m− 1

2

)]
≥ 1

4

(
n−m− 1

3

)
− 1

60
(m− 3)(m− 4)(m− 5)− 1

12
(m− 3)(m− 4)

− 1

6
(m− 3)(n−m− 1)− 1

3

(
n−m− 1

2

)
=

1

12
(n−m− 1)

(
1

2
(n−m− 2)(n−m− 3)− 2(m− 3)− 2(n−m− 2)

)
− 1

60
(m− 3)(m− 4)m

=
1

12
(n−m− 1)

(
1

2
(n−m− 2)(n−m− 7)− 2(m− 3)

)
− 1

60
(m− 3)(m− 4)m

≥ 1

12
(5m− 1)

(
1

2
(5m− 2)(5m− 7)− 2(m− 3)

)
− 1

60
(m− 3)(m− 4)m

=
5m− 7

12

(
5m− 1

2

)
− 1

60
(m− 3) (10(5m− 1) +m(m− 4))

=
5m− 7

12

(
5m− 1

2

)
− 1

60
(m− 3)(m2 + 46m− 10)

=
1

120
(623m3 − 1336m2 + 871m− 130)

=
1

120

(
m2(623m− 1336) + 871m− 130

)
≥ 0.
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Lemma II.1.4. We can color the edges of the form u2v4 such that

2 multF(j)(u2v4) ≤


2ρ4,j for j ∈ κ1;

2σ4,j for j ∈ κ2,
(II.8)

where

ρ4,j =
(s− r)m

2
−

3∑
`=1

6− `
2

multF(j)(u6−`v`)

σ4,j =
sm

2
−

3∑
`=1

6− `
2

multF(j)(u6−`v`)

Proof. Based upon our coloring of the first three types of edges (see II.7), the right-hand

sides of the inequalities in II.8 are nonnegative. Thus, to show that this is possible, we

need to show that

mult(u2v4) ≤
∑

j∈κ1
bρ4,jc+

∑
j∈κ2
bσ4,jc .

We have
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2
∑

j∈κ1
bρ4,jc+ 3

∑
j∈κ2
bσ4,jc

≥
∑

j∈κ1
(m(s− r)− 5 multF(j)(u5v)− 4 multF(j)(u4v2)− 3 multF(j)(u3v3)− 1)

+
∑

j∈κ2
(sm− 5 multF(j)(u5v)− 4 multF(j)(u4v2)− 3 multF(j)(u3v3)− 1)

= q(m(s− r)− 1) + (k − q)(sm− 1)− 5 mult(u5v)− 4 mult(u4v2)− 3 multF(j)(u3v3)

= ksm− qrm− 5

(
m

5

)
(n−m)− 4

(
m

4

)(
n−m

2

)
− 3 multF(j)(u3v3)− k

≥ ksm− qrm− 5

(
m

5

)
(n−m)− 4

(
m

4

)(
n−m

2

)
− 3 multF(j)(u3v3)− ks

= m

[(
n− 1

5

)
−
(
m− 1

5

)]
− 5

(
m

5

)
(n−m)− 4

(
m

4

)(
n−m

2

)
− 3

(
m

3

)(
n−m

3

)
−
(
n− 1

5

)
.

Thus, it suffices to show that

m

[(
n− 1

5

)
−
(
m− 1

5

)]
− 5

(
m

5

)
(n−m)− 4

(
m

4

)(
n−m

2

)
− 3

(
m

3

)(
n−m

3

)
−
(
n− 1

5

)
− 2

(
m

2

)(
n−m

4

)
≥ 0

We have
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m

[(
n− 1

5

)
−
(
m− 1

5

)]
− 5

(
m

5

)
(n−m)− 4

(
m

4

)(
n−m

2

)
− 3

(
m

3

)(
n−m

3

)
−
(
n− 1

5

)
− 2

(
m

2

)(
n−m

4

)
= m

(
n−m

5

)
−
(
n− 1

5

)
= m

(
n−m

5

)
−
(
n−m

5

)
− (m− 1)

(
n−m

4

)
−
(
m− 1

2

)(
n−m

3

)
−
(
m− 1

3

)(
n−m

2

)
−
(
m− 1

4

)
(n−m)−

(
m− 1

5

)
≥ (m− 1)(n−m)

[
1

5

(
n−m− 1

4

)
− 1

4

(
n−m− 1

3

)
− 1

6

(
n−m− 1

2

)
(m− 2)

]
+ (m− 1)(n−m)

[
−1

6
(n−m− 1)

(
m− 2

2

)
− 1

4

(
m− 2

3

)
− 1

5

(
m− 2

4

)]
≥ 1

5

(
n−m− 1

4

)
− 1

4

(
n−m− 1

3

)
− 1

6

(
n−m− 1

2

)
(m− 2)

− 1

6
(n−m− 1)

(
m− 2

2

)
− 1

4

(
m− 2

3

)
− 1

5

(
m− 2

4

)
=

1

120

(
n3(n− 4m− 15) + 5n(17n− 45 + 6m2n+ 35mn− 4m3 − 35m2 − 90m)

)
+

1

120

(
m3(5m− 46) +m(344m− 591) + 754

)
≥ 1

120

(
(6m)3(2m− 15) + 30m(102m− 45 + 36m3 + 210m2 − 4m3 − 35m2 − 90m)

)
+

1

120

(
m3(5m− 46) +m(344m− 591) + 754

)
=

1

120
(1397m4 + 1964m3 + 704m2 − 1941m+ 754)

≥ 0

Lemma II.1.5. We can color the edges of the form uv5 such that

multF(j)(uv5) =


ρ5,j for j ∈ κ1,

σ5,j for j ∈ κ2,
(II.9)
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where

ρ5,j = (s− r)m−
4∑
`=1

(6− `) multF(j)(u6−`v`)

σ5,j = sm−
4∑
`=1

(6− `) multF(j)(u6−`v`)

Proof. Based upon our coloring of the first four types of edges (see II.8), the right-hand

sides of the inequalities in II.9 are nonnegative. Thus, the following proves that this

coloring is possible.

∑
j∈κ

multF(j)(uv5) =
∑

j∈κ1
multF(j)(uv5) +

∑
j∈κ2

multF(j)(uv5)

= qm(s− r) + (k − q)sm− 5
∑

j∈κ
multF(j)(u5v)− 4

∑
j∈κ

multF(j)(u4v2)

− 3
∑

j∈κ
multF(j)(u3v3)− 2

∑
j∈κ

multF(j)(u2v4)

= ksm− qrm− 5

(
m

5

)
(n−m)− 4

(
m

4

)(
n−m

2

)
− 3

(
m

3

)(
n−m

3

)
− 2

(
m

2

)(
n−m

4

)
= m

[(
n− 1

5

)
−
(
m− 1

5

)]
− 5

(
m

5

)
(n−m)− 4

(
m

4

)(
n−m

2

)
− 3

(
m

3

)(
n−m

3

)
− 2

(
m

2

)(
n−m

4

)
= m

(
n−m

5

)
= mult(uv5).
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Lemma II.1.6. We can color the edges of the form v6 such that

multF(j)(v6) =


s
(n

6
−m

)
+
∑

`∈[4]
(5− `) multF(j)(u6−`v`) + rm

(
5

6

)
for j ∈ κ1,

s
(n

6
−m

)
+
∑

`∈[4]
(5− `) multF(j)(u6−`v`) for j ∈ κ2.

(II.10)

Proof. Since (n,m, s, r, 6) is admissible, multF(j)(v6) is an integer and since n ≥ 6m,

multF(j)(v6) ≥ 0 for all j ∈ κ. Thus, the following completes the proof.

∑
j∈κ

multF(j)(v6) =
∑

j∈κ1
multF(j)(v6) +

∑
j∈κ2

multF(j)(v6)

= q(s(n/6−m) + rm(5/6)) + (k − q)(s(n/6−m))

+
∑

`∈[4]
(5− `) mult(u6−`v`)

= ksn/6− ksm+ 5qrm/6 +
∑

`∈[4]
(5− `) mult(u6−`v`)

=

(
n

6

)
−m

(
n− 1

5

)
+ 5

(
m

6

)
+ 4

(
m

5

)
(n−m) + 3

(
m

4

)(
n−m

2

)
+ 2

(
m

3

)(
n−m

3

)
+

(
m

2

)(
n−m

4

)
=

(
n

6

)
−m

(
n− 1

5

)
+ 5

(
m

6

)
+m

[(
n− 1

5

)
−
(
m− 1

5

)]
−
(
n

6

)
+

(
n−m

6

)
+

(
m

6

)
=

(
n−m

6

)
= mult(v6).

Lemma II.1.7. Coloring according to Lemmas II.1.1–II.1.6 satisfies the degree conditions

stated in lemma II.0.2.

Proof. For j ∈ κ, we have
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degF(j)(u) =
∑

`∈[5]
(6− `) multF(j)(u6−`v`)

=
∑

`∈[4]
(6− `) multF(j)(u6−`v`) + multF(j)(uv5)

=
∑

`∈[4]
(6− `) multF(j)(u6−`v`) +


ρ5,j for j ∈ κ1

σ5,j for j ∈ κ2

=


m(s− r) for j ∈ κ1

sm for j ∈ κ2
,

and

degF(j)(v) =
∑

`∈[6]
`multF(j)(u6−`v`)

=
∑

`∈[4]
`multF(j)(u6−`v`) + 5 multF(j)(uv5) + 6 multF(j)(v6)

=
∑

`∈[4]
`multF(j)(u6−`v`) + 6

∑
`∈[4]

(5− `) multF(j)(u6−`v`)

+ 6s
(n

6
−m

)
+


5ρ5,j + 6rm

(
5

6

)
for j ∈ κ1,

5σ5,j for j ∈ κ2.

=
∑

`∈[4]
`multF(j)(u6−`v`) + 6

∑
`∈[4]

(5− `) multF(j)(u6−`v`)

− 5
∑

`∈[4]
(6− `) multF(j)(u6−`v`) + sn− 6sm

+


5(s− r)m+ 5rm for j ∈ κ1,

5sm for j ∈ κ2.

= sn− 6sm+ 5sm

= s(n−m).
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This completes the proof of Theorem II.0.1.

In the next chapter, we will address a generalization of Theorem II.0.1 where the value of h

is unknown. In fact, Theorem II.0.1 is a corollary of Theorem III.0.1 in the next section.
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CHAPTER III: EMBEDDING CONNECTED FACTORIZATIONS

Let q, k ∈ N and let s = (s1, . . . , sk) and r = (r1, . . . , rq). Suppose that an r-factorization of

λKh
m is given using q colors. Then the edges of color j in each color class λKh

m(j) induce an

rj factor. Within each rj-factor, the number of edges (which is an integer) is equal to

mrj/h. Thus, the existence of a r-factorization of λKh
m implies that h | rjm for each color

j. Moreover, since the degree of each vertex in λKh
m is λ

(
m−1
h−1

)
and the degree of each

vertex in color class λKh
m(j) is rj, we must have that

∑q
j=1 rj = λ

(
m−1
h−1

)
. If it is possible to

extend this r-factorization of λKh
m to an s-factorization of λKh

n , then the existence of an

s-factorization of λKh
n similarly implies that h | sjn for all j ∈ [k] and

∑k
j=1 sj = λ

(
n−1
h−1

)
.

Thus, in order to extend the given r-factorization of λKh
m to an s-factorization of λKh

n with

k color classes, the following conditions are necessary.

h | rjm, h | sjn,
q∑
j=1

rj = λ

(
m− 1

h− 1

)
,

k∑
j=1

sj = λ

(
n− 1

h− 1

)
. (III.1)

Since the number of colors in the r-factorization of λKh
m and in the s-factorization of λKh

n

are q and k, respectively, we have the following additional necessary conditions.

rj ≤ sj, q ≤ k (III.2)

These conditions arise from the fact that we cannot embed an edge-coloring of a

hypergraph using q colors into an edge-coloring of a larger hypergraph using fewer than q

colors and from the fact that we cannot embed an r-factor into an s-factor if s < r.

In this chapter, a sextuple (n,m, s, r, h, λ) is admissible if it satisfies conditions (III.1) and

(III.2). We shall show that

Theorem III.0.1. For n ≥ hm, an r-factorization of λKh
m can be extended to an
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s-factorization of λKh
n if and only if (n,m, s, r, h, λ) is admissible.

In fact, we prove something much stronger. By a connected factorization, we mean a

factorization in which each color class is connected.

Theorem III.0.2. For n ≥ hm, an r-factorization of λKh
m can be extended to a connected

s-factorization of λKh
n if and only if sj ≥ rj + 1 and (n,m, s, r, h, λ) is admissible.

III.1 Proof: Overview

Throughout the rest of this chapter, we shall assume that (n,m, s, r, h, λ) is admissible, the

number of colors in the given r-factorization of λKh
m is q, the number of colors in the

s-factorization of λKh
n is k, and

κ1 := {1, . . . , q}, κ2 := {q + 1, . . . , k}, κ := κ1 ∪ κ2.

Let G be the hypergraph Kh
n\Kh

m. We refer to the m vertices in V (G) ∩Kh
m as the old

vertices in G and we refer to the remaining n−m vertices in V (G)\Kh
m as the new vertices

in G. We shall reduce the problem of extending an r-factorization of λKh
m to an

s-factorization of λKh
n to the problem of coloring a 2-vertex hypergraph F with

V (F) = {u, v}. Before describing E(F), we need to introduce some more notation. An

edge of the form uivj (or a uivj-edge) is an edge containing i copies of vertex u and j copies

of vertex v. When we color the edges of F , we use degF(j)(v) and multF(j)(e) to denote the

degree of v and the multiplicity of e, respectively, in color class F(j). The following

describes the edge set of F .

mult(uivh−i) = λ

(
m

i

)(
n−m
h− i

)
for 0 ≤ i ≤ h− 1. (III.3)
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In fact, F is obtained by identifying all the m old vertices of G := λKh
n\λKh

m with a vertex

u, and identifying all the remaining n−m new vertices with v. We say that G is a

detachment of F , and F is an amalgamation of G.

In order to extend the r-factorization of λKh
m to an s-factorization of λKh

n , we need to

color G with k colors such that each color class of the hypergraph λKh
n with edge set

E(G)∪E(λKh
m) induces an sj-factor for color j. In each rj factor in λKh

m, we have that the

degree of each vertex is rj. Thus, coloring in such a way would require the degree of the m

old vertices in V (G) to be sj − rj in G(j) for all j ∈ κ1, the degree of the m old vertices to

be sj in G(j) for all j ∈ κ2 and the degree of the n−m vertices in V (G) to be sj in G(j) for

all j ∈ κ. If we can obtain such a coloring, then in the amalgamation F of G,

degF(j)(u) = m(sj − rj) for j ∈ κ1, degF(j)(u) = sjm for j ∈ κ2, and degF(j)(v) = sj(n−m)

for j ∈ κ. More importantly, by the following lemma, which is a consequence of a result of

Bahmanian (see [5, Theorem 4.1]), the converse of the previous statement is also true.

Lemma III.1.1. An r-factorization of λKh
m can be extended to an s-factorization of λKh

n

provided the hypergraph F described in (III.3) can be colored so that

degF(j)(x) =


m(sj − rj) if x = u, j ∈ κ1,

sjm if x = u, j ∈ κ2,

sj(n−m) if x = v, j ∈ κ.

(III.4)

Proof. Suppose we are given an r-factorization of λKh
m. Let F be the hypergraph defined

above and suppose we have colored the edges of F such that Equation III.4 holds.

Then by [5, Theorem 4.1], there exists an n-vertex hypergraph H̃, obtained by replacing

the vertex u of F by m vertices u1, . . . , um, replacing the vertex v of F by n−m vertices

v1, . . . , vn−m, and replacing each uh−ivi-edge in F by an edge of the form U1 ∪ U2 where

U1 ⊆ {u1, . . . , um}, |U1| = h− i, U2 ⊆ {v1, . . . , vn−m}, |U2| = i such that the edges incident

with u (in each color class of F) are shared as evenly as possible among u1, . . . , um (in each
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color class of H̃) and the edges incident with v (in each color class of F) are shared as

evenly as possible among v1, . . . , vn−m (in each color class of H̃) in the following way.

(a) For i ∈ [m], j ∈ κ1,

degH̃(j)(ui) =
degF(j)(u)

m
=
m(sj − rj)

m
= sj − rj;

(b) For i ∈ [m], j ∈ κ2,

degH̃(j)(ui) =
degF(j)(u)

m
=
m(sj)

m
= sj;

(c) For i ∈ [n−m], j ∈ κ,

degH̃(j)(vi) =
degF(j)(v)

n−m
=
sj(n−m)

n−m
= sj;

(d) For U1 ⊆ {u1, . . . , um}, |U1| = h− i, U2 ⊆ {v1, . . . , vn−m}, |U2| = i, i ∈ [h],

multH̃(U1 ∪ U2) =
multF(uh−ivi)(
m

h− i

)(
n−m
i

) =

λ

(
m

h− i

)(
n−m
i

)
(

m

h− i

)(
n−m
i

) = λ.

Let H be λKh
n . First color the edges in E(λKh

m) ⊆ E(H) according to the given

r-factorization of λKh
m and then color the remaining edges of H according to the coloring

of the edges in E(H̃). Then the degree of each vertex ui in V (H) ∩ V (λKh
m) will be

sj − rj + rj = sj in color class H(j) for j ∈ κ1, the degree of each vertex ui in

34



V (H) ∩ V (λKh
m) will be sj in each color class H(j) for j ∈ κ2, and the degree of each

vertex vi ∈ V (H)\V (λKh
m) will be sj in each color class H(j), j ∈ κ.

Thus H is an s-factorization of λKh
n with the given r-factorization of λKh

m embedded in it,

as desired.

When needed, we will use the following combinatorial identities without further

explanation. For n ≥ m ≥ h

∑h

i=0

(
m

i

)(
n−m
h− i

)
=

(
n

h

)
,
∑h−1

i=1
i

(
m

i

)(
n−m
h− i

)
= m

[(
n− 1

h− 1

)
−
(
m− 1

h− 1

)]
.

These identities and their proofs can be found in Lemma I.3.1 in the Introduction.

III.2 Proof of Theorem III.0.1: Details

In this section, we shall assume that n ≥ hm. The following inequality will be crucial in

our argument.

Lemma III.2.1. We have

∑
`∈[h−i−1]

m

(
m− 1

`− 1

)(
n−m
h− `

)
≥ (h− i− 1)

(
n− 1

h− 1

)
, ∀i ∈ [h− 2]. (III.5)

Proof. We need to show that f(i) ≥ 0 for i ∈ [h− 2] where

f(i) :=
∑

`∈[h−i−1]
m

(
m− 1

`− 1

)(
n−m
h− `

)
− (h− i− 1)

(
n− 1

h− 1

)
, i ∈ [h− 2],

g(i) := f(i+ 1)− f(i) =
∑

`∈[h−i−2]
m

(
m− 1

`− 1

)(
n−m
h− `

)
− (h− i− 2)

(
n− 1

h− 1

)
−
∑

`∈[h−i−1]
m

(
m− 1

`− 1

)(
n−m
h− `

)
+ (h− i− 1)

(
n− 1

h− 1

)
=

(
n− 1

h− 1

)
−m

(
m− 1

h− i− 2

)(
n−m
i+ 1

)
, i ∈ [h− 3].
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We will show that g is decreasing. If g is decreasing, one of three cases holds:

Case 1: g is decreasing and g(i) ≥ 0 for i ∈ [h− 3]. Then f(i+ 1) ≥ f(i) for i ∈ [h− 3], so

if f(1) ≥ 0, then we have that f(i) ≥ 0 for i ∈ [h− 2].

Case 2: g is decreasing and g(i) ≤ 0 for i ∈ [h− 3]. Then f(i+ 1) ≤ f(i) for i ∈ [h− 3], so

if f(h− 2) ≥ 0, then we have that f(i) ≥ 0 for i ∈ [h− 2].

Case 3: g is decreasing with g(1) > 0 and g(h− 3) < 0, so

g(1) > ... > g(i) ≥ 0 ≥ g(i+ 1) > ... > g(h− 3) for some i ∈ [h− 3]. Then

f(i+ 1) ≥ f(i) ≥ ... ≥ f(1) and f(i+ 2) ≥ f(i+ 3) ≥ ... ≥ f(h− 2), so if f(1) ≥ 0 and

f(h− 2) ≥ 0, then we have that f(i) ≥ 0 for i ∈ [h− 2].

Hence, it suffices to show that g is decreasing, f(1) ≥ 0, and f(h− 2) ≥ 0.

Note that

g(i)− g(i+ 1) =

(
n− 1

h− 1

)
−m

(
m− 1

h− i− 2

)(
n−m
i+ 1

)
−
(
n− 1

h− 1

)
+m

(
m− 1

h− i− 3

)(
n−m
i+ 2

)
= m

(
m− 1

h− i− 3

)(
n−m
i+ 2

)
−m

(
m− 1

h− i− 2

)(
n−m
i+ 1

)
.

Thus for i ∈ [h− 3], we have the following which proves that g is decreasing.

g(i)− g(i+ 1)

m
=

(
m− 1

h− i− 3

)(
n−m
i+ 2

)
−
(

m− 1

h− i− 2

)(
n−m
i+ 1

)
=

(
m− 1

h− i− 3

)(
n−m
i+ 1

)(
n−m− i− 1

i+ 2
− m− h+ i+ 2

h− i− 2

)
=

(
m− 1

h− i− 3

)(
n−m
i+ 1

)(
(n− i− 1)(h− i− 2) + (h− i− 2)(i+ 2)

(i+ 2)(h− i− 2)

)
+

(
m− 1

h− i− 3

)(
n−m
i+ 1

)(
−m(h− i− 2 + i+ 2)

(i+ 2)(h− i− 2)

)
=

(
m− 1

h− i− 3

)(
n−m
i+ 1

)
(n+ 1)(h− i− 2)− hm

(i+ 2)(h− i− 2)

≥
(

m− 1

h− i− 3

)(
n−m
i+ 1

)
(hm+ 1)(h− i− 2)− hm

(i+ 2)(h− i− 2)
≥ 0,
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since n ≥ hm and i ≤ h− 3.

Since

f(1) = m
∑

`∈[h−2]

(
m− 1

`− 1

)(
n−m
h− `

)
− (h− 2)

(
n− 1

h− 1

)
= m

[∑
`∈[h]

(
m− 1

`− 1

)(
n−m
h− `

)
−
(
m− 1

h− 2

)
(n−m)−

(
m− 1

h− 1

)]
− (h− 2)

(
n− 1

h− 1

)
= m

[(
n− 1

h− 1

)
−
(
m− 1

h− 2

)
(n−m)−

(
m− 1

h− 1

)]
− (h− 2)

(
n− 1

h− 1

)
= (m− h+ 2)

(
n− 1

h− 1

)
−m(n−m)

(
m− 1

h− 2

)
−m

(
m− 1

h− 1

)
= (m− h+ 2)

(
n− 1

h− 1

)
−m

(
n−m+

m− h+ 1

h− 1

)(
m− 1

h− 2

)
≥ (m− h+ 2)

(
n− 1

h− 1

)
−m(n− 1)

(
m− 1

h− 2

)
,

the following proves that f(1) ≥ 0.

(m− h+ 2)

(
n− 1

h− 1

)/[
m(n− 1)

(
m− 1

h− 2

)]
=

(m− h+ 2)(n− 2)!(m− h+ 1)!

m(h− 1)(n− h)!(m− 1)!

=
1

h− 1

∏
i∈[h−2]

n− 1− i
m+ 1− i

=
1

h− 1

∏
i∈[h−2]

(
1 +

n−m− 2

m+ 1− i

)
≥ 1

h− 1

(
1 +

n−m− 2

m

)h−2
=

(n− 2)h−2

(h− 1)mh−2

≥ (hm− 2)h−2

(h− 1)mh−2 ≥ 1.

Using Bernoulli’s inequality (∀ r ≥ 1, ∀ x ≥ −1 : (1 + x)r ≥ 1 + rx) we have the following

which proves that f(h− 2) ≥ 0.
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m

(
n−m
h− 1

)/(
n− 1

h− 1

)
=

m(n−m)!(n− h)!

(n− 1)!(n−m− h+ 1)!

= m
∏

i∈[m−1]

n−m− h+ i+ 1

n−m+ i

= m
∏

i∈[m−1]

(
1− h− 1

n−m+ i

)
≥ m

∏
i∈[m−1]

(
1− h− 1

n−m

)
≥ m

(
1− 1

m

)m−1
≥ m

(
1− m− 1

m

)
= 1.

Using Lemma III.2.1, we show that we can color all the uh−ivi-edges for i ∈ [h− 2].

Lemma III.2.2. We can color the edges of the form uh−1v, uh−2v2, . . . , u2vh−2 in F in that

particular order such that

multF(j)(uh−ivi) ≤


ρij for j ∈ κ1,

σij for j ∈ κ2,
for i ∈ [h− 2], (III.6)

where for i ∈ [h− 1],


ρij =

1

h− i

(
m(sj − rj)−

∑
`∈[i−1]

(h− `) multF(j)(uh−`v`)
)

for j ∈ κ1,

σij =
1

h− i

(
msj −

∑
`∈[i−1]

(h− `) multF(j)(uh−`v`)
)

for j ∈ κ2.

Proof. By letting ρ0j = m(sj − rj)/h, σ0j = msj/h, we have
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for i ∈ [h− 1],


ρij =

h− i+ 1

h− i
(
ρi−1,j −multF(j)(uh−i+1vi−1)

)
for j ∈ κ1,

σij =
h− i+ 1

h− i
(
σi−1,j −multF(j)(uh−i+1vi−1)

)
for j ∈ κ2.

Therefore, for i ∈ [h− 1], ρij ≥ 0 (if j ∈ κ1) and σij ≥ 0 (if j ∈ κ2). Since f(i) ≥ 0 for

i ∈ [h− 2], we have
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0 ≤ λ
∑

`∈[h−i−1]
`

(
m

`

)(
n−m
h− `

)
− λ(h− i− 1)

(
n− 1

h− 1

)
= λ

∑h−1

`=i+1
(h− `)

(
m

h− `

)(
n−m
`

)
− λ(h− i− 1)

(
n− 1

h− 1

)
= λ

∑
`∈[h−1]

(h− `)
(

m

h− `

)(
n−m
`

)
− λ

∑
`∈[i]

(h− `)
(

m

h− `

)(
n−m
`

)
− λ(h− i− 1)

(
n− 1

h− 1

)
= λm

[(
n− 1

h− 1

)
−
(
m− 1

h− 1

)]
− λ

∑
`∈[i]

(h− `)
(

m

h− `

)(
n−m
`

)
− λ(h− i− 1)

(
n− 1

h− 1

)
= λm

[(
n− 1

h− 1

)
−
(
m− 1

h− 1

)]
− λ

∑
`∈[i−1]

(h− `)
(

m

h− `

)(
n−m
`

)
− λ(h− i)

(
m

h− i

)(
n−m
i

)
− (h− i− 1)

∑
j∈κ

sj

≤ λm

[(
n− 1

h− 1

)
−
(
m− 1

h− 1

)]
− λ

∑
`∈[i−1]

(h− `)
(

m

h− `

)(
n−m
`

)
− λ(h− i)

(
m

h− i

)(
n−m
i

)
− (h− i− 1)(k)

= m
[∑

j∈κ
sj −

∑
j∈κ1

rj

]
−
∑

`∈[i−1]
(h− `) mult(uh−`v`)

− λ(h− i)
(

m

h− i

)(
n−m
i

)
− k(h− i− 1)

=
∑

j∈κ1
(sj − rj)m+

∑
j∈κ2

sjm−
∑

j∈κ

∑
`∈[i−1]

(h− `) multF(j)(uh−`v`)

− λ(h− i)
(

m

h− i

)(
n−m
i

)
−
∑

j∈κ
(h− i− 1)

=
∑

j∈κ1

[
(sj − rj)m−

∑
`∈[i−1]

(h− `) multF(j)(uh−`v`)− (h− i− 1)

]
+
∑

j∈κ2

[
sjm−

∑
`∈[i−1]

(h− `) multF(j)(uh−`v`)− (h− i− 1)

]
− (h− i) mult(uh−ivi)

≤ (h− i)
∑

j∈κ1
bρijc+ (h− i)

∑
j∈κ2
bσijc − (h− i) mult(uh−ivi).

Therefore, for i ∈ [h− 2],
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mult(uh−ivi) ≤
∑

j∈κ1
bρijc+

∑
j∈κ2
bσijc.

Coloring the remaining edges of F is straightforward.

Lemma III.2.3. We can color the uvh−1-edges and the vh-edges of F such that

multF(j)(uvh−1) =


ρh−1,j for j ∈ κ1,

σh−1,j for j ∈ κ2,

multF(j)(vh) =



sj

(n
h
−m

)
+
∑

`∈[h−2]
(h− `− 1) multF(j)(uh−`v`) + rjm

(
h− 1

h

)
for j ∈ κ1,

sj

(n
h
−m

)
+
∑

`∈[h−2]
(h− `− 1) multF(j)(uh−`v`)

for j ∈ κ2.

Proof. By Lemma III.2.2, both ρh−1,j and σh−1,j are nonnegative integers. We have
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∑
j∈κ

multF(j)(uvh−1) =
∑

j∈κ1
ρh−1,j +

∑
j∈κ2

σh−1,j

= m
∑

j∈κ1
(sj − rj)−

∑
j∈κ1

∑
`∈[h−2]

(h− `) multF(j)(uh−`v`)

+
∑

j∈κ2
sjm−

∑
j∈κ2

∑
`∈[h−2]

(h− `) multF(j)(uh−`v`)

= m
∑

j∈κ
sj −m

∑
j∈κ1

rj −
∑

`∈[h−2]
(h− `)

∑
j∈κ

multF(j)(uh−`v`)

= λm

[(
n− 1

h− 1

)
−
(
m− 1

h− 1

)]
− λ

∑
`∈[h−2]

(h− `)
(

m

h− `

)(
n−m
`

)
= λ

∑
`∈[h−1]

(h− `)
(

m

h− `

)(
n−m
`

)
− λ

∑
`∈[h−2]

(h− `)
(

m

h− `

)(
n−m
`

)
= λm

(
n−m
h− 1

)
.

Since (n,m, s, r, h, λ) is admissible and n ≥ hm, we have that multF(j)(vh) is a nonnegative

integer for all j ∈ κ. Thus, the following completes the proof.
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∑
j∈κ

multF(j)(vh) =
∑

j∈κ1
multF(j)(vh) +

∑
j∈κ2

multF(j)(vh)

=
∑

j∈κ
sj

(n
h
−m

)
+m

∑
j∈κ1

rj

(
h− 1

h

)
+
∑

j∈κ

∑
`∈[h−2]

(h− `− 1) multF(j)(uh−`v`)

=
(n
h
−m

)
λ

(
n− 1

h− 1

)
+m

(
h− 1

h

)
λ

(
m− 1

h− 1

)
+
∑

`∈[h−2]
(h− `− 1)λ

(
m

h− `

)(
n−m
`

)
=
λn

h

(
n− 1

h− 1

)
− λm

h

(
m− 1

h− 1

)
− λm

[(
n− 1

h− 1

)
−
(
m− 1

h− 1

)]
+
∑

`∈[h−2]
λ(h− `)

(
m

h− `

)(
n−m
`

)
−
∑

`∈[h−2]
λ

(
m

h− `

)(
n−m
`

)
= λ

(
n

h

)
− λ
(
m

h

)
−
∑

`∈[h−1]
λ(h− `)

(
m

h− `

)(
n−m
`

)
+
∑

`∈[h−2]
λ(h− `)

(
m

h− `

)(
n−m
`

)
−
∑

`∈[h−2]
λ

(
m

h− `

)(
n−m
`

)
= λ

(
n

h

)
− λ
(
m

h

)
− λm

(
n−m
h− 1

)
−
∑

`∈[h−2]
λ

(
m

h− `

)(
n−m
`

)
= λ

(
n

h

)
− λ
(
m

h

)
−
∑

`∈[h−1]
λ

(
m

h− `

)(
n−m
`

)
= λ

(
n

h

)
− λ
(
m

h

)
− λ

[(
n

h

)
−
(
m

h

)
−
(
n−m
h

)]
= λ

(
n−m
h

)
.

Lemma III.2.4. Coloring of F satisfies (III.4).

Proof. For j ∈ κ, we have
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degF(j)(u) =
∑

`∈[h−1]
(h− `) multF(j)(uh−`v`)

=
∑

`∈[h−2]
(h− `) multF(j)(uh−`v`) + multF(j)(uvh−1)

=
∑

`∈[h−2]
(h− `) multF(j)(uh−`v`) +


ρh−1,j for j ∈ κ1

σh−1,j for j ∈ κ2

=


m(sj − rj) for j ∈ κ1

sjm for j ∈ κ2
,

and

degF(j)(v) =
∑

`∈[h]
`multF(j)(uh−`v`)

=
∑

`∈[h−2]
`multF(j)(uh−`v`) + (h− 1) multF(j)(uvh−1) + hmultF(j)(vh)

=
∑

`∈[h−2]
`multF(j)(uh−`v`) + h

∑
`∈[h−2]

(h− `− 1) multF(j)(uh−`v`)

+ hsj

(n
h
−m

)
+


(h− 1)ρh−1,j + hrjm

(
h− 1

h

)
for j ∈ κ1,

(h− 1)σh−1,j for j ∈ κ2.

=
∑

`∈[h−2]
`multF(j)(uh−`v`) + h

∑
`∈[h−2]

(h− `− 1) multF(j)(uh−`v`)

− (h− 1)
∑

`∈[h−2]
(h− `) multF(j)(uh−`v`) + sjn− hsjm

+


(h− 1)m(sj − rj) + (h− 1)rjm for j ∈ κ1,

(h− 1)msj for j ∈ κ2.

= sjn− hsjm+ (h− 1)sjm

= sj(n−m).
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This completes the proof of Theorem III.0.1.

III.3 Connected Factorizations

Let F be the hypergraph defined in section III.1 and colored in section III.2. Let H be the

s-factorization of λKh
n obtained by first detaching the colored hypergraph F by detaching u

into m vertices and detaching v into n−m vertices and then coloring the remaining edges

according to the given r-factorization of λKh
m, as described in the proof of Lemma III.1.1.

Now amalgamate H by mapping the n−m vertices in V (H)\V (λKh
m) to one vertex v. Let

F̃ be the resulting (m+ 1)-vertex hypergraph with V (F̃) = V (λKh
m)∪{v} and with an edge

set containing E(λKh
m) ⊆ E(F̃) and containing remaining edges incident to v such that

multF̃(Xvh−i) = λ

(
n−m
h− i

)
∀X ⊆ V (λKh

m), |X| = i, 0 ≤ i ≤ h− 1. (III.7)

Assume that the edges in E(λKh
m) ⊆ E(F̃) are colored according to the given

r-factorization of λKh
m. Let Uh−i be the set containing all sets U ⊆ V (H)\V (λKh

m) with

|U | = h− i and assume that the remaining edges in E(F̃) are colored such that for each

X ⊆ V (λKh
m), |X| = i, 0 ≤ i ≤ h− 1,

multF̃(j)(Xv
h−i) =

∑
U⊆Uh−i

multH(j)(X ∪ U). (III.8)

By an Xvj-edge or ∗vj-edge for short, we mean an edge of the form X ∪ {vj} (so it

contains j copies of v). Observe that the edges of λKh
m are the ∗v0-edges.

Recall that a vertex v in some hypergraph G is a cut vertex if there exist two non-trivial

sub-hypergraphs I, J of G such that (i) I ∪ J = G, (ii) V (I ∩ J) = {v}, and (iii)
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E(I ∩ J) = ∅. A sub-hypergraph W of a hypergraph G is an v-wing of G if (i) W is

non-trivial and connected, (ii) v is not a cut vertex of W , and (iii) no edge in E(G)\E(W )

is incident with a vertex in V (W )\{v}. A v-wing W is large if V (W ) 6= {v}. Let ωv(G),

and ωLv (G) be the number of v-wings, and the number of large v-wings in G, respectively.

Let c(G) denote the number of components of G.

Example: Hypergraph G with cut vertex v, ωv(G) = 6, and ωLv (G) = 2.

G

I

J

v

v-wings in G

I

J

v

v

v

vv

v

For j ∈ κ, we have multF̃(j)(v
h) loops containing h copies of vertex v, each of which is a

v-wing in F̃(j). The remaining edges in F̃(j) contain at least one vertex u 6= v, so any

remaining v-wings must be large v wings. Let F̃\{v} be the hypergraph with vertex set

V (F̃)\{v} and with edge set {e\{v}|e ∈ E(F̃)}. Since sj > rj for all colors j, there must

be at least one Xvi edge in E(F̃) incident to every vertex u in V (F̃)\{v}. The addition of

each such edge may decrease, but can not increase, the number of components in F̃(j)\{v}

compared to the number of components in λKh
m(j). Each component in F̃(j)\{v}

corresponds to a single v-wing in F̃(j). It follows that the number of large v-wings in F̃(j)

cannot exceed the number of components in λKh
m(j). Thus,

ωv(F̃(j)) = multF̃(j)(v
h) + ωLv (F̃(j)) ≤ multF̃(j)(v

h) + c(λKh
m(j)).

Moreover, c(λKh
m(j)) ≤ m/h for j ∈ κ1 as there are at most m/h pairwise disjoint edges in

a given rj-factor, and c(λKh
m(j)) ≤ m for j ∈ κ2 since the number of components in a
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hypergraph cannot exceed the number of vertices in it. Let z1 = m(sj − rj), z2 = msj.

Using induction, we show that for 2 ≤ p ≤ h and j ∈ κi, i = 1, 2, the following holds.

∑
`∈[h−2]

(h− `− 1) multF̃(j)(u
h−`v`) ≤

∑
`∈[h−p]

(
h− `
p− 1

− 1

)
multF̃(j)(u

h−`v`) + zi

(
p− 2

p− 1

)
.

(III.9)

Clearly (III.9) holds when p = 2, so suppose that it holds for some 2 ≤ p < h. We have

∑
`∈[h−2]

(h− `− 1) multF̃(j)(u
h−`v`)

≤
∑

`∈[h−p−1]

(
h− `
p− 1

− 1

)
multF̃(j)(u

h−`v`) + zi

(
p− 2

p− 1

)
+

(
p

p− 1
− 1

)
multF̃(j)(u

pvh−p)

≤
∑

`∈[h−p−1]

(
h− `
p− 1

− 1

)
multF̃(j)(u

h−`v`) + zi

(
p− 2

p− 1

)
+

1

p(p− 1)

(
zi −

∑
`∈[h−p−1]

(h− `) multF̃(j)(u
h−`v`)

)
=
∑

`∈[h−p−1]

(
h− `
p
− 1

)
multF̃(j)(u

h−`v`) + zi

(
p− 1

p

)
.

By [8, Corollary 7.4], in order to complete the proof of Theorem III.0.2, we need to show

that the coloring of F̃ described in section III.2 satisfies the following condition.

ωv(F̃(j)) ≤ (sj − 1)(n−m) + 1 ∀j ∈ κ. (III.10)

Since n ≥ hm and sj ≥ rj + 1 ≥ 2, for j ∈ κ1, we have
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ωv(F̃(j)) ≤ sj

(n
h
−m

)
+
∑

`∈[h−2]
(h− `− 1) multF̃(j)(u

h−`v`) + rjm

(
h− 1

h

)
+
m

h

≤ sj

(n
h
−m

)
+m(sj − rj)

(
h− 2

h− 1

)
+ rjm

(
h− 1

h

)
+
m

h

≤ sjn

h
− sjm

h− 1
+

rjm

h(h− 1)
+
m

h

=
sjnh− sjn− sjmh+ rjm+mh−m

h(h− 1)

≤ sjh(n−m)− (rj + 1)n+ rjm+ n−m
h(h− 1)

=
sjh(n−m)− rj(n−m)−m

h(h− 1)

=
sj(n−m)

h− 1
− rj(n−m) +m

h(h− 1)

≤ (sj − 1)(n−m),

and for j ∈ κ2, we have

ωv(F̃(j)) ≤ sj

(n
h
−m

)
+
∑

`∈[h−2]
(h− `− 1) multF̃(j)(u

h−`v`) +m

≤ sj

(n
h
−m

)
+ sjm

(
h− 2

h− 1

)
+m

=
sjn

h
− sjm

h− 1
+m

=
sjnh− sjn− sjmh+mh2 −mh

h(h− 1)

=
sj(n−m) +mh

(h− 1)
− sjn+mh

h(h− 1)

≤ (sj − 1)(n−m).

This completes the proof of Theorem III.0.2.
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CHAPTER IV: EMBEDDING IRREGULAR COLORINGS INTO CONNECTED

FACTORIZATIONS

Suppose that a partial r-factorization P of λKh
m is extended to an r-factorization of λKh

n .

For i ∈ [k], the existence of an ri-factor in λKh
n implies that h | rin since the number of

edges in an ri-factor (which is an integer) is equal to mrj/h. Since the degree of each

vertex in λKh
n is λ

(
n−1
h−1

)
and the degree of each vertex in color class λKh

n(j) is rj, we must

have that
∑k

j=1 rj = λ
(
n−1
h−1

)
. Thus, in order to extend P to an r-factorization of λKh

n the

following conditions are necessary.

h | rin ∀i ∈ [k],
k∑
i=1

ri = λ

(
n− 1

h− 1

)
. (IV.1)

For further explanation of the necessity of these conditions, see the paragraph prior to

Lemma III.1.1 in section III.1.

We shall show that as long as n is big enough, these obvious necessary (divisibility)

conditions are sufficient. In this chapter, a quadruple (n, h, λ, r) is admissible if it satisfies

(IV.1). Here are our first two results.

Theorem IV.0.1. For n ≥ (h− 1)(2m− 1), a partial r-factorization of λKh
m can be

extended to an r-factorization of λKh
n if and only if (n, h, λ, r) is admissible.

Theorem IV.0.2. Let n ≥ (h− 1)(2m− 1), s = (s1, . . . , sq), r = (r1, . . . , rk) such that

q∑
i=1

⌊
(ri − si)m

h

⌋
+

k∑
i=q+1

⌊rim
h

⌋
≥ λ

(
m

h

)
.

A partial s-factorization of G ⊆ λKh
m can be embedded into an r-factorization of λKh

n if

and only if (n, h, λ, r) is admissible.

In the following two results, we identify the conditions under which rj-factors in the
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extended factorizations in the previous two theorems are connected.

Theorem IV.0.3. In Theorem IV.0.1, an rj-factor λKh
n(j) of λKh

n is connected if and

only if rj ≥ 2 and λKh
m(j) is rj-irregular for j ∈ [k].

Theorem IV.0.4. In Theorem IV.0.2, let A ⊆ {j ∈ [k] | rj ≥ 2}, B = {j ∈ [q] | rj 6= sj},

and define rj = rj − 1 if j ∈ A, and rj = rj if j ∈ [k]\A. If

∑
j∈B

⌊
(rj − sj)m

h

⌋
+

∑
j∈[k]\[q]

⌊
rjm

h

⌋
≥ λ

(
m

h

)
,

then for j ∈ A, the rj-factor λKh
n(j) is connected if and only if G(j) is rj-irregular.

Before we prove Theorems IV.0.1–IV.0.4, we provide several corollaries in the next section.

When needed, we will use Bernoulli’s inequality (∀ p ≥ 1, ∀ x ≥ −1 : (1 + x)p ≥ 1 + px),

and the following combinatorial identities without further explanation. For n ≥ m ≥ h

∑h

i=0

(
m

i

)(
n−m
h− i

)
=

(
n

h

)
,
∑h−1

i=1
i

(
m

i

)(
n−m
h− i

)
= m

[(
n− 1

h− 1

)
−
(
m− 1

h− 1

)]
.

These identities and their proofs can be found in Lemma I.3.1 in the Introduction.

IV.1 Corollaries

To exhibit the effectiveness of our main results, here we provide some applications.

Corollary IV.1.1. Let

n ≥ (h− 1)(2m− 1), d = λ

(
n− 1

h− 1

)
, g =

h

gcd(n, h)
,

F = λKh
m, H = λKh

n .
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(I) A proper d-coloring of F can be extended to a proper d-coloring of H if and only if

n ≡ 0 (mod h).

(II) A partial g-factorization of F using k := d/g colors can be extended to a connected

g-factorization of H if and only if F(i) is g-irregular for i ∈ [k] and n 6≡ 0 (mod h).

(III) A partial 2-factorization of F using k := bd/2c colors can be extended to a connected

2-factorization of H if and only if F(i) is 2-irregular for i ∈ [k], 2n ≡ 0 (mod h) and

d ≡ 0 (mod 2).

(IV) A partial h-factorization of F using k := bd/hc colors can be extended to a connected

h-factorization of H if and only if F(i) is h-irregular for i ∈ [k] and d ≡ 0 (mod h).

Proof. To prove (I), let k = d, r = (1, . . . , 1). Then h|n and
∑k

i=1 1 = k = d, so (n, h, λ, 1)

is admissible. Applying Theorem IV.0.1 completes the proof.

To prove (II), let r = (g, . . . , g). By definition of greatest common divisor, we have that

gcd(n, h)|n. As h|h, it follows that h| hn
gcd(n,h)

, so h|gn. Furthermore,∑k
i=1 g = (d/g)(g) = d = λ

(
n−1
h−1

)
. Thus, (n, h, λ, r) is admissible. Moreover, as h - n and

h|gn, we must have that h|g, so as h ≥ 2, we also have that g ≥ 2. Applying Theorem

IV.0.3 completes the proof.

To prove (III), we apply Theorem IV.0.3 with r = (2, . . . , 2). As 2n ≡ 0 (mod h), we have

that h|2n. As d ≡ 0 (mod 2), we have that 2|d, so bd/2c = (d/2). It follows that∑k
i=1 2 = bd/2c 2 = d = λ

(
n−1
h−1

)
and we conclude that (n, h, λ, 2) is admissible. We assume

that F(i) is 2-irregular. Thus, Theorem IV.0.3 completes the proof.

To prove (IV), we apply Theorem IV.0.3 with r = (h, . . . , h). As h|h, we have h|hn. As

d ≡ 0( (mod h)), we have that h|d, so
∑k

i=1 h = bd/hch = d = λ
(
n−1
h−1

)
and we conclude

that (n, h, λ, h) is admissible. We assume that F(i) is h-irregular and we have that h ≥ 2.

Thus, Theorem IV.0.3 completes the proof.

Remark IV.1.2. (I) is a hypergraph analogue of Cruse’s theorem [14] which showed that

a proper (n− 1)-coloring of Km can be extended to a proper (n− 1)-coloring of Kn
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whenever n is even and n ≥ 2m. (III) is a hypergraph analogue of Hilton’s theorem on

extending path decompositions of Km to Hamiltonian decompositions of Kn [21].

IV.2 Proof of Theorem IV.0.1

Let G := λKh
m. We have established that it is necessary for (n, h, λ, r) to be admissible, so

suppose that (n, h, λ, r) is admissible, n ≥ (h− 1)(2m− 1), and a partial r-factorization of

G is given. Let F be the hypergraph whose vertex set is V (G) ∪ {α}, and whose edge set is

the (colored) edge set of G together with further (uncolored) edges (containing the new

vertex α) described as follows.

multF(Xαh−i) = λ

(
n−m
h− i

)
∀X ⊆ V (G), |X| = i, 0 ≤ i ≤ h− 1. (IV.2)

By an Xαj-edge or ∗αj-edge for short, we mean an edge of the form X ∪ {αj} (so it

contains j copies of α). Observe that the edges of G are the ∗α0-edges. In the next three

subsections, we color the new (uncolored) edges of F . When we color the edges of F , we

use degF(j)(v) and multF(j)(e) to denote the degree of some vertex v and the multiplicity of

some edge e, respectively, in color class j.

IV.2.1 Coloring the ∗αi-edges, i ∈ [h− 2] We color the ∗α-edges, ∗α2-edges, . . . ,

∗αh−2-edges of F , in that particular order, such that

degF(j)(x) ≤ rj ∀x ∈ V (G), j ∈ [k]. (IV.3)

Suppose to the contrary that for some i ∈ [h− 2], there is an ∗αi-edge e in F that cannot

be colored. Let e = X ∪ {αi} where X is an (h− i)-subset of V (G). Then for each j ∈ [k],

there is some x ∈ X such that degF(j)(x) = rj, and consequently, for all j ∈ [k],
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∑
x∈X degF(j)(x) ≥ rj (otherwise, the edge could be colored).

Since |X| = h− i, the multiplicity of every edge is λ, and for each x ∈ X, we have

• degG(x) =
(
m−1
h−1

)
• there are

∑i
`=1

(
n−m
`

)(
m−1
h−`−1

)
new edges which contain x and at most i copies of α, and

• at least one edge containing x cannot be colored.

On the one hand,

k∑
j=1

∑
x∈X

degF(j)(x) ≥
k∑
j=1

rj = λ

(
n− 1

h− 1

)
,

and on the other hand,

k∑
j=1

∑
x∈X

degF(j)(x) ≤ λ(h− i)

[(
m− 1

h− 1

)
+

i∑
`=1

(
n−m
`

)(
m− 1

h− `− 1

)
− 1

]
.

Thus, we have

λ

(
n− 1

h− 1

)
≤ λ(h− i)

[(
m− 1

h− 1

)
+

i∑
`=1

(
n−m
`

)(
m− 1

h− `− 1

)
− 1

]
.

We shall prove that this is a contradiction by establishing that f(i) > 0 for i ∈ [h− 2] where

f(i) :=

(
n− 1

h− 1

)
− (h− i)

[∑i

`=0

(
n−m
`

)(
m− 1

h− `− 1

)
− 1

]
, i ∈ [h− 2].

Since
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f(h− 2) =

(
n− 1

h− 1

)
− 2

[∑h−2

`=0

(
n−m
`

)(
m− 1

h− `− 1

)
− 1

]
=

(
n− 1

h− 1

)
− 2

[(
n− 1

h− 1

)
−
(
n−m
h− 1

)]
+ 2

= 2

(
n−m
h− 1

)
−
(
n− 1

h− 1

)
+ 2,

the following proves that f(h− 2) > 0 for n ≥ (h− 1)(2m− 1).

(
n−m
h− 1

)/(
n− 1

h− 1

)
=

(n−m)!(n− h)!

(n− 1)!(n−m− h+ 1)!

=
h−1∏
i=1

n−m− i+ 1

n− i

=
h−1∏
i=1

(
1− m− 1

n− i

)

≥
h−1∏
i=1

(
1− m− 1

n− h+ 1

)
=

(
1− m− 1

n− h+ 1

)h−1
≥ 1− (h− 1)(m− 1)

n− h+ 1

≥ 1− (h− 1)(m− 1)

(h− 1)(2m− 1)− (h− 1)

= 1− (h− 1)(m− 1)

2(h− 1)(m− 1)
=

1

2
.

Now let

g(i) = f(i+ 1)− f(i)

=
∑i+1

`=0

(
n−m
`

)(
m− 1

h− `− 1

)
− (h− i)

(
m− 1

h− i− 2

)(
n−m
i+ 1

)
− 1, i ∈ [h− 4].
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We will show that g is strictly decreasing for i ∈ [h− 4]. If g is decreasing, then there exists

an i with 0 ≤ i ≤ h− 4 such that g(i) ≥ 0 for 1 ≤ i ≤ a and g(i) ≤ 0 for a+ 1 ≤ i ≤ h− 4.

Therefore, f(a+ 1) > f(a) > · · · > f(1) and f(a+ 2) > f(a+ 3) > · · · > f(h− 3). Hence,

to show f(i) > 0 for i ∈ [h− 3], it suffices to show that g is decreasing, f(1) > 0, and

f(h− 3) > 0.

Since

g(i)− g(i+ 1) = (h− i− 2)

(
m− 1

h− i− 3

)(
n−m
i+ 2

)
− (h− i)

(
m− 1

h− i− 2

)(
n−m
i+ 1

)
=

(
n−m
i+ 1

)(
m− 1

h− i− 3

)(
(h− i− 2)(n−m− i− 1)

i+ 2
− (h− i)(m− h+ i+ 2)

h− i− 2

)
,

for i ∈ [h− 4], g(i) > g(i+ 1) if and only if

(h− i− 2)2(n−m− i− 1) > (h− i)(i+ 2)(m− h+ i+ 2). (IV.4)

Since i ≤ h− 4, we have
1

h− i− 2
≤ 1

2
and

h− i
h− i− 2

≤ 2, so
h− i

(h− i− 2)2
≤ 1. Therefore,

(h− i)(i+ 2)(m− h+ i+ 2)

(h− i− 2)2
+m+ i+ 1 ≤ (h− 2)(m− 2) +m+ h− 3 < n.

This proves (IV.4), and consequently, g is strictly decreasing for i ∈ [h− 4].

Since
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f(1) =

(
n− 1

h− 1

)
− (h− 1)

[(
m− 1

h− 1

)
+ (n−m)

(
m− 1

h− 2

)
− 1

]
>

(
n− 1

h− 1

)
− (h− 1)

(
m− 1

h− 1

)
− (h− 1)(n−m)

(
m− 1

h− 2

)
=

(
n− 1

h− 1

)
−
(
m− 1

h− 2

)(
(h− 1)(n−m) +m− h+ 1

)
>

(
n− 1

h− 1

)
− (h− 1)(n− 1)

(
m− 1

h− 2

)
,

the following proves that f(1) > 0.

(
n− 1

h− 1

)
(
m− 1

h− 2

) =
(n− 1)!(m− h+ 1)!

(h− 1)(n− h)!(m− 1)!
=
n− 1

h− 1

h−2∏
i=1

n− i− 1

m− i

=
n− 1

h− 1

h−2∏
i=1

(
1 +

n−m− 1

m− i

)

≥ n− 1

h− 1

h−2∏
i=1

(
1 +

n−m− 1

m

)
=
n− 1

h− 1

(
1 +

n−m− 1

m

)h−2
≥ n− 1

h− 1

(
1 +

(h− 2)(n−m− 1)

m

)
≥ n− 1

h− 1

(
1 +

hm(h− 2)

m

)
= (n− 1)(h− 1).

Now, we show that f(h− 3) > 0. Since
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f(h− 3) =

(
n− 1

h− 1

)
− 3

[
h−3∑
`=0

(
n−m
`

)(
m− 1

h− `− 1

)
− 1

]

=

(
n− 1

h− 1

)
− 3

[(
n− 1

h− 1

)
−
(
n−m
h− 1

)
− (m− 1)

(
n−m
h− 2

)]
+ 3

= 3

(
n−m
h− 1

)
+ 3(m− 1)

(
n−m
h− 2

)
− 2

(
n− 1

h− 1

)
+ 3,

the following proves that f(h− 3) > 0.

[(
n−m
h− 1

)
+ (m− 1)

(
n−m
h− 2

)]/(
n− 1

h− 1

)
=

(
n−m
h− 2

)(
n−m− h+ 2

h− 1
+m− 1

)/(
n− 1

h− 1

)
=

(
n−m− h+ 2

h− 1
+m− 1

)
(h− 1)(n−m)!(n− h)!

(n− 1)!(n−m− h+ 2)!

=

(
n−m− h+ 2

h− 1
+m− 1

)
h− 1

n−m− h+ 2

h−1∏
i=1

n−m− i+ 1

n− i

≥
(

1 +
(h− 1)(m− 1)

n− h+ 1

) h−1∏
i=1

(
1− m− 1

n− i

)
≥
(

1 +
(h− 1)(m− 1)

n− h+ 1

)(
1− m− 1

n− h+ 1

)h−1
≥
(

1 +
(h− 1)(m− 1)

n− h+ 1

)(
1− (h− 1)(m− 1)

n− h+ 1

)
≥ 1−

(
(h− 1)(m− 1)

2(h− 1)(m− 1)

)2

= 1− 1

4
>

2

3
.

IV.2.2 Coloring the ∗αh−1-edges We color the ∗αh−1-edges such that

multF(j)(xαh−1) = rj − degF(j)(x) ∀x ∈ V (G), j ∈ [k].

This is possible, because for x ∈ V (G),
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k∑
j=1

(
rj − degF(j)(x)

)
=

k∑
j=1

rj −
k∑
j=1

degF(j)(x)

= λ

(
n− 1

h− 1

)
− degF(x)

= λ

(
n− 1

h− 1

)
−

h−1∑
`=1

λ

(
m

`

)(
n−m
h− `− 1

)

= λ
h−1∑
`=0

(
m

`

)(
n−m
h− `− 1

)
− λ

h−1∑
`=1

(
m

`

)(
n−m
h− `− 1

)
= λ

(
n−m
h− 1

)
= multF(xαh−1).

IV.2.3 Coloring the αh-edges Recall that n ≥ (h− 1)(2m− 1) and h | rjn for j ∈ [k].

Hence, we color the αh-edges such that

multF(j)(αh) =
rjn

h
− rjm+

h−2∑
`=0

(h− `− 1) multF(j)(∗α`) ∀j ∈ [k].

Let us verify that this is in fact possible.
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k∑
j=1

multF(j)(αh) =
k∑
j=1

(
rjn

h
− rjm+

h−2∑
`=0

(h− `− 1) multF(j)(∗α`)

)

=
n

h

k∑
j=1

rj −m
k∑
j=1

rj +
k∑
j=1

h−2∑
`=0

(h− `− 1) multF(j)(∗α`)

= λ
n

h

(
n− 1

h− 1

)
− λm

(
n− 1

h− 1

)
+

h−2∑
`=0

(h− `− 1)
k∑
j=1

multF(j)(∗α`)

= λ

(
n

h

)
− λm

(
n− 1

h− 1

)
+ λ

h−2∑
`=0

(h− `− 1)

(
m

h− `

)(
n−m
`

)

= λ
h∑
`=0

(
m

h− `

)(
n−m
`

)
− λm

(
n− 1

h− 1

)

+ λ
h−2∑
`=0

(h− `)
(

m

h− `

)(
n−m
`

)
− λ

h−2∑
`=0

(
m

h− `

)(
n−m
`

)
= λ

(
n−m
h

)
+ λm

(
n−m
h− 1

)
− λm

(
n− 1

h− 1

)
+ λ

h−2∑
`=0

(h− `)
(

m

h− `

)(
n−m
`

)

= λ

(
n−m
h

)
− λm

(
n− 1

h− 1

)
+ λ

h−1∑
`=0

(h− `)
(

m

h− `

)(
n−m
`

)

= λ

(
n−m
h

)
− λm

(
n− 1

h− 1

)
+ λh

(
m

h

)
+ λ

h−1∑
`=1

(h− `)
(

m

h− `

)(
n−m
`

)
= λ

(
n−m
h

)
− λm

(
n− 1

h− 1

)
+ λm

(
m− 1

h− 1

)
+ λm

[(
n− 1

h− 1

)
−
(
m− 1

h− 1

)]
= λ

(
n−m
h

)
= multF(αh).

IV.2.4 Regularity of the Coloring of F As a result of the coloring of the

∗αh−1-edges, we have

degF(j)(x) = rj ∀x ∈ V (G), j ∈ [k], (IV.5)

and so,
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rjm =
∑

x∈V (G)

degF(j)(x) =
h−1∑
`=0

(h− `) multF(j)(∗α`) ∀j ∈ [k]. (IV.6)

Hence,

degF(j)(α) =
h∑
`=0

`multF(j)(∗α`)

= hmultF(j)(∗αh) +
h−1∑
`=0

`multF(j)(∗α`)

= h

(
rjn

h
− rjm+

h−2∑
`=0

(h− `− 1) multF(j)(∗α`)

)
+

h−1∑
`=0

`multF(j)(∗α`)

= rjn− hrjm+ h
h−2∑
`=0

(h− `− 1) multF(j)(∗α`) +
h−1∑
`=0

`multF(j)(∗α`)

= rjn− h
h−1∑
`=0

(h− `) multF(j)(∗α`) + h
h−2∑
`=0

(h− `) multF(j)(∗α`)

− h
h−2∑
`=0

multF(j)(∗α`) +
h−1∑
`=0

`multF(j)(∗α`)

= rjn− hmultF(j)(∗αh−1)− h
h−2∑
`=0

multF(j)(∗α`) +
h−1∑
`=0

`multF(j)(∗α`)

= rjn− h
h−1∑
`=0

multF(j)(∗α`) +
h−1∑
`=0

`multF(j)(∗α`)

= rjn−
h−1∑
`=0

(h− `) multF(j)(∗α`)

= rjn− rjm = rj(n−m) ∀j ∈ [k].

IV.2.5 A Fair Detachment of F By [5, Theorem 4.1], there exists an n-vertex

hypergraph H, called the fair (α, n−m)-detachment of F , obtained by replacing the vertex

α of F by n−m new vertices α1, . . . , αn−m in H, and replacing each Xαi-edge by an edge
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of the form X ∪ U where U ⊆ {α1, . . . , αn−m}, |U | = i ∈ [h] (leaving the remaining vertices

and edges of F intact), such that the edges incident with α (in each color class of F) are

shared as evenly as possible among α1, . . . , αn−m in H in the following way.

(a) For i ∈ [n−m], j ∈ [k],

degH(j)(αi) =
degF(j)(α)

n−m
=
rj(n−m)

n−m
= rj;

(b) For X ⊆ V (G), U ⊆ {α1, . . . , αn−m}, |X| = h− i, |U | = i ∈ [h],

multH(XU) =
multF(Xαi)(
n−m
i

) =

λ

(
n−m
i

)
(
n−m
i

) = λ. (IV.7)

Here, multH(XU) is the number of occurrences of an edge of the form X ∪ U . Observe that

by (b), H ∼= λKh
n , and by (IV.5) and (a), H(i) is an ri-factor for i ∈ [k]. This completes the

proof of Theorem IV.0.1.

IV.3 Proof of Theorem IV.0.2

A vertex v in a connected hypergraph G is a cut vertex if there exist two non-trivial

sub-hypergraphs I, J of G such that I ∪ J = G, V (I ∩ J) = {v}, and E(I ∩ J) = ∅. A

sub-hypergraph W of a hypergraph G is an v-wing of G if (i) W is non-trivial and

connected, (ii) v is not a cut vertex of W , and (iii) no edge in E(G)\E(W ) is incident with

a vertex in V (W )\{v}. A v-wing W is large if V (W ) 6= {v}, and is small if V (W ) = {v}.

Let ωv(G), and ωLv (G) be the number of v-wings, and the number of large v-wings in G,

respectively. Let c(G) denote the number of components of G.
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Example: Hypergraph G with cut vertex v, ωv(G) = 6, and ωLv (G) = 2.

G

I

J

v

v-wings in G

I

J

v

v

v

vv

v

An r-factor cannot be connected unless if r ≥ 2. Moreover, if a component of a color class

of λKh
m is r-regular, then there is no way to extend it to a connected r-factor in λKh

n . This

justifies the necessity of the conditions of Theorem IV.0.3.

Now let G1 := λKh
m, G ⊆ G1. Suppose that n ≥ (h− 1)(2m− 1) and (n, h, λ, r) is

admissible where s = (s1, . . . , sq), r = (r1, . . . , rk) such that

q∑
i=1

⌊
(ri − si)m

h

⌋
+

k∑
i=q+1

⌊rim
h

⌋
≥ λ

(
m

h

)
,

and suppose a partial s-factorization of G is given. It suffices to extend the given partial

s-factorization of G to a partial r-factorization of G1 as by Theorem IV.0.1, we may extend

this partial r-factorization of G1 to an r-factorization of λKh
n .

Let F be a hypergraph whose vertex set is {α} and has λ
(
m
h

)
copies of an edge of the form

{αh}. In other words,

V (F) = {α}, multF(αh) = λ

(
m

h

)
.

We color the edges of F such that
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multF(i)(αh) ≤


⌊

(ri − si)m
h

⌋
for i ∈ [q],

⌊rim
h

⌋
for i ∈ [k]\[q].

By [5, Theorem 4.1], there exists an m-vertex hypergraph H obtained by replacing the

vertex α of F by m new vertices α1, . . . , αm in H, and replacing each αh-edge by an edge of

the form U where U ⊆ {α1, . . . , αm}, |U | = h such that the edges incident with α (in each

color class of F) are shared as evenly as possible among α1, . . . , αm in H in the following

way.

degH(j)(αi) ≈
degF(j)(α)

m
≤ h

m

⌊
(rj − sj)m

h

⌋
≤ rj − sj ∀i ∈ [m], j ∈ [q];

(IV.8)

degH(j)(αi) ≈
degF(j)(α)

m
≤ h

m

⌊rjm
h

⌋
≤ rj ∀i ∈ [m], j ∈ [k]\[q];

(IV.9)

multH(U) = multF(αh)
/(m

h

)
= λ

(
m

h

)/(
m

h

)
= λ ∀U ⊆ {α1, . . . , αn}, |U | = h.

(IV.10)

Here, x ≈ y means byc ≤ x ≤ dye. By (IV.10), H ∼= λKh
m, and by (IV.8) and (IV.9), the

coloring of H induces a partial (r1 − s1, . . . , rq − sq, rq+1, . . . , rk)-factorization. We color

each edge of G1\G with color of the corresponding edge in H. This leads to a partial

r-factorization of G1, as desired, and completes the proof of Theorem IV.0.2.
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IV.4 Proof of Theorem IV.0.3

Suppose that (n, h, λ, r) is admissible, n ≥ (h− 1)(2m− 1), and a partial r-factorization of

G := λKh
m is given. In the introduction, we established that it is necessary for λKh

m(j) to be

rj-irregular and for rj ≥ 2 for all j ∈ [k]. Let F be the hypergraph defined in Section IV.2

whose edges are colored according to the coloring described in Subsections IV.2.1–IV.2.4.

Let us fix j ∈ [k] and assume that rj ≥ 2 and that no component of G(j) is rj-regular.

Since degF(j)(u) = rj for all u ∈ V (G) and no component of G(j) is rj-regular, there must

be at least one edge joining α and each component of G(j). Hence, F(j) must be

connected. We shall prove that H(j), constructed in Subsection IV.2.5, is connected.

IV.4.1 An Upper Bound for the Number of Wings We claim that

ωα(F(j)) ≤ (rj − 1)(n−m) + 1. (IV.11)

Since every ∗αh-edge is a small α-wing in F(j), and each component of G(j) corresponds to

at most one large α-wing in F(j), we have

ωα(F(j)) = multF(j)(αh) + ωLα(F(j))

≤ multF(j)(αh) + c(G(j))

=
rjn

h
− rjm+

h−1∑
i=1

(h− i) multF(j)(∗αi−1) + c(G(j)).

Thus, to prove (IV.11), it suffices to show that

rjn

h
− rjm+

h−1∑
i=1

(h− i) multF(j)(∗αi−1) + c(G(j)) ≤ (rj − 1)(n−m) + 1,
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which is equivalent to showing

rjn

(
1− 1

h

)
− n+m+ 1 ≥

h−1∑
i=1

(h− i) multF(j)(∗αi−1) + c(G(j)). (IV.12)

For i ∈ [h− 1], an ∗αh−i-edge in F contains i vertices of V (G) which are contained in at

most i different components of G(j). Thus, an ∗αh−i-edge connects at most i components

of G(j). It follows that the maximum number of components of G(j) which are connected

by the addition of new edges of the form ∗αh−i for i ∈ [h− 1] is
∑h−1

i=1 imultF(j)(∗αh−i).

Note that edges of the form αh do not contain any vertices v ∈ V (G) and thus do not

connect any components of G(j). Since F(j) is connected and is obtained by the addition

of the edges of the form ∗αh−i for 0 ≤ i ≤ h− 1 to G(j), we have

c(G(j)) ≤
h−1∑
i=1

imultF(j)(∗αh−i).

Therefore,

c(G(j))

h− 1
≤

h−1∑
i=1

i

h− 1
multF(j)(∗αh−i) ≤

h−1∑
i=1

(h− i) multF(j)(∗αh−i). (IV.13)

Using (IV.6), we have
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rjm

(
1− 1

h

)
− 1

h

h−1∑
i=1

(h− i) multF(j)(∗αh−i)

=

(
1− 1

h

) h∑
i=1

imultF(j)(∗αh−i)−
1

h

h−1∑
i=1

(h− i) multF(j)(∗αh−i)

=
h−1∑
i=1

[
i

(
1− 1

h

)
−
(

1− i

h

)]
multF(j)(∗αh−i) + (h− 1) multF(j)(∗α0)

=
h−1∑
i=1

(i− 1) multF(j)(∗αh−i) + (h− 1) multF(j)(∗α0)

=
h∑
i=1

(i− 1) multF(j)(∗αh−i)

=
h−1∑
i=1

(h− i) multF(j)(∗αi−1). (IV.14)

Moreover, the number of components in G cannot exceed the number of vertices in V (G),

so c(G(j)) ≤ m. Now as n ≥ (h− 1)(2m− 1) and rj ≥ 2, we have the following which

proves (IV.12) for h > 3.
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rjn

(
1− 1

h

)
− n+m+ 1 ≥ hm

(
rj

(
1− 1

h

)
− 1

)
+m+ 1

= rjm

(
1− 1

h

)
+ (h− 1)rjm

(
1− 1

h

)
− hm+m+ 1

= rjm

(
1− 1

h

)
+m

(
(h− 1)rj − h)

)
−m

(
h− 1

h
rj − 1

)
+ 1

= rjm

(
1− 1

h

)
+m

(
(h− 1)rj − h

)(
1− 1

h

)
+ 1

≥ rjm

(
1− 1

h

)
+m(h− 2)

(
1− 1

h

)
+ 1

= rjm

(
1− 1

h

)
+m

(
h3 − 4h2 + 5h− 2

h(h− 1)

)
≥ rjm

(
1− 1

h

)
+m

(
h2 − h− 1

h(h− 1)

)
= rjm

(
1− 1

h

)
+

(
1− 1

h(h− 1)

)
m

≥ rjm

(
1− 1

h

)
+

(
1− 1

h(h− 1)

)
c(G(j))

= rjm

(
1− 1

h

)
− 1

h

(
c(G(j))

h− 1

)
+ c(G(j))

≥ rjm

(
1− 1

h

)
− 1

h

h−1∑
i=1

(h− i) multF(j)(∗αh−i) + c(G(j))

=
h−1∑
i=1

(h− i) multF(j)(∗αi−1) + c(G(j)).

IV.4.2 Connected Detachments By [8, Theorem 1.1], in the fair

(α, n−m)-detachment H of F , H(j) is connected if and only if

degF(j)(α)− ωα(F(j)) ≥ n−m− 1. (IV.15)

In (IV.11), we showed that

ωα(F(j)) ≤ (rj − 1)(n−m) + 1.
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Moreover, recall that degF(j)(α) = rj(n−m). Hence

degF(j)(α)− ωα(F(j)) ≥ rj(n−m)− (rj − 1)(n−m)− 1 = n−m− 1.

This completes the proof of Theorem IV.0.3.

IV.5 Proof of Theorem IV.0.4

Suppose that n ≥ (h− 1)(2m− 1) and (n, h, λ, r) is admissible where

s = (s1, . . . , sq), r = (r1, . . . , rk) such that

∑
i∈B

⌊
(ri − si)m

h

⌋
+
∑

i∈[k]\[q]

⌊
rim

h

⌋
≥ λ

(
m

h

)
,

where A ⊆ {i ∈ [k] | ri ≥ 2}, B = {i ∈ [q] | ri 6= si}, ri := ri − 1 if i ∈ A, and ri := ri if

i ∈ [k]\A. Assume that a partial s-factorization of G ⊆ G1 := λKh
m is given such that G(i)

is ri-irregular for i ∈ A. By Theorem IV.0.3, it suffices to extend the given partial

s-factorization of G to a partial r-factorization of G1 in such a way that no component of

color class i of the partial r-factorization of G1 is ri-regular for i ∈ A.

Let F be a hypergraph whose vertex set is {α} and has λ
(
m
h

)
copies of an edge of the form

{αh}. We color the edges of F such that

multF(i)(αh) ≤



⌊
(ri − si)m

h

⌋
for i ∈ [q]\(A ∩B),⌊

(ri − si − 1)m

h

⌋
for i ∈ A ∩B,

⌊rim
h

⌋
for i ∈ ([k]\[q])\A,⌊

(ri − 1)m

h

⌋
for i ∈ A ∩ ([k]\[q]),
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By [5, Theorem 4.1], there exists an m-vertex hypergraph H obtained by replacing the

vertex α of F by m new vertices α1, . . . , αm in H, and replacing each αh-edge by an edge of

the form U where U ⊆ {α1, . . . , αm}, |U | = h such that the edges incident with α (in each

color class of F) are shared as evenly as possible among α1, . . . , αm in H in the following

way.

multH(U) = multF(αh)
/(m

h

)
= λ

(
m

h

)/(
m

h

)
= λ ∀U ⊆ {α1, . . . , αn}, |U | = h;

∀i ∈ [m] : degH(j)(αi) ≈
degF(j)(α)

m
≤
hmultF(j)(αh)

m

≤



rj − sj for j ∈ [q]\(A ∩B),

rj − sj − 1 for j ∈ A ∩B,

rj for j ∈ ([k]\[q])\A,

rj − 1 for j ∈ A ∩ ([k]\[q]).

To obtain a partial r-factorization of G1, we color each edge of G1\G with color of the

corresponding edge in H. Recall that no component of color class i of the partial

s-factorization of G is ri-regular for i ∈ A. Hence, G1(i) is ri-irregular for i ∈ A, and we are

done.
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