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PARAMETER ESTIMATION FOR THE LOGISTIC REGRESSION MODEL

WITH ERRORS IN COVARIATE

HUYEN D. NGUYEN

54 pages

In a logistic regression model, when the covariate is measured with error, the esti-

mators of the regression coefficient parameters can be biased. We propose a method for

estimating parameters of a logistic regression with case-control data, when the covariate is

subject to measurement error. The density of the covariate is estimated by using the de-

convolution kernel density estimation. The parameters of the regression are estimated by

the integrated squared distance based on the log ratio of the estimated density. We show

the consistency and the asymptotic normality of the proposed estimators. Simulation study

shows the superiority of the proposed method in different sample sizes and measurement er-

ror magnitudes scenario compared to method in which the measurement error was ignored.

The methodology is applied to estimating the relationship of systolic blood pressure and the

presence of coronary heart disease.

KEYWORDS: Logistic Regression, Case-control Study, Integrated Square Distance, Decon-

volution Kernel Density Estimation, Measurement Error Models



PARAMETER ESTIMATION FOR THE LOGISTIC REGRESSION MODEL

WITH ERRORS IN COVARIATE

HUYEN D. NGUYEN

A Thesis Submitted in Partial
Fulfillment of the Requirements

for the Degree of

MASTER OF SCIENCE

Department of Mathematics

ILLINOIS STATE UNIVERSITY

2021



© 2021 Huyen D. Nguyen



PARAMETER ESTIMATION FOR THE LOGISTIC REGRESSION MODEL

WITH ERRORS IN COVARIATE

HUYEN D. NGUYEN

COMMITTEE MEMBERS:

Pei Geng, Chair

Maochao Xu



ACKNOWLEDGMENTS

I would like to thank my supervisor, Dr. Pei Geng for her guidance, support, and

patience during the course of my research work. I would also like to thank Dr. Maochao Xu

for serving on my thesis committee and for supporting my studies.

I must also thank Dr. Gaywalee Yamskulna, Dr. Fuxia Cheng, Dr. Amin Bahmanian,

and Dr. Laura Boehm Vock, from whom I have learned so much about mathematics and

statistics and received valuable mentorship.

My gratitude extends to Illinois State University Department of Mathematics for

funding opportunities to undertaking my master program studies.

Special thanks to my parents, for their unconditional love and support. Thanks to

my family, my friends, Janet, James, the Blanche group, and to Bryan.

H. D. N.

i



CONTENTS

Page

ACKNOWLEDGMENTS i

CONTENTS ii

TABLES iii

FIGURES v

CHAPTER I: INTRODUCTION 1

CHAPTER II: BACKGROUND 6

II.1 Kernel Density Estimator 6

II.2 Definition of the Integrated Square Distance Estimator 11

CHAPTER III: MAIN RESULTS 15

CHAPTER IV: DATA ANALYSIS 23

IV.1 Simulation 23

IV.2 Real Data Application 29

CHAPTER V:DISCUSSION 33

REFERENCES 35

APPENDIX: DETAILED PROOFS OF THEOREM 1 AND TECHNICAL LEMMAS 38

ii



TABLES

Table Page

1 Comparison of deconvolution integrated square distance (ISD) estimator

and naive ISD estimator for σε = 0.3, equal sample size, and (a, b) = (0, 1) 26

2 Comparison of deconvolution ISD estimator and naive ISD estimator for

σε = 0.3, sample size ratio 3 : 1, and (a, b) = (0, 1) 26

3 Comparison of deconvolution ISD estimator and naive ISD estimator for

σε = 0.3, sample size ratio 5 : 1, and (a, b) = (0, 1) 27

4 Comparison of deconvolution ISD estimator and naive ISD estimator for

σε = 0.6, equal sample size, and (a, b) = (0, 1) 27

5 Comparison of deconvolution ISD estimator and naive ISD estimator for

σε = 0.6, sample size ratio 3 : 1, and (a, b) = (0, 1) 27

6 Comparison of deconvolution ISD estimator and naive ISD estimator for

σε = 0.6, sample size ratio 5 : 1, and (a, b) = (0, 1) 27

7 Comparison of deconvolution ISD estimator and naive ISD estimator for

σε = 0.3, equal sample size, and (a, b) chosen to be sample means of

control and case group respectively 28

8 Comparison of deconvolution ISD estimator and naive ISD estimator for

σε = 0.3, sample size ratio 3 : 1, and (a, b) chosen to be sample means of

control and case group respectively 28

iii



9 Comparison of deconvolution ISD estimator and naive ISD estimator for

σε = 0.3, sample size ratio 5 : 1, and (a, b) chosen to be sample means of

control and case group respectively 28

10 Comparing data application results using naive maximum likelihood, naive

ISD, and deconvolution ISD methods 32

iv



FIGURES

Figure Page

1 An example of kernel density estimation 7

2 Commonly used kernels for kernel density estimation 8

3 Comparing the kernel density estimator using different bandwidths 8

4 Probability density functions of a Laplace and a normal distribution, both

with mean 0 and variance 4 11

5 Characteristic functions of a Laplace and a normal distribution, both with

mean 0 and variance 4 12

6 The deconvolution kernel K∗(x) with Gaussian kernel K(x) and the

Laplace error density 25

7 Histogram of the average (”true”) systolic blood pressure measurement 30

8 Histogram of the error sample 30

9 Laplace Q-Q plot of the error distribution 31

v



CHAPTER I: INTRODUCTION

Logistic regression is one of the most commonly applied methods for binary repsonse.

In the model, the binary response Y relates to covariate X and the conditional mean function

of Y given X is

E(Y |X = x) =
exp(α∗ + βx)

1 + exp(α∗ + βx)
. (1)

The maximum likelihood estimator is often used in practice to estimate parameters α∗ and

β. It is asymptotically normal and consistent subject to regularity condition. However,

the quality of the estimation can be degraded when the covariate X may not be accurately

measured. Stefanski and Carroll (1985) showed that ignoring measurement errors may result

in biased estimators. In this paper, we discuss a method to estimate logistic regression

parameters when covariate is contaminated.

The motivation to study this problem stems from medical research and health science.

An example of this problem is studying the presence of a disease and its relationship with a

risk factor, such as blood pressure or dietary intake, that is difficult to measure and subject

to measurement error. The error could be caused by both measuring instrument variability

and biological fluctuation of human body. In fact, pioneer papers in addressing this problem

such as Carroll et al. (1984) and Stefanski and Carroll (1985) were both motivated by

Framingham Heart Study, which investigated the development of cardiovascular disease.

The study was based on logistic regression with response Y being the presence pr absence

of heart disease and covariate X being risk factors such as systolic blood pressure, serum

cholesterol,etc. Systolic blood pressure measure, for example, is subject to substantial error.

While a person’s true blood pressure is defined as long-term average, the readings can be
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affected by the blood pressure cuff placement, the person’s stress level, the amount of time

after eating at the time of the readings. Yi et al. (2018) studied the calcium intake in relation

to distal colon cancer. Dietary intake is also a variable that is difficult to measure accurately

due to the variability of the food source and the amount of food consumed. Therefore, it is

crucial to develop methods that can account for the error.

The method for logistic regression parameter estimation that we discuss in this paper

is under the case-control framework. This work is based on the paper by Geng and Sakha-

nenko (2016) in which the authors proposed the method for when the covariate sample is

free of error. Let X0i, i = 1, ..., n0 be the true measure of the covariate X in the control

group (Yi = 0) and X1j, j = 1, ..., n1 be the true measure of the covariate X in the case

group (Yi = 1). Let n be the total sample size of the data such that n = n1 + n0. Then,

Y = 0 : X01, X02, ..., X0n0 is a random sample from a random variable with density f0(x);

Y = 1 : X11, X12, ..., X1n1 is a random sample from a random variable with density

f1(x) = exp(α + βx)f0(x) where α = α∗ + ln
P (Y = 0)

P (Y = 1)
.

(2)

Under this framework, the logarithm ratio of the true densities f0, and f1 is the straight line

α + βx. The estimated logarithm ratio of the densities ln{f̂1(x)/f̂0(x)} is approximately a

straight line and the idea of the method is to have the distance between this line and the

true α+ βx line minimized. Geng and Sakhanenko (2016) estimated the densities f0 and f1

using the kernel density estimation method. The authors derived the logistic regression pa-

rameter estimators by minimizing the integrated square distance of the estimated logarithm
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ratio of the densities and the true one. They established the consistency and the asymptotic

normality of the estimators and investigated its performance compared with some other ex-

isting methods. The advantages of this method is that it does not require assumptions on

the distribution of the covariate and the estimator has closed form expression. The simu-

lation study showed the method outperforms when the sample sizes are small and severely

unbalanced.

In this paper, we consider the case in which instead of observing the true mea-

sures of the covariate X, we observe the data contaminated with error U0i, i = 1, ..., n0

and U1j, j = 1, ..., n1 such that U0i = X0i + ε0i and U1j = X1j + ε1j with {ε01, ε02, ..., ε0n0}

and {ε11, ε12, ..., ε1n1} be random samples of known distributions.

There is a wealth of literature on the covariate measurement error problem in logistic

regression. As mentioned, pioneer works include Carroll et al. (1984) and Stefanski and

Carroll (1985). Carroll et al. (1984) proposed a structural model based on the maximum

likelihood of the response Yi conditioned on the observed covariate. Both covariate and the

measurement error were assumed to be independent normally distributed with known vari-

ance. The author considered a particular case of the structural model in which the regression

is probit due to the difficulty of the calculation of the likelihood for logistic function, and

suggested that both logistic and probit regression often result in similar estimates. Schafer

(1987) followed this suggestion and proposed the Expectation-Maximization (EM) algorithm

to compute the estimates of the logistic regression. In the algorithm, the maximum likelihood

estimation of β is estimated by iterative reweighted least squares. The nuisance parameters

of conditional density of true covariate given the errors are estimated using the validation

data, then used to calculate the likelihood function and the estimated β is obtained by
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maximizing the likelihood function over the primary data. Stefanski and Carroll (1985) pro-

posed a functional maximum likelihood estimator. The errors are normally distributed with

covariance matrix σ2Σ and the log-likelihood for estimating β is

n∑
1

{Yi log(F (XT
i β)) + (1− Yi log(F (−XT

i β))− (2σ2)−1(Ui −Xi)
TΣ−1(Ui −Xi)}, (3)

in which F is the logistic function defined by F (t) = (1 + exp(−t))−1. The estimator is

obtained by maximizing the log-likelihood function. Amstrong et al. (1989) proposed a

method based on the normal discriminant analysis model for true covariate values in cases

and control. Similar to other methods, it requires the assumptions that both the true

covariate and the error are from normal distributions.

In this paper, we propose a modification of the minimum integrated square error

method for bias correction when the covariate is measured with error by utilizing the de-

convolution kernel density method to estimate the densities f1 and f0 of covariate of case

and control groups. Deconvolution kernel density estimation is a well-studied nonparametric

density estimation method when the random variable is observed with independent additive

error of a known distribution. The method was proposed by Carroll and Hall (1988) and

Stefanski and Carroll (1990). Theoretical properties of the estimator has been extensively

researched. Devroye (1989), Carroll and Hall (1989), Stefanski (1990), Fan (1991a), and Fan

(1992) studied the consistency and rate of convergence of the estimator, and Fan (1991b)

studied its asymptotic normality. Many of these properties depend on the smoothness of the

error distribution, which is characterized by the rate of decay of its characteristic function

in the tails. The distribution is called ordinary smooth if the rate of decay is geometric, and
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super smooth if the rate is exponential. In this paper, we focus on the the case in which the

error distribution is ordinary smooth.

The paper is organized as follows. In chapter 2, we introduce the background infor-

mation on the deconvolution kernel density estimation and the integrated square distance

estimators for logistic regression parameters. In chapter 3, we state the needed assumptions

and the result on consistency and asymptotic normality of the estimator. Chapter 4 shows

simulation study and real data application. In chapter 5, we discuss some relevant issues of

the estimator. Detailed proofs of the theoretical results are presented in the Appendix.
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CHAPTER II: BACKGROUND

II.1 Kernel Density Estimator

In this section, we briefly introduce the measurement error model and the deconvo-

lution kernel density estimator. We begin with the overview of the ordinary kernel den-

sity estimation when the sample is free of error. Suppose we observe the error-free data

X11, X12, ..., X1n1 from the case group and X01, X02, ..., X0n0 from the control group. X1i’s

are independent and identically-distributed random variables from the distribution with

density f1 and X0i’s are independent and identically-distributed random variables from the

distribution with density f0 . The naive kernel density estimator is defined as

f̃1(x) =
1

n1

n1∑
i=1

1

h1
K

(
x−X1i

h1

)
, f̃0(x) =

1

n0

n0∑
i=1

1

h0
K

(
x−X0i

h0

)
, (4)

in which K(x) is a kernel function that is generally smooth and satisfying

K(x) = K(−x);

∫
K(x)dx = 1; lim

x→−∞
K(x) = lim

x→∞
K(x) = 0; (5)

and hi > 0, i = 0, 1 is the smoothing parameter or bandwidth. The idea of the kernel density

estimation is to smooth each data point into small density ”bumps” then add these bumps

to obtain the final density estimate. Figure (1) illustrates the idea of the kernel density

estimation with 10 data points drawn from two normal distributions, 5 data points from

the normal distribution with mean 0 and standard deviation 0.5 and 5 data points from

the normal distribution with mean 0 and standard deviation 0.5, and using Gaussian kernel

and bandwidth 0.3. The bumps are center at each data point; their shape is determined
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by the kernel function and their width is determined by the bandwidth. Figure (2) displays

the shapes of three commonly used kernels in the naive kernel density estimator: Gaussian

(standard normal), Epanechnikov, and Uniform. Figure (3) illustrates an example of how

bandwidth choice affects the quality of the density estimator. A small bandwidth results

in an undersmoothed density estimate, which contained too many bumps, whereas a large

bandwidth results in an oversmoothed density estimate, which mask underlying features of

the true density.

Figure 1: An example of kernel density estimation

We now introduce the deconvolution kernel density estimation. Assume that we

observe the contaminated data U11, U12, ..., U1n1 for the case group and U01, U02, ..., U0n0 for

the control group, where

U1i = X1i + ε1i, i = 1, ...n1, U0j = X0j + ε0j, j = 1, ...n0. (6)
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Figure 2: Commonly used kernels for kernel density estimation

Figure 3: Comparing the kernel density estimator using different bandwidths
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We introduce the definition of the deconvolution kernel density estimator for the case group

distribution density. The deconvolution kernel density estimator of the baseline distribution

density can be defined in the similar fashion. Aside from assuming that X1i’s are independent

and identically-distributed (i.i.d.), we further assume the errors εi’s are i.i.d., and X1i’s and

ε1i are mutually independent. The density function of ε1i’s, denoted fε, is assumed known.

We wish to estimate the density function f1 of X1i’s, based on the contaminated observations

U1i’s.

The deconvolution kernel density estimator for the unknown density f1 of X1i’s using

Fourier transform was proposed by Carroll and Hall (1988) and Stefanski and Carroll (1990),

is defined by

f̂1(x) =
1

2π

∫ ∞
−∞

exp(−itx)
φK(th1)φ̂n(t)

φε(t)
dt, (7)

where φ̂n(t) = n−11

∑n
i=1 exp(itU1i) is the empirical characteristic function of observed data

{U1i}n1
i=1, φK is the characteristic function of kernel K, and φε is the characteristic function

of the error density fε. Then (7) can be written as

f̂1(x) =
1

n1

n1∑
i=1

1

h1
K∗
(
x− U1i

h1

)
, (8)

where

K∗(x) =
1

2π

∫ ∞
−∞

exp(−itx)
φK(t)

φε(t/h)
dt. (9)

The following conditions are needed to guarantee the estimator is well-defined

|φε(t)| > 0, for all real t; sup
t
|φK(t)/φε(t/h1)| <∞;

∫
|φK(t)/φε(t/h1)|dt <∞. (10)

9



This also implies that K∗(x) is bounded. According to Stefanski and Carroll (1990), K∗(x)

possesses many properties of the naive kernel:
∫
K∗(x)dx = 1; when φK is real and even and

fε is even, K∗ is also real and even. Thus, it is called deconvolution kernel.

The difficulty of deconvolution depends on the smoothness of the error distribution.

Smoothness is a measure determining how many times the density function can be differ-

entiated, which equivalent to the rate of decay of its characteristic function at its tails. In

deconvolution literature, the smoothness of the error distribution is classified into two classes:

ordinary smooth and super smooth (Fan 1991). A random variable ε is ordinary smooth of

order τ if for some constants 0 < d0 ≤ d1 and τ > 0,

d0|t|−τ ≤ |φε(t)| ≤ d1|t|−τ as t→∞. (11)

The examples of ordinary smooth distributions are gamma and Laplace distribution. A

random variable ε is super smooth of order τ if for some constants τ0 ≤ τ1, 0 < d0 ≤ d1,

τ > 0 and γ > 0,

d0|t|τ0 exp(−|t|τ/γ) ≤ |φε(t)| ≤ d1|t|τ1 exp(−|t|τ/γ) as t→∞. (12)

The examples of super smooth distributions are normal and Cauchy distributions. Figure (4)

shows the density function of a Laplace and a normal distribution. Both distributions in the

figure have the same mean 0 and the same variance 4. Figure (5) shows their corresponding

characteristic function. Laplace distribution is an example of ordinary smooth distribution,

whereas normal distribution is an example of super smooth distribution. At the tails, the

10



decay rate of the characteristic function of the normal distribution is much faster than that of

the characteristic function of the Laplace distribution. The smoother the error distribution

the more difficult the deconvolution is. As mentioned, in this paper, we will focus on the

case in which the covariate data is contaminated with ordinary smooth error.

Figure 4: Probability density functions of a Laplace and a normal distribution, both with mean 0
and variance 4

II.2 Definition of the Integrated Square Distance Estimator

In this section, we introduce the minimum integrated square distance estimator of

parameters in model (2). The estimator was derived by Geng and Sakhanenko (2016). Under

model in (2), we have ln[f1(x)/f0(x)] = α+βx The estimators of f0(x) and f1(x) are defined

as follows.

11



Figure 5: Characteristic functions of a Laplace and a normal distribution, both with mean 0 and
variance 4

f̂n0(x) =
1

n0

n0∑
i=1

1

h0
K∗
(
x− U0i

h0

)
, f̂n1(x) =

1

n1

n1∑
j=1

1

h1
K∗
(
x− U1j

h0

)
, (13)

where K∗ is the deconvolution kernel defined as in (9). However, deconvolution kernel density

estimators are not always positive, similar to the naive kernel density estimators. In fact,

the deconvolution kernel lacks the nonnegativity property. Figure (6) shows an example of

K∗(x) that takes negative values. Thus, a small term bni
as a function of ni is added to

the density estimators so that the log ratio estimate is well-defined. The log ratio estimate

becomes ln{(f̂n1(x) + bn1)/(f̂n0(x) + bn0} and the integrated square distance is defined as

Tn(s, t) :=

∫ b

a

[
ln

{
f̂n1(x) + bn1

f̂n0(x) + bn0

}
− s− tx

]2
dx, s, t ∈ R. (14)

12



Geng and Sakhanenko (2016) derived α̂ and β̂ by minimizing the integrated square distance

and obtained

β̂ =
12

(b− a)3

∫ b

a

[
ln

{
f̂n1(x) + bn1

f̂n0(x) + bn0

}]{
x− a+ b

2

}
dx,

α̂ =
1

b− a

∫ b

a

[
ln

{
f̂n1(x) + bn1

f̂n0(x) + bn0

}
− β̂x

]
dx.

(15)

Similarly, define

T (s, t) :=

∫ b

a

[
ln

{
f1(x)

f0(x)

}
− s− tx

]2
dx, s, t ∈ R. (16)

Since ln[f1(x)/f0(x)] = α + βx, T (s, t) = 0 by definition and α and β defined as

β =
12

(b− a)3

∫ b

a

[
ln

{
fn1(x)

fn0(x)

}]{
x− a+ b

2

}
dx,

α =
1

b− a

∫ b

a

[
ln

{
fn1(x)

fn0(x)

}
− βx

]
dx,

(17)

which minimize T (s, t). Then, the error of the estimators are

α̂− α = c1

[∫ b

a

{
ln(f̂n1(x) + bn1)− ln f1(x)

}{
x− 2(a2 + ab+ b2)

3(a+ b)

}
dx

−
∫ b

a

{
ln(f̂n0(x) + bn0)− ln f0(x)

}{
x− 2(a2 + ab+ b2)

3(a+ b)

}
dx

]
,

β̂ − β = c2

[∫ b

a

{
ln(f̂n1(x) + bn1)− ln f1(x)

}{
x− a+ b

2

}
dx

−
∫ b

a

{
ln(f̂n0(x) + bn0)− ln f0(x)

}{
x− a+ b

2

}
dx

]
,

(18)

in which c1 = −6(a+ b)/(b− a)3 and c2 = 12/(b− a)3.

Geng and Sakhanenko (2016) discussed the choice of the finite interval [a, b]. The

13



authors recommended to choose the a and b with a lot of different responses and both f0 and

f1 are both relatively high for more accurate classifications. They also investigated practical

choices of (a, b): group sample means, group sample medians, and the boundaries of the

overlap interval of the two group observation; and compared the performance of the these

choices with the true group mean, which was not feasible in practice. Their simulation study

showed that both group sample means and sample medians were good options in practice,

where as the boundaries of the overlap interval of the two group observation were not reliable

in different sample size combinations and underlying distributions of the covariate.

14



CHAPTER III: MAIN RESULTS

In this section, we state the assumptions and the main results of consistency and

asymptotic normality of the integrated square distance estimators with deconvolution.

Assumptions

1. f0 and f1 have m continuous derivatives.

2. φK is a symmetric function having m + 2 bounded integrable derivatives; φK(0) = 1;

φK(t) = 1 +O(tm) as t→ 0.

3. |φε(t)| > 0 for all real t; d0|t|−τ ≤ |φε(t)| ≤ d1|t|−τ as t → ∞ for some constants

0 < d0 ≤ d1 and τ > 0.

4.
∫∞
−∞[|φK(t)|+ |φ′

K(t)]|t|τdt <∞.

5. hi → 0 and nihi →∞ for i = 0, 1.

6. There exists δi such that n
δi/2
i h

δi+τ(2+δ)
i →∞ for i = 0, 1

7. nih
2
i →∞ and nih

2m
i → 0 for i = 0, 1.

8. nihi/ log ni →∞ and | log hi|/ log(log ni)→∞ for i = 0, 1.

9. n
1/2
i bi → 0 for i = 0, 1.

10. n1/n→ ρ, 0 < ρ < 1, n = n1 + n0

15



Let f1U denote the density of U1i = X1i + ε1i and f0U denote the density of U0i = X0i + ε0i.

We also define

g1i(x) =
c1{x− 2(a2 + ab+ b2)/(3a+ 3b)}

fi(x)
; g2i(x) =

c2{x− (a+ b)/2}
fi(x)

; i = 0, 1. (19)

Theorem 1. α̂ and β̂ is consistent estimators of α and β, respectively, and

√
n

α̂− α
β̂ − β

→ N(0,Σ), (20)

in which

Σ = ρ−1Σ1 + (1− ρ)−1Σ0. (21)

The kl-th entries (k, l = 1, 2) of Σ1 and Σ0 are

Σ
(kl)
1 =

∫ b

a

gk1(x)gl1(x)f1U(x)dx−
∫ b

a

f1(x)gk1(x)dx

∫ b

a

f1(x)gl1(x)dx,

Σ
(kl)
0 =

∫ b

a

gk0(x)gl0(x)f0U(x)dx−
∫ b

a

f0(x)gk0(x)dx

∫ b

a

f0(x)gl0(x)dx.

(22)

Remarks on theorem 1

1. The role of sample size ratio.

The covariance matrix Σ is the sum of Σ1 and Σ0 with the coefficient ρ−1 and (1−ρ)−1

determined by the sample size ratio of case and control groups. In a severely unbalanced

sample size ratio situation, the covariance matrix Σ could get very large since the one

of the coefficients, either ρ−1 or (1 − ρ)−1 could get very large. This could result in a

large mean square error of the estimators. For example, when the sample size of the
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case group is much larger than of the control group, ρ−1 → 1 and (1 − ρ)−1 → ∞.

Then, Σ gets very large because of (1− ρ)−1Σ0 being very large. Vice versa, when the

sample size of of the case group is much smaller than of the control group, ρ−1 → ∞

and (1−ρ)−1 → 1. Then, Σ gets very large because of ρ−1Σ0 being very large. Though

it is ideal to have balanced sample size, in practice we often encounter the situation in

which the sample size of the control group is larger than of case group. In our real data

application in chapter IV section 2, the control-case sample size ratio is approximately

8 : 1.

2. The connection with the error-free case.

In each kl-th entry of the covariance matrix Σ1, the integrand of the first integration

term includes the density f1U of the observed contaminated covariate data in the case

group U1i = X1i + ε1i, i = 1, ...n1. When the data is free of error, the density f1U(x)

becomes the density f1(x) and the kl-th entry of Σ1 becomes

Σ
(kl)
1 =

∫ b

a

gk1(x)gl1(x)f1(x)dx−
∫ b

a

f1(x)gk1(x)dx

∫ b

a

f1(x)gl1(x)dx. (23)

Similar result applies to the kl-th entry of Σ0 when the data is free of error:

Σ
(kl)
0 =

∫ b

a

gk0(x)gl0(x)f0(x)dx−
∫ b

a

f0(x)gk0(x)dx

∫ b

a

f0(x)gl0(x)dx. (24)

Thus, when there is no measurement error, our covariance structure is the same as the

one obtained by Geng and Sakhanenko (2016).

Outline of the proof of theorem 1
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We state four lemmas needed to prove theorem 1 and outline the main ideas of the proof.

For detailed proof of theorem 1 and proofs of the four lemmas, see Appendix.

Lemma 1. Let g(x) be a continuous function over [a, b].

E

[
1

hi
K∗
(
x− U
hi

)]
= fi(x) +O(hmi ) for i = 0, 1. (25)

and ∫ b

a

E

[
1

hi
K∗
(
x− U
hi

)]
g(x)dx =

∫ b

a

fi(x)g(x)dx+O(hmi ) for i = 0, 1. (26)

Lemma 2.

n1/2

[
α̂− α−

∫ b

a

{f̂n1(x)− f1(x)}g11(x)dx+

∫ b

a

{f̂n0(x)− f0(x)}g10(x)dx

]
= op(1);

n1/2

[
β̂ − β −

∫ b

a

{f̂n1(x)− f1(x)}g21(x)dx+

∫ b

a

{f̂n0(x)− f0(x)}g20(x)dx

]
= op(1).

(27)

Lemma 3. Let g1(x) and g2(x) be continuous functions over [a, b]. Then,

E

[∫ b

a

{
1

h1
K∗
(
x− U
h1

)
− f1(x)

}
g1(x)dx

∫ b

a

{
1

h1
K∗
(
x− U
h1

)
− f1(x)

}
g2(x)dx

]
→
∫ b

a

g1(x)g2(x)f1U(x)dx−
∫ b

a

g1(x)f1(x)dx

∫ b

a

g2(x)f1(x)dx as h1 → 0

(28)

and

E

[∫ b

a

{
1

h0
K∗
(
x− U
h0

)
− f0(x)

}
g1(x)dx

∫ b

a

{
1

h0
K∗
(
x− U
h0

)
− f0(x)

}
g2(x)dx

]
→
∫ b

a

g1(x)g2(x)f0U(x)dx−
∫ b

a

g1(x)f0(x)dx

∫ b

a

g2(x)f0(x)dx as h0 → 0.

(29)
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Lemma 4. Let g(x) be a continuous function over [a, b].

√
n1

∫ b

a

{f̂n1(x)− f1(x)}g(x)dx→ N(0, s21),
√
n0

∫ b

a

{f̂n0(x)− f0(x)}g(x)dx→ N(0, s20) (30)

in which

s21 =

∫ b

a

g2(x)f1U(x)dx−
{∫ b

a

f1(x)g(x)dx

}2

,

s20 =

∫ b

a

g2(x)f0U(x)dx−
{∫ b

a

f0(x)g(x)dx

}2

.

(31)

.

Lemma 1 results imply the bias of the deconvolution kernel density estimators f̂ni
(x) and of∫ b

a
f̂ni

(x)g(x)dx is O(hmi ) given g(x) is a continuous function over [a, b]. Lemma 2 implies

the main terms of the error of estimators are

√
n


∫ b
a
{f̂n1(x)− f1(x)}g11(x)dx∫ b

a
{f̂n1(x)− f1(x)}g21(x)dx

−√n

∫ b
a
{f̂n0(x)− f0(x)}g10(x)dx∫ b

a
{f̂n0(x)− f0(x)}g20(x)dx

+ op(1)

=

√
n

n1

√
n1


∫ b
a
{f̂n1(x)− f1(x)}g11(x)dx∫ b

a
{f̂n1(x)− f1(x)}g21(x)dx

−√ n

n0

√
n0


∫ b
a
{f̂n0(x)− f0(x)}g10(x)dx∫ b

a
{f̂n0(x)− f0(x)}g20(x)dx

+ op(1)

(32)
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To show β̂ is consistent, we show the following expectation converges to 0.

E

[∫ b

a

{f̂n1 − f1(x)}g21(x)dx−
∫ b

a

{f̂n0 − f0(x)}g20(x)dx

]2

= E

[∫ b

a

{f̂n1 − f1(x)}g21(x)dx

]2
+ E

[∫ b

a

{f̂n0 − f0(x)}g20(x)dx

]2

− 2E

[∫ b

a

{f̂n1 − f1(x)}g21(x)dx

∫ b

a

{f̂n0 − f0(x)}g20(x)dx

]
.

(33)

By lemma 1 and 3, we can show each term of the above expression converges to 0. Using

the similar argument, we can show α̂ is a consistent estimator of α.

To show the asymptotic normality, we show that
√
n

α̂− α
β̂ − β

 is the sum of two independent

normal variables. By lemma 4, we can show for all a11, a21 ∈ R,

a11
√
n1

∫ b

a

{f̂n1(x)− f1(x)}g11(x)dx+ a21
√
n1

∫ b

a

{f̂n1(x)− f1(x)}g21(x)dx (34)

is normally distributed by letting g(x) = a11g11(x) + a21g21(x). Then,

√
n1


∫ b
a
{f̂n1(x)− f1(x)}g11(x)dx∫ b

a
{f̂n1(x)− f1(x)}g21(x)dx

 (35)

is a bivariate normal random variable. By lemma 1 and 3, we obtain the covariance matrix

Σ1

V ar

(
√
n1

∫ b

a

{f̂n1(x)− f1(x)}g11(x)dx

)
→
∫ b

a

g211(x)f1U(x)dx−
(∫ b

a

f1(x)g11(x)dx

)2

V ar

(
√
n1

∫ b

a

{f̂n1(x)− f1(x)}g21(x)dx

)
→
∫ b

a

g221(x)f1U(x)dx−
(∫ b

a

f1(x)g21(x)dx

)2
(36)
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and

Cov

(
√
n1

∫ b

a

{f̂n1(x)− f1(x)}g11(x)dx,
√
n1

∫ b

a

{f̂n1(x)− f1(x)}g21(x)dx

)
→
∫ b

a

g11(x)g21(x)f1U(x)dx−
∫ b

a

f1(x)g11(x)dx

∫ b

a

f1(x)g21(x)dx.

(37)

Then the kl-th entry of Σ1 for k, l = 1, 2 is

Σ
(kl)
1 =

∫ b

a

gk1(x)gl1(x)f1U(x)dx−
∫ b

a

f1(x)gk1(x)dx

∫ b

a

f1(x)gl1(x)dx. (38)

By similar argument,

√
n1


∫ b
a
{f̂n1(x)− f1(x)}g11(x)dx∫ b

a
{f̂n1(x)− f1(x)}g21(x)dx

→ N(0,Σ0), (39)

in which the kl-th entry of Σ0 for k, l = 1, 2

Σ
(kl)
0 =

∫ b

a

gk0(x)gl0(x)f0U(x)dx−
∫ b

a

f0(x)gk0(x)dx

∫ b

a

f0(x)gl0(x)dx. (40)

Then, by independence

√
n

α̂− α
β̂ − β

→ N(0,Σ) (41)

in which

Σ = ρ−1Σ1 + (1− ρ)−1Σ0. (42)

Remarks on assumptions
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Assumption (2) implies that the kernel K(x) is symmetric and satisfying the m-th order

constraint

∫
xjK(x)dx =



1 if j = 0

0 if 1 ≤ j ≤ m− 1

B if j = m,

in which B is a constant. Note that since K(x) is symmetric, all the odd moments are 0. The

assumption of the higher-order kernel functions is used to ensure the bias of the deconvolution

kernel density estimators converges to 0 sufficiently fast (see Lemma 1). The higher the order

of the kernel, the faster the rate of convergence. In our simulation study in chapter IV section

1, we use the Gaussian kernel of order 2. Assumption (3) is the assumption on the tail of

the characteristic function φε when the error density is ordinary smooth. Assumption (4)

on the characteristic function φK of kernel K, along with the bandwidth assumption (6), is

used to verify the Lyapunov’s Central Limit Theorem conditions for the proposed estimator.

Assumption (5) is the assumption used to establish the consistency of the kernel density

estimators. Assumption (7) is used to eliminate the bias of the deconvolution kernel density

estimators. Assumption (8) is required to obtained the upper bound of supx |f̂ni
(x)−Ef̂ni

(x)|

established by Gine and Guillou (2002).
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CHAPTER IV: DATA ANALYSIS

IV.1 Simulation

We investigate the performance of the deconvolution integrated square (ISD) method

and compare it with the naive ISD method via simulation study. In particular, we are

interested in investigating if the estimator is superior to the one obtained by ignoring the

measurement error. We study the case in which the densities of the true covariate are

two normal distributions with common variance. In particular, the baseline distribution is

N(0, 1), and the control group distribution is N(β, 1) with β = 1. We generate 500 samples

of various combinations of sample sizes of case and control groups: (i) when the sample

sizes of both groups are equal, (ii) when the sample size ratio of control to case group is

3 : 1, and (iii) when the ratio is 5 : 1. We choose the sample size of the control group to be

greater than of the case group since in practice, there are usually more instances in which the

disease is absent than ones in which it is present. The sample is contaminated by Laplace

error density with variance σ2
ε

fε(x) =
1√
2σε

exp

(
−
√

2x

σε

)
, (43)

with the characteristic function

φε(t) =
1

1 + (1/2)σ2
εt

2
. (44)
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In our simulation study, we consider two cases: σε = 0.3 and σε = 0.6. We choose K(x) to

be the Gaussian (standard normal) kernel with the characteristic function

φK(t) = exp

(
−1

2
t2
)
. (45)

Then, our deconvolution kernel K∗(x) has the form

K∗(x) =
1√
2π

exp

(
−x2

2

)[
1 +

(
σε√
2h

)2

(1− x2)

]
. (46)

Note that the Gaussian kernel K(x) has order of 2. In order for the bias of
∫ b
a
f̂ni

(x)g(x)dx to

go to 0 fast enough and the asymptotic normality to hold, when the covariate is contaminated

with Laplace error, we need kernel K(x) to be of order 4. However, higher order kernels

often do not have a close form for K∗(x) and are difficult to compute. Therefore, in this

simulation study, we use the standard normal kernel for the simplicity of the computation.

As figure (6) displays, the range of K∗(x) does have negative values. For the log ratio of the

density to be defined, we use bni
= n−2i .

We use bootstrap method proposed by Delaigle and Gijbels (2004a) to select band-

width hi. The bootstrap bandwidth selection method is described as follows. Suppose

we wish to obtain the optimal bandwidth h. The method first requires obtaining a pi-

lot bandwidth hpilot. We use the rule of thumb method to calculate the pilot bandwidth

hpilot = O(n−1/9) for Laplace error in our simulation study. This bandwidth and the con-

taminated observed data are then used to obtain the pseudo deconvolution kernel density

estimator f̂X(x;hpilot). A bootstrap sample X∗1 , X
∗
2 , ..., X

∗
n is drawn from f̂X(x;hpilot) and
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Figure 6: The deconvolution kernel K∗(x) with Gaussian kernel K(x) and the Laplace error density

the error ε is added to the sample. The contaminated bootstrap sample is then used to

construct the deconvolution kernel density estimator f̂ ∗X(x;h). The optimal bandwidth is

obtained by minimizing the bootstrap estimator of mean integrated square error.

MISE∗(h) = E∗
∫
{f̂ ∗X(x;h)− f̂X(x;hpilot)}2dx

=

∫
[Bias∗{f̂ ∗X(x;h)}]2dx+

∫
V ar∗{f̂ ∗X(x;h)}dx.

(47)

The bootstrap bandwidth selection method is proven to be consistent Delaigle and Gijbels

(2004a) and its performance in deconvolution density estimation is shown to be superior to

other commonly used methods such as cross-validation via simulation study by Delaigle and

Gijbels (2004b).

For the naive ISD estimator, we choose the bandwidth hi = n
−1/3
i the Gaussian

kernel to construct the naive kernel density estimator. We use these settings to be consistent
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with the theoretical result and the simulation study of Geng and Sakhanenko (2016). Table

1 through 3 show bias and root mean square error of the simulations when the covariate

sample is contaminated with Laplace error with parameter σε = 0.3. Table 4 through 6 show

the results when the sample is contaminated with Laplace error with parameter σε = 0.6.

We use the true mean of the covariate groups for the values of a and b. In all cases, the

deconvolution ISD estimator obtains a smaller bias compared to one obtained by the naive

ISD estimator. Especially in the case in which the variance is large (σε = 0.6), the bias of

the naive ISD estimator increases by a much larger amount compared to the deconvolution

ISD estimator. The increase in bias of the deconvolution ISD estimator can be explained by

the fact that it is more difficult to deconvolute when the error variance is large. However, the

deconvolution ISD estimator is less efficient than the naive ISD estimator, especially when

the error variance is large and the sample size is small.

n0 = 100 n0 = 300 n0 = 500 n0 = 1000
n1 = 100 n1 = 300 n1 = 500 n1 = 1000

Deconvolution 0.0697 0.0635 0.0527 0.0286
Estimator (0.7084) (0.4550) (0.3659) (0.2854)

Naive 0.1073 0.0994 0.0835 0.0693
Estimator (0.5643) (0.3809) (0.3009) (0.2401)

Table 1: Comparison of deconvolution integrated square distance (ISD) estimator and naive
ISD estimator for σε = 0.3, equal sample size, and (a, b) = (0, 1)

n0 = 300 n0 = 600 n0 = 900 n0 = 1200
n1 = 100 n1 = 200 n1 = 300 n1 = 400

Deconvolution 0.0612 0.0522 0.0400 0.0355
Estimator (0.5728) (0.4218) (0.3827) (0.3501)

Naive 0.0887 0.0849 0.0747 0.0708
Estimator (0.4724) (0.3607) (0.3186) (0.2895)

Table 2: Comparison of deconvolution ISD estimator and naive ISD estimator for σε = 0.3,
sample size ratio 3 : 1, and (a, b) = (0, 1)
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n0 = 250 n0 = 500 n0 = 1000 n0 = 2000
n1 = 50 n1 = 100 n1 = 200 n1 = 400

Deconvolution 0.0682 0.0657 0.0553 0.0346
Estimator (0.7322) (0.5375) (0.4087) (0.3179)

Naive 0.0938 0.0918 0.0994 0.0719
Estimator (0.5510) (0.4329) (0.3445) (0.2646)

Table 3: Comparison of deconvolution ISD estimator and naive ISD estimator for σε = 0.3,
sample size ratio 5 : 1, and (a, b) = (0, 1)

n0 = 100 n0 = 300 n0 = 500 n0 = 1000
n1 = 100 n1 = 300 n1 = 500 n1 = 1000

Deconvolution 0.0858 0.0771 0.0521 0.0570
Estimator (1.2249) (1.0421) (0.6493) (0.4978)

Naive 0.2294 0.2144 0.2125 0.2053
Estimator (0.6246) (0.4631) (0.3806) (0.3143)

Table 4: Comparison of deconvolution ISD estimator and naive ISD estimator for σε = 0.6,
equal sample size, and (a, b) = (0, 1)

n0 = 300 n0 = 600 n0 = 900 n0 = 1200
n1 = 100 n1 = 200 n1 = 300 n1 = 400

Deconvolution 0.1547 0.0722 0.0531 0.0263
Estimator (1.0014) (0.8107) (0.8085) (0.6254)

Naive 0.2634 0.2182 0.2212 0.1693
Estimator (0.5617) (0.4152) (0.3914) (0.3388)

Table 5: Comparison of deconvolution ISD estimator and naive ISD estimator for σε = 0.6,
sample size ratio 3 : 1, and (a, b) = (0, 1)

n0 = 250 n0 = 500 n0 = 1000 n0 = 2000
n1 = 50 n1 = 100 n1 = 200 n1 = 400

Deconvolution 0.1067 0.0631 0.0587 0.0349
Estimator (1.2195) (0.9906) (0.8709) (0.4929)

Naive 0.2195 0.2063 0.2271 0.1966
Estimator (0.6209) (0.4985) (0.4225) (0.3198)

Table 6: Comparison of deconvolution ISD estimator and naive ISD estimator for σε = 0.6,
sample size ratio 5 : 1, and (a, b) = (0, 1)

Since it is not feasible to use the true mean of the covariate groups for the values of

a and b in practice, we investigate the option of using sample means of the covariate groups.
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Table 7 through 9 show the simulation results of when the covariate sample is contaminated

with Laplace error with parameter σε = 0.3 and (a, b) as the sample means of the observed

control and case groups, respectively. Obviously, both estimators do not perform as well as

they do when using true means for a and b. Regardless, the deconvolution ISD estimator

still outperforms the naive estimator in terms of obtaining a smaller bias.

n0 = 100 n0 = 300 n0 = 500 n0 = 1000
n1 = 100 n1 = 300 n1 = 500 n1 = 1000

Deconvolution 0.0810 0.0734 0.0695 0.0408
Estimator (0.7132) (0.4626) (0.3643) (0.2869)

Naive 0.1193 0.1114 0.0978 0.0801
Estimator (0.5597) (0.3853) (0.3043) (0.2421)

Table 7: Comparison of deconvolution ISD estimator and naive ISD estimator for σε = 0.3,
equal sample size, and (a, b) chosen to be sample means of control and case group respectively

n0 = 300 n0 = 600 n0 = 900 n0 = 1200
n1 = 100 n1 = 200 n1 = 300 n1 = 400

Deconvolution 0.0661 0.0606 0.0582 0.0513
Estimator (0.5733) (0.4288) (0.3814) (0.3524)

Naive 0.0931 0.0924 0.0902 0.0850
Estimator (0.4706) (0.3672) (0.3168) (0.2929)

Table 8: Comparison of deconvolution ISD estimator and naive ISD estimator for σε = 0.3,
sample size ratio 3 : 1, and (a, b) chosen to be sample means of control and case group
respectively

n0 = 250 n0 = 500 n0 = 1000 n0 = 2000
n1 = 50 n1 = 100 n1 = 200 n1 = 400

Deconvolution 0.0883 0.0784 0.0694 0.0485
Estimator (0.7287) (0.5314) (0.4138) (0.3191)

Naive 0.1129 0.1014 0.1118 0.0853
Estimator (0.5466) (0.4326) (0.3478) (0.2670)

Table 9: Comparison of deconvolution ISD estimator and naive ISD estimator for σε = 0.3,
sample size ratio 5 : 1, and (a, b) chosen to be sample means of control and case group
respectively
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IV.2 Real Data Application

We apply the method on the Framingham Heart Study data to investigate the re-

lationship between the systolic blood pressure and the presence of cardiovascular disease.

As mentioned, the dataset has been the subject of study in various previous papers study-

ing effects of covariate measurement error in logistic regression. The Framingham Heart

Study is one of the longest running epidemiologic studies and is conducted under the di-

rection of the National Heart, Lung, and Blood Institute. The dataset was retrieved from

Buonaccorsi (2012). The dataset includes two systolic blood pressure measurements from

two different visits, the age, and the presence or absence of cardiovascular disease of 1615

individuals. There are 128 individuals with cardiovascular disease (case group) and 1487

individuals without disease (control group). Thus, the sample size is severely imbalanced

between the two groups. The variables of our interest are the two systolic blood pressure as

covariate X and the presence or absence of cardiovascular disease as binary reponse Y . We

assume the average of the two blood pressure measurements is the ”true” measurement and

the difference between the measurements and the average as the measurement errors. Figure

(7) shows the histogram of the ”true” systolic blood pressure measurement is right-skewed.

Figure (8) and (9) display the histogram of the error sample and the Laplace theoretical

quantiles versus sample quantiles of the errors, respectively. Since the histogram shows the

distribution is symmetrical and peaky and the quantile plot shows the sample follow a straigt

line, we assume the error sample is from the Laplace distribution.

We use the Gaussian kernel and the bootstrap bandwidth selection method to con-

struct the deconvolution kernel density estimator, similar to the simulation study. We also
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Figure 7: Histogram of the average (”true”) systolic blood pressure measurement

Figure 8: Histogram of the error sample
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Figure 9: Laplace Q-Q plot of the error distribution

use Gaussian kernel to construct the naive kernel density estimator. The bandwidth for the

naive kernel density estimator is scaled by the sample standard deviation hi = σ̂i ∗ n−1/3i .

Table 10 display the result of the data application. We compute β̂ using the ”true” systolic

blood pressure measurement and the naive ISD and the naive MLE estimators. We use the

naive ISD estimator β̂ = 0.0316 to as the benchmark to compare the result of the other

estimators. When using the first systolic blood pressure measurements as observed covari-

ate values, the deconvolution ISD method outperforms compared to the naive ISD method,

but underperforms compared to the naive MLE method. When using the second systolic
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blood pressure measurements as observed covariate values, the deconvolution ISD method

outperforms other two methods.

”True” First Second
measurement measurement measurement

Naive MLE 0.0223 0.0201 0.0204
Estimator

Naive 0.0316 0.0787 0.0570
Estimator

Deconvolution N/A 0.0503 0.0329
Estimator

Table 10: Comparing data application results using naive maximum likelihood, naive ISD,
and deconvolution ISD methods
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CHAPTER V:DISCUSSION

In this paper, we discussed a method to estimate parameters of logistic regression

when the covariate is measure with additive error. The estimator is derived by the minimizing

the estimated logarithm ratio of the densities of case and control groups to the true one.

The unknown densities are estimated by the deconvolution kernel estimators as the true

measures of the covariate cannot be observed. We established the consistency and the

asymptotic normality of the estimator. Our simulation study showed the estimates obtained

by this method have smaller bias than ones obtained by ignoring measurement error.

Since the method includes the use of the deconvolution kernel density estimator, the

method suffers similar limitations of the deconvolution kernel density estimator. Though

one advantage of the method is that it does not make any assumptions on the underlying

distribution of the covariate, it still requires that the distribution of the error is known to

estimate the density of the true covariate. Practitioners could derive knowledge on the error

distribution using past experiments and data in practice, however, misspecification of the

error distribution could still occur. Another limitation of the method is that its performance

degrades when the variance is large, as shown by the simulation study. This is due to the

fact that the deconvolution is more difficult when the error density has large variance.

In this paper, we only considered the case in which the error distribution is ordinary

smooth. We did not derive results for the case in which the error distribution is super smooth

but we do hope to do so in future work. The normal distribution belongs to this group of

distributions and it is common in practice that the error distribution is assumed to be

normal distribution. In addition, as mentioned, in deconvolution kernel density estimation,
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the smoother the error distribution, the more difficult the deconvolution is. Thus, future

work studying the method with this type of error is needed. We also hope to discuss the

goodness-of-fit testing procedure of the model in future work.
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APPENDIX: DETAILED PROOFS OF THEOREM 1 AND TECHNICAL LEMMAS

Proof of Lemma 1.

E

[
1

h1
K∗

(x− U)

h1

]
=

1

h1
EK∗

[
x− (X + ε)

h1

]
=

1

h1

∫
z

∫
ε

K∗
[
x− (z + ε)

h1

]
f1(z)fε(ε)dεdz

=
1

h1

∫
z

∫
ε

1

2π

∫
t

exp

[
i
(z + ε)− x

h1
t

]
φK(t)

φε(t/h)
dtfε(ε)dεf1(z)dz

=
1

h1

∫
z

1

2π

∫
t

exp

[
i
(z − x)

h1
t

]
φK(t)

φε(t/h)

∫
ε

exp

[
i
ε

h1
t

]
fε(ε)dεdtf1(z)dz

=
1

h1

∫
z

1

2π

∫
t

exp

[
i
(z − x)

h1
t

]
φK(t)

φε(t/h)
φε(t/h)dtf1(z)dz

=
1

h1

∫
z

1

2π

∫
t

exp

[
i
(z − x)

h1
t

]
φK(t)dtf1(z)dz

=
1

h1

∫
z

K

(
z − x
h1

)
f1(z)dz.

(48)

Using change of variable s = z−x
h1

, Taylor’s expansion, and the assumptions of the ordinary

kernel K,
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1

h1

∫
z

K

(
z − x
h1

)
f1(z)dz

=

∫
K(s)f1(x+ sh1)ds

=

∫
K(s)[f1(x) + f

′

1(x)(sh1) +
1

2!
f
(2)
1 (x)(s2h21) +

1

3!
f
(3)
1 (x)(s3h31)

+
1

4!
f
(4)
1 (x)(s4h41) + ...+

1

m!
f
(m)
1 (x)(smhm1 ) + o(hm)]ds

= f1(x)

∫
K(s)ds+ h1f

′

1(x)

∫
sK(s)ds+

1

2!
h21f

(2)
1 (x)

∫
s2K(s)ds

+
1

3!
h31f

(3)
1 (x)

∫
s3K(s)ds+

1

4!
h41f

(4)
1 (x)

∫
s4K(s)ds+ ...+

+
1

m!
hm1 f

(m)
1 (x)

∫
smK(s)ds+ o(hm1 )

= f1(x) +O(hm1 ).

(49)

By the similar argument and continuity of g(x),

∫ b

a

E

[
1

h1
K∗(x− U)

]
g(x)dx =

∫ b

a

f1(x)g(x)dx+O(hm1 ). (50)

Applying similar argument, we haveE[h−10 K∗{(x−U)/h0}] = f0(x)+O(hm0 ) and
∫ b
a
E[h−10 K∗(x−

U)]g(x)dx =
∫ b
a
f0(x)g(x)dx+O(hm0 ).

Proof of Lemma 2. We use similar procedure as in Geng and Sakhanenko (2016). Applying

Taylor’s expansion with integral remainder for a function f with at least two continuous

derivative

f(x) = f(a) + f
′
(a)(x− a) +

∫ x

t=a

f
′′
(t)(x− t)dt, (51)
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we have

ln{f̂ni
(x) + bni

} − ln fi(x) =
1

fi(x)
{f̂ni

(x)− fi(x) + bni
}+

∫ f̂ni (x)+bni

fi(x)

1

t2
{f̂ni

(x) + bni
− t}dt.

(52)

Let

Rni
(x) =

∫ f̂ni (x)+bni

fi(x)

1

t2
{f̂ni

(x) + bni
− t}dt (53)

then,

α̂− α =

∫ b

a

{f̂n1(x)− f1(x)}g11(x)dx−
∫ b

a

{f̂n0(x)− f0(x)}g10(x)dx

+

∫ b

a

Rn1(x)f1(x)g11(x)dx−
∫ b

a

Rn0(x)f0(x)g10(x)dx

+ bn1

∫ b

a

g11(x)dx− bn0

∫ b

a

g10(x)dx.

β̂ − β =

∫ b

a

{f̂n1(x)− f1(x)}g21(x)dx−
∫ b

a

{f̂n0(x)− f0(x)}g20(x)dx

+

∫ b

a

Rn1(x)f1(x)g21(x)dx−
∫ b

a

Rn0(x)f0(x)g20(x)dx

+ bn1

∫ b

a

g21(x)dx− bn0

∫ b

a

g20(x)dx.

(54)

Since g1i and g2i for i = 0, 1 are bounded over [a, b], the last two terms of the two equations

are o(n
−1/2
i ) by assumption (9). We derive the upper bound for Rni

(x).

sup
x∈[a,b]

|Rni
(x)| = sup

x∈[a,b]

|f̂ni
(x) + bni

− fi(x)|2

[min{fi(x), f̂ni
(x) + bni

}]2

≤ 2 sup
x∈[a,b]

|f̂ni
(x)− fi(x)|2 + |bni

|2

[min{fi(x), f̂ni
(x) + bni

}]2

(55)

Corollary 3.2 of Liu and Taylor (1989) yields supx∈[a,b] |f̂ni
(x)− fi(x)| → 0. Then for a large
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enough ni,

sup
x∈[a,b]

|f̂ni
(x)− fi(x)| ≤ η (56)

for any 0 < η < bni
.

sup
x∈[a,b]

|Rni
(x)| ≤ 2 sup

x∈[a,b]

|f̂ni
(x)− fi(x)|2 + |bni

|2

[min{fi(x), fi(x)− η + bni
}]2

≤ 2 sup
x∈[a,b]

|f̂ni
(x)− fi(x)|2 + |bni

|2

f 2
i (x)

= Op( sup
x∈[a,b]

|f̂ni
(x)− fi(x)|2 + |bni

|2).

(57)

From Stefanski and Carroll (1990), by assumptions (10), K∗ is bouded and square integrable.

By assumption (8), using theorem 2.3 of Gine and Guillou (2002),

sup
x∈[a,b]

|f̂ni
(x)− E[f̂ni

(x)]|2 = Op

(
log(hi)

−1

nihi

)
. (58)

From lemma 1, we have

sup
x∈[a,b]

|E[f̂ni
(x)]− fi(x)|2 = Op(h

m
i ). (59)

Then,

sup
x∈[a,b]

|Rni
(x)| ≤ Op( sup

x∈[a,b]
|f̂ni

(x)− fi(x)|2 + |bni
|2)

≤ Op( sup
x∈[a,b]

|f̂ni
(x)− E[f̂ni

(x)]|2 + sup
x∈[a,b]

|E[f̂ni
(x)]− fi(x)|2 + |bni

|2)

= Op

(
log(hi)

−1

nihi
+ hmi + b2ni

)
.

(60)
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Then,

n1/2

∫ b

a

Rni
fi(x)g2i(x)dx ≤ Op

(
log h−1i

n
1/2
i hi

+ nih
2m
i + n

1/2
i b2ni

)
→ 0. (61)

Proof of Lemma 3.

E

[∫ b

a

{
1

h1
K∗
(
x− U
h1

)
− f1(x)

}
g1(x)dx

∫ b

a

{
1

h1
K∗
(
x− U
h1

)
− f1(x)

}
g2(x)dx

]

= E

[∫ b

a

1

h1
K∗
(
x− U
h1

)
g1(x)dx

∫ b

a

1

h1
K∗
(
x− U
h1

)
g2(x)dx

−
∫ b

a

1

h1
K∗
(
x− U
h1

)
g1(x)dx

∫ b

a

f1(x)g2(x)dx

−
∫ b

a

1

h1
K∗
(
x− U
h1

)
g2(x)dx

∫ b

a

f1(x)g1(x)dx

+

∫ b

a

f1(x)g1(x)dx

∫ b

a

f1(x)g2(x)dx

]
.

(62)

By lemma 1, the two middle terms converge to
∫ b
a
f1(x)g1(x)dx

∫ b
a
f1(x)g2(x)dx as h1 → 0.

We consider the first term

E

[∫ b

a

1

h1
K∗
(
x− U
h1

)
g1(x)dx

∫ b

a

1

h1
K∗
(
x− U
h1

)
g2(x)dx

]
= E

∫ b

a

∫ b

a

1

h1
K∗
(
x− U
h1

)
1

h1
K∗
(
y − U
h1

)
g1(x)g2(y)dxdy

=

∫ ∫ b

a

∫ b

a

1

h1
K∗
(
x− U
h1

)
1

h1
K∗
(
y − U
h1

)
g1(x)g2(y)f1U(u)dxdydu

=

(∫ a

−∞
+

∫ b

a

+

∫ ∞
b

)∫ b

a

∫ b

a

1

h1
K∗
(
x− U
h1

)
1

h1
K∗
(
y − U
h1

)
g1(x)g2(y)f1U(u)dxdydu

=: M1 +M2 +M3.

(63)
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We will show that M1 → 0,M2 →
∫ b
a
g1(x)g2(x)f1U(x)dx, and M3 → 0 as h1 → 0.

M1 =

∫ a

−∞

∫ b

a

∫ b

a

1

h1
K∗
(
x− U
h1

)
1

h1
K∗
(
y − U
h1

)
g1(x)g2(y)f1U(u)dxdydu

=

∫ a

−∞

∫ (b−u)/h

(a−u)/h

∫ (b−u)/h

(a−u)/h
K∗(s)K∗(t)g1(u+ sh1)g2(u+ th1)f1U(u)dsdtdu

=

∫ a

−∞

∫ (b−u)/h

(a−u)/h

∫ (b−u)/h

(a−u)/h
[K∗+(s)−K∗−(s)][K∗+(t)−K∗−(t)]g1(u+ sh1)g2(u+ th1)f1U(u)dsdtdu

=: M11 +M12 +M13 +M14.

(64)

We consider M11. Because g1, g2 are bounded on [a,b], K∗ is bounded and integrable on R,

M11 is bounded by, up to a constant C,

∫ a

−∞

∫ (b−u)/h

(a−u)/h

∫ (b−u)/h

(a−u)/h
K∗+(s)K∗+(t)f1U(u)dsdtdu (65)

From Stefanski and Carroll (1990), we know that K∗(x) is integrable and
∫
K∗(x)dx = 1.

Define F ∗+(x) =
∫ x
−∞ F

∗+(t)dt. Then the bound in (65) can be rewritten as

∫ a

−∞

[
F ∗+

(
b− u
h1

)
− F ∗+ +

(
a− u
h1

)]2
f1U(u)du (66)

For ∀u < a,

F ∗+ +

(
b− u
h1

)
− F ∗+

(
a− u
h1

)
→ F ∗+(∞)− F ∗+ + (∞) = 0, as h→ 0, (67)

By dominated convergence theorem, (66) converges to 0. Similarly, M12,M13, and M14 all

converges to 0. Therefore, M1 → 0 as h1 → 0. By similar argument, M3 → 0. We now
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consider M2. As h1 → 0,

M2 =

∫ b

a

∫ b

a

∫ b

a

1

h1
K∗
(
x− U
h1

)
1

h1
K∗
(
y − U
h1

)
g1(x)g2(y)f1U(u)dxdydu

=

∫ b

a

∫ (b−u)/h

(a−u)/h

∫ (b−u)/h

(a−u)/h
K∗+(s)K∗+(t)f1U(u)dsdtdu

→
∫ b

a

∫ ∞
−∞

∫ ∞
−∞

K∗(s)K∗(t)g1(u)g2(u)f1U(u)dsdtdu

=

∫ b

a

g1(u)g2(u)f1U(u)du.

(68)

Thus,

E

[∫ b

a

{
1

h1
K∗
(
x− U
h1

)
− f1(x)

}
g1(x)dx

∫ b

a

{
1

h1
K∗
(
x− U
h1

)
− f1(x)

}
g2(x)dx

]
→
∫ b

a

g1(x)g2(x)f1U(x)dx−
∫ b

a

g1(x)f1(x)dx

∫ b

a

g2(x)f1(x)dx.

By similar argument, we can show

E

[∫ b

a

{
1

h0
K∗
(
x− U
h0

)
− f0(x)

}
g1(x)dx

∫ b

a

{
1

h0
K∗
(
x− U
h0

)
− f0(x)

}
g2(x)dx

]
→
∫ b

a

g1(x)g2(x)f0U(x)dx−
∫ b

a

g1(x)f0(x)dx

∫ b

a

g2(x)f0(x)dx.

Proof of Lemma 4. We first show

∫ b
a
f̂n1(x)g(x)dx− E

∫ b
a
f̂n1(x)g(x)dx√

V ar(f̂n1(x)g(x)dx)
→ N(0, 1). (69)

Let

Zn1i
(x) =

1

h1
K∗
(
x− U1i

h1

)
and Wn1i

=

∫ b

a

Zn1i
(x)g(x)dx. (70)
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Note that
∫ b
a
f̂n1(x)g(x)dx is the sum of an i.i.d sequence. Then, the Lyapunov’s condition

for the asymptotic normality in (69) is that for some δ > 0

E|Wn11 − EWn11 |2+δ

nδ/2[V ar(Wn11)]
1+δ/2

→ 0 (71)

as n→∞. Since g(x) is continous and bounded over [a, b], by similar argument to Lemma

1 and Fubini’s theorem, we have

EWn11 = E

∫ b

a

Zn11(x)g(x)dx

=

∫ b

a

EZn11(x)g(x)dx

=

∫ b

a

E

[
1

h1
K∗(x− U)

]
g(x)dx

=

∫ b

a

f1(x)g(x)dx+O(hm).

(72)

By lemma 3, we have

V ar(Wn11) ≤ E(Wn11)
2 →

∫ b

a

g2(x)f1U(x)dx. (73)

Then, we need to show for some δ > 0,

n−δ/2E|Wn11 − EWn11|2+δ → 0. (74)

Using similar argument to Geng and Sakhanenko (2016) and Koul and Ni (2004), by Holder’s
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inequality and g(x) bounded on [a, b],

n−δ/2E|Wn11 − EWn11|2+δ

≤ n−δ/222+δ(E|Wn11 |2+δ + |EWn11|2+δ)

≤ n−δ/222+δE|Wn11|2+δ + o(1)

= n−δ/222+δE

(∫ b

a

Zn11(x)g(x)dx

)2+δ

+ o(1)

≤ n−δ/222+δE

(∫ b

a

Zn11(x) sup
x∈[a,b]

|g(x)|dx

)2+δ

+ o(1)

= n−δ/222+δCE

(∫ b

a

Zn11(x)dx

)2+δ

+ o(1)

≤ n−δ/222+δCE

(∫ b

a

Z1+δ/2
n11

(x)dx

)2

+ o(1)

(75)

for constant C = supx∈[a,b].

n−δ/2E

(∫ b

a

Z1+δ/2
n11

(x)dx

)
= n−δ/2E

∫ b

a

Z1+δ/2
n11

(x)dx

∫ b

a

Z1+δ/2
n11

(y)dy

=
1

nδ/2h2+δ1

∫ ∞
−∞

∫ b

a

∫ b

a

[
K∗
(
x− u
h1

)](1+δ/2) [
K∗
(
y − u
h1

)](1+δ/2)
f(u)dxdydu

=
1

nδ/2h2+δ1

(∫ a

−∞
+

∫ b

a

+

∫ ∞
b

)∫ b

a

∫ b

a

[
K∗
(
x− u
h1

)](1+δ/2) [
K∗
(
y − u
h1

)](1+δ/2)
f1U(u)dxdydu

:= N1 +N2 +N3.

(76)
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N2 =
1

nδ/2h2+δ1

∫ b

a

∫ b

a

∫ b

a

[
K∗
(
x− u
h1

)](1+δ/2) [
K∗
(
y − u
h1

)](1+δ/2)
f1U(u)dxdydu

=
1

nδ/2hδ1

∫ b

a

∫ (b−u)/h1

(a−u)/h1

∫ (b−u)/h1

(a−u)/h1
[K∗(s)](1+δ/2)[K∗(t)](1+δ/2)f1U(u)dsdtdu

=
1

nδ/2hδ1

∫ b

a

∫ (b−u)/h1

(a−u)/h1
[K∗(s)](1+δ/2)ds

∫ (b−u)/h1

(a−u)/h1
[K∗(t)](1+δ/2)dtf1U(u)du.

(77)

Define

F (x) =

∫ x

−∞
[K∗(s)](1+δ/2)ds. (78)

Then, ∫ (b−u)/h1

(a−u)/h1
[K∗(s)](1+δ/2)ds = F

(
b− u
h1

)
− F

(
a− u
h1

)
. (79)

As h1 → 0, ∀a ≤ u ≤ b,

F

(
b− u
h1

)
→ F (+∞); F

(
a− u
h1

)
→ F (−∞) = 0. (80)

Then,

N2 ∼
1

nδ/2hδ1

∫ b

a

∫ ∞
−∞

[K∗(s)](1+δ/2)ds

∫ ∞
−∞

[K∗(t)](1+δ/2)dtf1U(u)du. (81)

Here, we employ the results of Fan (1991a). Since |φε(t)| > 0, there exists a large enough

(but fixed) M such that

|φε(t/h1)| ≥ min
|t|≤M

|φε(t)| > 0, when |t| ≤Mh1. (82)

By the assumption of the ordinary smooth error distribution, |φε(t)tτ ≥ c for some positive
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constant c as t→∞. Then, when |t| ≥Mh

|φε(t/h1)| ≥
c

2
(t/h1)

−τ

⇒
∣∣∣∣ φK(t)

φε(t/h1)

∣∣∣∣ ≤ ∣∣∣∣2tτφK(t)

chτ1

∣∣∣∣ . (83)

Combining (82) and (83) we have,

∣∣∣∣hτ1φK(t)

φε(t/h1)

∣∣∣∣ ≤ max

{∣∣∣∣2tτφK(t)

c

∣∣∣∣ 1|t|≥Mh1 ,
max |φK(t)|

min|t|≤M |φε(t)|
1|t|≥Mh1

}
≤ g0(t), (84)

where g0 is a positive integrable function. This implies

|hτ1K∗(s)| ≤
∫ ∞
−∞

g0(t)dt := C1. (85)

On the other hand, equation (2.7) of Fan (1991a) implies

|hτ1K∗(s)| ≤
C2

|s|
. (86)

Combining these two bounds, we have

|hτ1K∗(s)| ≤ min

{
C1,

C2

|s|

}
(87)

for some constants C1 and C2 independent of n and s. Let M(s) = min{C1, C2/|s|}. Then,
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|M(s)|1+δ/2 is integrable for δ > 0.

∫ ∞
−∞

[K∗(s)](1+δ/2)ds

=
1

h
τ(1+δ/2)
1

∫ ∞
−∞

[hτK∗(s)]1+δ/2ds

≤ 1

h
τ(1+δ/2)
1

∫ ∞
−∞
|M(s)|1+δ/2ds

= O(h
−τ(1+δ/2)
1 .

(88)

Then,

N2 ∼
1

nδ/2h
δ+τ(2+δ)
1

→ 0. (89)

We then show N1 → 0 and N3 → 0.

N1 =
1

nδ/2h2+δ1

∫ a

−∞

∫ b

a

∫ b

a

[
K∗
(
x− u
h1

)](1+δ/2) [
K∗
(
y − u
h1

)](1+δ/2)
f1U(u)dxdydu

=
1

nδ/2hδ1

∫ a

−∞

∫ (b−u)/h1

(a−u)/h1

∫ (b−u)/h1

(a−u)/h1
[K∗(s)](1+δ/2)[K∗(t)](1+δ/2)f1U(u)dsdtdu

=
1

nδ/2hδ1

∫ a

−∞

∫ (b−u)/h1

(a−u)/h1
[K∗(s)](1+δ/2)ds

∫ (b−u)/h1

(a−u)/h1
[K∗(t)](1+δ/2)dtf1U(u)du.

(90)

As h1 → 0,∀u ≤ a,

∫ (b−u)/h1

(a−u)/h1
[K∗(s)](1+δ/2)ds→ F (∞)− F (∞) = 0. (91)
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Then, N1 → 0. Using similar argument, N3 → 0. By (72),

E

∫ b

a

f̂n1(x)g(x)dx =
1

n1

n1∑
i=1

EWn1

= EWn1

=

∫ b

a

f1(x)g(x)dx+O(hm1 ).

(92)

By Lemma 3, we have

V ar

(∫ b

a

f̂n1(x)g(x)dx

)
= V ar

(
1

n1

n1∑
i=1

∫ b

a

1

h1
K∗

(x− U)

h1
g(x)dx

)

=
1

n1

V ar

(∫ b

a

1

h1
K∗

(x− U)

h1
g(x)dx

)
=

1

n1

[
E

(∫ b

a

1

h1
K∗

(x− U)

h1
g(x)dx

)2

−
(
E

∫ b

a

1

h1
K∗

(x− U)

h1
g(x)dx

)2
]

=
1

n1

[∫ b

a

g2(x)f1U(x)dx−
(∫ b

a

f1(x)g(x)dx+O(hm1 )

)2
]
.

(93)

Replacing E
∫ b
a
f̂n1(x)g(x)dx and V ar(f̂n1(x)g(x)dx) in (69) and by assumption of h1

√
n1

∫ b
a
{f̂n1(x)− f1(x)}g(x)dx

s1
→ N(0, 1). (94)

By similar argument we can show

√
n0

∫ b
a
{f̂n0(x)− f0(x)}g(x)dx

s0
→ N(0, 1). (95)
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Proof of Theorem 1. We consider the first term of the sum in (33). By lemma 1 and 3, we

have

E

[∫ b

a

{f̂n1 − f1(x)}g21(x)dx

]2

= E

[
1

n1

n1∑
i=1

∫ b

a

{
1

h1
K∗
(
x− U1i

h1

)
− f1(x)

}
g21(x)dx

]2

=
1

n2
1

E

[
n1∑
i=1

(∫ b

a

{
1

h1
K∗
(
x− U1i

h1

)
− f1(x)

}
g21(x)dx

)2

+ 2

n1∑
i=1

n1∑
j=1
i 6=j

∫ b

a

{
1

h1
K∗
(
x− U1i

h1

)
− f1(x)

}
g21(x)dx

∫ b

a

{
1

h1
K∗
(
x− U1j

h1

)
− f1(x)

}
g21(x)dx

]

=
1

n2
1

[
n1E

(∫ b

a

{
1

h1
K∗
(
x− U1i

h1

)
− f1(x)

}
g21(x)dx

)2

+ n1(n1 − 1)

(
E

∫ b

a

{
1

h1
K∗
(
x− U1i

h1

)
− f1(x)

}
g21(x)dx

)
(
E

∫ b

a

{
1

h1
K∗
(
x− U1j

h1

)
− f1(x)

}
g21(x)dx

)]

= O
(
n−11 + n−11 h2m1 + h2m1

)
→ 0.

(96)

By similar argument, the second term is O(n−10 + n−10 h2m0 + h2m0 ) and converges to 0. By

independence of the case and control groups

E

[∫ b

a

{f̂n1 − f1(x)}g21(x)dx

∫ b

a

{f̂n0 − f0(x)}g20(x)dx

]

= E

[
1

n1

n1∑
i=1

∫ b

a

{
1

h1
K∗
(
x− U1i

h1

)
− f1(x)

}
g21(x)dx

]

E

[
1

n0

n0∑
j=1

∫ b

a

{
1

h0
K∗
(
x− U0j

h0

)
− f0(x)

}
g20(x)dx

]
.

(97)
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By lemma 1,

E

[
1

n1

n1∑
i=1

∫ b

a

{
1

h1
K∗
(
x− U1i

h1

)
− f1(x)

}
g21(x)dx

]
→ 0 as h1 → 0,

E

[
1

n0

n0∑
j=1

∫ b

a

{
1

h0
K∗
(
x− U0j

h0

)
− f0(x)

}
g20(x)dx

]
→ 0 as h0 → 0.

Thus, β̂ is a consistent estimator of β. Using similar argument, we can show α̂ is a consistent

estimator of α.

We now show the asymptotic normality. We first show

√
n1


∫ b
a
{f̂n1(x)− f1(x)}g11(x)dx∫ b

a
{f̂n1(x)− f1(x)}g21(x)dx


is bivariate normal. For a11, a21 ∈ R,

√
n1

[
a11

∫ b

a

{f̂n1(x)− f1(x)}g11(x)dx+ a21

∫ b

a

{f̂n1(x)− f1(x)}g21(x)dx

]
=
√
n1

[∫ b

a

{f̂n1(x)− f1(x)}a11g11(x)dx+

∫ b

a

{f̂n1(x)− f1(x)}a21g21(x)dx

]
=
√
n1

∫ b

a

{f̂n1(x)− f1(x)}{a11g11(x) + a21g21(x)}dx

=
√
n1

∫ b

a

{f̂n1(x)− f1(x)}g(x)}dx

(98)

in which g(x) = a11g11(x) + a12g12(x). Then g(x) is a continuous function. By lemma 4,

√
n1

∫ b

a

{f̂n1(x)− f1(x)}g(x)dx→ N(0, s21).
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in which s21 =
∫ b
a
g2(x)f1U(x)dx−

{∫ b
a
f1(x)g(x)dx

}2

. We now find the covariance matrix Σ1

V ar

(
√
n1

∫ b

a

{f̂n1(x)− f1(x)}g11(x)dx

)
= n1V ar

(∫ b

a

{f̂n1(x)− f1(x)}g11(x)dx

)
= n1V ar

(∫ b

a

f̂n1(x)g11(x)dx

)
= V ar

(∫ b

a

1

h1
K∗

(x− U)

h1
g11(x)dx

)
=

[
E

(∫ b

a

1

h1
K∗

(x− U)

h1
g11(x)dx

)2

−
(
E

∫ b

a

1

h1
K∗

(x− U)

h1
g11(x)dx

)2
]

→
∫ b

a

g211(x)f1U(x)dx−
(∫ b

a

f1(x)g11(x)dx

)2

(99)

by lemma 3 and lemma 1. Similarly,

V ar

(
√
n1

∫ b

a

{f̂n1(x)− f1(x)}g21(x)dx

)
→
∫ b

a

g221(x)f1U(x)dx−
(∫ b

a

f1(x)g21(x)dx

)2

and

Cov

(
√
n1

∫ b

a

{f̂n1(x)− f1(x)}g11(x)dx,
√
n1

∫ b

a

{f̂n1(x)− f1(x)}g21(x)dx

)
→
∫ b

a

g11(x)g21(x)f1U(x)dx−
∫ b

a

f1(x)g11(x)dx

∫ b

a

f1(x)g21(x)dx.

Then the kl-th entry of Σ1 for k, l = 1, 2 is

Σ
(kl)
1 =

∫ b

a

gk1(x)gl1(x)f1U(x)dx−
∫ b

a

f1(x)gk1(x)dx

∫ b

a

f1(x)gl1(x)dx
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By similar argument,

√
n1


∫ b
a
{f̂n1(x)− f1(x)}g11(x)dx∫ b

a
{f̂n1(x)− f1(x)}g21(x)dx

→ N(0,Σ0),

in which

Σ
(kl)
0 =

∫ b

a

gk0(x)gl0(x)f0U(x)dx−
∫ b

a

f0(x)gk0(x)dx

∫ b

a

f0(x)gl0(x)dx.
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