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ON THE SPECTRUM PROBLEM FOR A CLASS OF

3-UNIFORM HYPERGRAPHS WITH 5 EDGES

KAITLIN ELIZABETH SHOUKRY

22 Pages

The complete 3-uniform hypergraph of order v has a set V of size v as its vertex set

and the set of all 3-element subsets of V as its edge set. The degree of a vertex is the

number of edges in its edge set that contain it. We consider a class of 3-uniform

hypergraphs with 5 edges and 10 vertices such that: every vertex has degree either 1 or 2

and any two edges intersect in at most one vertex. There are 5 such hypergraphs. For

k ∈ {1, 2, 3, 4, 5}, let Hk denote the hypergraphs with vertex set {v1, v2, v3, v4, v5, v6, v7, v8,

v9, v10} and edge sets
{
{v1, v2, v3}, {v1, v4, v5}, {v2, v4, v6}, {v3, v7, v8}, {v5, v9, v10}

}
,{

{v1, v2, v3}, {v1, v4, v5}, {v2, v4, v6}, {v3, v7, v8}, {v7, v9, v10}
}

,
{
{v1, v2, v3}, {v1, v4, v5},

{v2, v6, v7}, {v3, v8, v9}, {v4, v6, v10}
}

,
{
{v1, v2, v3}, {v1, v4, v5}, {v2, v6, v7}, {v4, v8, v9},

{v6, v8, v10}
}

, and
{
{v1, v2, v3}, {v3, v4, v5}, {v5, v6, v7}, {v7, v8, v9}, {v9, v10, v0}

}
,

respectively. We give necessary and sufficient conditions for the existence of a

decomposition of the complete 3-uniform hypergraph of order v into isomorphic copies of

each Hk.

KEYWORDS: 3-Uniform Hypergraphs, Hypergraph Decompositions
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CHAPTER I: INTRODUCTION

A graph G is an ordered pair (V (G), E(G)), where V (G) is a finite set of elements

called the vertices of G and E(G) is a set of 2-element subsets of V (G), called the edges of

G. If e = {u, v} is an edge in E(G), then we say edge e is incident with vertices u and v

and call u and v the end-vertices of e. In this case, we also say vertices u and v are

incident with edge e. Two vertices u and v in V (G) are adjacent in G if {u, v} ∈ E(G).

Similarly, edges e and e′ are adjacent in G if e and e′ share a common end-vertex. The

degree of a vertex v ∈ V (G) is the number of edges in E(G) that contain v. We call |V (G)|

the order of G and |E(G)| its size.

Two graphs G = (V (G), E(G)) and G′ = (V (G′), E(G′)) are said to be isomorphic if

there exists a one-to-one and onto map f : V (G) 7→ V (G′) that preserves adjacency. Thus

in this case, two vertices u and v are adjacent in G if and only if f(u) and f(v) are

adjacent in G′.

A commonly studied problem in combinatorics concerns decompositions of graphs

into edge-disjoint subgraphs. A decomposition of a graph K is a set ∆ = {G1, G2, . . . , Gs}

of pairwise edge-disjoint subgraphs of K such that E(G1) ∪ E(G2) ∪ · · · ∪ E(Gs) = E(K).

If each element of ∆ is isomorphic to a fixed graph G, then ∆ is called a G-decomposition

of K. A G-decomposition of Kv is also known as a G-design of order v. A Kk-design of

order v is an S(2, k, v)-design or a Steiner system. An S(2, k, v)-design is also known as a

balanced incomplete block design of index 1 or a (v, k, 1)-BIBD. The problem of determining

all v for which there exists a G-design of order v is of special interest (see [1] for a survey).

The notion of decompositions of graphs naturally extends to decompositions of

uniform hypergraphs. A hypergraph H consists of a finite nonempty set V of vertices and a

set E = {e1, e2, . . . , em} of nonempty subsets of V called hyperedges. If for each e ∈ E we

have |e| = t, then H is said to be t-uniform. Thus graphs are 2-uniform hypergraphs. The

complete t-uniform hypergraph on the vertex set V has the set of all t-element subsets of V

as its edge set and is denoted by K
(t)
V . If v = |V |, then K

(t)
v is called the complete t-uniform
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hypergraph of order v and is used to denote any hypergraph isomorphic to K
(t)
V .

A decomposition of a hypergraph K is a set ∆ = {H1, H2, . . . , Hs} of pairwise

edge-disjoint subgraphs of K such that E(H1) ∪ E(H2) ∪ · · · ∪ E(Hs) = E(K). If each

element Hi of ∆ is isomorphic to a fixed hypergraph H, then each Hi is called an H-block,

and ∆ is called an H-decomposition of K. If there exists an H-decomposition of K, then

we may simply state that H decomposes K. An H-decomposition of the complete

t-uniform hypergraph of order v is also called an H-design of order v. The problem of

determining all v for which there exists an H-design of order v is called the spectrum

problem for H-designs.

A K
(t)
k -design of order v is a generalization of Steiner systems and is equivalent to

an S(t, k, v)-design. A summary of results on S(t, k, v)-designs appears in [8]. Keevash [14]

has recently shown that for all t and k the obvious necessary conditions for the existence of

an S(t, k, v)-design are sufficient for sufficiently large values of v. Similar results were

obtained by Glock, Kühn, Lo, and Osthus [9, 10] and extended to include the

corresponding asymptotic results for H-designs of order v for all uniform hypergraphs H.

These results for t-uniform hypergraphs mirror the celebrated results of Wilson [19] for

graphs. Although these asymptotic results assure the existence of H-designs for sufficiently

large values of v for any uniform hypergraph H, the spectrum problem has been settled for

very few hypergraphs of uniformity larger than 2.

In the study of graph decompositions, a fair amount of the focus has been on

G-decompositions of Kv where G is a graph with a relatively small number of edges (see [1]

and [6] for known results). Some authors have investigated the corresponding problem for

3-uniform hypergraphs. For example, in [4], the spectrum problem is settled for all

3-uniform hypergraphs on 4 or fewer vertices. More recently, the spectrum problem was

settled in [5] for all 3-uniform hypergraphs with at most 6 vertices and at most 3 edges. In

[5], they also settle the spectrum problem for the 3-uniform hypergraph of order 6 whose

edges form the lines of the Pasch configuration. Authors have also considered H-designs

2



where H is a 3-uniform hypergraph whose edge set is defined by the faces of a regular

polyhedron. Let T , O, and I denote the tetrahedron, the octahedron, and the icosahedron

hypergraphs, respectively. The hypergraph T is the same as K
(3)
4 , and its spectrum was

settled in 1960 by Hanani [11]. In another paper [12], Hanani settled the spectrum problem

for O-designs and gave necessary conditions for the existence of I-designs.

Perhaps the best known general result on decompositions of complete t-uniform

hypergraphs is Baranyai’s result [3] on the existence of 1-factorizations of K
(t)
mt for all

positive integers m. There are, however, several articles on decompositions of complete

t-uniform hypergraphs (see [2] and [17]) and of t-uniform t-partite hypergraphs (see [15]

and [18]) into variations on the concept of a Hamilton cycle. There are also several results

on decompositions of 3-uniform hypergraphs into structures known as Berge cycles with a

given number of edges (see for example [13] and [16]). We note however that the Berge

cycles in these decompositions are not required to be isomorphic.

In this work, we considered the spectrum problem for the class of 3-uniform

hypergraphs with 5 edges and 10 vertices, where the minimum vertex degree is 1, the

maximum vertex degree is 2, and any two edges intersect in at most one vertex. There are

5 such hypergraphs as shown in Figures 1–2 below. For k ∈ {1, 2, 3, 4, 5}, let Hk denote the

hypergraphs with vertex set {v1, v2, v3, v4, v5, v6, v7, v8, v9, v10} and edge sets
{
{v1, v2, v3},

{v1, v4, v5}, {v2, v4, v6}, {v3, v7, v8}, {v5, v9, v10}
}
,
{
{v1, v2, v3}, {v1, v4, v5}, {v2, v4, v6},

{v3, v7, v8}, {v7, v9, v10}
}
,
{
{v1, v2, v3}, {v1, v4, v5}, {v2, v6, v7}, {v3, v8, v9}, {v4, v6, v10}

}
,{

{v1, v2, v3}, {v1, v4, v5}, {v2, v6, v7}, {v4, v8, v9}, {v6, v8, v10}
}

, and
{
{v1, v2, v3}, {v3, v4, v5},

{v5, v6, v7}, {v7, v8, v9}, {v9, v10, v0}
}

, respectively.

The graph H5 is known as a loose 5-cycle. It is shown in [7] that there exists an

H5-decomposition of K
(3)
v if and only if v ≡ 0, 1 or 2 (mod 5), and v ≥ 10. We settle the

spectrum problem for the remaining 4 hypergraphs.
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v1

v7v8v9v10 v3v5

v2v4 v6

Figure 1: H1 denoted H1[v1, v2, v3, v4, v5, v6, v7, v8, v9, v10]

v1

v7v8 v9 v10v3v5

v2v4 v6

Figure 2: H2 denoted H2[v1, v2, v3, v4, v5, v6, v7, v8, v9, v10]

v1

v10

v7

v8

v9

v3v5

v2v4 v6

Figure 3: H3 denoted H3[v1, v2, v3, v4, v5, v6, v7, v8, v9, v10]

v1v4 v5

v8 v9

v2v6 v7

v3v10

Figure 4: H4 denoted H4[v1, v2, v3, v4, v5, v6, v7, v8, v9, v10]
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v1

v4

v5

v8

v9

v2

v6v7

v3

v10

Figure 5: H5 denoted H4[v1, v2, v3, v4, v5, v6, v7, v8, v9, v10]
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CHAPTER II: NOTATION AND TERMINOLOGY

If a and b are integers, we define [a, b] to be {r ∈ Z : a ≤ r ≤ b}. Let Zn denote the

group of integers modulo n.

We will often describe our hypergraphs by giving their edge set only. Since the

hypergraphs we consider will never contain isolated vertices, this is enough to uniquely

define them. The complete k-uniform hypergraph with vertex set V has the set of all

k-element subsets of V as its edge set and is denoted by K
(k)
V . If v = |V |, then K

(k)
v is used

to denote any hypergraph isomorphic to K
(k)
V . If H ′ is a subhypergraph of H, then H \H ′

denotes the hypergraph obtained from H by deleting the edges of H ′.

We need to define some notation for certain types of multipartite hypergraphs. Let

U1, U2, . . . , Um be pairwise disjoint sets. The hypergraph with vertex set

V = U1 ∪U2 ∪ · · · ∪Um and edge set consisting of all k-element subsets of V having at most

one vertex in each of U1, U2, . . . , Um is denoted by K
(k)
U1,U2,...,Um

. If |Ui| = ui for i ∈ [1,m], we

may use K
(k)
u1,u2,...,um to denote any hypergraph that is isomorphic to K

(k)
U1,U2,...,Um

, and if

u1 = u2 = · · · = um = u, then the notation K
(k)
m×u may be used instead of K

(k)
u1,u2,...,um .

For pairwise disjoint sets U1, U2, . . . , Um, 1 ≤ m ≤ k − 1, the hypergraph with vertex

set V = U1 ∪ U2 ∪ · · · ∪ Um and edge set consisting of all k-element subsets of V having at

least one element in each of U1, U2, . . . , Um is denoted by L
(k)
U1,U2,...,Um

. If |Ui| = ui for

i ∈ [1,m], we may use L
(k)
u1,u2,...,um to denote any hypergraph that is isomorphic to

L
(k)
U1,U2,...,Um

. If k1, k2, . . . , km are positive integers with k1 + k2 + · · ·+ km = k, then

L
(k1,k2,...,km)
U1,U2,...,Um

is the subgraph of L
(k)
U1,U2,...,Um

where each hyperedge contains exactly ki

elements from each Ui. We define L
(k1,k2,...,km)
u1,u2,...,um similarly.
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CHAPTER III: EXAMPLES OF Hk-DECOMPOSITIONS

We give several examples of Hk-decompositions, k ∈ {1, 2, 3, 4}, that are used in

proving our main result.

Example 1. Let V
(
K

(3)
10

)
= Z8 ∪ {∞1,∞2} and let

B1 =
{
H1[2, 1, 4,∞2, 5, 3, 0, 6, 7,∞1], H1[0, 5, 2,∞1, 3,∞2, 1, 6, 4, 7]

}
,

B′1 =
{
H1[∞1, 0, 7, 4, 3,∞2, 5, 6, 1, 2], H1[∞1, 1, 0, 5, 4,∞2, 6, 7, 2, 3],

H1[∞1, 2, 1, 6, 5,∞2, 7, 0, 3, 4], H1[∞1, 3, 2, 7, 6,∞2, 0, 1, 4, 5],

H1[∞2, 0, 7, 4, 3,∞1, 1, 2, 5, 6], H1[∞2, 1, 0, 5, 4,∞1, 2, 3, 6, 7],

H1[∞2, 2, 1, 6, 5,∞1, 3, 4, 7, 0], H1[∞2, 3, 2, 7, 6,∞1, 4, 5, 0, 1]
}
,

B2 =
{
H2[5, 2, 0, 7, 6, 1, 4, 3,∞1,∞2], H2[6, 0, 4, 3, 2,∞1, 1, 7, 5]

}
,

B′2 =
{
H2[4, 1, 2,∞2, 5, 0, 7, 6, 3,∞1], H2[5, 2, 3,∞2, 6, 1, 0, 7, 4,∞1],

H2[6, 3, 4,∞2, 7, 2, 1, 0, 5,∞1], H2[7, 4, 5,∞2, 0, 3, 2, 1, 6,∞1],

H2[5, 0, 6,∞1, 4, 1, 3, 2, 7,∞2], H2[6, 1, 7,∞1, 5, 2, 4, 3, 0,∞2],

H2[7, 2, 0,∞1, 6, 3, 5, 4, 1,∞2], H2[0, 3, 1,∞1, 7, 4, 6, 5, 2,∞2]
}
,

B3 =
{
H3[0,∞1, 3, 2,∞2, 4, 1, 7, 5, 6], H3[0, 5, 2, 1, 7, 6,∞1,∞2, 4, 3]

}
,

B′3 =
{
H3[∞1, 1, 0, 4, 5, 3, 2, 6,∞2, 7], H3[∞1, 2, 1, 5, 6, 4, 3, 7,∞2, 0],

H3[∞1, 3, 2, 6, 7, 5, 4, 0,∞2, 1], H3[∞1, 4, 3, 7, 0, 6, 5, 1,∞2, 2],

H3[∞2, 0, 1, 5, 4, 6, 3, 7,∞1, 2], H3[∞2, 1, 2, 6, 5, 7, 4, 0,∞1, 3],

H3[∞2, 2, 3, 7, 6, 0, 5, 1,∞1, 4], H3[∞2, 3, 4, 0, 7, 1, 6, 2,∞1, 5]
}
,

B4 =
{
H4[∞2, 0, 2, 3, 6,∞1, 5, 4, 7, 1], H4[6, 2, 0, 4, 5, 7, 1,∞1,∞2, 3]

}
,

B′4 =
{
H4[1, 7, 6, 4, 5,∞1, 0, 2,∞2, 3], H4[2, 0, 7, 5, 6,∞1, 1, 3,∞2, 4],

H4[3, 1, 0, 6, 7,∞1, 2, 4,∞2, 5], H4[4, 2, 1, 7, 0,∞1, 3, 5,∞2, 6],
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H4[5, 3, 2, 0, 1,∞2, 4, 6,∞1, 7], H4[6, 4, 3, 1, 2,∞2, 5, 7,∞1, 0],

H4[7, 5, 4, 2, 3,∞2, 6, 0,∞1, 1], H4[0, 6, 5, 3, 4,∞2, 7, 1,∞1, 2]
}
.

Then, for k ∈ {1, 2, 3, 4}, an Hk-decomposition of K
(3)
10 consists of the orbits of the

Hk-blocks in Bk under the action of the map ∞i 7→ ∞i, for i ∈ {1, 2} and j 7→ j + 1

(mod 8) along with the Hk-blocks in B′k.

Example 2. Let V
(
K

(3)
11

)
= Z11 and let

B1 =
{
H1[8, 3, 0, 10, 1, 4, 6, 7, 2, 5], H1[4, 0, 7, 10, 6, 2, 9, 1, 3, 8], H1[2, 0, 7, 10, 3, 5, 8, 9, 1, 4]

}
,

B2 =
{
H2[3, 8, 0, 5, 1, 6, 9, 10, 2, 7], H2[6, 0, 5, 2, 7, 8, 3, 10, 1, 4], H2[4, 7, 0, 1, 5, 8, 9, 3, 10, 2]

}
,

B3 =
{
H3[5, 4, 10, 6, 9, 1, 0, 3, 8, 7], H3[1, 10, 8, 2, 6, 0, 3, 4, 7, 5], H3[7, 0, 2, 3, 1, 9, 4, 5, 6, 8]

}
,

B4 =
{
H4[5, 0, 6, 3, 8, 4, 1, 7, 9, 10], H4[8, 0, 3, 4, 1, 5, 9, 6, 7, 2], H4[9, 2, 0, 8, 7, 10, 4, 1, 5, 3]

}
.

Then, for k ∈ {1, 2, 3, 4}, an Hk-decomposition of K
(3)
11 consists of the orbits of the

Hk-blocks in Bk under the action of the map j 7→ j + 1 (mod 11).

Example 3. Let V
(
K

(3)
12

)
= Z11 ∪ {∞} and let

B1 =
{
H1[5, 0, 2, 10, 6, 7, 4, 8, 9,∞], H1[0, 3, 8, 4, 1, 9, 7, 10, 6,∞],

H1[4, 7, 0, 8, 2, 3, 9, 10, 6,∞], H1[0, 2, 9, 1,∞, 10, 4, 7, 3, 6]
}
,

B2 =
{
H2[4, 0, 2, 10, 5, 7, 6, 3, 9,∞], H2[8, 3, 0, 6, 5, 1, 4, 9, 2,∞],

H2[7, 4, 0, 8, 5, 3, 9, 6, 2,∞], H2[0, 7, 2, 5, 4, 6,∞, 8, 9, 10]
}
,

B3 =
{
H3[0, 5, 2, 6, 10, 9, 1, 3, 7,∞], H3[3, 8, 0, 7, 2, 4, 1, 6, 10,∞],

H3[0, 4, 7, 9, 2, 3, 5, 6, 8,∞], H3[0, 1,∞, 2, 8, 10, 5, 6, 7, 4]
}
,

B4 =
{
H4[4, 0, 2, 8, 5, 6, 1, 10,∞, 3], H4[6, 3, 0, 7, 2, 8, 5, 9,∞, 1],

H4[4, 8, 0, 10, 6, 9, 5, 7,∞, 1], H4[2, 3,∞, 7, 0, 5, 4, 1, 6, 8]
}
.
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Then, for k ∈ {1, 2, 3, 4}, an Hk-decomposition of K
(3)
12 consists of the orbits of the

Hk-blocks in Bk under the action of the map ∞ 7→ ∞ and j 7→ j + 1 (mod 11).

Example 4. Let V
(
K

(3)
15

)
= Z13 ∪ {∞1,∞2} and let

B1 =
{
H1[0, 1,∞2, 12,∞1, 3, 4, 6, 7, 9], H1[0, 1, 3, 12, 10, 6, 4, 8, 5, 9],

H1[0, 1, 4, 12, 9, 7, 5, 10, 3, 8], H1[0, 3, 7, 6, 10, 1, 4, 12, 5, 8],

H1[0, 3,∞2, 10,∞1, 1, 2, 6, 7, 11], H1[0, 5,∞2, 8,∞1, 11, 1, 7, 6, 12],

H1[0, 4, 8, 2, 6, 3, 1, 7,∞1,∞2]
}
,

B2 =
{
H2[0, 1, 3, 12, 10, 6, 4,∞2, 5,∞1], H2[0, 1, 4, 12, 9, 3, 6,∞2, 8,∞1],

H2[0, 1, 5, 12, 8, 4, 2,∞2, 6,∞1], H2[0, 1, 6, 12, 7, 5, 2,∞2, 10,∞1],

H2[0, 3, 7, 6, 10, 9, 12,∞2, 2,∞1], H2[0, 4, 9, 5, 8, 3,∞2, 2, 6,∞1],

H2[0, 6, 7, 8, 2, 3, 5, 1, 11,∞1]
}
,

B3 =
{
H3[0, 3, 1, 12, 10,∞1, 4, 6, 8,∞2], H3[0, 4, 1, 12, 9,∞1, 2, 6, 10,∞2],

H3[0, 5, 1, 12, 8,∞1, 4, 7, 10,∞2], H3[0, 1, 6, 12, 7,∞1, 2, 5, 10,∞2],

H3[0, 5, 2, 8, 11,∞1, 4, 6,∞2, 9], H3[0, 7, 2, 6, 11,∞1, 1, 4,∞2, 8],

H3[0, 6, 7, 2, 1, 9, 11,∞1,∞2, 5]
}
,

B4 =
{
H4[0, 3, 1, 10, 12, 6,∞2, 4, 7,∞1], H4[0, 4, 1, 9, 12, 6,∞2, 3, 5,∞1],

H4[0, 5, 1, 8, 12, 6,∞2, 4, 9,∞1], H4[0, 5, 2, 11, 8, 12,∞2, 1, 3,∞1],

H4[0, 6, 1, 7, 12, 2,∞2, 5, 9,∞1], H4[0, 6, 2, 7, 11, 1,∞2, 3, 9,∞1],

H4[0, 2, 7, 10, 6, 5, 9,∞1,∞2, 12]
}
.

Then, for k ∈ {1, 2, 3, 4}, an Hk-decomposition of K
(3)
15 consists of the orbits of the

Hk-blocks in Bk under the action of the map ∞i 7→ ∞i, for i ∈ {1, 2}, and j 7→ j + 1

(mod 13).
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Example 5. Let V
(
K

(3)
16

)
= Z16 and let

B1 =
{
H1[0, 1, 3, 15, 13, 8, 5, 9, 7, 11], H1[0, 1, 4, 15, 12, 13, 6, 11, 5, 10],

H1[0, 5, 1, 11, 15, 8, 3, 6, 10, 13], H1[0, 6, 1, 10, 15, 2, 4, 9, 7, 12],

H1[0, 7, 1, 9, 15, 8, 5, 10, 6, 11], H1[0, 7, 3, 9, 13, 15, 4, 11, 5, 12],

H1[0, 3, 9, 13, 7, 5, 4, 15, 1, 11]
}
,

B2 =
{
H2[0, 3, 1, 13, 15, 8, 9, 4, 2, 12], H2[0, 4, 1, 12, 15, 8, 6, 3, 9, 13],

H2[0, 5, 1, 11, 15, 8, 9, 3, 4, 12], H2[0, 6, 1, 10, 15, 8, 7, 3, 2, 9],

H2[0, 7, 1, 9, 15, 8, 3, 11, 5, 10], H2[0, 4, 9, 12, 7, 5, 3, 13, 1, 10],

H2[0, 10, 3, 9, 13, 2, 15, 5, 1, 12]
}
,

B3 =
{
H3[0, 3, 1, 13, 15, 8, 6, 9, 14, 4], H3[0, 4, 1, 12, 15, 8, 6, 9, 13, 5],

H3[0, 5, 1, 11, 15, 8, 4, 7, 13, 6], H3[0, 6, 1, 10, 15, 8, 2, 5, 12, 7],

H3[0, 7, 1, 9, 15, 8, 2, 5, 13, 12], H3[0, 9, 4, 7, 12, 1, 3, 6, 15, 11],

H3[0, 4, 10, 2, 12, 13, 6, 14, 15, 3]
}
,

B4 =
{
H4[0, 3, 1, 13, 15, 8, 5, 4, 9, 11], H4[0, 1, 4, 15, 12, 8, 3, 7, 11, 13],

H4[0, 1, 5, 15, 11, 7, 3, 8, 14, 13], H4[0, 1, 6, 15, 10, 9, 3, 2, 11, 13],

H4[0, 1, 7, 9, 15, 11, 4, 3, 13, 2], H4[0, 1, 14, 13, 3, 12, 7, 1, 9, 4],

H4[0, 1, 15, 12, 4, 13, 8, 2, 11, 5]
}
.

Then, for k ∈ {1, 2, 3, 4}, an Hk-decomposition of K
(3)
16 consists of the orbits of the

Hk-blocks in Bk under the action of the map and j 7→ j + 1 (mod 16).

Example 6. Let V
(
K

(3)
17

)
= Z17 and let

B1 =
{
H1[0, 3, 1, 14, 16, 8, 4, 10, 7, 13], H1[0, 4, 1, 13, 16, 9, 3, 7, 10, 14],

H1[0, 5, 1, 12, 16, 8, 3, 10, 9, 14], H1[0, 6, 1, 11, 16, 9, 3, 12, 5, 14],
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H1[0, 7, 1, 10, 16, 5, 3, 11, 8, 13], H1[0, 8, 1, 16, 9, 3, 5, 12, 2, 13],

H1[0, 16, 1, 9, 8, 13, 4, 11, 10, 15], H1[0, 5, 12, 3, 14, 7, 8, 16, 2, 11]
}
,

B2 =
{
H2[0, 3, 1, 14, 16, 6, 4, 13, 8, 15], H2[0, 4, 1, 13, 16, 7, 6, 3, 2, 8],

H2[0, 5, 1, 12, 16, 8, 4, 14, 6, 15], H2[0, 1, 6, 11, 16, 4, 8, 12, 5, 10],

H2[0, 1, 7, 16, 10, 3, 5, 12, 9, 15], H2[0, 1, 8, 9, 16, 4, 6, 14, 2, 11],

H2[0, 1, 16, 9, 8, 5, 14, 6, 7, 12], H2[0, 5, 12, 11, 6, 8, 16, 7, 1, 9]
}
,

B3 =
{
H3[0, 3, 1, 14, 16, 6, 5, 9, 15, 4], H3[0, 4, 1, 13, 16, 7, 6, 10, 15, 5],

H3[0, 5, 1, 12, 16, 8, 2, 7, 11, 6], H3[0, 1, 6, 11, 16, 4, 5, 7, 14, 8],

H3[0, 1, 7, 16, 10, 3, 4, 8, 15, 2], H3[0, 1, 8, 9, 16, 4, 3, 5, 15, 10],

H3[0, 1, 16, 9, 8, 5, 7, 10, 12, 14], H3[0, 5, 12, 11, 6, 8, 9, 13, 16, 10]
}
,

B4 =
{
H4[0, 3, 1, 14, 16, 8, 5, 4, 9, 12], H4[0, 4, 1, 13, 16, 6, 10, 9, 15, 11],

H4[0, 1, 5, 16, 12, 9, 3, 8, 15, 13], H4[0, 1, 6, 16, 11, 8, 3, 9, 13, 14],

H4[0, 1, 7, 16, 10, 11, 3, 4, 13, 14], H4[0, 1, 8, 16, 9, 10, 5, 2, 14, 13],

H4[0, 4, 10, 13, 7, 5, 3, 1, 14, 15], H4[0, 5, 12, 2, 15, 1, 13, 4, 9, 10]
}
.

Then, for k ∈ {1, 2, 3, 4}, an Hk-decomposition of K
(3)
17 consists of the orbits of the

Hk-blocks in Bk under the action of the map and j 7→ j + 1 (mod 17).

Example 7. Let V
(
L
(3)
5,5

)
= Z10 with vertex partition

{
{0, 2, 4, 6, 8}, {1, 3, 5, 7, 9}

}
and let

B1 =
{
H1[5, 3, 2, 7, 8, 0, 4, 9, 1, 6], H1[0, 4, 1, 6, 9, 5, 2, 7, 3, 8]

}
,

B2 =
{
H2[0, 7, 3, 2, 5, 6, 8, 4, 1, 9], H2[7, 2, 0, 6, 4, 3, 9, 1, 5, 8]

}
,

B3 =
{
H3[0, 2, 7, 3, 8, 9, 4, 5, 6, 1], H3[5, 2, 4, 6, 8, 1, 0, 3, 7, 9]

}
,

B4 =
{
H4[0, 3, 7, 1, 9, 6, 4, 5, 8, 2], H4[5, 0, 2, 9, 6, 7, 1, 3, 8, 4]

}
.

Then, for k ∈ {1, 2, 3, 4}, an Hk-decomposition of L
(3)
5,5 consists of the orbits of the
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Hk-blocks in Bk under the action of the map j 7→ j + 1 (mod 10).

Example 8. Let V
(
L
(3)
5,5 ∪K

(3)
1,5,5

)
= Z10 ∪ {∞} with vertex partition

{
{∞}, {0, 2, 4, 6, 8},

{1, 3, 5, 7, 9}
}

and let

B1 =
{
H1[0, 1, 3, 7, 9, 4, 2, 8, 6,∞], H1[2, 0, 5, 9, 4, 1, 6,∞, 3, 8]

}
,

B′2 =
{
H1[2, 8, 1, 3, 9,∞, 0, 4, 5, 6], H1[4, 0, 3, 5, 1,∞, 2, 6, 7, 8], H1[6, 2, 5, 7, 3,∞, 4, 8, 9, 0],

H1[8, 4, 7, 9, 5,∞, 6, 0, 1, 2], H1[0, 6, 9, 1, 7,∞, 8, 2, 3, 4]
}
,

B2 =
{
H2[0, 1, 3, 7, 9, 4, 8, 2, 5,∞], H2[2, 9, 4, 0, 5, 1, 8, 3, 7,∞]

}
,

B′2 =
{
H2[0, 1, 7, 6, 9,∞, 4, 3, 5, 8], H2[2, 3, 9, 8, 1,∞, 6, 5, 7, 0], H2[4, 5, 1, 0, 3,∞, 8, 7, 9, 2],

H2[6, 7, 3, 2, 5,∞, 0, 9, 1, 4], H2[8, 9, 5, 4, 7,∞, 2, 1, 3, 6]
}
,

B3 =
{
H3[2, 0, 5, 9, 4, 3, 1, 8,∞, 7], H3[0, 6, 1, 9, 4, 8, 2, 3,∞, 7]

}
,

B′3 =
{
H3[4, 0, 3, 5, 1,∞, 6, 7, 8, 2], H3[6, 2, 5, 7, 3,∞, 8, 9, 0, 4], H3[8, 4, 7, 9, 5,∞, 0, 1, 2, 6],

H3[0, 6, 9, 1, 7,∞, 2, 3, 4, 8], H3[2, 8, 1, 3, 9,∞, 4, 5, 6, 0]
}
,

B4 =
{
H4[0, 4, 1, 6, 9, 3,∞, 2, 7, 8], H4[0, 1, 3, 7, 9, 4, 8, 6,∞, 2]

}
,

B′4 =
{
H4[6, 1, 2, 5, 4, 0, 9, 3, 7,∞], H4[8, 3, 4, 7, 6, 2, 1, 5, 9,∞], H4[0, 5, 6, 9, 8, 4, 3, 7, 1,∞],

H4[2, 7, 8, 1, 0, 6, 5, 9, 3,∞], H4[4, 9, 0, 3, 2, 8, 7, 1, 5,∞]
}
.

Then, for k ∈ {1, 2, 3, 4}, an Hk-decomposition of L
(3)
5,5 ∪K

(3)
1,5,5 consists of the orbits of the

Hk-blocks in Bk under the action of the map ∞ 7→ ∞ and j 7→ j + 1 (mod 10) along with

the Hk-blocks in B′k.

Example 9. Let V
(
L
(3)
5,5 ∪K

(3)
2,5,5

)
= Z10 ∪ {∞1,∞2} with vertex partition

{
{∞1,∞2},
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{0, 2, 4, 6, 8}, {1, 3, 5, 7, 9}
}

and let

B1 =
{
H1[0, 1, 6, 4, 9, 7, 3,∞1, 8,∞2], H1[5, 2, 0, 4, 7, 9, 3,∞2, 6, 8]

}
,

B′1 =
{
H1[2, 8, 1, 3, 9,∞1, 0, 4, 5, 6], H1[4, 0, 3, 5, 1,∞1, 2, 6, 7, 8],

H1[6, 2, 5, 7, 3,∞1, 4, 8, 9, 0], H1[8, 4, 7, 9, 5,∞1, 6, 0, 1, 2],

H1[0, 6, 9, 1, 7,∞1, 8, 2, 3, 4], H1[0, 1,∞1, 2, 3, 9, 5, 6, 8,∞2],

H1[2, 3,∞1, 4, 5, 1, 7, 8, 0,∞2], H1[4, 5,∞1, 6, 7, 3, 9, 0, 2,∞2],

H1[6, 7,∞1, 8, 9, 5, 1, 2, 4,∞2], H1[8, 9,∞1, 0, 1, 7, 3, 4, 6,∞2]
}
,

B2 =
{
H2[0, 1, 3, 9, 7, 4,∞2, 2, 5, 8], H2[3, 7, 0, 8, 1, 9, 5, 6, 2,∞1]

}
,

B′2 =
{
H2[0, 1, 7, 6, 9,∞1, 4, 3, 5, 8], H2[2, 3, 9, 8, 1,∞1, 6, 5, 7, 0],

H2[4, 5, 1, 0, 3,∞1, 8, 7, 9, 2], H2[6, 7, 3, 2, 5,∞1, 0, 9, 1, 4],

H2[8, 9, 5, 4, 7,∞1, 2, 1, 3, 6], H2[∞1, 0, 1, 5, 6,∞2, 2, 7, 3, 8],

H2[∞1, 2, 3, 7, 8,∞2, 4, 9, 5, 0], H2[∞1, 4, 5, 9, 0,∞2, 6, 1, 7, 2],

H2[∞1, 6, 7, 1, 2,∞2, 8, 3, 9, 4], H2[∞1, 8, 9, 3, 4,∞2, 0, 5, 1, 6]
}
,

B3 =
{
H3[0, 1, 3, 7, 9, 2, 5, 8,∞1, 6], H3[1, 0,∞2, 3, 6, 5, 2, 7, 8, 9]

}
,

B′3 =
{
H3[4, 0, 3, 5, 1,∞1, 6, 7, 8, 2], H3[6, 2, 5, 7, 3,∞1, 8, 9, 0, 4],

H3[8, 4, 7, 9, 5,∞1, 0, 1, 2, 6], H3[0, 6, 9, 1, 7,∞1, 2, 3, 4, 8],

H3[2, 8, 1, 3, 9,∞1, 4, 5, 6, 0], H3[∞1, 1, 0, 5, 6, 2, 4, 9,∞2, 7],

H3[∞1, 3, 2, 7, 8, 4, 6, 1,∞2, 9], H3[∞1, 5, 4, 9, 0, 6, 8, 3,∞2, 1],

H3[∞1, 7, 6, 1, 2, 8, 0, 5,∞2, 3], H3[∞1, 9, 8, 3, 4, 0, 2, 7,∞2, 5]
}
,

B4 =
{
H4[2, 0, 5, 4, 9,∞1, 6, 8, 7], H4[0, 1, 6, 7, 3,∞2, 2, 8, 9, 4]

}
,

B′4 =
{
H4[6, 1, 2, 5, 4, 0, 9, 3, 7,∞1], H4[8, 3, 4, 7, 6, 2, 1, 5, 9,∞1],

H4[0, 5, 6, 9, 8, 4, 3, 7, 1,∞1], H4[2, 7, 8, 1, 0, 6, 5, 9, 3,∞1],

H4[4, 9, 0, 3, 2, 8, 7, 1, 5,∞1], H4[5, 9, 8, 1, 2, 0, 6, 3,∞2, 4],
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H4[7, 1, 0, 3, 4, 2, 8, 5,∞2, 6], H4[9, 3, 2, 5, 6, 4, 0, 7,∞2, 8],

H4[1, 5, 4, 7, 8, 6, 2, 9,∞2, 0], H4[3, 7, 6, 9, 0, 8, 4, 1,∞2, 2]
}
.

Then, for k ∈ {1, 2, 3, 4}, an Hk-decomposition of L
(3)
5,5 ∪K

(3)
2,5,5 consists of the orbits of the

Hk-blocks in Bk under the action of the map ∞i 7→ ∞i, for i ∈ {1, 2}, and j 7→ j + 1

(mod 10) along with the Hk-blocks in B′k.

Example 10. Let V
(
K

(3)
3,5,5

)
= Z10 ∪ {∞1,∞2,∞3} with vertex partition

{
{∞1,∞2,∞3},

{0, 2, 4, 6, 8}, {1, 3, 5, 7, 9}
}

and let

B1 =
{
H1[1,∞1, 0, 4,∞2, 5, 3,∞3, 2, 7], H1[1,∞2, 0, 4,∞3, 5, 3,∞1, 2, 7],

H1[1,∞3, 0, 4,∞1, 5, 3,∞2, 2, 7], H1[9,∞1, 4, 2,∞2, 5, 3,∞3, 1, 6],

H1[9,∞2, 4, 2,∞3, 5, 3,∞1, 1, 6], H1[9,∞3, 4, 2,∞1, 5, 3,∞2, 1, 6],

H1[6,∞1, 3, 7,∞2, 8, 2,∞3, 0, 5], H1[6,∞2, 3, 7,∞3, 8, 2,∞1, 0, 5],

H1[6,∞3, 3, 7,∞1, 8, 2,∞2, 0, 5], H1[8, 9,∞1,∞2, 1, 0, 4, 7, 2,∞3],

H1[8, 9,∞2,∞3, 1, 0, 4, 7, 2,∞1], H1[8, 9,∞3,∞1, 1, 0, 4, 7, 2,∞2],

H1[5,∞1, 8, 6,∞2, 9, 3,∞3, 0, 7], H1[5,∞2, 8, 6,∞3, 9, 3,∞1, 0, 7],

H1[5,∞3, 8, 6,∞1, 9, 3,∞2, 0, 7]
}
,

B2 =
{
H2[∞2, 0, 5, 3, 4,∞1,∞3, 8, 2, 9], H2[∞3, 0, 5, 3, 4,∞2,∞1, 8, 2, 9],

H2[∞1, 0, 5, 3, 4,∞3,∞2, 8, 2, 9], H2[∞2, 1, 6, 4, 5,∞1,∞3, 9, 7, 8],

H2[∞1, 1, 6, 4, 5,∞2,∞1, 9, 7, 8], H2[∞3, 1, 6, 4, 5,∞3,∞2, 9, 7, 8],

H2[∞2, 2, 7, 5, 6,∞1,∞3, 0, 8, 9], H2[∞3, 2, 7, 5, 6,∞2,∞1, 0, 8, 9],

H2[∞1, 2, 7, 5, 6,∞3,∞2, 0, 8, 9], H2[1,∞2, 8, 0,∞1, 9,∞3, 3, 6, 7],

H2[1,∞3, 8, 0,∞2, 9,∞1, 3, 6, 7], H2[1,∞1, 8, 0,∞3, 9,∞2, 3, 6, 7],

H2[2, 3,∞1,∞2, 1, 6, 4, 9, 7,∞3], H2[2, 3,∞2,∞3, 1, 6, 4, 9, 7,∞1],

H2[2, 3,∞3,∞1, 1, 6, 4, 9, 7,∞2]
}
,

14



B3 =
{
H3[1,∞1, 0, 4,∞2, 7, 8, 9,∞3, 5], H3[1,∞2, 0, 4,∞3, 7, 8, 9,∞1, 5],

H3[1,∞3, 0, 4,∞1, 7, 8, 9,∞2, 5], H3[2,∞1, 9, 5,∞2, 4, 8, 1,∞3, 6],

H3[2,∞2, 9, 5,∞3, 4, 8, 1,∞1, 6], H3[2,∞3, 9, 5,∞1, 4, 8, 1,∞2, 6],

H3[0,∞1, 3, 7,∞2, 2, 5, 8,∞3, 6], H3[0,∞2, 3, 7,∞3, 2, 5, 8,∞1, 6],

H3[0,∞3, 3, 7,∞1, 2, 5, 8,∞2, 6], H3[2,∞1, 1, 3,∞2, 4, 0, 9,∞3, 6],

H3[2,∞2, 1, 3,∞3, 4, 0, 9,∞1, 6], H3[2,∞3, 1, 3,∞1, 4, 0, 9,∞2, 6],

H3[7,∞1, 6, 8,∞2, 3, 4, 9,∞3, 5], H3[7,∞2, 6, 8,∞3, 3, 4, 9,∞1, 5],

H3[7,∞3, 6, 8,∞1, 3, 4, 9,∞2, 5]
}
,

B4 =
{
H4[0, 1,∞1, 7,∞3,∞2, 2, 3, 8, 4], H4[0, 1,∞2, 7,∞1,∞3, 2, 3, 8, 4],

H4[0, 1,∞3, 7,∞2,∞1, 2, 3, 8, 4], H4[2, 3,∞1, 9,∞3,∞2, 4, 5, 0, 6],

H4[2, 3,∞2, 9,∞1,∞3, 4, 5, 0, 6], H4[2, 3,∞3, 9,∞2,∞1, 4, 5, 0, 6],

H4[4, 5,∞1, 1,∞3,∞2, 6, 7, 2, 8], H4[4, 5,∞2, 1,∞1,∞3, 6, 7, 2, 8],

H4[4, 5,∞3, 1,∞2,∞1, 6, 7, 2, 8], H4[6, 7,∞1, 3,∞3,∞2, 8, 9, 4, 0],

H4[6, 7,∞2, 3,∞1,∞3, 8, 9, 4, 0], H4[6, 7,∞3, 3,∞2,∞1, 8, 9, 4, 0],

H4[8, 9,∞1, 5,∞3,∞2, 0, 1, 6, 2], H4[8, 9,∞2, 5,∞1,∞3, 0, 1, 6, 2],

H4[8, 9,∞3, 5,∞2,∞1, 0, 1, 6, 2]
}
.

Then, for k ∈ {1, 2, 3, 4}, Bk is an Hk-decomposition of K
(3)
3,5,5.

Example 11. Let V
(
K

(3)
4,5,5

)
= Z10 ∪ {∞1,∞2,∞3,∞4} with vertex partition

{
{∞1,∞2,

∞3,∞4}, {0, 2, 4, 6, 8}, {1, 3, 5, 7, 9}
}

and let

B1 =
{
H1[0,∞1, 1, 3,∞2, 6, 2,∞3, 4, 9], H1[0,∞2, 1, 3,∞3, 6, 2,∞4, 4, 9],

H1[0,∞3, 1, 3,∞4, 6, 2,∞1, 4, 9], H1[0,∞4, 1, 3,∞1, 6, 2,∞2, 4, 9],

H1[4,∞1, 1, 7,∞2, 0, 6,∞3, 2, 3], H1[4,∞2, 1, 7,∞3, 0, 6,∞4, 2, 3],

H1[4,∞3, 1, 7,∞4, 0, 6,∞1, 2, 3], H1[4,∞4, 1, 7,∞1, 0, 6,∞2, 2, 3],
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H1[9, 0,∞1,∞2, 8, 5, 3, 4, 7,∞3], H1[9, 0,∞2,∞3, 8, 5, 3, 4, 7,∞4],

H1[9, 0,∞3,∞4, 8, 5, 3, 4, 7,∞1], H1[9, 0,∞4,∞1, 8, 5, 3, 4, 7,∞2],

H1[5, 4,∞1,∞2, 8, 2, 0, 7, 3,∞3], H1[5, 4,∞2,∞3, 8, 2, 0, 7, 3,∞4],

H1[5, 4,∞3,∞4, 8, 2, 0, 7, 3,∞1], H1[5, 4,∞4,∞1, 8, 2, 0, 7, 3,∞2],

H1[7, 8,∞1,∞2, 2, 1, 5, 6, 9,∞3], H1[7, 8,∞2,∞3, 2, 1, 5, 6, 9,∞4],

H1[7, 8,∞3,∞4, 2, 1, 5, 6, 9,∞1], H1[7, 8,∞4,∞1, 2, 1, 5, 6, 9,∞2]
}
,

B2 =
{
H2[1,∞1, 0, 4,∞2, 5,∞3, 7, 8, 9], H2[1,∞2, 0, 4,∞3, 5,∞4, 7, 8, 9],

H2[1,∞3, 0, 4,∞4, 5,∞1, 7, 8, 9], H2[1,∞4, 0, 4,∞1, 5,∞2, 7, 8, 9],

H2[0,∞1, 5, 3,∞2, 8, 2,∞3, 7,∞4], H2[0,∞2, 5, 3,∞3, 8, 2,∞4, 7,∞1],

H2[0,∞3, 5, 3,∞4, 8, 2,∞1, 7,∞2], H2[0,∞4, 5, 3,∞1, 8, 2,∞2, 7,∞3],

H2[9,∞1, 2, 6,∞2, 7,∞3, 3, 1, 8], H2[9,∞2, 2, 6,∞3, 7,∞4, 3, 1, 8],

H2[9,∞3, 2, 6,∞4, 7,∞1, 3, 1, 8], H2[9,∞4, 2, 6,∞1, 7,∞2, 3, 1, 8],

H2[6,∞1, 1, 5,∞2, 8,∞3, 2, 4, 9], H2[6,∞2, 1, 5,∞3, 8,∞4, 2, 4, 9],

H2[6,∞3, 1, 5,∞4, 8,∞1, 2, 4, 9], H2[6,∞4, 1, 5,∞1, 8,∞2, 2, 4, 9],

H2[4,∞1, 3, 7,∞2, 8,∞3, 6, 0, 9], H2[4,∞2, 3, 7,∞3, 8,∞4, 6, 0, 9],

H2[4,∞3, 3, 7,∞4, 8,∞1, 6, 0, 9], H2[4,∞4, 3, 7,∞1, 8,∞2, 6, 0, 9]
}
,

B3 =
{
H3[1,∞1, 0, 4,∞2, 7, 8, 9,∞3, 5], H3[1,∞2, 0, 4,∞3, 7, 8, 9,∞4, 5],

H3[1,∞3, 0, 4,∞4, 7, 8, 9,∞1, 5], H3[1,∞4, 0, 4,∞1, 7, 8, 9,∞2, 5],

H3[2,∞1, 9, 5,∞2, 4, 8, 1,∞3, 6], H3[2,∞2, 9, 5,∞3, 4, 8, 1,∞4, 6],

H3[2,∞3, 9, 5,∞4, 4, 8, 1,∞1, 6], H3[2,∞4, 9, 5,∞1, 4, 8, 1,∞2, 6],

H3[0,∞1, 3, 7,∞2, 2, 5, 8,∞3, 6], H3[0,∞2, 3, 7,∞3, 2, 5, 8,∞4, 6],

H3[0,∞3, 3, 7,∞4, 2, 5, 8,∞1, 6], H3[0,∞4, 3, 7,∞1, 2, 5, 8,∞2, 6],

H3[2,∞1, 1, 3,∞2, 4, 0, 9,∞3, 6], H3[2,∞2, 1, 3,∞3, 4, 0, 9,∞4, 6],

H3[2,∞3, 1, 3,∞4, 4, 0, 9,∞1, 6], H3[2,∞4, 1, 3,∞1, 4, 0, 9,∞2, 6],
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H3[7,∞1, 6, 8,∞2, 3, 4, 9,∞3, 5], H3[7,∞2, 6, 8,∞3, 3, 4, 9,∞4, 5],

H3[7,∞3, 6, 8,∞4, 3, 4, 9,∞1, 5], H3[7,∞4, 6, 8,∞1, 3, 4, 9,∞2, 5]
}
,

B4 =
{
H4[1,∞1, 0, 6,∞2, 5, 2, 7,∞4,∞3], H4[1,∞2, 0, 6,∞3, 5, 2, 7,∞1,∞4],

H4[1,∞3, 0, 6,∞4, 5, 2, 7,∞2,∞1], H4[1,∞4, 0, 6,∞1, 5, 2, 7,∞3,∞2],

H4[2,∞1, 1, 7,∞2, 6, 3, 8,∞4,∞3], H4[2,∞2, 1, 7,∞3, 6, 3, 8,∞1,∞4],

H4[2,∞3, 1, 7,∞4, 6, 3, 8,∞2,∞1], H4[2,∞4, 1, 7,∞1, 6, 3, 8,∞3,∞2],

H4[3,∞1, 2, 8,∞2, 7, 4, 9,∞4,∞3], H4[3,∞2, 2, 8,∞3, 7, 4, 9,∞1,∞4],

H4[3,∞3, 2, 8,∞4, 7, 4, 9,∞2,∞1], H4[3,∞4, 2, 8,∞1, 7, 4, 9,∞3,∞2],

H4[4,∞1, 3, 9,∞2, 8, 5, 0,∞4,∞3], H4[4,∞2, 3, 9,∞3, 8, 5, 0,∞1,∞4],

H4[4,∞3, 3, 9,∞4, 8, 5, 0,∞2,∞1], H4[4,∞4, 3, 9,∞1, 8, 5, 0,∞3,∞2],

H4[5,∞1, 4, 0,∞2, 9, 6, 1,∞4,∞3], H4[5,∞2, 4, 0,∞3, 9, 6, 1,∞1,∞4],

H4[5,∞3, 4, 0,∞4, 9, 6, 1,∞2,∞1], H4[5,∞4, 4, 0,∞1, 9, 6, 1,∞3,∞2]
}
.

Then, for k ∈ {1, 2, 3, 4}, Bk is an Hk-decomposition of K
(3)
4,5,5.

Example 12. Let V
(
K

(3)
5,5,5

)
= Z15 with vertex partition

{
{0, 3, 6, 9, 12}, {1, 4, 7, 10, 13},

{2, 5, 8, 11, 14}
}

and let

B1 =
{
H1[2, 1, 0, 12, 10, 5, 7, 8, 9, 14], H1[3, 2, 1, 13, 11, 6, 8, 9, 10, 0],

H1[4, 3, 2, 14, 12, 7, 9, 10, 11, 1], H1[0, 11, 1, 10, 2, 6, 9, 14, 3, 13],

H1[13, 3, 8, 11, 9, 1, 4, 6, 5, 7]
}
,

B2 =
{
H2[2, 0, 1, 4, 6, 8, 11, 3, 7, 12, H2[3, 1, 2, 5, 7, 9, 12, 4, 8, 13],

H2[4, 2, 3, 6, 8, 10, 13, 5, 9, 14], H2[1, 8, 3, 9, 2, 13, 7, 14, 5, 12],

H2[1, 2, 6, 0, 5, 7, 4, 11, 9, 14]
}
,

17



B3 =
{
H3[0, 1, 5, 14, 10, 9, 2, 7, 12, 3], H3[1, 2, 6, 0, 11, 10, 5, 7, 9, 4],

H3[2, 3, 7, 1, 12, 11, 0, 4, 8, 5], H3[0, 8, 1, 4, 2, 12, 5, 6, 13, 9],

H3[1, 2, 3, 0, 14, 13, 9, 10, 11, 7]
}
,

B4 =
{
H4[0, 1, 5, 14, 10, 9, 2, 4, 6, 7], H4[1, 2, 6, 0, 11, 10, 3, 5, 7, 8],

H4[2, 3, 7, 1, 12, 11, 4, 6, 8, 9], H4[4, 0, 2, 12, 8, 10, 5, 9, 13, 14],

H4[4, 11, 0, 6, 2, 1, 3, 5, 7, 8]
}
.

Then, for k ∈ {1, 2, 3, 4}, an Hk-decomposition of K
(3)
5,5,5 consists of the orbits of the

Hk-blocks in Bk under the action of the map and j 7→ j + 3 (mod 15).
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CHAPTER IV: MAIN RESULTS

We begin by giving necessary conditions for the existence of an Hk-decomposition of

K
(3)
v . An obvious necessary condition is that 5 must divide the number of edges in K

(3)
v , and

thus we must have v ≡ 0, 1, or 2 (mod 5). Also since Hk has 10 vertices, we must also

have n ≥ 10 for a non-trivial Hk-decomposition of K
(3)
v . Thus we have the following.

Lemma 1. There exists an Hk-decomposition of K
(3)
v only if v ≡ 0, 1, or 2 (mod 5) and

v ≥ 10.

We show that the above conditions are sufficient by showing how to construct

Hk-decompositions of K
(3)
v for all v ≡ 0, 1, or 2 (mod 5) with v ≥ 10. Our constructions

are dependent on the many small examples given in Chapter III.

We begin by proving a lemma that is fundamental to our constructions.

Lemma 2. For r ∈ {0, 1, 2} and all positive integers x and y, there exists a decomposition

of K
(3)
r,5x,5y ∪ L

(3)
5x,5y into copies of K

(3)
5,5,5 and K

(3)
r,5,5 ∪ L

(3)
5,5.

Proof. Let r ∈ {0, 1, 2} and let x and y be positive integers. The vertices of K
(3)
r,5x,5y ∪ L

(3)
5x,5y

can be partitioned into sets Vi, Wj, and R where 1 ≤ i ≤ x, 1 ≤ j ≤ y, |Vi| = 5 = |Wj|, and

|R| = r such that every edge {a, b, c} is of exactly one of the following types:

Type 1: there exist i, j with a ∈ R, b ∈ Vi, and c ∈ Wj;

Type 2: there exist i, j, k with i 6= j, a ∈ Vi, b ∈ Vj, and c ∈ Wk;

Type 3: there exist i, j, k with j 6= k, a ∈ Vi, b ∈ Wj, and c ∈ Wk;

Type 4: there exist i, j with a, b ∈ Vi and c ∈ Wj; or

Type 5: there exist i, j with a ∈ Vi and b, c ∈ Wj.

For every choice of i and j we can put together the edges of Types 1, 4, and 5 to form a

copy of K
(3)
r,5,5 ∪ L

(3)
5,5. For every choice of i, j, and k the edges of Types 2 and 3 form copies

of K
(3)
5,5,5. Since all edges are accounted for by exactly one of the aforementioned choices of

subscripts, we have the desired decomposition into copies of K
(3)
5,5,5 and K

(3)
r,5,5 ∪ L

(3)
5,5.
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Theorem 3. There exists an Hk-decomposition of K
(3)
v if and only if v ≡ 0, 1, or 2

(mod 5) and v ≥ 10.

Proof. The necessary conditions for the existence of an Hk-decomposition of K
(3)
v are

established in Lemma 1. Thus we need only to establish their sufficiency. Let v = 5x + r

where x ≥ 2 and r ∈ {0, 1, 2}. We will consider two cases depending on the parity of x.

When x is even we can write K
(3)
v as the edge-disjoint union of copies of K

(3)
10+r,

K
(3)
r,10,10 ∪ L

(3)
10,10, and K

(3)
10,10,10, where the group of r vertices is common to every applicable

copy. By Examples 1, 2, and 3 we have that an Hk-decomposition of K
(3)
10+r exists. By

Lemma 2 we have that K
(3)
r,10,10 ∪ L

(3)
10,10 can be decomposed into copies of K

(3)
5,5,5 and

K
(3)
r,5,5 ∪L

(3)
5,5. By Example 12 an Hk-decomposition of K

(3)
5,5,5 exists. When r = 0 K

(3)
0,5,5 ∪L

(3)
5,5

is isomorphic to L
(3)
5,5, which admits an Hk-decomposition by Example 7. When r ∈ {1, 2}

an Hk-decomposition of K
(3)
r,5,5 ∪ L

(3)
5,5 exists by Examples 8 and 9. Finally, it is

straightforward to see that K
(3)
10,10,10 can be decomposed into copies of K

(3)
5,5,5; thus, by

Example 12 an Hk-decomposition of K
(3)
10,10,10 exists.

When x is odd the construction is similar, and we can write K
(3)
v as the edge

disjoint union of copies of K
(3)
15+r, K

(3)
10+r, K

(3)
r,15,10 ∪ L

(3)
15,10, K

(3)
r,10,10 ∪ L

(3)
10,10, K

(3)
15,10,10, and

K
(3)
10,10,10, where again the group of r vertices is common to every applicable copy. There

exist Hk-decompositions of each of these hypergraphs exist by using the ingredients listed

in the previous case along with Examples 4, 5, and 6.
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