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PROPOSING ALTERNATIVE METHODS FOR TESTING HETEROGENEITY OF STUDIES IN A META-ANALYSIS 

 

TEAGEN SMITH  

 

59 Pages 

A meta-analysis is a tool commonly used to try and gain an understanding of a given topic by 

using multiple studies conducted on the topic. A key element of properly interpreting the results of a 

meta-analysis is the test to check for heterogeneity within the studies included. This is currently done 

using Cochrane’s Q-statistic to test a null hypothesis that the studies included share a common effect 

size. However, this method has been scrutinized for some of its downsides such as its low power in cases 

with small sample sizes. This can often create issues because meta-analysis is commonly used in 

scenarios in which there are few studies. Therefore, in this paper we decide to propose some alternative 

methods for testing heterogeneity among the studies of a meta-analysis. These methods include using 

U-statistics because of a few helpful characteristics that may make their interpretation with regard to 

meta-analysis simpler. It is important to note that meta-analysis is a widely used tool in research and is 

not limited to use in statistical fields. Therefore, the interpretability of the statistic used to test the 

heterogeneity is crucial in some cases and we aim to make this easier by recommending an alternative 

to Cochrane’s Q. This proposed method, while simple, will hopefully lay the groundwork for easily 

interpretable and more accurate tests for heterogeneity using U-statistics.  
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CHAPTER I: INTRODUCTION 

I.1 Meta-analysis Background 

 Often times, multiple studies are conducted to understand important or difficult questions. One 

way to use the information from all of these studies is to conduct a meta-analysis. A meta-analysis is a 

statistical method in which the results of multiple studies are combined in an attempt to draw an overall 

conclusion based on the findings of these studies. Some believe that the use of meta-analyses began in 

1904 when used by Pearson in a study that pooled the results of clinical trials of typhoid vaccinations 

(Jones, 1995). However, after that point in time this type of analysis was increasingly used in the field of 

psychology with use in science and medical fields becoming more common later on, and the term meta-

analysis was officially introduced in 1976. (Jones, 1995). The prefix meta is used to mean comprehensive 

and analysis is used to understand a given topic. Therefore, this word is used to mean conducting a 

comprehensive analysis or gaining a comprehensive understanding of a given topic. The process of 

conducting a meta-analysis can be divided into three basic parts.  

The first part of a meta-analysis is creating the research question (Page et al., 2021, Borenstein 

et al., 2009). The type of research question will ultimately impact the decisions made in the following 

steps of the meta-analysis. For example, a meta-analysis focusing on which medication is better for a 

given disease could be conducted differently than one focused on understanding mating times of a given 

species. Thus, it is important to put thought into the initial research question and what exactly one 

hopes to gain from answering this question. The next part of conducting a meta-analysis involves 

searching through the literature and selecting studies to include in the meta-analysis (Jones et al., 2008). 

Although, this may sound relatively simple, consider the large amount of studies produced for some 

topics. This next step includes systematically searching through the literature to find articles that seem 

relevant to the chosen topic. The criteria for selecting studies for a meta-analysis should be well defined 

so that the studies used are as similar as possible and the criteria should be defined before searching 
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through the literature (Jones et al., 2008).  Then, articles that do not meet specific criteria are removed 

from the analysis. The data is then retrieved from the studies that do meet the criteria. It is important to 

note that it is best that multiple authors decide on which studies are included in the study to eliminate 

bias (Jones et al., 2008). Finally, the last part of a meta-analysis includes synthesizing the data pulled 

from each study and attempting to draw conclusions. The following sections will discuss this part of a 

meta-analysis in more detail. Generally, this includes calculating effect sizes for each study, finding a 

summary effect using a fixed or random effects model, checking the heterogeneity of the studies, and 

drawing conclusions on the results of the meta-analysis. Understanding how to properly implement 

each of these parts of the meta-analysis is crucial in properly interpreting the results.  

As stated previously, checking the heterogeneity of the studies included in the meta-analysis is 

an important step, therefore we give a formal definition with regard to meta-analysis as well as an 

example. Heterogeneity is defined as the differences or variability between studies included in a meta-

analysis other than differences that could be explained by random error (Kolasa & Rollo, 1991). 

Conversely, we would define homogeneity as studies where the only differences that are observed can 

be contributed to random error. It is important to identify heterogeneity between studies in a meta-

analysis because if it is present, then general conclusions cannot be drawn from the combined results of 

the studies. For example, consider a meta-analysis that consists of studies conducted on the 

effectiveness of a gasoline additive. If about half of the studies showed that this additive increased gas 

milage and half showed it decreased milage, then we would more than likely see that heterogeneity 

exists between studies. Intuitively, we would not try to draw a general conclusion based on these 

studies because they show such different results. Alternatively, consider the scenario in which all studies 

showed a similar improvement in gas milage. In this case, we would more than likely not see 

heterogeneity between studies and may even be able to conclude something about the effectiveness of 
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this gasoline additive. Therefore, it is essential that one accurately tests for heterogeneity between 

studies included in a meta-analysis. 

The current method for checking heterogeneity has been criticized. Therefore, the goal of this 

paper is to recommend an alternative method to test for heterogeneity in meta-analyses. To do this, 

one must completely understand the steps of a meta-analysis, thus we explain the analytical steps in 

more detail. After this, we give some background on U-statistics which is the statistic we propose using 

instead of Cochrane’s Q, which is currently used. Then examples of how this new test would be 

conducted are given and compared to the current test. Finally, we discuss how it compares and what 

this could mean for future research in this area.  

It is important to note that the methods proposed in this paper could be very beneficial in the 

application of meta-analysis in a variety of fields, specifically in the field of biomathematics. One reason 

being that in the field of biomathematics, meta-analysis is a tool that is used fairly often. Consider the 

COVID-19 pandemic and the many studies have been released pertaining to the pandemic. Meta-

analysis has been used to synthesize these studies and to help understand the virus. In this case, it is 

essential that researchers properly test for heterogeneity among the studies included so that no 

incorrect conclusions are drawn. These proposed methods for testing heterogeneity have the potential 

to be important in the field of biomathematics outside of their use in meta-analysis. It is a well-known 

fact that the existence of heterogeneity plays a crucial role in the modeling of biological systems. In the 

case of this paper, we are only concerned with statistical heterogeneity, however there are other types 

such as spatial, clinical, or methodological heterogeneity that can impact the way that a researcher 

models a biological system (Fletcher, 2007). Because U-statistics are a class of statistics that are 

commonly used for testing, the proposed statistics have the potential to test for the existence other 

types of heterogeneity. Therefore, the methods proposed in this paper may be especially helpful in the 

field of biomathematical modeling. Throughout this paper, we explain how to properly implement the 
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proposed U-statistics while also keeping in mind how they are used and interpreted in fields like 

biomathematics.  

I.2 Calculating Effect Sizes  

 For each of the studies included in the meta-analysis, an effect size must be found. The effect 

size is also referred to as the treatment effect (as well as other names depending on the field in which 

the meta-analysis is based on or its’ goal). Thus, some consideration must go into the selection of the 

type of effect size calculation that will be used. One should note that the effect size needs to be 

comparable between studies (so it should not depend on factors such as sample size), it should use 

information from the raw data of the studies, and it should be relatively easy to work with in a way that 

variance and confidence intervals are able to be found (Borenstein et al., 2009). A few types of effect 

sizes that are used often are raw mean difference, standardized mean difference, response ratios, risk 

ratios, odds ratios, risk difference, and correlations (Borenstein et al., 2009). Again, the selection of 

effect size measure is dependent on the type of data from the studies as well as the field, and the 

previous list is not exhaustive. For the previous list however, we do know how to calculate the variance, 

standard error, and thus the confidence intervals. In the following sections, we focus on the raw mean 

difference and standardized mean difference because they are some of the more common methods to 

calculate effect size. Also, in the worked examples later in this paper, we only use the standardized 

mean difference to find the effect sizes. The true effect size is denoted as the parameter θ; however, we 

denote our estimate of the effect size of the study with 𝑌.  

Raw Mean Difference  

 The raw mean difference is used best in a scenario where all of the studies are using the same 

scale (Borenstein et al., 2009). Consider a measure for a study in which the actual value is important 

such a study involving calories. We would want to keep the scale the same in this case. Intuitively, this 

method makes the most sense as it is just the difference between the two groups being considered in a 
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study. This is an estimate of the true difference in the population means for a study. Thus, the raw 

difference is calculated as follows:  

𝐷 = 𝑋1
̅̅ ̅ − 𝑋2

̅̅ ̅ (1.1) 

Note that we are using two sample means here. To calculate this effect size, we are using two groups to 

interpret the effect in each study. Then for the calculation of variance and standard deviation we either 

assume the populations standard deviations are the same or they are not. If we assume that the 

standard deviations of the populations are the same then we calculate the variance for the raw mean 

differences to be 

𝑉𝐷 =
𝑛1 + 𝑛2

𝑛1𝑛2
𝑆𝑝𝑜𝑜𝑙𝑒𝑑

2  (1.2) 

such that  

𝑆𝑝𝑜𝑜𝑙𝑒𝑑 = √
(𝑛1 − 1)𝑆1

2 + (𝑛2 − 1)𝑆2
2

𝑛1 + 𝑛2 − 2
 (1.3) 

Otherwise, we assume the standard deviations are different and we calculate the variance for the raw 

mean differences as follows 

𝑉𝐷 = 
𝑆1

2

𝑛1
+

𝑆2
2

𝑛2
 (1.4) 

For both of these cases we take 𝑆1 and  𝑆2 to be the sample standard deviations of the two groups and 

𝑛1 and 𝑛2 are the sample population sizes of the two groups. And obviously in both cases we have the 

standard error to be the square root of the estimated variance  

𝑆𝐸𝐷 = √𝑉𝐷 (1.5) 

Standardized Mean Difference  

 The standardized mean difference is often used in scenarios where the raw mean difference is 

not appropriate. For example, using the standardized mean difference is better for comparing studies 

that use different instruments from one another that could cause inconsistencies (Borenstein et al., 
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2009). Similar to the raw mean difference, this method is calculating the effect size between two 

groups. Thus, we estimate the standardized mean difference between two groups as follows 

𝑑 =  
𝑋1
̅̅ ̅ − 𝑋2

̅̅ ̅

𝑆𝑤𝑖𝑡ℎ𝑖𝑛
 (1.6) 

where the numerator is the difference between the two groups sample means. Then the denominator is 

the within groups standard deviation and is calculated as  

𝑆𝑤𝑖𝑡ℎ𝑖𝑛 = √
(𝑛1 − 1)𝑆1

2 + (𝑛2 − 1)𝑆2
2

𝑛1 + 𝑛2 − 2
 (1.7) 

which is the same as the 𝑆𝑝𝑜𝑜𝑙𝑒𝑑 value that was calculated for the raw mean difference above. Again, for 

this value we use the sample sizes and sample standard deviations from the two groups that we are 

concerned with. The estimate of the effect size, 𝑑, here is often referred to as Cohen’s d (Borenstein et 

al., 2009). Now that we have this value, we would calculate the estimated variance as follows 

𝑉𝑑 = 
𝑛1 + 𝑛2

𝑛1𝑛2
+

𝑑2

2(𝑛1 + 𝑛2)
 (1.8) 

And as previously, we calculate the estimates standard error as the square root of the estimated 

variance  

𝑆𝐸𝐷 = √𝑉𝐷 (1.9) 

 After calculating the effect sizes and the variances for each of the studies, we then use the 

values in the next few steps of conducting a meta-analysis. For both the fixed effects and random effects 

models, we use these values in estimating the summary effect for the studies. Later in the process, we 

also use these values in the computations to test for heterogeneity between studies.  

I.3 Fixed Effect vs Random Effect Models 

Fixed Effects Model  

 The main assumption of the fixed effects model is that all of the studies included in the meta-

analysis share a common effect size. This is referring to the true effect size of the studies, which is 
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typically referred to as θ and is unknown (Borenstein et al., 2009). Therefore, this model assumes that 

the effect size is calculated as 

𝑌𝑖 =  𝜃 + 𝜀𝑖 (1.10) 

which implies that the only way that studies would vary from each other would be through random 

error. Although this model assumes that the studies all share the same true effect size, they can differ in 

sample size or error and for that reason are given weights. The weight of each study in a fixed effects 

meta-analysis is calculated as 

𝑊𝑖 = 
1

𝑉𝑌𝑖

 (1.11) 

where just as before 𝑉𝑌𝑖
 is the variance of the studies estimated effect size. We are then able to use 

these weights to calculate the estimated summary effect in such a way that studies with small sample 

sizes are not over-represented. The weighted mean or the summary effect is then 

𝑀 = 
∑ 𝑊𝑖𝑌𝑖

𝑘
𝑖=1

∑ 𝑊𝑖
𝑘
𝑖=1

 (1.12) 

We can also estimate a variance for the summary effect in a way similar to that for a single study’s effect 

size. Thus, we intuitively calculate this as 

𝑉𝑀 = 
1

∑ 𝑊𝑖
𝑘
𝑖=1

 (1.13) 

and obviously an estimated standard error for the summary effect is calculated as the square root of the 

estimated variance.  

𝑆𝐸𝑀 = √𝑉𝑀 (1.14) 

We know that the goal of using the model is to estimate the summary effect for the group of studies 

that have been selected for the meta-analysis. Therefore, a few more calculations are used to help us 

understand how good the estimate is. So, next we consider the 95% upper and lower confidence limits 

which are calculated as 
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𝐿𝐿𝑀 = 𝑀 − 1.96 × 𝑆𝐸𝑀 (1.15) 

𝑈𝐿𝑀 = 𝑀 + 1.96 × 𝑆𝐸𝑀 (1.16)  

Using these, we gain understanding on the summary effect estimate. We obviously hope to not have a 

very large confidence interval. Another value we calculate is the Z-value for our summary effect. We 

calculate the Z-value as 

𝑍 =  
𝑀

𝑆𝐸𝑀
 (1.17) 

And then we calculate a p-value to test the hypothesis that that the true effect size is zero (Borenstein 

et al., 2009). A significant p-value would lead us to reject the null hypothesis and conclude that the true 

effect size is not zero. In other words, this would mean that the treatment of interest does truly have an 

effect. We calculate the one-tailed p-value as 

𝑝 = 1 −  Φ(±|𝑍|) (1.18) 

And in the case that a two-tailed p-value is used, it is calculated as 

𝑝 = 2[1 −  Φ(±|𝑍|)] (1.19) 

Again, we note that the fixed effects model is being used to test whether the studies common 

effect size is zero or not. This is because the underlying assumption of this model is that all studies share 

a common effect size. Therefore, when we look at the random effects model, we note that the 

hypothesis we are testing is different because this model has a different underlying assumption.  

Random Effects Model  

 Unlike the fixed effects model, the random effects model does not assume that the studies 

included in the meta-analysis share a common true effect size. However, this does not mean that we 

believe all of the studies give completely different results. We still assume that the studies included are 

similar otherwise we are violating the general idea of a meta-analysis which is the goal of combining 

results from similar studies. Therefore, the estimated effect size in this case is a little different. In this 
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case we also consider the variance between the studies (Borenstein et al., 2009). So, the estimated 

study effect size is then considered to be  

𝑌𝑖 =  𝜇 + ξ𝑖 + 𝜀𝑖 (1.20)  

where 𝜇 is the mean true effect size, 𝜀𝑖  is the random error for the study, and ξ𝑖  is the variance for the 

study. Because we consider the variance that occurs between the studies we need to estimate this value 

before we can calculate the weights and thus the estimated summary effect. So then, we first estimate 

the between studies variances as  

𝑇2 = 
𝑄 − 𝑑𝑓

𝐶
 (1.21) 

where we calculate Q, df, and C as  

𝑄 = ∑𝑊𝑖𝑌𝑖
2 −

𝑘

𝑖=1

 
(∑ 𝑊𝑖𝑌𝑖

𝑘
𝑖=1 )

2

∑ 𝑊𝑖
𝑘
𝑖=1

 (1.22) 

𝑑𝑓 = 𝑘 − 1 (1.23) 

𝐶 = ∑ 𝑊𝑖

𝑘

𝑖=1
− 

∑ 𝑊𝑖
2𝑘

𝑖=1

∑ 𝑊𝑖
𝑘
𝑖=1

 (1.24) 

respectively. Note that k is the number of studies that are included in the meta-analysis. We also in this 

case use the same 𝑊𝑖 calculation as the fixed effects model for each study. Also note, this Q that is 

calculated here will be used later to find heterogeneity. Using this information, we calculate the weights 

for this model in a different way than the fixed effects model. Under this model the study weights are  

𝑊𝑖
∗ = 

1

𝑉𝑌𝑖

∗  (1.25) 

where 𝑉𝑌𝑖

∗  is calculated using the estimated between studies variance that was described above as well 

as the variance of each study. 

𝑉𝑌𝑖

∗ = 𝑉𝑌𝑖
+ 𝑇2 (1.26) 

Then we use all of this information to calculate the estimated summary effect that accounts for the 

between studies variance 
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𝑀∗ = 
∑ 𝑊𝑖

∗𝑌𝑖
𝑘
𝑖=1

∑ 𝑊𝑖
∗𝑘

𝑖=1

 (1.27) 

The summary effect variance is calculated similar to the fixed effects model, however in this case we use 

the inverse of the sum of the weights that include the estimate for the between studies variance 

𝑉𝑀∗ = 
1

∑ 𝑊𝑖
∗𝑘

𝑖=1

 (1.28) 

And then the standard error of the summary effect is again just the square root of the estimated 

variance for the summary effect 

𝑆𝐸𝑀∗ = √𝑉𝑀∗  (1.29) 

 Again, we want to gain a better understanding of the estimated summary effect we found so we 

calculate a few more values to help. First, the 95% upper and lower confidence limits 

𝐿𝐿𝑀∗ = 𝑀∗ − 1.96 × 𝑆𝐸𝑀∗  (1.30) 

𝑈𝐿𝑀∗ = 𝑀∗ + 1.96 × 𝑆𝐸𝑀∗  (1.31) 

And then we find the Z-value for this model as well however it will be used in a slightly different way 

than the fixed effects model.  

𝑍∗ = 
𝑀∗

𝑆𝐸𝑀∗
 (1.32) 

We calculate the one-tailed p-value as 

𝑝∗ = 1 −  Φ(±|𝑍∗|) (1.33) 

and the two-tailed p-value as 

𝑝∗ = 2[1 −  Φ(±|𝑍∗|)] (1.34) 

In this case, we are testing the hypothesis that the mean effect size is zero. Therefore, a 

significant p-value would lead one to reject the null hypothesis and conclude that the mean effect size is 

not zero. This would mean that using the information from all of the studies could lead a researcher to 

conclude that there is an effect occurring in the studies.  
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Differences Between the Models  

 The main difference between these two methods is that the fixed makes the assumption that 

the studies of the meta-analysis share a common true effect size and the random does not. Many note 

that this assumption is very unrealistic and therefore the random effects model is often the better 

option. Specifically, the fixed effects model considers the variation to only be due to random error 

whereas the random effects model considers the variation to be due to the random error as well as 

inherit differences among the studies. Because of this, we see a difference in the interpretation of the 

summary effect for each of the models. This means that for the fixed effects model the summary effect 

we calculate is an estimate for the common effect size between the studies because of the assumption 

that they all share a common effect size. Thus, for the random effects model the summary effect is not 

an estimate of common effect size because it does not have the same assumption, but rather an 

estimate of the mean effect size of all of the studies included in the meta-analysis. This difference is 

apparent when considering the different types of weights that are used in each calculation. Also 

apparent with consideration of the different weight calculations is that under each model, the influence 

a study has on the calculation of the summary effect is different. The overall conclusion from this is that 

when 𝑇2 is non-zero, the weights from each study are more balanced which would be seen in the 

random effects model. Because of these differences, the null hypothesis that is tested for each of these 

models is different but easy to understand. For the fixed model, we test the null hypothesis that there is 

no effect in each study. However, for the random effects model we test the null hypothesis that the 

mean effect size for all studies is zero. These null hypotheses are consistent with the calculation of the 

summary effect that is calculated in each model.  

 Thus, when deciding which of these models to use for a meta-analysis, it is important to 

consider these differences. To use the fixed effects model, one should be sure that the studies being 

used meet the assumptions of this model. This means that for the fixed effects model to work 
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researchers should be sure that the studies share a common effect size, otherwise it will not properly 

work (Schmidt et al., 2009). It is important to note that when using the fixed effects model, it should be 

used to estimate the common effect size of the studies used in the meta-analysis, and not to make 

generalizations that are applied to similar populations (Borenstein et al., 2009). Because of this, the 

random effects model is often more appropriate to use as the requirements for the fixed effects model 

are hard to meet. Therefore, the random effects model can be used to try and make conclusions that 

can be applied to other scenarios.  

I.4 Heterogeneity  

Heterogeneity Background  

 The goal of performing a meta-analysis is to gain an understanding on a given topic by using 

information from the studies conducted for this topic. However, if the studies for this topic produce very 

different results or effect sizes, it would be wrong to attempt to draw a general conclusion from the 

summary effect. Thus, an important step in conducting a meta-analysis is to check the heterogeneity. If 

heterogeneity exists among the studies being used, this means that from study to study the true effect 

sizes vary (Borenstein et al., 2009). We know that this is an assumption of the random effects model 

therefore we attempt to gain further understanding on how the studies vary. It is important to note that 

when we are checking the heterogeneity of the studies, we are only checking the heterogeneity in true 

effects sizes, and not the effect sizes that we have calculated (Borenstein et al., 2009). We keep this in 

mind while conducting the test for heterogeneity.  

 When testing for heterogeneity, we are testing the null hypothesis that the studies of the meta-

analysis share a common effect size and the alternative hypothesis would be that the studies do not 

share a common effect size, or that heterogeneity exists. The first step in testing for heterogeneity is to 

calculate the Q value for the studies. This value is considered to be the sum of the weighted deviation 

from the summary effect for each of the studies effect sizes. The calculation is as follows 
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𝑄 = ∑𝑊𝑖(𝑌𝑖 − 𝑀)2

𝑘

𝑖=1

 (1.35) 

where k is the number of studies included in the meta-analysis. Also, 𝑊𝑖 is the weight of the studies 

which is calculated as 1 𝑉𝑌𝑖
⁄ , or the inverse of the variance of each studies effect size. Thus, 𝑌𝑖  is the 

effect size that we have calculated for each study that can take any of the forms described in the effect 

size section. Then 𝑀 is the summary effect for the studies. We may also calculate Q as  

𝑄 = ∑(
𝑌𝑖 − 𝑀

𝑆𝑖
)
2𝑘

𝑖=1

(1.36) 

This produces the same value for Q as the previous equation. The 𝑆𝑖 is standard error of the study and is 

just the weight moved inside of the squared term from the previous equation. This form of the equation 

shows that Q is actually a standardized measure (Borenstein et al., 2009). This is also why we are able to 

use this equation for any of the forms of effect size. One more form for calculating Q is then  

𝑄 =  ∑𝑊𝑖𝑌𝑖
2

𝑘

𝑖=1

− 
(∑ 𝑊𝑖𝑌𝑖

𝑘
𝑖=1 )

2

∑ 𝑊𝑖
𝑘
𝑖=1

 (1.37) 

Each of these formulas will produce the same Q value. 

Testing for Heterogeneity  

 Once we have calculated the Q value, we need the degrees of freedom, df, to calculate the p-

value for our calculated Q value. The df for the Q value is one less than the number of studies as seen in 

equation 23.   

 Now with both Q and the df, we can calculate the p-value to see whether or not heterogeneity 

exists between studies. Q has a chi-squared distribution as it is the sum of squared standard normal 

terms. The level of significance (α) depends mostly on the field for which the meta-analysis is being 

conducted however it is usually set to either 0.10 or 0.05. A significant p-value is evidence that 

heterogeneity between studies exists. It is very important to note that a non-significant p-value should 
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not be taken to mean that there is no heterogeneity, or that the studies share a common effect size 

(Borenstein et al., 2009). Thus, there are values that are related to Q that can be used to get a better 

understanding on the variation between the effect sizes in the study.  

Understanding Heterogeneity  

 One of the variables that are used to help understand the differences in effect size between 

studies is 𝜏2. 𝜏2 is the variance of the true effect sizes, however we do not actually know the true effect 

sizes, so it is estimated using 𝑇2 which is the estimated between studies variance (Borenstein et al., 

2009). 𝑇2 is calculated as seen in equation 1.21 and where we calculate C as seen in equation 1.24. 

By using 𝑄 − 𝑑𝑓, the numerator now represents the variation that is due to differences in the 

true effect sizes from study to study. Also, C is used to convert the value into the original metric, that 

was used to find effect size, and then make it an average (Borenstein et al., 2009). 𝑇2 could end up less 

than zero if 𝑄 < 𝑑𝑓 and in this case we just set 𝑇2 equal to zero. In the other case that 𝑇2 is not zero, it 

will be based on the size of excess variation, the numerator, and will be interpreted un terms of the 

original metric. Now that we know how 𝑇2 is calculated and what it means, its’ use in the random 

effects model makes sense. Because the random effects model uses the assumption that the true effect 

sizes vary from study to study, it makes sense that the weights in this model are not only based on the 

within study variance, 𝑉𝑌, but also 𝑇2.  

 Another measure that is used is the standard deviation of the true effect sizes, or 𝜏. Similar to 

the variance in the previous paragraph, we estimate 𝜏 using 𝑇. We calculate 𝑇 as follows 

𝑇 = √𝑇2 (1.38) 

where 𝑇2 is exactly as previously calculated. Also similar to 𝑇2, 𝑇 is the same metric as the effect sizes 

that are calculated for each study. 𝑇 is used to understand the distribution of the effect sizes for the 

studies around the summary effect and can give us an understanding of the range of these effect sizes 
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(Borenstein et al., 2009). This means that even if our test for heterogeneity gives inconclusive results, 

then we can still attempt to understand how the studies differ from each other.  

 A final measure that can be used to understand how the studies included in a meta-analysis vary 

from one another is 𝐼2. This measure was proposed to help understand what portion of the variance is 

due to actual differences in effect sizes, and not just random error (Higgins et al., 2003). The 𝐼2 ratio can 

be computed as follows  

𝐼2 = (
𝑄 − 𝑑𝑓

𝑄
) × 100% (1.39) 

which is defined as the ratio of the variation between the studies to the total variation (Borenstein et al., 

2009). It can also be written as  

𝐼2 = (
𝑉𝑎𝑟𝑎𝑖𝑛𝑐𝑒𝑏𝑒𝑡𝑤𝑒𝑒𝑛

𝑉𝑎𝑟𝑎𝑖𝑛𝑐𝑒𝑡𝑜𝑡𝑎𝑙
) × 100% (1.40) 

and  

𝐼2 = (
𝜏2

𝜏2 + 𝑉𝑌
) × 100% (1.41) 

When this measure was proposed, it was suggested that the value be considered either low, medium, or 

high with 25% being low, 50% being medium, and 75% being high (Borenstein et al., 2009). However, 

those who proposed this idea do note that using this categorization method for all studies is not a good 

idea and those using it need to consider their specific situation (Higgins et al., 2003). That being said, the 

Cochrane Reviews does now include the 𝐼2 for their meta-analyses.  

Misuse of Heterogeneity Results  

 Based on the previous sections, it can be seen that testing for heterogeneity and interpreting 

the results is a very important part of the meta-analysis and can be difficult. Testing for heterogeneity 

alone should not be used as an indicator of whether the studies all share a common effect size or not. 

Other measures and interpretations of each studies effect size should be considered after one obtains a 

non-significant Q value. If the test for heterogeneity leads to the conclusion that there are significant 
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differences between the studies, then a researcher should not attempt to draw a general conclusion 

from these studies. This is something that happens often with researchers unfamiliar with the 

importance of testing for heterogeneity. The 𝐼2 value was proposed with the goal of making it simpler to 

understand heterogeneity for those unfamiliar with it. However, similar to Q itself, 𝐼2 has been criticized 

for its low power and inability to meaningfully identify heterogeneity (Baker et al., 2009). Therefore, in 

the next section we propose a new statistic to test for heterogeneity that is more intuitive for those 

unfamiliar with advanced statistics.  
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CHAPTER II: PROPOSING AN ALTERNATIVE HETEROGENEITY TEST   

II.1 U-Statistics Background  

 The type of statistic that we propose using as an alternative to Cochrane’s Q is called a 

U-statistic. To get a better understanding of why we propose this, we give some background on what U-

statistics are. By definition, a U-statistic is the average of a symmetric function calculated for the m 

arguments for a random sample of size n, note that n ≥ m (Chen, 2014). Then we have an equation of 

the form 

𝑈 =  (
𝑛

𝑚
)
−1

∑ ℎ(𝑋𝑖1, … , 𝑋𝑖𝑚)

(𝑛,𝑚)

(2.1) 

where h is called the kernel with degree m. Specifically, U is an unbiased estimator of a functional of 

degree m that is defined on a set of distribution functions (Lee, 2019). These statistics are called U-

statistics because of their unbiasedness and were named this by Hoeffding who began the study of this 

class of statistics (Hoeffding, 1992). Note that the U-statistic defined above and by equation 2.1 is 

referred to as a univariate, one sample U-statistic (Kowalski & Tu, 2008).  This is not the only type of U-

statistic and there are many more complicated forms that U-statistics can take, however this is the type 

we propose in this paper. U-statistics are often used as test statistics, for example consider the Mann-

Whitney U-Test which is a popular test.  

 In our case, we apply the concept of U-statistics as follows with regard to equation 2.1. We 

consider n to the number of studies which we call k in our meta-analysis. In this case, m is set to 2 

because we only compare two studies at once. In the next section, we propose a few different U-

statistics and the part that varies in each would thus be the kernel function, h. However, they each are 

symmetric as required for the kernel of the U-statistic. We selected the use of U-statistics for a few 

reasons. First, we needed to find an alternative to Cochrane’s Q because it has been noted to have low 

statistical power in cases with smaller sample sizes which is often the case in the use of meta-analysis 
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where the sample size is the number of studies included (Haidich, 2010). Some recommend tests like the 

Mann-Whitney U-Test in scenarios with small sample sizes (Morgan, 2017, King & Eckersley, 2019). 

Therefore, we extend the idea of the U-statistic being more beneficial for small sample sizes to the test 

for heterogeneity. Another reason for proposing U-statistics is the interpretability of those that we 

propose. Meta-analysis is a widely used statistical tool in a variety of fields and therefore many who use 

it may not have a statistics background. Therefore, using a test statistic that is more intuitive in its’ use 

in identifying differences in studies may decrease the misuse of meta-analysis with heterogeneous 

studies. These statistics are considered measures of similarity which is one of the reasons that they are 

more intuitive. Also, similarity measures are beneficial because they increase from a given minimum 

(Wolda, 1981). For example, the absolute value of the difference of two numbers would have a 

minimum of 0 which is very simple to understand. In the next section, we propose a few types of U-

statistics.  

II.2 Proposed U-Statistics and General Forms  

 When originally deciding to use U-Statistics, there were three forms that were considered. 

These forms meet the requirements of being U-statistics such that they are symmetric and are averaged 

over the number of observations (Chen, 2014). We denote the potential statistics as 𝑈1, 𝑈2, and 𝑈3 such 

that 𝑈1 is the difference of the absolute value of each term, 𝑈2 is the product of each of the terms, and 

𝑈3 is the squared difference of the terms. The terms are defined as the effect size minus the summary 

effect all over the standard error for each study included in the meta-analysis. This is the same term that 

is found in the original Cochrane’s Q, however for Q  the sum of each term squared is used. The U-

statistics we used as well as Q are as follows:  

𝑈1 = (
𝑘

2
)
−1

∑ |(
𝑌𝑖 − 𝑀

𝑆𝑖
) − (

𝑌𝑗 − 𝑀

𝑆𝑗
)|

1≤𝑖≤𝑘

 (2.2) 

𝑈2 = (
𝑘

2
)
−1

∑ (
𝑌𝑖 − 𝑀

𝑆𝑖
)(

𝑌𝑗 − 𝑀

𝑆𝑗
)

1≤𝑖≤𝑘

 (2.3) 
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𝑈3 = (
𝑘

2
)
−1

∑ [(
𝑌𝑖 − 𝑀

𝑆𝑖
) − (

𝑌𝑗 − 𝑀

𝑆𝑗
)]

2

1≤𝑖≤𝑘

(2.4) 

𝑄 = ∑ (
𝑌𝑖 − 𝑀

𝑆𝑖
)
2

1≤𝑖≤𝑘

(2.5) 

To gain a further understanding of these potential statistics, we considered their general form as well as 

that of the Q-statistics that is normally used to check heterogeneity. First we consider the general form 

of Q such that we have 

𝑄 = ∑ (
𝑌𝑖 − 𝑀

𝑆𝑖
)
2

1≤𝑖≤𝑘

= (
𝑌1 − 𝑀

𝑆1
)
2

+ (
𝑌2 − 𝑀

𝑆2
)
2

+ ⋯+ (
𝑌𝑘 − 𝑀

𝑆𝑘
)
2

 

Next, we consider the general form of 𝑈1 and we have  

𝑈1 = (
𝑘

2
)
−1

∑ |(
𝑌𝑖 − 𝑀

𝑆𝑖
) − (

𝑌𝑗 − 𝑀

𝑆𝑗
)|

1≤𝑖≤𝑘

  

= (
𝑘

2
)
−1

[|(
𝑌1 − 𝑀

𝑆1
) − (

𝑌2 − 𝑀

𝑆2
)| + |(

𝑌1 − 𝑀

𝑆1
) − (

𝑌3 − 𝑀

𝑆3
)| + ⋯

+ |(
𝑌1 − 𝑀

𝑆1
) − (

𝑌𝑘 − 𝑀

𝑆𝑘
)| + |(

𝑌2 − 𝑀

𝑆2
) − (

𝑌3 − 𝑀

𝑆3
)| + |(

𝑌2 − 𝑀

𝑆2
) − (

𝑌4 − 𝑀

𝑆4
)| + ⋯

+ |(
𝑌2 − 𝑀

𝑆2
) − (

𝑌𝑘 − 𝑀

𝑆𝑘
)| + ⋯+ |(

𝑌𝑘−1 − 𝑀

𝑆𝑘−1
) − (

𝑌𝑘 − 𝑀

𝑆𝑘
)|] 

 

Then we consider the general form of 𝑈2 which is as follows 

𝑈2 = (
𝑘

2
)
−1

∑ (
𝑌𝑖 − 𝑀

𝑆𝑖
) (

𝑌𝑗 − 𝑀

𝑆𝑗
)

1≤𝑖≤𝑘

= (
𝑘

2
)
−1

[(
𝑌1 − 𝑀

𝑆1
)(

𝑌2 − 𝑀

𝑆2
) + (

𝑌1 − 𝑀

𝑆1
) (

𝑌3 − 𝑀

𝑆3
) + ⋯+ (

𝑌1 − 𝑀

𝑆1
) (

𝑌𝑘 − 𝑀

𝑆𝑘
)

+ (
𝑌2 − 𝑀

𝑆2
) (

𝑌3 − 𝑀

𝑆3
) + (

𝑌2 − 𝑀

𝑆2
) (

𝑌4 − 𝑀

𝑆4
) + ⋯+ (

𝑌2 − 𝑀

𝑆2
)(

𝑌𝑘 − 𝑀

𝑆𝑘
) + ⋯

+ (
𝑌𝑘−1 − 𝑀

𝑆𝑘−1
) (

𝑌𝑘 − 𝑀

𝑆𝑘
)] 
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And finally, the general form of 𝑈3 is as follows  

𝑈3 = (
𝑘

2
)
−1

∑ [(
𝑌𝑖 − 𝑀

𝑆𝑖
) − (

𝑌𝑗 − 𝑀

𝑆𝑗
)]

2

1≤𝑖≤𝑘

 

= (
𝑘

2
)
−1

 [[(
𝑌1 − 𝑀

𝑆1
) − (

𝑌2 − 𝑀

𝑆2
)]

2

+ [(
𝑌1 − 𝑀

𝑆1
) − (

𝑌3 − 𝑀

𝑆3
)]

2

+ ⋯+ [(
𝑌1 − 𝑀

𝑆1
) − (

𝑌𝑘 − 𝑀

𝑆𝑘
)]

2

+ [(
𝑌2 − 𝑀

𝑆2
) − (

𝑌3 − 𝑀

𝑆3
)]

2

+ [(
𝑌2 − 𝑀

𝑆2
) − (

𝑌4 − 𝑀

𝑆4
)]

2

+ ⋯

+ [(
𝑌2 − 𝑀

𝑆2
) − (

𝑌𝑘 − 𝑀

𝑆𝑘
)]

2

+ ⋯+ [(
𝑌𝑘−1 − 𝑀

𝑆𝑘−1
) − (

𝑌𝑘 − 𝑀

𝑆𝑘
)]

2

] 

=
2

𝑘
[(

𝑌1 − 𝑀

𝑆1
)
2

+ (
𝑌2 − 𝑀

𝑆2
)
2

+ ⋯+ (
𝑌𝑘 − 𝑀

𝑆𝑘
)
2

]

− 2 (
𝑘

2
)
−1

[(
𝑌1 − 𝑀

𝑆1
) (

𝑌2 − 𝑀

𝑆2
) + (

𝑌1 − 𝑀

𝑆1
) (

𝑌3 − 𝑀

𝑆3
) + ⋯+ (

𝑌1 − 𝑀

𝑆1
) (

𝑌𝑘 − 𝑀

𝑆𝑘
)

+ (
𝑌2 − 𝑀

𝑆2
) (

𝑌3 − 𝑀

𝑆3
) + (

𝑌2 − 𝑀

𝑆2
) (

𝑌4 − 𝑀

𝑆4
) + ⋯+ (

𝑌2 − 𝑀

𝑆2
) (

𝑌𝑘 − 𝑀

𝑆𝑘
) + ⋯

+ (
𝑌𝑘−1 − 𝑀

𝑆𝑘−1
) (

𝑌𝑘 − 𝑀

𝑆𝑘
)] 

 

Each of these proposed U-statistics is symmetric and allows us to measure the differences between the 

studies included in the meta-analysis.  

II.3 Relationship Between U-Statistics and Cochrane’s Q 

 From the general forms seen above, it could be concluded that using 𝑈3 may be unnecessary. If 

we further inspect 𝑈3, it can be observed that it is actually of the form 

𝑈3 = 
2

𝑘
𝑄 − 2(𝑘

2
)
−1

𝑈2 (2.6)  

We see that the U-statistic 𝑈3 actually contains the Q-statistic and therefore may not tell us anything 

new. Thus, we make the decision to not further explore the use of 𝑈3 moving forward. From here, we 
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can get a better understanding of how Q and 𝑈2 are related by considering the sum of the standardized 

effect sizes. We know that the sum of standardized effect sizes will equal 0 such that we have 

𝑌1 − 𝑀

𝑆1
+

𝑌2 − 𝑀

𝑆2
+ ⋯+

𝑌𝑘 − 𝑀

𝑆𝑘
= 0 (2.7) 

And we also know that if we square both sides of equation 2.7 we have 

(
𝑌1 − 𝑀

𝑆1
+

𝑌2 − 𝑀

𝑆2
+ ⋯+

𝑌𝑘 − 𝑀

𝑆𝑘
)
2

= 0 (2.8) 

We can then expand equation 2.8 such and we get the following  

(
𝑌1 − 𝑀

𝑆1
)
2

+ (
𝑌2 − 𝑀

𝑆2
)
2

+ ⋯+ (
𝑌𝑘 − 𝑀

𝑆𝑘
)
2

+2

[
 
 
 
 
 
 (

𝑌1 − 𝑀

𝑆1
) (

𝑌2 − 𝑀

𝑆2
) + (

𝑌1 − 𝑀

𝑆1
) (

𝑌3 − 𝑀

𝑆3
) + ⋯

+(
𝑌1 − 𝑀

𝑆1
) (

𝑌𝑘 − 𝑀

𝑆𝑘
) + (

𝑌2 − 𝑀

𝑆2
) (

𝑌3 − 𝑀

𝑆3
) + (

𝑌2 − 𝑀

𝑆2
) (

𝑌4 − 𝑀

𝑆4
) + ⋯

+(
𝑌2 − 𝑀

𝑆2
) (

𝑌𝑘 − 𝑀

𝑆𝑘
) + ⋯+ (

𝑌𝑘−1 − 𝑀

𝑆𝑘−1
)(

𝑌𝑘 − 𝑀

𝑆𝑘
)

]
 
 
 
 
 
 

= 0 (2.9)

 

 

By considering the general forms of Q and 𝑈2 from above we can conclude that equation 2.9 can be 

rewritten as  

𝑄 + 2(
𝑘

2
)𝑈2 = 0 (2.10) 

Therefore, we can conclude that actually Q and 𝑈2 are related to each other in some form. However, we 

continue looking into the use of 𝑈2 because it is still different from Q due to the averaging nature and 

symmetry. Obviously, we also continue to consider 𝑈1 moving forward as its general form does not 

appear to pose any issues and it is the most inuitive form. We keep these general forms and conclusions 

drawn from them in mind as we continue on in this paper. Moving forward we refer to 𝑈1 as the 

absolute value U-statistic and we refer to 𝑈2 as the product U-statistic.  
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CHAPTER III: APPLICATIONS OF PROPOSED U-STATISTICS  

III.1 Using Simulation to Approximate the Distribution  

 Because we want to use the U-statistics that have been proposed to test heterogeneity, we 

must be able to calculate a p-value. To do so, we use a simulation method in R to simulate values for the 

U-statistic for meta-analysis with studies ranging from three to fifteen. This method is often referred to 

as the Monte Carlo method which consists of repeating a simulation to use to test for statistical 

significance (Zintzaras & Ioannidis, 2005). Because of the way that the U-statistics we proposed are 

designed, they include a standardized value made up of the study effect size minus the summary effect 

all over the standard error of the study. Therefore, it is easy to have R create random standardized 

values to simulate the values that produce the U-statistics. For each U-statistic, we simulate scenarios in 

which k, the number of studies, is 3 through 10 and then also 15, however it would be easy to extend 

this method to scenarios with more studies included. The R code for these simulations is found in the 

appendix.  

 To begin, we consider the absolute value U-statistic and how we simulate it. First, for each 

scenario, as stated previously, we randomize a standard normal value to represent the standardized 

value obtained for each study. Then we let U equal the sum of the absolute value of the difference 

between each pair of random standard normal values all over the total number of comparisons. Because 

these values are randomized, we can replicate the U-statistics many times to gain an understanding on 

how the absolute value U-statistic is distributed. Using R, we replicate this process of simulating U a 

million times. We create a histogram for each scenario that can be seen in the Figure 1. From these 

histograms, we can see that even if the number of studies changes, the values for this absolute value U-

statistic is always distributed around about 1. Also, we note that the values for the absolute value U-

statistic cannot be less than 0, so this will be a one-tailed test. Therefore, when we calculate the p-value 

we will consider what percentage of simulated values are more extreme, or larger, than our calculated 
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absolute value U-statistic. This method of finding the p-value will be used in the next section when we 

apply the new methods for testing heterogeneity. In Table 1, we give the critical values for varying 

significance levels and numbers of studies. We then repeat this for the product U-statistic.  

Distribution Simulations for Absolute Value U-Statistic  

 

Figure 1 This figure shows the simulated values for the absolute value U-statistic for scenarios with three 

through ten studies and then also fifteen. These simulated values are then constructed into a histogram 

to represent the distribution for this statistic. 
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Critical Values Table for Absolute Value U-Statistic 
 

  Absolute Value U-Statistic  

Number of Studies  Significance Level  

1% 5% 10% 

k=3 2.7479 2.2083 1.9333 
k=4 2.3967 1.9842 1.7707 
k=5 2.1995 1.8575 1.6792 
k=6 2.0749 1.7724 1.6173 
k=7 1.9793 1.7098 1.5705 
k=8 1.9076 1.6628 1.5355 
k=9 1.8564 1.6272 1.5088 

k=10 1.8090 1.5954 1.4853 
k=15 1.6648 1.4992 1.4123 

Table 1 This table contains the critical values for each of the distributions simulated in Figure 1. They are 

calculated for 1%, 5%, and 10% significance levels. This would only be used as a one-tailed test because 

the closer to zero the U-statistic, the more similar the studies.  

 
The process for simulating the product U-statistic is exactly the same as that for the absolute 

value U-statistic except for one difference. Rather than the using the sum of the absolute value of the 

differences, we use the sum of the product of each pair of studies all over the number of comparisons. 

From here, we again replicate the U value a million times and create histograms of the values produced. 

In Figure 2 we see that the values are distributed around zero for each of the different study sizes. 

Unlike the test using the absolute value, the product U-statistic will be a two-tailed test because the U 

values in this case can be negative. Therefore, when calculating the p-value for this statistic, we find the 

number of studies that are more extreme in the given direction depending on whether the calculated 

value is positive or negative. Then, we double this number and take is as a percentage of the total 

million studies because we see that this statistic would be symmetric. We then use this process to 

calculate the p-value while using this statistic to test for heterogeneity. In Table 2, we give the critical 

values for varying number of studies and significance levels for others to use when testing for 

heterogeneity. 
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Distribution Simulations for Product U-Statistic  

 

Figure 2 This figure shows the simulated values for the product U-statistic for scenarios with three 

through ten studies and then also fifteen. These simulated values are then constructed into a histogram 

to represent the distribution for this statistic just as the previous figure for the absolute value U-statistic. 
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Critical Values Table for Product U-Statistic 

Product U-Statistic  

Number of Studies  Significance Level  

1% 5% 10% 

k=3 1.9511 1.0234 0.6489 
k=4 1.4458 0.7473 0.4681 
k=5 1.1492 0.5945 0.3707 
k=6 0.9562 0.4922 0.3033 
k=7 0.8177 0.4190 0.2583 
k=8 0.7111 0.3644 0.2235 
k=9 0.6299 0.3223 0.1982 

k=10 0.5694 0.2887 0.1764 
k=15 0.3777 0.1923 0.1167 

Table 2 This table contains the critical values for each of the distributions simulated in Figure 1. They are 

calculated for 1%, 5%, and 10% significance levels. Unlike the absolute value U-statistic, this one would 

be used as a two-tail test.  

III.2 An Example of How We Use U-Statistics 

Working Through an Example  

 To fully understand the difference in testing heterogeneity by using a U-statistic rather than the 

Cochrane’s Q-statistic, we work through an example. The data for this example is found in the 

Introduction to Meta-Analysis Textbook written by Borenstein et al. in 2009. This example includes 6 

studies, and we find the summary effect, test heterogeneity, and draw conclusions to fully understand 

what these statistics give us. To start, we calculate the summary effect of these studies using the 

random effects model. We chose this model because for these particular studies we do not want to 

assume that their true effect sizes are equal. To do so, we begin by estimating the effect sizes for each 

of the studies by using the standardized mean difference that was discussed previously. These estimates 

are seen in Table 4 in the effect size column and were calculated using the information listed in Table 3. 

We obtain an estimate for the summary effect, or 𝑀∗ value, of 0.356, a 𝑉𝑀∗ of 0.11, and an 𝑆𝐸𝑀∗ of 

0.104. Using these, we calculate the lower and upper limits of the 95% confidence interval for the 
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summary effect to be 0.152 and 0.560. Because this is just an example we calculate both the one-tail 

and two-tail p-values using the 𝑍∗ value of 3.417 and we get 0.0003 and 0.0006, respectively.  

After estimating the summary effect, we then can use this information to test for heterogeneity 

using Cochrane’s Q and the two proposed U-statistics. We can see the results of each heterogeneity test 

in Table 5. Cochrane’s Q and the absolute value U-statistic would both lead us to reject the null 

hypothesis and conclude there is heterogeneity, however the product U-statistic does not. In Figure 3, 

we see the forest plot created for the estimated effect sizes of the studies. This figure can be used to 

make a visual guess as to whether or not heterogeneity exists between the studies and compared to the 

results of the heterogeneity tests. However, visual inspection does not provide much clarity. For 

Cochrane’s Q, recall that we often use a few other measures to understand the heterogeneity such as 

𝑇2 and 𝐼2. We obtain a 𝑇2 value of 0.036 and an 𝐼2 value of 57.42%. We further analyze these findings 

in the results section.  

Data for Initial Example Studies 

Introduction to Meta-Analysis Worked Example  

Study Treatment 
n 

Treatment 
mean 

Treatment 
SD 

Control  
n 

Control 
mean 

Control  
SD 

Carroll 60 94 22 60 92 20 
Grant 65 98 21 65 92 22 
Peck 40 98 28 40 88 26 

Donat 200 94 19 200 82 17 
Stewart 50 98 21 45 88 22 
Young 85 96 21 85 92 22 

Table 3 This table contains data for all 6 of the studies included in this example for both the treatment 

and control groups. These values are used to calculate the effect sizes for each of the studies.  
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Effect Sizes for Initial Example Studies 

Study Effect Size Variance Within Weights 
 𝒀 𝑽𝒀 𝑾 𝑾∗ 

Carroll 0.095 0.033 30.303 14.492 
Grant 0.277 0.031 32.258 14.925 
Peck 0.367 0.050 20.000 11.628 

Donat 0.664 0.011 90.909 21.277 
Stewart 0.462 0.043 23.256 12.658 
Young 0.185 0.023 43.478 16.949 

Sum - - 240.204 91.929 

Table 4 This table includes the estimated effect sizes for each study, the variance and the weights using 

the fixed and random effects methods.  

Forest Plot of Effect Sizes for Initial Example Studies 

 

Figure 3 This figure is the forest plot that contains each of the estimated effect sizes for the studies, 

represented as boxes. The lines coming from the boxes represent the standard error for each estimate. 

The diamond in the bottom represents the estimated summary effect for these studies.  
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Heterogeneity Test Results for Initial Example  

Heterogeneity  
Test Type Test Statistic P-Value 

Cochrane’s Q 𝑄 = 11.743 𝑝 = 0.0428 
Absolute Value U-Statistic 𝑈𝐴𝑉 = 1.770 𝑝 = 0.0495 

Product U-Statistic  𝑈𝑃 = −0.321 𝑝 = 0.0787 

Table 5 This table is the summary of the three heterogeneity tests used in this example, Cochrane’s Q 

and the two proposed U-statistics.  

III.3 Application of Using U-Statistics 

Similar to the previous example worked from the Introduction to Meta-Analysis textbook, we 

fully work through a real world example to gain more understanding on the proposed test statistics. The 

data for these real world examples were taken from the Cochrane Library which is a database of 

systematic reviews (Parker & Handoll, 2010). These specific examples involve data that compares two 

types of hip surgery techniques: gamma nail and sliding hip screw. We work two examples. The first is 

comparing the length of time in minutes for each of the techniques and the other compares the blood 

loss in mL for each of the techniques. Many studies have been done to see if the sliding hip screw 

method is better than the gamma nail method as the gamma nail method has been known to cause 

complications in patients (Saarenpää et al., 2009).  

 For both of these scenarios, the random effects model is used. Note that the fixed effects 

model is rarely appropriate because of its’ assumption that the studies true effect sizes are the same. 

Thus, in each case we start by estimating the summary effect of the studies. After this, we test for 

heterogeneity between studies using Cochrane’s Q and then comparing to the two proposed U-

statistics. Finally, we attempt to draw conclusions from these results and gain a further understanding 

on how the heterogeneity tests differ.  

Length of Surgery  

 We begin by finding the summary effect for the studies conducted on the length of surgery for 

the gamma nail and sliding hip screw methods. There are 6 studies included and Table 6 lists the number 
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of observations, means, and standard deviations for both surgery types in each study. Again, we first 

find the effect size for these studies by using the standardized mean difference between the gamma nail 

and sliding hip screw surgeries because we are interested in the difference between these two methods, 

and we standardize because these are two different methods used. Table 7 lists the estimated effect 

sizes for each of the studies, as well as their variance and weights (with the last column specifically being 

the weights under the random effects model). Using this information, we calculate the estimated 

summary effect 𝑀∗to be 0.30,  𝑉𝑀∗ to be 0.0298, and 𝑆𝐸𝑀∗ to be 0.173. Using these, we are able to 

calculate the lower and upper limits of the 95% confidence interval for the summary effect to be -0.039 

and 0.639, respectively. We calculate the two-tail p-value using the 𝑍∗ value of 1.743 and we get 0.083.  

Data for Length of Surgery Studies 

Length of Surgery (minutes) 

Study GN 
n 

GN  
mean 

GN  
SD 

SHS  
n 

SHS  
mean 

SHS  
SD 

1 53 59 23.9 49 47 13.3 
2 31 56.7 17 36 54.3 16.4 
3 60 47.1 20.8 60 53.4 8.3 
4 203 55.4 20 197 61.3 22.2 
5 104 46 11 106 44 15 
6 73 65 29 73 51 22 

Table 6, GN = Gamma Nail, SHS = Sliding Hip Screw  

This table contains data for all 6 of the studies included in the length of surgery application for both the 

GN and SHS groups. These values are used to calculate the effect sizes for each of the studies. 

 

 

 

 

 

 

 



31 
 

Effect Sizes for Length of Surgery Studies 

Study Effect Size Variance Within Weights 
 𝒀 𝑽𝒀 𝑾 𝑾∗ 

1 -0.279 0.010 100 6.289 
2 -0.398 0.034 29.412 5.464 
3 0.544 0.026 38.462 5.714 
4 0.614 0.037 27.027 5.376 
5 0.152 0.019 52.632 5.952 
6 0.144 0.060 16.667 4.785 

Sum - - 264.2 33.580 

Table 7 This table includes the estimated effect sizes for each study using the standardized mean 

difference method, the variance and the weights using the fixed and random effects methods. 

 After we find the summary effect, we move onto testing for heterogeneity. When considering 

the forest plot in Figure 4 for the estimated effect sizes of each study, we could assume that 

heterogeneity does exist between these studies because of the spread of values observed. However, we 

check test the heterogeneity using these statistics to verify they work. In Table 8 we see the results of 

the three tests considered. All of these tests give extremely significant p-values and lead us to conclude 

that heterogeneity exists among the studies. We also obtain a 𝑇2 value of 0.149 and an 𝐼2 value of 

85.84%. Again, we further analyze these findings in the results section. 
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Forest Plot of Effect Sizes for Length of Surgery Studies 

 

Figure 4 This figure is the forest plot that contains each of the estimated effect sizes for the studies, 

represented as boxes. The lines coming from the boxes represent the standard error for each estimate. 

The diamond in the bottom represents the estimated summary effect for these studies. 

Heterogeneity Test Results for Length of Surgery Application 

Heterogeneity  
Test Type Test Statistic P-Value 

Cochrane’s Q 𝑄 = 35.314 𝑝 < 0.0001 
Absolute Value U-Statistic 𝑈𝐴𝑉 = 3.194 𝑝 = 0.000001 

Product U-Statistic  𝑈𝑃 = −1.029 𝑝 = 0.000018 

Table 8 This table is the summary of the three heterogeneity tests used in the length of surgery 

application, Cochrane’s Q and the two proposed U-statistics. 

Finally, we use one more application to compare the proposed tests for checking heterogeneity 

among studies. In this application, we consider the blood loss in mL in 5 studies comparing the gamma 

nail and sliding hip screw surgery methods as before. In Table 9, the number of observations, the means, 

and the standard deviations are listed for both the GN and SHS methods. This information is then used 

to calculate the estimates of the effect sizes that are seen in Table 10. These were calculated using the 
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standardized mean difference for the same reasons as it was used for the length of surgery scenario. 

Again, we estimate the summary effect 𝑀∗to be -0.144 with a 95% confidence interval lower limit of -

0.299 and upper limit of 0.011. We get this interval using a 𝑉𝑀∗ of 0.006 and a 𝑆𝐸𝑀∗ of 0.079. We 

calculate the two-tail p-value using the 𝑍∗ value of -1.82 and we get 0.069.   

Data for Blood Loss Studies 

Blood Loss (mL) 

Study GN  
n 

GN  
mean 

GN  
SD 

SHS  
n 

SHS  
mean 

SHS  
SD 

1 93 814 548 93 1043 508 
2 52 258.7 145.4 49 259.2 137.5 
3 60 152.3 130.7 60 160.3 110.8 
4 203 244.4 384.9 197 260.4 325.5 
5 73 240 190 73 280 280 

Table 9, GN = Gamma Nail, SHS = Sliding Hip Screw  

This table contains data for all 5 of the studies included in the blood loss application for both the GN and 

SHS groups. These values are used to calculate the effect sizes for each of the studies. 

Effect Sizes for Blood Loss Studies 

Study Effect Size Variance Within Weights 
 𝒀 𝑽𝒀 𝑾 𝑾∗ 

1 -0.433 0.022 45.455 33.003 
2 -0.004 0.040 25.228 20.704 
3 -0.066 0.033 29.984 24.213 
4 -0.045 0.010 99.952 54.645 
5 -0.167 0.028 36.373 27.548 

Sum - - 236.992 160.113 

Table 10 This table includes the estimated effect sizes for each study using the standardized mean 

difference method, the variance and the weights using the fixed and random effects methods 

After finding the summary effect, we test for heterogeneity. We consider the forest plot in 

Figure 5 for the estimated effect sizes of each study, and we note that most studies seem similar 

however one effect size is larger than the others. We then test for heterogeneity. In Table 11, we see 

the results of the three tests considered. All of these tests give non-significant p-values and lead us to 

conclude that heterogeneity does not exist among the studies despite one differing studies effect size. 
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We also obtain a 𝑇2 value of 0.008 and an 𝐼2 value of 26.61%. We analyze these findings in the results 

section.  

Forest Plot of Effect Sizes for Blood Loss Studies 

 

Figure 5 This figure is the forest plot that contains each of the estimated effect sizes for the studies, 

represented as boxes. The lines coming from the boxes represent the standard error for each estimate. 

The diamond in the bottom represents the estimated summary effect for these studies. 

 

Heterogeneity Test Results for Blood Loss Application 

Heterogeneity  
Test Type Test Statistic P-Value 

Cochrane’s Q 𝑄 = 5.4560 𝑝 = 0.2436 
Absolute Value U-Statistic 𝑈𝐴𝑉 = 1.338 𝑝 = 0.2913 

Product U-Statistic  𝑈𝑃 = −0.271 𝑝 = 0.2447 

Table 11 This table is the summary of the three heterogeneity tests used in the blood loss application, 

Cochrane’s Q and the two proposed U-statistics. 
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CHAPTER IV: RESULTS 

IV.1 Interpretation of Example 

We begin by interpreting the results of our initial example, specifically we begin by interpreting 

the estimated summary effect. Again, using the random effects model we estimated a summary effect 

of 0.356 (0.152, 0.560). For this estimated summary effect, we test the null hypothesis that the mean 

effect size is zero. For this test we got a two-tailed p-value of 0.0006 which would lead us to reject the 

null hypothesis. This means that for whatever treatment was implemented for these studies, their 

estimated mean effect was greater than zero. Knowing this, we move on to the results of the tests for 

heterogeneity.  

The results of each test for heterogeneity, seen in Table 5, give us slightly different results. We 

see that our test using Cochrane’s Q gives us a Q value of 11.743 with a p-value of 0.0428. This would 

lead us to reject the null hypothesis and conclude that there heterogeneity does exist between the 

studies. When we look at the absolute value U-statistic, we see different results. We get a U-value of 

1.770 with a p-value of 0.0495 which would still lead us to reject the null hypothesis, but in this case it is 

much closer to a non-significant difference. Finally, we see the most different results when we calculate 

the product U-statistic. We get a U-value of -0.321 with a p-value of 0.0787 that leads us to fail to reject 

the null hypothesis and conclude that there is not a significant difference in the studies. These finding 

are all consistent with the interpretation of the forest plot in Figure 3 which were inconclusive based on 

a visual inspection. Many note that when results are this close to non-significant, conclusions should not 

be drawn (Borenstein et al., 2009). Note, we also obtained a 𝑇2 of 0.036 which is the estimate of the 

variance between the true effect sizes. Also, we have an 𝐼2 of 57.42% which is the percent of variance 

that represent real differences in effect size. Some would consider this a moderate amount but recall 

that this is a somewhat bias measure and generally has low power.  
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IV.2 Interpretation of Applications  

 In this section, we move onto the interpretation of the results for the real world application of 

the proposed method. For each scenario, we again begin with the interpretation of the estimated 

summary effect and then move onto the comparison for the heterogeneity tests.  

Length of Surgery Results  

 First, we look at the results for the length of surgery scenario in which we compare the gamma 

nail and sliding hip screw methods. We estimate a summary effect of 0.30 (-0.039, 0.639). Again, 

because we used the random effects model, we are testing the null hypothesis that the mean effect size 

is zero. Here, we calculate the two-tailed test p-value to be 0.083 so we fail to reject the null hypothesis. 

In other words, this means that the on average there does not appear to be a significant difference in 

the length of the surgery between the gamma nail and sliding hip screw measures. However, before we 

can make this conclusion, we must test for heterogeneity to see if the studies are even similar enough to 

make this conclusion.  

 The results for each of the three tests for heterogeneity are seen in Table 8. We observe that 

each of the tests give a similar result in this case. For Cochrane’s Q we get a Q value of 35.314 and a p-

value of about 0.0001 which leads us to reject the null hypothesis and conclude that heterogeneity does 

exist between the studies included in the meta-analysis. The absolute value U-statistic is calculated as 

3.194 and gives us a p-value of 0.000001 which gives us the same conclusion as the previous test. 

Finally, we get the same result from the product U-statistic which is calculated as -1.029 with a p-value 

of 0.000018. This is supported by the forest plot for this scenario seen in Figure 4 which upon visual 

inspection would lead to a conclusion that the studies are very different. If one would want to consider 

the 𝐼2 of 85.84% it would also appear to support this conclusion as it is relatively high. Therefore, we 

cannot draw a general conclusion about the difference in length of surgery between the two methods 

using information from these given studies as they are too different.  
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Blood Loss Results 

 Finally, we interpret the results of the studies comparing the blood loss between the two hip 

surgery methods. We estimate the summary effect to be -0.144 (-0.299, 0.011). When testing the null 

hypothesis in this case we get a two-tailed p-value of 0.069 so we fail to reject the null hypothesis and 

conclude that the mean, or summary, effect size does not differ from zero. We then check the 

heterogeneity of these studies to see if we can draw a conclusion for these results.  

 In Table 11, we see the heterogeneity test results for each of the three methods considered. 

Again, in this application we see similar results among each of the three tests. For Cochrane’s Q we get a 

Q value of 5.4560 with a p-value of 0.2436, therefore we would fail to reject the null hypothesis and 

conclude that there is not a significant difference between the studies. For the absolute value U-

statistic, we come to the same conclusion with a U value of 1.338 and a p-value of 0.02913. Similarly, we 

get a product U-statistic of -0.271 and a p-value of 0.2447 which leads us to conclude there is not 

significant difference between studies. The forest plot in Figure 5 also appears to show little difference, 

except for one observation that appears different from the others. We also calculate an 𝐼2 value of 

26.61% which would appear to be relatively low, although we should not use this as our only reasoning. 

All of these results could mean that these methods are not sensitive to outliers, however this may not 

cause an issue.  
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CHAPTER V: DISCUSSION 

V.1 Comparing Cochrane’s Q and the U-Statistics  

  When we consider the U-statistics that were proposed, one of their benefits is that their use is 

more intuitive than the Cochrane’s Q. For example, the absolute value U-statistic is really just the 

difference between the two standardized effect sizes of a pair of studies. For somebody that is not very 

familiar with statistical methods, using the absolute value U-statistic test would naturally make the most 

sense. There are a few more obvious differences between Cochrane’s Q and the U-statistics. We know 

that Q is impacted much more by outliers than the U-statistics, especially for small sample sizes. This is 

due to the fact that the U-statistics are averaged over the number of comparisons used. Averaging has 

the effect of minimizing the impact of an outlier. Other than that, the methods proposed do give 

comparable results to those produced using Cochrane’s Q. Another important point to note is that the 

use of meta-analysis is expanding into many different fields. For example, meta-analysis is becoming 

more commonly used with Life Cycle Analyses (LCA) which contain a lot of information (Brandao et al., 

2012). In this case, a simpler approach may be easier to implement. Therefore, the U-statistics could be 

a more approachable alternative for those in non-statistical fields that wish to fully understand the 

meta-analysis that they are implementing.  

V.2 Limitations 

 There were a few limitations in proposing these methods as alternatives to Cochrane’s Q. For 

one, time was a major limitation. Realistically, we would want to perform many simulations to compare 

the proposed U-statistics against Cochrane’s Q. However, this process is lengthy and was not able to be 

accomplished in the given amount of time. Another limitation is the lack of knowledge in regard to the 

theory of U-statistics. Although this paper does cover some of the basic details of U-statistics and what 

they are used for, a much deeper understanding of them would be beneficial. One reason this would be 

beneficial is that it would allow us to better understand the distribution of these variables in a way that 
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the simulation of the U-statistics does not allow. Overcoming these two limitations would greatly 

strengthen the proposal of these as alternatives to Cochrane’s Q. The benefit of overcoming these 

limitations is further explained in the next section.  

V.3 Future Research Directions  

 As stated previously, we would have ideally conducted a simulation study to further understand 

the use of these U-statistics in comparison to Cochrane’s Q. Therefore, in future research, data should 

be simulated to use for conducting heterogeneity tests using the proposed statistics. One of the benefits 

of a simulation study is that we would then be able to compare the efficiency of the proposed U-

statistics to that of Cochrane’s Q. A benefit of using these U-statistics is that they can be used as a 

general framework to move forward with. These similarity measures could be modified in meaningful 

ways to better fit certain situations as long as they still meet the requirements of U-statistics. For 

example, these statistics could be improved upon by adding meaningful weights to them based on the 

sample sizes of the studies (Ciol et al., 2006). Also, these proposed U-statistics could be modified in a 

way that makes them more useful for testing in specific fields. This would require a deeper 

understanding of U-statistics and the forms of U-statistics that are most appropriate for specific 

scenarios and data types. Therefore, future research should also focus on deeper application of U-

statistic theory, as noted in the limitations. Although there are a few areas where these methods could 

be improved, these U-statistics appear to be a promising and realistic alternative to using Cochrane’s Q 

to test for heterogeneity among the studies of a meta-analysis.  
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APPENDIX: R CODE  

 The R code used to simulate the distributions for both the proposed absolute value U-statistic 

and the product U-statistic are included in the appendix.  

ABSOLUTE VALUE U-STATISTIC R CODE 

###distribution for U-stat where n=3### 

U_distr3 = function(x_1,x_2,x_3){ 

  Ustat= (1/3)*(abs(x_1-x_2)+abs(x_1-x_3) 

                   +abs(x_2-x_3)) 

  return(Ustat) 

} 

distribution3 = replicate(1000000, U_distr3(x_1=rnorm(1,mean=0,sd=1), 

                                            x_2=rnorm(1,mean=0,sd=1), 

                                            x_3=rnorm(1,mean=0,sd=1))) 

distribution3 

hist(distribution3) 

###distribution for U-stat where n=4### 

U_distr4 = function(x_1,x_2,x_3,x_4){ 

  Ustat= (1/6)*(abs(x_1-x_2)+abs(x_1-x_3)+abs(x_1-x_4)+ 

                   +abs(x_2-x_3)+abs(x_2-x_4) 

                 +abs(x_3-x_4)) 

   

  return(Ustat) 

} 

distribution4 = replicate(1000000, U_distr4(x_1=rnorm(1,mean=0,sd=1), 
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                                            x_2=rnorm(1,mean=0,sd=1), 

                                            x_3=rnorm(1,mean=0,sd=1), 

                                            x_4=rnorm(1,mean=0,sd=1))) 

distribution4 

hist(distribution4) 

###distribution for U-stat where n=5### 

U_distr5 = function(x_1,x_2,x_3,x_4,x_5){ 

  Ustat= (1/10)*(abs(x_1-x_2)+abs(x_1-x_3)+abs(x_1-x_4)+abs(x_1-x_5)+ 

                   +abs(x_2-x_3)+abs(x_2-x_4)+abs(x_2-x_5) 

                 +abs(x_3-x_4)+abs(x_3-x_5)+abs(x_4-x_5)) 

  return(Ustat) 

} 

distribution5 = replicate(1000000, U_distr5(x_1=rnorm(1,mean=0,sd=1), 

                                          x_2=rnorm(1,mean=0,sd=1), 

                                          x_3=rnorm(1,mean=0,sd=1), 

                                          x_4=rnorm(1,mean=0,sd=1), 

                                          x_5=rnorm(1,mean=0,sd=1))) 

distribution5 

hist(distribution5) 

 

###distribution for U-stat where n=6### 

U_distr6 = function(x_1,x_2,x_3,x_4,x_5,x_6){ 

  Ustat= (1/15)*(abs(x_1-x_2)+abs(x_1-x_3)+abs(x_1-x_4)+abs(x_1-x_5)+ 

                   abs(x_1-x_6)+abs(x_2-x_3)+abs(x_2-x_4)+abs(x_2-x_5)+abs(x_2-x_6) 
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                 +abs(x_3-x_4)+abs(x_3-x_5)+abs(x_3-x_6)+abs(x_4-x_5)+abs(x_4-x_6)+abs(x_5-x_6)) 

  return(Ustat) 

} 

distribution6 = replicate(1000000, U_distr6(x_1=rnorm(1,mean=0,sd=1), 

                                        x_2=rnorm(1,mean=0,sd=1), 

                                        x_3=rnorm(1,mean=0,sd=1), 

                                        x_4=rnorm(1,mean=0,sd=1), 

                                        x_5=rnorm(1,mean=0,sd=1), 

                                        x_6=rnorm(1,mean=0,sd=1))) 

distribution6  

hist(distribution6) 

###distribution for U-stat where n=7### 

U_distr7 = function(x_1,x_2,x_3,x_4,x_5,x_6, x_7){ 

  Ustat= (1/21)*(abs(x_1-x_2)+abs(x_1-x_3)+abs(x_1-x_4)+abs(x_1-x_5)+ 

                   abs(x_1-x_6)+abs(x_1-x_7)+abs(x_2-x_3)+abs(x_2-x_4)+abs(x_2-x_5)+abs(x_2-

x_6)+abs(x_2-x_7) 

                 +abs(x_3-x_4)+abs(x_3-x_5)+abs(x_3-x_6)+abs(x_3-x_7)+abs(x_4-x_5)+abs(x_4-

x_6)+abs(x_4-x_7)+abs(x_5-x_6)+abs(x_5-x_7) 

                 +abs(x_6-x_7) ) 

  return(Ustat) 

} 

distribution7 = replicate(1000000, U_distr7(x_1=rnorm(1,mean=0,sd=1), 

                                            x_2=rnorm(1,mean=0,sd=1), 

                                            x_3=rnorm(1,mean=0,sd=1), 
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                                            x_4=rnorm(1,mean=0,sd=1), 

                                            x_5=rnorm(1,mean=0,sd=1), 

                                            x_6=rnorm(1,mean=0,sd=1), 

                                            x_7=rnorm(1,mean=0,sd=1))) 

distribution7  

hist(distribution7) 

###distribution for U-stat where n=8### 

U_distr8 = function(x_1,x_2,x_3,x_4,x_5,x_6,x_7,x_8){ 

  Ustat= (1/28)*(abs(x_1-x_2)+abs(x_1-x_3)+abs(x_1-x_4)+abs(x_1-x_5)+ 

                   abs(x_1-x_6)+abs(x_1-x_7)+abs(x_1-x_8) 

                 +abs(x_2-x_3)+abs(x_2-x_4)+abs(x_2-x_5)+abs(x_2-x_6)+abs(x_2-x_7)+abs(x_2-x_8) 

                 +abs(x_3-x_4)+abs(x_3-x_5)+abs(x_3-x_6)+abs(x_3-x_7)+abs(x_3-x_8) 

                 +abs(x_4-x_5)+abs(x_4-x_6)+abs(x_4-x_7)+abs(x_4-x_8) 

                 +abs(x_5-x_6)+abs(x_5-x_7)+abs(x_5-x_8) 

                 +abs(x_6-x_7)+abs(x_6-x_8) 

                 +abs(x_7-x_8)) 

  return(Ustat) 

} 

distribution8 = replicate(1000000, U_distr8(x_1=rnorm(1,mean=0,sd=1), 

                                              x_2=rnorm(1,mean=0,sd=1), 

                                              x_3=rnorm(1,mean=0,sd=1), 

                                              x_4=rnorm(1,mean=0,sd=1), 

                                              x_5=rnorm(1,mean=0,sd=1), 

                                              x_6=rnorm(1,mean=0,sd=1), 
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                                              x_7=rnorm(1,mean=0,sd=1), 

                                              x_8=rnorm(1,mean=0,sd=1))) 

distribution8 

hist(distribution8) 

###distribution for U-stat where n=9### 

U_distr9 = function(x_1,x_2,x_3,x_4,x_5,x_6,x_7,x_8,x_9){ 

  Ustat= (1/36)*(abs(x_1-x_2)+abs(x_1-x_3)+abs(x_1-x_4)+abs(x_1-x_5)+ 

                   abs(x_1-x_6)+abs(x_1-x_7)+abs(x_1-x_8)+abs(x_1-x_9) 

                 +abs(x_2-x_3)+abs(x_2-x_4)+abs(x_2-x_5)+abs(x_2-x_6)+abs(x_2-x_7)+abs(x_2-

x_8)+abs(x_2-x_9) 

                 +abs(x_3-x_4)+abs(x_3-x_5)+abs(x_3-x_6)+abs(x_3-x_7)+abs(x_3-x_8)+abs(x_3-x_9) 

                 +abs(x_4-x_5)+abs(x_4-x_6)+abs(x_4-x_7)+abs(x_4-x_8)+abs(x_4-x_9) 

                 +abs(x_5-x_6)+abs(x_5-x_7)+abs(x_5-x_8)+abs(x_5-x_9) 

                 +abs(x_6-x_7)+abs(x_6-x_8)+abs(x_6-x_9) 

                 +abs(x_7-x_8)+abs(x_7-x_9) 

                 +abs(x_8-x_9)) 

  return(Ustat) 

} 

distribution9 = replicate(1000000, U_distr9(x_1=rnorm(1,mean=0,sd=1), 

                                              x_2=rnorm(1,mean=0,sd=1), 

                                              x_3=rnorm(1,mean=0,sd=1), 

                                              x_4=rnorm(1,mean=0,sd=1), 

                                              x_5=rnorm(1,mean=0,sd=1), 

                                              x_6=rnorm(1,mean=0,sd=1), 
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                                              x_7=rnorm(1,mean=0,sd=1), 

                                              x_8=rnorm(1,mean=0,sd=1), 

                                              x_9=rnorm(1,mean=0,sd=1))) 

distribution9 

hist(distribution9) 

###distribution for U-stat where n=10### 

U_distr10 = function(x_1,x_2,x_3,x_4,x_5,x_6,x_7,x_8,x_9,x_10){ 

  Ustat= (1/45)*(abs(x_1-x_2)+abs(x_1-x_3)+abs(x_1-x_4)+abs(x_1-x_5)+ 

                   abs(x_1-x_6)+abs(x_1-x_7)+abs(x_1-x_8)+abs(x_1-x_9)+abs(x_1-x_10) 

                 +abs(x_2-x_3)+abs(x_2-x_4)+abs(x_2-x_5)+abs(x_2-x_6)+abs(x_2-x_7)+abs(x_2-

x_8)+abs(x_2-x_9)+abs(x_2-x_10) 

                 +abs(x_3-x_4)+abs(x_3-x_5)+abs(x_3-x_6)+abs(x_3-x_7)+abs(x_3-x_8)+abs(x_3-

x_9)+abs(x_3-x_10) 

                 +abs(x_4-x_5)+abs(x_4-x_6)+abs(x_4-x_7)+abs(x_4-x_8)+abs(x_4-x_9)+abs(x_4-x_10) 

                 +abs(x_5-x_6)+abs(x_5-x_7)+abs(x_5-x_8)+abs(x_5-x_9)+abs(x_5-x_10) 

                 +abs(x_6-x_7)+abs(x_6-x_8)+abs(x_6-x_9)+abs(x_6-x_10) 

                 +abs(x_7-x_8)+abs(x_7-x_9)+abs(x_7-x_10) 

                 +abs(x_8-x_9)+abs(x_8-x_10) 

                 +abs(x_9-x_10) 

                 ) 

  return(Ustat) 

} 

distribution10 = replicate(1000000, U_distr10(x_1=rnorm(1,mean=0,sd=1), 

                                          x_2=rnorm(1,mean=0,sd=1), 
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                                          x_3=rnorm(1,mean=0,sd=1), 

                                          x_4=rnorm(1,mean=0,sd=1), 

                                          x_5=rnorm(1,mean=0,sd=1), 

                                          x_6=rnorm(1,mean=0,sd=1), 

                                          x_7=rnorm(1,mean=0,sd=1), 

                                          x_8=rnorm(1,mean=0,sd=1), 

                                          x_9=rnorm(1,mean=0,sd=1), 

                                          x_10=rnorm(1,mean=0,sd=1))) 

distribution10 

hist(distribution10) 

###distribution for U-stat where n=15### 

U_distr15 = function(x_1,x_2,x_3,x_4,x_5,x_6,x_7,x_8,x_9,x_10,x_11,x_12,x_13,x_14,x_15){ 

  Ustat= (1/105)*(abs(x_1-x_2)+abs(x_1-x_3)+abs(x_1-x_4)+abs(x_1-x_5)+ 

                   abs(x_1-x_6)+abs(x_1-x_7)+abs(x_1-x_8)+abs(x_1-x_9)+abs(x_1-x_10)+abs(x_1-

x_11)+abs(x_1-x_12)+abs(x_1-x_13)+abs(x_1-x_14)+abs(x_1-x_15) 

                 +abs(x_2-x_3)+abs(x_2-x_4)+abs(x_2-x_5)+abs(x_2-x_6)+abs(x_2-x_7)+abs(x_2-

x_8)+abs(x_2-x_9)+abs(x_2-x_10)+abs(x_2-x_11)+abs(x_2-x_12)+abs(x_2-x_13)+abs(x_2-

x_14)+abs(x_2-x_15) 

                 +abs(x_3-x_4)+abs(x_3-x_5)+abs(x_3-x_6)+abs(x_3-x_7)+abs(x_3-x_8)+abs(x_3-

x_9)+abs(x_3-x_10)+abs(x_3-x_11)+abs(x_3-x_12)+abs(x_3-x_13)+abs(x_3-x_14)+abs(x_3-x_15) 

                 +abs(x_4-x_5)+abs(x_4-x_6)+abs(x_4-x_7)+abs(x_4-x_8)+abs(x_4-x_9)+abs(x_4-

x_10)+abs(x_4-x_11)+abs(x_4-x_12)+abs(x_4-x_13)+abs(x_4-x_14)+abs(x_4-x_15) 

                 +abs(x_5-x_6)+abs(x_5-x_7)+abs(x_5-x_8)+abs(x_5-x_9)+abs(x_5-x_10)+abs(x_5-

x_11)+abs(x_5-x_12)+abs(x_5-x_13)+abs(x_5-x_14)+abs(x_5-x_15) 
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                 +abs(x_6-x_7)+abs(x_6-x_8)+abs(x_6-x_9)+abs(x_6-x_10)+abs(x_6-x_11)+abs(x_6-

x_12)+abs(x_6-x_13)+abs(x_6-x_14)+abs(x_6-x_15) 

                 +abs(x_7-x_8)+abs(x_7-x_9)+abs(x_7-x_10)+abs(x_7-x_11)+abs(x_7-x_12)+abs(x_7-

x_13)+abs(x_7-x_14)+abs(x_7-x_15) 

                 +abs(x_8-x_9)+abs(x_8-x_10)+abs(x_8-x_11)+abs(x_8-x_12)+abs(x_8-x_13)+abs(x_8-

x_14)+abs(x_8-x_15) 

                 +abs(x_9-x_10)+abs(x_9-x_11)+abs(x_9-x_12)+abs(x_9-x_13)+abs(x_9-x_14)+abs(x_9-

x_15) 

                 +abs(x_10-x_11)+abs(x_10-x_12)+abs(x_10-x_13)+abs(x_10-x_14)+abs(x_10-x_15) 

                 +abs(x_11-x_12)+abs(x_11-x_13)+abs(x_11-x_14)+abs(x_11-x_15) 

                 +abs(x_12-x_13)+abs(x_12-x_14)+abs(x_12-x_15) 

                 +abs(x_13-x_14) +abs(x_13-x_15) 

                 +abs(x_14-x_15) 

  ) 

  return(Ustat) 

} 

distribution15 = replicate(1000000, U_distr15(x_1=rnorm(1,mean=0,sd=1), 

                                            x_2=rnorm(1,mean=0,sd=1), 

                                            x_3=rnorm(1,mean=0,sd=1), 

                                            x_4=rnorm(1,mean=0,sd=1), 

                                            x_5=rnorm(1,mean=0,sd=1), 

                                            x_6=rnorm(1,mean=0,sd=1), 

                                            x_7=rnorm(1,mean=0,sd=1), 

                                            x_8=rnorm(1,mean=0,sd=1), 
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                                            x_9=rnorm(1,mean=0,sd=1), 

                                            x_10=rnorm(1,mean=0,sd=1), 

                                            x_11=rnorm(1,mean=0,sd=1), 

                                            x_12=rnorm(1,mean=0,sd=1), 

                                            x_13=rnorm(1,mean=0,sd=1), 

                                            x_14=rnorm(1,mean=0,sd=1), 

                                            x_15=rnorm(1,mean=0,sd=1))) 

distribution15 

hist(distribution15) 

PRODUCT U-STATISTIC R CODE 

###distribution for U-stat where n=3### 

U_distr3 = function(x_1,x_2,x_3){ 

  Ustat= (1/3)*((x_1*x_2)+(x_1*x_3) 

                   +(x_2*x_3))  

  return(Ustat) 

} 

distribution3 = replicate(1000000, U_distr3(x_1=rnorm(1,mean=0,sd=1), 

                                            x_2=rnorm(1,mean=0,sd=1), 

                                            x_3=rnorm(1,mean=0,sd=1))) 

distribution3 

hist(distribution3) 

###distribution for U-stat where n=4### 

U_distr4 = function(x_1,x_2,x_3,x_4){ 

  Ustat= (1/6)*((x_1*x_2)+(x_1*x_3)+(x_1*x_4)+ 
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                   +(x_2*x_3)+(x_2*x_4) 

                 +(x_3*x_4)) 

  return(Ustat) 

} 

distribution4 = replicate(1000000, U_distr4(x_1=rnorm(1,mean=0,sd=1), 

                                            x_2=rnorm(1,mean=0,sd=1), 

                                            x_3=rnorm(1,mean=0,sd=1), 

                                            x_4=rnorm(1,mean=0,sd=1))) 

distribution4 

hist(distribution4) 

###distribution for U-stat where n=5### 

U_distr5 = function(x_1,x_2,x_3,x_4,x_5){ 

  Ustat= (1/10)*((x_1*x_2)+(x_1*x_3)+(x_1*x_4)+(x_1*x_5)+ 

                   +(x_2*x_3)+(x_2*x_4)+(x_2*x_5) 

                 +(x_3*x_4)+(x_3*x_5)+(x_4*x_5)) 

  return(Ustat) 

} 

distribution5 = replicate(1000000, U_distr5(x_1=rnorm(1,mean=0,sd=1), 

                                          x_2=rnorm(1,mean=0,sd=1), 

                                          x_3=rnorm(1,mean=0,sd=1), 

                                          x_4=rnorm(1,mean=0,sd=1), 

                                          x_5=rnorm(1,mean=0,sd=1))) 

distribution5 

hist(distribution5) 



53 
 

###distribution for U-stat where n=6### 

U_distr6 = function(x_1,x_2,x_3,x_4,x_5,x_6){ 

  Ustat= (1/15)*((x_1*x_2)+(x_1*x_3)+(x_1*x_4)+(x_1*x_5)+ 

                 (x_1*x_6)+(x_2*x_3)+(x_2*x_4)+(x_2*x_5)+(x_2*x_6) 

                 +(x_3*x_4)+(x_3*x_5)+(x_3*x_6)+(x_4*x_5)+(x_4*x_6)+(x_5*x_6)) 

  return(Ustat) 

} 

distribution6 = replicate(1000000, U_distr6(x_1=rnorm(1,mean=0,sd=1), 

                                          x_2=rnorm(1,mean=0,sd=1), 

                                          x_3=rnorm(1,mean=0,sd=1), 

                                          x_4=rnorm(1,mean=0,sd=1), 

                                          x_5=rnorm(1,mean=0,sd=1), 

                                          x_6=rnorm(1,mean=0,sd=1))) 

hist(distribution6) 

###distribution for U-stat where n=7### 

U_distr7 = function(x_1,x_2,x_3,x_4,x_5,x_6,x_7){ 

  Ustat= (1/21)*((x_1*x_2)+(x_1*x_3)+(x_1*x_4)+(x_1*x_5)+ 

                   (x_1*x_6)+(x_1*x_7) 

                 +(x_2*x_3)+(x_2*x_4)+(x_2*x_5)+(x_2*x_6)+(x_2*x_7) 

                 +(x_3*x_4)+(x_3*x_5)+(x_3*x_6)+(x_3*x_7) 

                 +(x_4*x_5)+(x_4*x_6)+(x_4*x_7) 

                 +(x_5*x_6)+(x_5*x_7) 

                 +(x_6*x_7)) 

  return(Ustat) 
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} 

distribution7 = replicate(1000000, U_distr7(x_1=rnorm(1,mean=0,sd=1), 

                                              x_2=rnorm(1,mean=0,sd=1), 

                                              x_3=rnorm(1,mean=0,sd=1), 

                                              x_4=rnorm(1,mean=0,sd=1), 

                                              x_5=rnorm(1,mean=0,sd=1), 

                                              x_6=rnorm(1,mean=0,sd=1), 

                                              x_7=rnorm(1,mean=0,sd=1))) 

distribution7 

hist(distribution7) 

###distribution for U-stat where n=8### 

U_distr8 = function(x_1,x_2,x_3,x_4,x_5,x_6,x_7,x_8){ 

  Ustat= (1/28)*((x_1*x_2)+(x_1*x_3)+(x_1*x_4)+(x_1*x_5)+ 

                   (x_1*x_6)+(x_1*x_7)+(x_1*x_8) 

                 +(x_2*x_3)+(x_2*x_4)+(x_2*x_5)+(x_2*x_6)+(x_2*x_7)+(x_2*x_8) 

                 +(x_3*x_4)+(x_3*x_5)+(x_3*x_6)+(x_3*x_7)+(x_3*x_8) 

                 +(x_4*x_5)+(x_4*x_6)+(x_4*x_7)+(x_4*x_8) 

                 +(x_5*x_6)+(x_5*x_7)+(x_5*x_8) 

                 +(x_6*x_7)+(x_6*x_8) 

                 +(x_7*x_8)) 

  return(Ustat) 

} 

distribution8 = replicate(1000000, U_distr8(x_1=rnorm(1,mean=0,sd=1), 

                                              x_2=rnorm(1,mean=0,sd=1), 
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                                              x_3=rnorm(1,mean=0,sd=1), 

                                              x_4=rnorm(1,mean=0,sd=1), 

                                              x_5=rnorm(1,mean=0,sd=1), 

                                              x_6=rnorm(1,mean=0,sd=1), 

                                              x_7=rnorm(1,mean=0,sd=1), 

                                              x_8=rnorm(1,mean=0,sd=1))) 

distribution8 

hist(distribution8) 

###distribution for U-stat where n=9### 

U_distr9 = function(x_1,x_2,x_3,x_4,x_5,x_6,x_7,x_8,x_9){ 

  Ustat= (1/36)*((x_1*x_2)+(x_1*x_3)+(x_1*x_4)+(x_1*x_5)+ 

                   (x_1*x_6)+(x_1*x_7)+(x_1*x_8)+(x_1*x_9) 

                 +(x_2*x_3)+(x_2*x_4)+(x_2*x_5)+(x_2*x_6)+(x_2*x_7)+(x_2*x_8)+(x_2*x_9) 

                 +(x_3*x_4)+(x_3*x_5)+(x_3*x_6)+(x_3*x_7)+(x_3*x_8)+(x_3*x_9) 

                 +(x_4*x_5)+(x_4*x_6)+(x_4*x_7)+(x_4*x_8)+(x_4*x_9) 

                 +(x_5*x_6)+(x_5*x_7)+(x_5*x_8)+(x_5*x_9) 

                 +(x_6*x_7)+(x_6*x_8)+(x_6*x_9) 

                 +(x_7*x_8)+(x_7*x_9) 

                 +(x_8*x_9)) 

  return(Ustat) 

} 

distribution9 = replicate(1000000, U_distr9(x_1=rnorm(1,mean=0,sd=1), 

                                              x_2=rnorm(1,mean=0,sd=1), 

                                              x_3=rnorm(1,mean=0,sd=1), 
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                                              x_4=rnorm(1,mean=0,sd=1), 

                                              x_5=rnorm(1,mean=0,sd=1), 

                                              x_6=rnorm(1,mean=0,sd=1), 

                                              x_7=rnorm(1,mean=0,sd=1), 

                                              x_8=rnorm(1,mean=0,sd=1), 

                                              x_9=rnorm(1,mean=0,sd=1))) 

distribution9 

hist(distribution9) 

###distribution for U-stat where n=10### 

U_distr10 = function(x_1,x_2,x_3,x_4,x_5,x_6,x_7,x_8,x_9,x_10){ 

  Ustat= (1/45)*((x_1*x_2)+(x_1*x_3)+(x_1*x_4)+(x_1*x_5)+ 

                 (x_1*x_6)+(x_1*x_7)+(x_1*x_8)+(x_1*x_9)+(x_1*x_10) 

+(x_2*x_3)+(x_2*x_4)+(x_2*x_5)+(x_2*x_6)+(x_2*x_7)+(x_2*x_8)+(x_2*x_9)+(x_2*x_10) 

                 +(x_3*x_4)+(x_3*x_5)+(x_3*x_6)+(x_3*x_7)+(x_3*x_8)+(x_3*x_9)+(x_3*x_10) 

                 +(x_4*x_5)+(x_4*x_6)+(x_4*x_7)+(x_4*x_8)+(x_4*x_9)+(x_4*x_10) 

                 +(x_5*x_6)+(x_5*x_7)+(x_5*x_8)+(x_5*x_9)+(x_5*x_10) 

                 +(x_6*x_7)+(x_6*x_8)+(x_6*x_9)+(x_6*x_10) 

                 +(x_7*x_8)+(x_7*x_9)+(x_7*x_10) 

                 +(x_8*x_9)+(x_8*x_10) 

                 +(x_9*x_10)) 

   return(Ustat) 

} 

distribution10 = replicate(1000000, U_distr10(x_1=rnorm(1,mean=0,sd=1), 

                                            x_2=rnorm(1,mean=0,sd=1), 
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                                            x_3=rnorm(1,mean=0,sd=1), 

                                            x_4=rnorm(1,mean=0,sd=1), 

                                            x_5=rnorm(1,mean=0,sd=1), 

                                            x_6=rnorm(1,mean=0,sd=1), 

                                            x_7=rnorm(1,mean=0,sd=1), 

                                            x_8=rnorm(1,mean=0,sd=1), 

                                            x_9=rnorm(1,mean=0,sd=1), 

                                            x_10=rnorm(1,mean=0,sd=1))) 

distribution10 

hist(distribution10) 

###distribution for U-stat where n=15### 

U_distr15 = function(x_1,x_2,x_3,x_4,x_5,x_6,x_7,x_8,x_9,x_10,x_11,x_12,x_13,x_14,x_15){ 

  Ustat= (1/105)*((x_1*x_2)+(x_1*x_3)+(x_1*x_4)+(x_1*x_5)+ 

(x_1*x_6)+(x_1*x_7)+(x_1*x_8)+(x_1*x_9)+(x_1*x_10)+(x_1*x_11)+(x_1*x_12)+(x_1*x_13)+(x_

1*x_14)+(x_1*x_15) 

+(x_2*x_3)+(x_2*x_4)+(x_2*x_5)+(x_2*x_6)+(x_2*x_7)+(x_2*x_8)+(x_2*x_9)+(x_2*x_10)+(x_2*

x_11)+(x_2*x_12)+(x_2*x_13)+(x_2*x_14)+(x_2*x_15) 

+(x_3*x_4)+(x_3*x_5)+(x_3*x_6)+(x_3*x_7)+(x_3*x_8)+(x_3*x_9)+(x_3*x_10)+(x_3*x_11)+(x_3

*x_12)+(x_3*x_13)+(x_3*x_14)+(x_3*x_15) 

+(x_4*x_5)+(x_4*x_6)+(x_4*x_7)+(x_4*x_8)+(x_4*x_9)+(x_4*x_10)+(x_4*x_11)+(x_4*x_12)+(x_

4*x_13)+(x_4*x_14)+(x_4*x_15) 

+(x_5*x_6)+(x_5*x_7)+(x_5*x_8)+(x_5*x_9)+(x_5*x_10)+(x_5*x_11)+(x_5*x_12)+(x_5*x_13)+(x

_5*x_14)+(x_5*x_15) 
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+(x_6*x_7)+(x_6*x_8)+(x_6*x_9)+(x_6*x_10)+(x_6*x_11)+(x_6*x_12)+(x_6*x_13)+(x_6*x_14)+(

x_6*x_15)  

+(x_7*x_8)+(x_7*x_9)+(x_7*x_10)+(x_7*x_11)+(x_7*x_12)+(x_7*x_13)+(x_7*x_14)+(x_7*x_15) 

                  +(x_8*x_9)+(x_8*x_10)+(x_8*x_11)+(x_8*x_12)+(x_8*x_13)+(x_8*x_14)+(x_8*x_15) 

                  +(x_9*x_10)+(x_9*x_11)+(x_9*x_12)+(x_9*x_13)+(x_9*x_14)+(x_9*x_15) 

                  +(x_10*x_11)+(x_10*x_12)+(x_10*x_13)+(x_10*x_14)+(x_10*x_15) 

                  +(x_11*x_12)+(x_11*x_13)+(x_11*x_14)+(x_11*x_15) 

                  +(x_12*x_13)+(x_12*x_14)+(x_12*x_15) 

                  +(x_13*x_14)+(x_13*x_15) 

                  +(x_14*x_15)) 

  return(Ustat) 

} 

distribution15 = replicate(1000000, U_distr15(x_1=rnorm(1,mean=0,sd=1), 

                                            x_2=rnorm(1,mean=0,sd=1), 

                                            x_3=rnorm(1,mean=0,sd=1), 

                                            x_4=rnorm(1,mean=0,sd=1), 

                                            x_5=rnorm(1,mean=0,sd=1), 

                                            x_6=rnorm(1,mean=0,sd=1), 

                                            x_7=rnorm(1,mean=0,sd=1), 

                                            x_8=rnorm(1,mean=0,sd=1), 

                                            x_9=rnorm(1,mean=0,sd=1), 

                                            x_10=rnorm(1,mean=0,sd=1), 

                                            x_11=rnorm(1,mean=0,sd=1), 

                                            x_12=rnorm(1,mean=0,sd=1), 
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                                            x_13=rnorm(1,mean=0,sd=1), 

                                            x_14=rnorm(1,mean=0,sd=1), 

                                            x_15=rnorm(1,mean=0,sd=1))) 

distribution15 

hist(distribution15) 
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