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IDENTIFYING MISLABELING IN MACHINE LEARNING BASED INTRUSION 

DETECTION SYSTEM 

 

BOFAN LI 

38 Pages 

Machine learning has shown strong potential in improving the performance of an 

Intrusion Detection Systems (IDS).  In a machine learning based IDS, the problem is commonly 

formulated as a supervised classification, in which various training datasets are used to train a 

selected model to learn how various network features are related to different types (i.e., benign 

traffic or a type of network attack) of network traffic. Each training dataset usually includes a 

large amount of data samples, and each data sample contains many network features and their 

associated type of traffic called label. Most recent studies focus on developing a better machine 

learning model to achieve higher performance in an IDS. Very little research has been done in 

understanding the quality of training datasets, especially mislabeling affects the performance of a 

machine learning based IDS.  

 In this thesis, we focus on the mislabeling issue in a machine learning based IDS. We 

first show the impact of mislabeling on the performance of such an IDS. Then, we propose a new 

algorithm called Heuristic Mislabel Identification (HMI) based on Data Shapley [6] to identify 

mislabels in training datasets. Based on different mislabeling scenarios, HMI heuristically and 

iteratively divides a training dataset into multiple groups to narrow down the location or range of 

mislabels. We have evaluated our method using a widely adopted IDS training dataset (i.e., 

CICIDS2017). The evaluation results show that HMI can identify 84% random mislabels and 



78% mislabels from a single data source. The precision on both experiment above is 100% which 

means the suspect group must contain mislabeling samples.  

KEYWORDS: Intrusion Detection System; Machine Learning; Mislabeling; Shapley 
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CHAPTER I: INTRODUCTION 

In this section, the background of our thesis, the problem we addressed, and challenges will be 

clearly claimed. Our contribution and experiment results will be listed.  

 

Background 

Recent years, fast developments in the Internet have had a profound impact on the world. 

Billions of people are connected to the Internet. The rapid developments in information and 

communication technologies around the world present a significant challenge for network 

security. Our research platform, IDS, plays an important role in network security. IDS (intrusion 

detection system) is a hardware or software program that detects intrusion on a network and 

monitors the network traffic for suspicious activity and alerts.  

 Machine learning algorithms have been widely implemented for anomaly-based IDS. The 

supervised learning algorithms have a higher detection rate and a lower rate of false alarms than 

the unsupervised learning techniques [21]. Some supervised learning algorithms which claim an 

accuracy over 97% with a few false alarms below 2% [7] have shown strong potential in 

improving the performance of an IDS. These models all depend on one premise, high quality 

data.  

 Mislabeling, however, from some unknown system errors during a data collection, or 

malicious manipulation for certain purposes could have a negative influence on data quality.  

 

Challenges 

As we mentioned before, in decades, the framework of building machine learning models has 

been implemented and studied a lot. Various machine learning models have been developed 
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successfully like random forest, svm, xgboost etc. However, mislabeling which could greatly 

affect data quality only received little attention for anomaly-based IDS. Data’s quality and 

algorithm’s suitability are two factors that can determine the accuracy of supervised learning 

algorithms. This emerging need emphasizes the importance of identifying mislabeling questions. 

Because mislabeling has a correlation with low data quality. We will use some metrics to 

evaluate data quality. Then using these metrics detect mislabeling samples. To evaluate data 

quality in datasets, a simple method called “leave-one-out” (LOO) and a comparable 

complicated method Data Shapley will be utilized. LOO is a fast valuation scheme compared to 

Data Shapley. However, it does not satisfy the equitable valuation conditions. Data Shapley has 

many advanced features [6]. But the algorithm needs a lot of computing resources, even the 

author found a method called Truncated Monte Carlo to optimize the algorithm. 

In order to have the same advanced features as Data Shapley and deal with the problem 

of large amounts of calculations especially for IDS which contains huge network flows. 

Calculating Data Shapley in groups is one of the solutions.  

 

Contributions 

In this thesis, we proposed a new method called Heuristic Mislabel Identification (HMI) based 

on Data Shapley which can keep the same advanced features as Data Shapley and reduce the 

amount of computation. The new method can evaluate data value in groups and detect 

mislabeling groups. 

We can build an accurate random forest model for CICIDS 2017 dataset. To remove 

useless features and accelerate the speed of building models. Feature selection and data sample 

processes are shown in Chapter III. To simulate mislabeling in different scenarios, we create four 
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types of artificial mislabeling. We assume the target dataset used in training and calculating 

values is collected from different sources and the testing data is clean without mislabeling 

samples. Some sources contain mislabeling samples. Three types of mislabeling from single 

sources. One type of mislabeling is from multiple sources. We will examine our method with 

four types of artificial mislabeling. 

The experimental results on a sample of CICIDS 2017 dataset show that, in comparison 

to all baseline methods, our method can achieve considerable and consistent improvements by 

heuristic grouping. In particular, we show that our method detects 84% random mislabels and 

78% attacks concealing mislabels from a single data source. The precision on both experiment 

above is 100% which means the suspect group must contain mislabeling samples. For single 

attack from single source and single attack from multiple sources, the recall of both types of 

attacks has a low performance. However, the precisions are both over 50%. The precision of 

single attack from single source is 100%. The precision of single attack from multiple sources is 

66%. Therefore, our method can work well on these four types mislabeling. 
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CHAPTER II: RELATED WORK 
 

Machine Learning Based IDS 

IDS (intrusion detection system) is a hardware or software program that detects intrusion on a 

network. Intrusion is described as any type of unauthorized activity that causes harm to a 

computer system [1]. The CIA defined three aims to achieve information security which are 

Confidentiality, Integrity, and Availability. As technology develops, there are more and more 

varieties of attacks. In this condition, the international standard ISO/IEC 13335-1 (2004) adds 

accountability, authenticity into the goals to achieve information security [2]. In contrast, 

intrusion is going to break these goals. 

For example, distributed denial-of-service (DDoS) attack [3] is defined as a deliberate 

attempt to prevent legitimate use of a service. This attack has a negative effect on availability. 

 

Figure 1.Five elements of security Requirements 
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IDS can be split into two categories: network-based IDS and host-based IDS. These two 

categories are based on the location of IDS. Another way to categorize IDS will be Signature-

based intrusion detection systems and Anomaly-based intrusion detection systems. The 

differences are the following: 

Signature-based IDS involves looking through network traffic for harmful data or packet 

sequences [4]. Attacks that are detected as misuse follow well-defined patterns that take 

advantage of system flaws and software bugs. These attacks can be detected by rules because 

they follow well-defined patterns and signatures. 

 

Figure 2. An example of SNORT(IDS software) rules detecting DOS 

Signature-based IDS has a low false positive rate and high processing speed because 

rules detecting attacks are clearly defined in advance. However, signature-based intrusion 

detection systems can not detect Zero-day attacks. 

Anomaly-based detection can detect Zero-day attacks. But anomaly-based detection can 

result in a significant number of false positives. In order to eliminate the large number of alerts 

generated, a lot of resources and time will be wasted. Our experiment is going to be based on 

anomaly-based IDS with machine learning. 

Researchers have developed a lot of machine learning models for intrusion detection 

systems. Each of these models has its own characteristics. We choose using a random forest 

model for our IDS. The reason that we choose random forest to build a model is that it has a high 

performance on CICIDS dataset [7]. Compared to deep learning algorithms like CNN, random 

forest is less time-consuming and can export features’ importance directly from the model. 
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Traffic classification is a very important step in IDS. Previously, the class of traffic was 

identified by its registered and known port. Deep Packet Inspection(DPI) is another strategy that 

has acquired a lot of traction in this industry[11]. To classify network traffic, DPI makes a match 

between the packet payload and a collection of stored signatures. When protocols are 

encapsulated, DPI will fail because privacy policies and laws limits access to packet content. 

Nowadays, Machine Learning (ML) emerged as a liable method to address the previous 

challenges, not only for traffic classification but also for prediction and new knowledge 

discovery. Many machine learning models have been implemented for IDS. For example, this 

paper uses the same dataset CICIDS 2017[16] to build models and extract feature importance. 

They summarize different model performance working on KDD kup another common dataset. 

They then build several models and test their performance on CICIDS 2017. 

 

Data Quality and Mislabeling 

Big data construction aims to organize data, improve organizational insight and competitiveness, 

and achieve business innovation and industrial upgrading. The goal of enhancing data quality is 

to help big data construction to succeed. Data quality isn't merely a technical issue. It can also 

affect business and management operations. Data quality in IDS is also a very important topic. 

The quality of the labels is directly related to the quality of the machine learning model. There 

are two possible reasons for mislabeling occurrence in IDS. The first is the errors in the data 

label annotation. Another is attackers could have the ability to contaminate data sources. Once 

attackers change the labels, the model will be trained with bias which may cause false alarm and 

missed attacks. How to detect the mislabeling data in machine learning has become an urgent 

topic to overcome to obtain improved classification accuracy. 
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This survey [18] defines three types of label noise by different sources and provides three 

methods to deal with label noise problems. Label noise cleansing is one of the three methods 

proposed. They take the entropy of the conditional distribution [19] as an example. Confident 

classifications are related to instances with a low entropy. Our paper method also is used to clean 

mislabeling groups in training set data. Our method is based on Data shapely which low data 

shapely values correspond to mislabeling instances. 

 

Mislabeling Identification 

There was an experiment similar to ours. They [15] also work on a network traffic dataset and 

modify labels to stimulate error labels. However, they use Deep Learning (DL) as an approach to 

detect abnormal data and we used Machine Learning (ML). 

According to Nicolas M. Muller and Karla Markert [14], they provide a nonparametric 

end-to-end pipeline for detecting mislabeled instances in some common datasets including 

CIFAR-100, Fashion-MNIST in their study. 
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CHAPTER III: TECHNICAL APPROACH 

 

Shapley Value and Data Shapley 

We need a number to evaluate our data. The number is like the price of the product. Data 

Shapley was proposed by Amirata Ghorbani and James Y. Zou[6]. Their framework is based on 

Shapley Value. The Shapley value is one solution addressing cooperative game theory 

problem[12]. Shpapley value is a common method used to fairly and quantitatively evaluate the 

marginal contribution of players. It originated from cooperative games and is used in a wide 

range of fields, including Shapley Value as ML feature selection and ranking the importance of 

training data. 

The marginal contribution is the benefit that one person brings to the whole group after 

joining. In other words, the whole group benefit with this player joining minus the whole group 

benefit without this player , is this person's marginal contribution.For example, three people 

corresponding to three players in game theory build a n apartment. Their wages are paid by the 

number of floors in the apartment. A is a good worker. He can build 100 floors. B can finish 80 

floors. C can finish 60. When three of them work together, they encourage each other, they can 

achieve 300 floors. If A and B work together, they can achieve 200. If A and C work together, 

they can achieve 170. If B and C work together, they can achieve 150. We use v to describe their 

efficiency. V(A) = 100, V(B) = 80, V(C) = 60, V(AB) = 200, V(AC) = 170, V(BC) = 150, 

V(ABC) = 300. 

They can cooperate in 6(number of players，n) n! ways. 
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Probability Order of 

arrival 

A’s marginal 

contribution 

B’s marginal 

contribution 

C’s marginal 

contribution 

1/6 first A then B 

last C; ABC 

V(A) = 100 V (AB)-V(A)=200-

100=100 

V (ABC)-

V(AB)=300-

200=100 

1/6 first A then C 

last B ; ACB 

V (A) = 100 V (ACB)-

V(AC)=300-

170=130 

V (AC)- V(A)=170-

100=70 

1/6 first B then A 

last C; BAC 

V (BA)- V 

(B)=200-80=120 

V (B) = 80 V (BAC)- V 

(BA)=300-200=100 

1/6 first B then C 

last A; BCA 

V (BCA)- V 

(BC)=300-150=150 

V (B) = 80 V (BC)- V (B)=150-

80=70 

1/6 first C then B 

last A; CBA 

V (CBA)- V 

(CB)=300-150=150 

V (CB)- V (B)=150-

80=70 

V (C) = 60 

1/6 first C then A 

last B; CAB 

V (CA)- V 

(C)=170-60=110 

V (CAB)- V 

(CA)=300-170=130 

V (C) = 60 

Table 1. Shapley value Calculation process 

In the Data Shapley paper, they treat each data instance as a player and the model 

performance as a wage. The marginal contribution in the paper is the difference of performance. 

They mentioned a “leave-one-out” (LOO) method which evaluates how much performance will 

change if they remove the data instance. We view i as the value of instance i. D= {1,...,n} is the 
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total training set. S as a subset of D, S  D. V(D) is the performance of a model trained by training 

set D. V(D - {i}) is the performance of a model trained by training set D without instance i. The 

LOO method calculated the value of instance by equation: 𝜑!= V(D) - V(D-{i}). It is a simple 

way to calculate the data value. 

The disadvantage of this method is “this valuation scheme does not satisfy the equitable 

valuation conditions”. Shapley value achieves “Efficiency”，“Symmetry”，“Dummy”, and 

“Additivity”. Therefore, Data Shapley inherits these attributes. Data Shapley calculate the data 

value by equation: 

𝜑! = 𝐶$ "($∪[!]))"($)

*!"#|%| +$⊆-){!}

                                                                               (1) 

Data Shapley not only found a way to calculate the value of the instance, but also 

optimized the computational complexity by extending Monte-Carlo approximation methods and 

a truncated method. Data Shapley can be used in many applications. According to their paper, it 

can be used for “Identifying data quality” and “Using value to adapt to new data”. Many 

experiments show TMC-Shapley has a better performance than LOO. In our experiment, we ran 

a random forest model on the subset of CICIDS 2017 dataset with 100 samples. After calculating 

the values of each instance, we sorted the values and removed the highest value to the lowest 

value from the sub-dataset. We found the accuracy performance decreasing from 100%, 80%, 

70%, 40%. The performance is dropping due to the limitation size of our testing data. However, 

we still can see TMC-Shapley has a bigger influence than “LOO”.  
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Figure 3. Data Shapley on IDS removing high value instance 

The other experiment is we ran a random forest model on the subset of CICIDS 2017 

dataset with 420 samples divided into 140 groups. We then apply Data Shapley on the subset of 

data with 40% random flip labels. After calculating the values of each instance, we sorted the 

values and removed the lowest value to the highest value. We found the accuracy performance 

increasing from 63% to around 95%. The reason for the performance increase is that many 
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mislabeled instances were removed. In the last part of the paragraph, accuracy is reduced 

because there is not enough data to support the model. 

 

 

Figure 4. Data Shapley on IDS removing low value instance 

The inspiration for our paper came from the low Data Shapley value of the instance 

means the instance has a small or negative effect on the overall performance. If we can get a high 

performance from a normal dataset, once one normal instance’s label is changed, this behavior 
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might hurt the performance which can be detected by Data Shapley value. The result looks good. 

However, we can only run Data Shapley on a small size of training set. Because the computation 

resources are limited. The Data Shapley value still needs a lot of computation even with 

optimization. We are going to analyze the computational complexity in the following section. 

 

Computation Challenge 

Even Data Shapley has these advantages mentioned before, according to equation (1), it claims 

calculating Data Shapley value requires an exponentially large number of computations related 

to the size of the training set. Data Shapley addresses this problem by extending Monte-Carlo 

approximation methods and a truncated method. Monte-Carlo approximation methods is a kind 

of sample algorithm which sacrifices accuracy but saves computing resources. From their code 

published, Monte-Carlo approximation methods can control the precision of Data Shapley value 

by a parameter called err in the dshap.run() function. The default parameter will lead to the value 

convergence in 10% deviation of the precisely Data Shapley value. The Data Shapley author 

suggests “usually 3n Monte Carlo samples is sufficient for convergence”. 3n is the number of 

iterations. The number of iterations is another hyperparameter in the code. One iteration process 

is shown below. One iteration matches one row in table 1. It randomly permutes the total train 

set (D). The subset(S) of D is the real training set from an empty set to full size or meets the 

truncated condition. When S is empty, the performance is a random score. S is increased by 

adding one instance in the set in the next loop. And the new S is used to build a new model and 

test the performance. The new performance score minus old performance score is the marginal 

contribution of instance just adding. When S size gets bigger and bigger, the performance will 

tend to be stable. The variance of performance is less than tolerance * v(D) for five consecutive 
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times. The algorithm is truncated. Therefore, every itermatation don’t need to loop the full size 

of D. When the algorithm is truncated, the other instances without adding into S will be equal to 

0 marginal contribution in this iteration. We donate m(i) as a marginal contribution of instance 

(i) in the graph below. In conclusion, even with the truncated algorithm, the worst situation is 

that one iteration needs to train the size of the D times model. If we use only 100 samples in D, 

we need to build models 100 times in the worst situation. 

 

Figure 5. One iteration in Data Shapley 

After getting the marginal contribution of each instance, they calculate Data Shapley 

value by adding all the contributions aggregating by each instance. The result is then divided by 

the number of iterations from now on. An approximation Data Shapley value is created. The next 

question is how to decide how many iterations are needed. The Data Shapley algorithm 

addresses the problem by evaluating the variance of the approximation Data Shapley value. Once 

the value is no more than 0.1 in nearly 100 variance, the value is treated as convergence and 

finished. The number of iterations is hard to decide[13]. According to the paper, “The sample 
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size needed for a study depends on many factors including the size of the model, distribution of 

the variables, amount of missing data, reliability of the variables, and strength of the 

relationships among the variables.” 

Therefore, we only can estimate the number of iterations roughly by our experiments. In 

our experiment, usually around 10n Monte Carlo samples is sufficient for convergence. ‘n’ is the 

number of samples in the train set. For example, we use 6000 samples in a train set. We then use 

a group to divide the data set. Each group has 60 samples, so there are 100 groups. If we don’t 

group the data, the result can be done in Google Colab in one day. The mean time of each 

iteration costs 46.9s. In one iteration, the relationship between time cost and the size of data size 

are shown below. When the dataset has 6000 samples, training a random forest model needs 

around 1 second. The cost of time and data size has a positive linear correlation. The total time 

cost is shown in Table 2. 

 

Figure 6. The relationship between Dataset size and time on random forest model 
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trainset  the number of group the number of iteration time 

6000 100 1200 56808s (15.7h) 

420 140 1800 25200s (7h) 

140 140 1500 14400s (4h) 

2014 21 540 156s 

Table 2. Time consumption 

T(total) = The number of iterations * The number of group* T(model) 

T(model) has a positive linear correlation with the number of train sets which is shown in 

the graph above. The number of group can be precisely calculated by the number of train sets 

divided by the size of the group. One iteration is independent, so it can be run parallel. However, 

even if it can run parallel, Data Shapley still needs a lot of computing resources.  The number of 

iterations As we wrote before, it is hard to know. According to our experiment a group with large 

size i's more likely to converge early. Therefore, we proposed a method called Heuristic Mislabel 

Identification to address the problem that Data Shapley needs many computer resources. 
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Heuristic Mislabel identification 

 

Figure 7. Heuristic mislabel identification algorithm 

Data Shapley values can be grouped when we want to know their marginal contribution as a 

group. Each instance in the same group will be endowed with the same value. Group can reduce 

Data Shapley computing time linearly. Therefore, we can begin with a small number of the size 

of the group. The data is divided into different groups. After we get the value of the group, we 

find the suspicious group with value. Lowest value means it hurts the model performance or 

doesn’t help the model performance. One premise we know is that random Forest has high 

accuracy in CICIDS 2017. This is confirmed by our experiments and other papers[8]. Therefore, 
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low Data Shapley value has a high possibility including mislabeling. Once the suspicious group 

is detected, we divide these groups into smaller groups with a new group number. 

 

Figure 8. How to divide groups in Heuristic mislabel identification algorithm 

Then we use the new group information to calculate Data Shapley value. After this time 

we get more value from groups, we decide whether to continue to make a new group or return 

the program with suspicious groups. 
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CHAPTER IV: EVALUATION 

 

Performance Metrics 

 
Actual condition 

Condition positive(P) Condition negative(N) 

 

Predicted 

condition 

Predicted 

Condition 

positive(PP) 

TP FP 

Predicted  

Condition  

negative(PN) 

FN TN 

Table 3. Performance Metrics 

Precision is named positive predictive value that is the ability of the classifier not to label as 

positive a sample that is negative. (TP/TP+FP) This metric lets us know how many mislabeled 

ranges which we detect are misjudged. 

Recall is also named true positive rate that is the ability of the classifier to find all the 

positive samples. (TP/TP+FN) This metric lets us know how many mislabels have been 

discovered. 

Accuracy (ACC) is (TP+TN)/(TP+TN+FP+FN) the overall performance. This metric is 

used in testing the performance of the random forest model. 
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Experiment Settings 

CIC-IDS2017 was created by the Canadian institute for cybersecurity. They evaluated the 11 

datasets and suggested most of these datasets are unreliable and out of date. The data we used is 

CSV format. The CSV file was produced by a tool called CICFlowMeter. CICFlowMeter can 

automatically analyze PCAPs files and convert PCAPs files into a CSV format file. Each 

network flow corresponds to a row of data. The CIC-IDS2107 dataset in CSV format is a tabular 

dataset. There are 2830743 rows and 79 columns in the data. After we clean the dataset by 

removing rows with NAN and all 0 columns, the distribution of labels are shown below. 

 

Figure 9. Distribution of CICIDS2017 attacks 
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The number of instances in the CICIDS 2017 dataset is too many to do experiments with 

Data Shapley. Therefore, we sample the dataset. To select features, we do a machine learning 

process to get the importance of features. 

 

Figure 10. Extracting importance with machine learning processes 

Data Cleaning 

To run a machine learning model, we remove data instances containing ‘NAN’ and ‘infinity’. 

Since all 8 columns are ‘0’, we have to remove all of them. The data size goes from (2830743, 

79) to (2827876, 71).  

Data Preprocessing 

There are 15 types of attacks in CICIDS 2017. Benign accounts for around 80.3%, DoS Hulk 

accounts for 8%, PortScan accounts for 5.6%, DDOs account for 4.5%, other attacks only 

accounts for 1.4%. We then use MinMaxScaler to Scale each feature to a specific range. We use 

a common rate of 7:3 for machine learning algorithms, resulting in 1,979,513 rows in the training 

set and 848,363 rows in the testing set.  
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Data Modeling 

We build a random forest model on the dataset with the default parameters built-in sklearn.  

Model Evaluation 

We evaluate the random forest model with the test dataset. This model achieves a high 

performance. Accuracy reaches 99.84%. The other metrics are shown in the graph. 

 

Figure 11. Classification Performance 
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Feature Selection 

We export the importance of the model. We found the results are unstable, even with the same 

train set. Therefore, we build the model ten times, accumulate their features’ importance, and 

sort the features’ importance. The result is shown below. We select 16 features because there is a 

gap between 16th and 17th feature importance. The result is different from the paper[8] 

introducing CICIDS 2017 dataset. Because they build the random forest model on a whole 

dataset and multiply “the average standardized mean value of each feature split on each class”. 

We do not need to multiply the value, because we do a MinMax scale in the data preprocessing 

steps, even feature standardization is not necessary to build a random forest model. 

 

Figure 12. Redundant analysis 
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We analyze the correlation ship with the 16 most important features. We can find ‘Ava 

Bwd Segment Size’ has a high correlation ship with ‘Bwd Packet Length Mean’. So these two 

features can be defined as redundant features. We should use one of the redundant features 

instead of using both of them. We select the features with no pairs that have a correlation more 

than 0.9. Finally, 'Packet Length Std' , 'Destination Port',  'Fwd Packet Length Max', 

'Init_Win_bytes_forward', 'Subflow Fwd Packets',  'Fwd Packet Length Mean', 'Total Length of 

Fwd Packets', and 'Avg Fwd Segment Size', 8 features are selected. We build a model only with 

these features and evaluate the model. The mode still has good performance. The model’s 

accuracy is 99.73%. 

Then we sample 4000 rows of the CICIDS 2017 dataset with selected features. The 

subset retains the same rate of attack in the full dataset. To get a better performance of data, we 

split the data into 2000 samples training data, 2000 samples testing data. The model accuracy is 

91.7%. We are going to use this sample to do next experiments. The training set we are going to 

use has 2014 samples which contain all types of attacks. We oversample ‘heartbleed’ and other 

four types of attacks whose size is small to ensure all attacks can exist in the experiments. 

We have four ways to modify labels to stimulate attacks. The scenario is that we have a 

new set of data from different sources that we need to put into the training set. However, the data 

is contaminated from single sources or multiple sources. We propose three cases 1,2,3 from a 

single source and case 4 from multiple sources. The details of these cases are in the following 

essay. 
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Case 1: Single Source Random Mislabeling 

 

Figure 13. Modify the labels to simulate attack type1 

This scenario mimics an attack where a hacker can access a portion of the data source. He 

arbitrarily changes the data label in an attempt to influence the model. 

In our experiment, we use the subset data mentioned in experiment settings. The first part 

of the experiment is a robust test. We want to know how much the mislabel will influence the 

model performance. We modify the mislabeling range from 0% to 50% of the train set. For every 

5% increase we train a random forest model to test model performance on the mislabeled dataset. 

The result is shown in the following graph. When we flip 40% of train set labels, the model 

overall performance reduces to 70%. The range of performance changes is 23%. 
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Figure 14. Robustness analysis type1 

The next part of the experiment, we apply our Heuristic Mislabel Identification algorithm 

to the dataset. We flip 20% of the train set’s labels. This data is divided into 21 groups. Each 

group contains 100 samples, except the final one with 14 samples. We calculate group Data 

Shapley values on the dataset. There are four groups with a Data Shapley value of 0. Others are 

all positive numbers. We consider these four groups to be suspicious groups. Next, we divide 

these four groups into 40 groups. Each suspicious group is divided into 10 groups. We combine 

these 40 groups and other 21-4=17 groups. We get 57 groups of data. Then we calculate Data 

Shapley values for these 57 groups.  

After we get the values, we check it and pick the lowest values. 84% of the mislabeling 

area is successfully identified. The precision is 100%. 



27 

Case 2: Single Source Attack Concealing Mislabeling 

 

Figure 15. Modify the labels to simulate attack type2 

This scenario mimics an attack where a hacker can also access a portion of the data source, same 

as the case 1. The difference is that he changes all attack labels to benign and tries to conceal 

attack samples to make the model can’t learn the attack's features. In our experiment, we do the 

same preprocessing of data as case 1. About the robust test, we modify the mislabeling range 

from 0% to 50% of the train set. For every 5% increase we train a random forest model to test 

model performance on the mislabeled dataset. The result is shown in the following graph. When 

we flip 40% of train set labels, the model overall performance reduces to 88.5%. The range of 

performance changes around 4%. 
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Figure 16. Robustness analysis type2 

The second part of experiments in case 2, Heuristic Mislabel Identification. After we 

calculate the value of 21 groups in the first round, we detect four groups whose value is under 0 

that means this four group has a bad influence on the model performance. Then we divide these 

groups into 40 smaller groups and combine with other 16 groups. Next, we use these new groups 

to calculate Data Shapley values. Some groups whose size is 10 have a positive Shapley value. It 

might mean there are a few numbers of samples in the group that are mislabeling. We select the 

suspect group by the low Shapley value.  

The recall rate is 78% which means 78% mislabels are detected by the group. The 

precision is 100% which means all suspect groups contain mislabeling. 
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Case 3: Single Source Single Attack Mislabeling 

 

Figure 17. Modify the labels to simulate attack type2 

This scenario mimics an attack where a hacker can also access a portion of the data source, same 

as case 1 and case2. The difference is that he changes only one type of attack label to benign and 

tries to conceal these specific attack samples to make the model can’t learn the specific attacks’ 

features. In our experiment, we do the same preprocessing of data as case 1. We search a random 

range, 20% of the train set, and change the label from a specific attack to benign. For the robust 

test, we still use the same range of modifying ratio from 0% to 50%. For every 5% increase we 

train a random forest model to test model performance on the mislabeled dataset. The range of 

performance changes around 1.2% which is a small number for the performance. 
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Figure 18. Robustness analysis type3 

The second part of experiments in case 3. After we calculate the value of 21 groups in the 

first round, we detect one group whose value is under 0 that means only one group has a bad 

influence on the model performance. The group contains 100 samples. Then we divide this group 

into 10 smaller groups and combine with other 20 groups. Next, we use these new groups to 

calculate Data Shapley values.  

The recall is 13%. It is a very low performance. Because in the first round, our algorithm 

only detects one group has a value lower than 0. We review the value of groups in the first 

round. We found the first and second lowest values contain mislabeling groups. However, even 

recall has a low value, when taking the two lowest value groups, the precision is 100% which 

means these groups contain mislabeling samples. 
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Case 4: Multi Source Single Attack Mislabeling 

 

Figure 19. Modify the labels to simulate attack type4 
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This scenario mimics hackers who can access the full size of a train set and have the authority to 

change labels. He may want to hide one specific type of attack by changing any percent of the 

specific attack samples in the train set. In our experiment, we split the dataset as the same as 

before. But for the robust test, wel use the same range of modifying ratio from 0% to 100%. For 

every 5% increase we train a random forest model to test model performance on the mislabeled 

dataset. The overall performance drops from 91.8% to 84.4%. The range of performance changes 

is around 7%. 

 

Figure 20. Robustness analysis type4 

The second part of experiments in case 4. After we calculate the value of 21 groups in the 

first round, we detect one group whose value is under 0 that means only one group has a bad 

influence on the model performance. It has the same results as case3. The group contains 100 

samples. Then we divide this group into 10 smaller groups and combine with other 20 groups. 

Next, we use these new groups to calculate Data Shapley values.  
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The recall is 14%. It is also a very low performance. Because the modified sample 

distribution is too scattered. However, the precision is 66%. Therefore, our method can still work 

on this type of attacks. 
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CHAPTER V: DISCUSSION AND FINAL REMARKS  

In this paper, we propose Heuristic Mislabel Identification (HIM) to optimize the problem of 

Data Shapley consuming a lot of computing resources. The experiment results of HIM showed 

that it can be effectively utilized to identify single source random mislabeling and single source 

attack concealing mislabeling. HIM has limited effect on single source single attack mislabeling 

and multi-source single attack mislabeling. One possible reason is the ratio of mislabeling 

accounts for too little of the total data.   

In the future, we can explore the following directions: 1) the iteration of approximating 

Shapley value could be run parallelly. Therefore, we could also make our HIM run parallelly. In 

this condition, a larger train set data could be used in the experiments which will include more 

attack samples; and 2) the suspect group number of HIM can be set bigger. It may cause more 

false positive detection. However, the recall of attacks could increase. 
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APPENDIX: SOURCE CODE AND DATASETS 

All related source code can be found in the link below: 

https://github.com/Bofan1120/Mislabeled_ids/blob/main/notebook/DataShapleyIDS_all_IDS_1.i

pynb 

The dataset can be found here: https://www.unb.ca/cic/datasets/ids-2017.html  
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