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HAMILTONIAN CYCLES AND 2-FACTORS IN TOUGH GRAPHS

WITHOUT FORBIDDEN SUBGRAPHS

ELIZABETH V. GRIMM

42 Pages

A Hamiltonian cycle in a graph G is a cycle which contains every vertex of G. The

study of Hamiltonian cycle problem has a long history in graph theory and is a central

theme. In general, it is NP -complete to decide whether a graph contains a Hamiltonian

cycle. Thus researchers have been investigating sufficient conditions that guarantee the

existence of a Hamiltonian cycle in a graph. There are many classic results along this line.

For example, in 1952, Dirac showed that an n-vertex graph G with n ≥ 3 is Hamiltonian if

δ(G) ≥ n
2
.

Chvátal studied Hamiltonian cycles by considering graph toughness, a measure of

resilience under the removal of vertices. Let t ≥ 0 be a real number and denote by c(G) the

number of components of G. We say a graph G is t-tough if for each cut set S of G we

have t · c(G− S) ≤ |S|. The toughness of a graph G, denoted τ(G), is the maximum value

of t for which G is t-tough if G is non-complete, and is defined to be ∞ if G is complete.

Chvátal conjectured in 1973 the existence of some constant t such that all t-tough graphs

with at least three vertices are Hamiltonian. While the conjecture has been proven for

some special classes of graphs, it remains open in general. Supporting this conjecture of

Chvátal’s, in the first part of this thesis, we show that every 3-tough (P2 ∪ 3P1)-free graph

with at least three vertices is Hamiltonian, where P2 ∪ 3P1 is the disjoint union of an edge

and three isolated vertices.

The notion of a 2-factor is a generalization of a Hamiltonian cycle, which consists of

vertex disjoint cycles which together cover the vertices of G. Thus, a Hamiltonian cycle is

just a 2-factor with exactly one cycle. It is known that every 2-tough graph with at least



three vertices has a 2-factor. In graphs with restricted structures the toughness bound 2

can be improved. For example, it was shown that every 2K2-free 3/2-tough graph with at

least three vertices has a 2-factor, and the toughness bound 3/2 is best possible. In viewing

2K2, the disjoint union of two edges, as a linear forest, in this thesis, for any linear forest R

on 5, 6, or 7 vertices, we find the sharp toughness bound t such that every t-tough R-free

graph on at least three vertices has a 2-factor.

KEYWORDS: Hamiltonian cycle, 2-factor, toughness, forbidden subgraphs
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CHAPTER I: INTRODUCTION

We begin with some general notation. Then, we will introduce some background

into Hamiltonian cycles, Chvátal’s toughness conjecture, and 2-factors. In Chapter 2, we

prove Theorem 1 and, in Chapter 3, we prove Theorems 2, 3, 4, 5, and 6. Finally, in

Chapter 4, we discuss further research questions.

Let G be a simple, undirected graph and let E(G), V (G) denote its edge and vertex

set respectively. For v ∈ V (G), denote by NG(v) the set of neighbors of v in G. The closed

neighborhood of a vertex v in G, denoted by NG[v], is the set {v} ∪NG(v). For two disjoint

subgraphs H1, H2 of G, NH1(H2) denotes the set of neighbors of vertices of H2 in G that

are contained in V (H1). Let dG(v) = |NG(v)| be the degree of v in G. For any subset

S ⊆ V (G), G[S] is the subgraph of G induced on S, G− S denotes the subgraph

G[V (G) \ S], and N(S) = ∪v∈SNG(v). Given disjoint subsets S and T of V (G), we denote

by EG(S, T ) the set of edges which have one end vertex in S and the other end vertex in T ,

and let eG(S, T ) = |EG(S, T )|. If S = {s} is a singleton, we write eG(s, T ) for eG({s}, T ). If

H ⊆ G is a subgraph of G, and T ⊆ V (G) with T ∩ V (H) = ∅, we write EG(H,T ) and

eG(H,T ) for notational simplicity.

If u and v are adjacent in G, we write u ∼ v. A path P connecting two vertices u

and v is called a (u, v)-path, and we write uPv or vPu in order to specify the two

endvertices of P . Let uPv and xQy be two disjoint paths. If vx is an edge, we write

uPvxQy as the concatenation of P and Q through the edge vx. The independence number

of a graph G, denoted α(G), is the size of a largest independent set of G. For a given graph

R, we say that G is R-free if there does not exist an induced copy of R in G.

In this thesis, we study two types of problems: the Hamiltonian cycle problem and

the 2-factor problem.

1



I.1 Hamiltonicity and Chvátal’s Toughness Conjecture

A Hamiltonian cycle in a graph G is a cycle which contains every vertex of G. It

was named after Irish mathematician Sir William Rowan Hamilton who invented a game in

the 1850s where such a cycle was sought after in the polyhedron edges of a dodecahedron.

Historical evidence suggests, however, that such cycles were studied long before the 1850s.

In the 9th century, Hamiltonian cycles were studied in graphs corresponding to the moves

of a knight on a chessboard.

Deciding whether a graph contains a Hamiltonian cycle is NP -complete. Thus,

research has been done to find sufficient conditions which guarantee the existence of a

Hamiltonian cycle. In his 1952 paper [9], Dirac showed that if G is an n-vertex graph with

n ≥ 3 and δ(G) ≥ n
2
, then G is Hamiltonian. Ore showed in 1960 [16] that if G is an

n-vertex graph with n ≥ 3 and d(x) + d(y) ≥ n for every pair of nonadjacent vertices

x, y ∈ V (G), then G is Hamiltonian. Twelve years later, in 1972, Chvátal and Erdős [8]

showed that if G is a graph with connectivity k such that α(G) ≤ k, then G is

Hamiltonian. It was shown by Häggkvist and Nicoghossian [12] nine years later that if G is

a 2-connected graph of order n, connectivity k, and δ(G) ≥ n+k
3
, then G is Hamiltonian.

We refer the reader to [11] for a survey on Hamiltonian cycles.

Observe that these conditions are sufficient but not necessary as there exist graphs

which satisfy none of the above conditions but are Hamiltonian. For example, Cm, a cycle

on m vertices, is clearly Hamiltonian but does not satisfy any of the above conditions.

Because of this, we are interested in finding a property P such that if G is Hamiltonian

then G is “close to” having the property P .

In search of such a property, we study graph toughness. Graph toughness is a

measure of resilience under the removal of vertices, introduced by Chvátal in his 1973

paper [7]. Denote by c(G) the number of components of G. Let t ≥ 0 be a real number.

We say a graph G is t-tough if for each cut set S of G we have t · c(G− S) ≤ |S|. The

toughness of a graph G, denoted τ(G), is the maximum value of t for which G is t-tough if

2



G is non-complete, and is defined to be ∞ if G is complete.

It follows from the definition that every non-complete t-tough graph is

2⌈t⌉-connected, which implies that κ(G) ≥ 2τ(G) for non-complete graphs G. Therefore,

the minimum degree of any t-tough non-complete graph is at least 2⌈t⌉. It is interesting to

note that high connectivity does not imply high toughness. For example, the complete

bipartite graph Kn,n is n-connected but only 1-tough.

We know every Hamiltonian graph is 1-tough, but what about the converse? In the

same 1973 paper [7] where Chvátal introduced the notion of toughness, he also conjectured

the existence of a constant t0 such that every t0-tough graph on at least three vertices is

Hamiltonian. It was shown in [3] that t0 ≥ 9
4
. The conjecture has since been verified for

certain special classes of graphs, but remains open in general. Recent work has proven the

conjecture for 2K2-free graphs [6, 19, 17], (P2 ∪ P3)-free graphs [20], (K2 ∪ 2K1)-free graphs

[15], and planar chordal graphs. We refer the reader to [1] for a survey on more related

results. It is of interest to note that, for any positive integer k, there exist graphs which are

k-connected and still have no Hamiltonian cycle. Therefore, an analogous conjecture for

connectivity cannot exist.

In this thesis, we support Chvátal’s conjecture by proving the following result:

Theorem 1. If G is a 3-tough (P2 ∪ 3P1)-free graph on at least 3 vertices, then G is

Hamiltonian.

It is not known whether 3-tough is best possible. That being said, the graph H1

depicted in Figure 1 is (P2 ∪ 3P1)-free, 1-tough, and not Hamiltonian. Therefore, we must

have 1 < τ(G) ≤ 3.

I.2 2-Factors

For integers a and b with a ≥ 0 and b ≥ 1, we denote by aPb the graph consisting of

a disjoint copies of the path Pb. When a = 1, 1Pb is just Pb, and when a = 0, 0Pb is the

null graph. For two integers p and q, let [p, q] = {i ∈ Z : p ≤ i ≤ q}.

3



For an integer k ≥ 1, we say a k-regular spanning subgraph is a k-factor of G. A

Hamiltonian cycle then, can be viewed as a 2-regular spanning subgraph – a special

2-factor which only has a single cycle. It is well known, according to a theorem by

Enomoto, Jackson, Katerinis, and Saito [10] from 1998, that every k-tough graph with at

least three vertices has a k-factor if k|V (G)| is even and |V (G)| ≥ k + 1. In terms of a

sharp toughness bound, particular research interest has been taken when k = 2 for graphs

with restricted structures. For example, it was shown that every 3/2-tough 5-chordal graph

(graphs with no induced cycle of length at least 5) on at least three vertices has a

2-factor [4] and that every 3/2-tough 2K2-free graph on at least three vertices has a

2-factor [17]. The toughness bound 3/2 is best possible in both results.

A linear forest is a graph consisting of disjoint paths. In viewing 2K2 as a linear

forest on 4 vertices and the result by Ota and Sanka [17] that every 3/2-tough 2K2-free

graph on at least three vertices has a 2-factor, we investigate the existence of 2-factors in

R-free graphs when R is a linear forest on 5, 6, or 7 vertices. These graphs R are listed

below, where the unions are vertex disjoint unions.

1. P5 P4 ∪ P1 P3 ∪ P2 P3 ∪ 2P1 2P2 ∪ P1 P2 ∪ 3P1 5P1;

2. P6 P5 ∪ P1 P4 ∪ P2 P4 ∪ 2P1 2P3 P3 ∪ P2 ∪ P1 P3 ∪ 3P1 3P2

2P2 ∪ 2P1 P2 ∪ 4P1 6P1;

3. P7 P6 ∪ P1 P5 ∪ P2 P5 ∪ 2P1 P4 ∪ P3 P4 ∪ P2 ∪ P1 P4 ∪ 3P1 2P3 ∪ P1

P3 ∪ 2P2 P3 ∪ P2 ∪ 2P1 P3 ∪ 4P1 3P2 ∪ P1 2P2 ∪ 3P1 P2 ∪ 5P1 7P1.

Our results are the following:

Theorem 2. Let t > 0 be a real number, R be any linear forest on 5 vertices, and G be a

t-tough R-free graph on at least 3 vertices. Then G has a 2-factor provided that

(1) R ∈ {P4 ∪ P1, P3 ∪ 2P1, P2 ∪ 3P1} and t = 1 unless

4



(a) R = P2 ∪ 3P1, and G ∼= H0 or G contains H1, H2 or H3 as a spanning subgraph

such that E(G) \ E(Hi) ⊆ EG(S, V (G) \ (T ∪ S)) for each i ∈ [1, 3], where Hi, S

and T are defined in Figure 1.

(b) R = P3 ∪ 2P1 and G contains H1 as a spanning subgraph such that

E(G) \ E(H1) ⊆ EG(S, V (G) \ (T ∪ S)).

(2) R = 5P1 and t > 1.

(3) R ∈ {P5, P3 ∪ P2, 2P2 ∪ P1} and t = 3/2.

D1 D2

T

v1 v2 v3 v4 v5 v6

t1 t2 t3

The graph H0

D

T

x
S v1

v2

v3

t1 t2 t3

The graph H1

D

T

x
S

v1 v2

v3 v4

t1 t2 t3

The graph H2

D

T

x
S

v1 v2

v3 v4

t1 t2 t3

The graph H3

D

T

x
S

v1 v2

v3 v4

t1 t2 t3

The graph H4

Figure 1: The four exceptional graphs for Theorem 2(1), where S = {x} and T = {t1, t2, t3}.

Theorem 3. Let t > 0 be a real number, R be any linear forest on 6 vertices, and G be a

t-tough R-free graph on at least 3 vertices. Then G has a 2-factor provided that

(1) R ∈ {P4 ∪ 2P1, P3 ∪ 3P1, P2 ∪ 4P1, 6P1} and t > 1 unless R = 6P1 and G contains H5

with p = 5 as a spanning subgraph such that E(G) \ E(H5) ⊆ EG(S, V (G) \ (T ∪ S)),

where H5, S and T are defined in Figure 2.
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(2) R ∈ {P6, P5 ∪ P1, P4 ∪ P2, 2P3, P3 ∪ P2 ∪ P1, 3P2, 2P2 ∪ 2P1} and t = 3/2.

Kp

T

Sx1 x2

t1 t2 t3 t4 t5

y1y2y3 y4 y5

The graph H5

Figure 2: The exceptional graph for Theorem 3(1), where S = {x1, x2}, T = {t1, . . . , t5},
and p = 5.

Theorem 4. Let t > 0 be a real number, R be any linear forest on 7 vertices, and G be a

t-tough R-free graph on at least 3 vertices. Then G has a 2-factor provided that

(1) R ∈ {P4 ∪ 3P1, P3 ∪ 4P1, P2 ∪ 5P1} and t > 1 unless

(a) when R ̸= P4 ∪ 3P1, G contains H5 with p = 5 as a spanning subgraph such that

E(G) \ E(H5) ⊆ EG(S, V (G) \ (T ∪ S)) ∪ E(G[S]), where H5, S and T are

defined in Figure 2.

(b) R = P2 ∪ 5P1 and G contains one of H6, . . . , H11 as a spanning subgraph such

that E(G) \ E(Hi) ⊆ EG(S, V (G) \ (T ∪ S)) ∪ E(G[S]) ∪ E(G[V (G) \ (T ∪ S)]),

where Hi, S and T are defined in Figure 3 for each i ∈ [6, 11].

(2) R = 7P1 and t > 7
6
unless G contains H5 with p = 5 as a spanning subgraph such that

E(G) \ E(H5) ⊆ EG(S, V (G) \ (T ∪ S)) ∪ E(G[S]).

(3) R ∈ {P7, P6 ∪ P1, P5 ∪ P2, P5 ∪ 2P1, P4 ∪ P2 ∪ P1, 2P3 ∪ P1, P4 ∪ P3, P3 ∪ 2P2, P3 ∪ P2 ∪

2P1, 3P2 ∪ P1, 2P2 ∪ 3P1} and t = 3/2.

Remark 1. [Examples demonstrating sharp toughness bounds] The toughness bounds in

Theorems 2 to 4 are all sharp.

6



D

T

S

+
v1

v2
v3 v4 v5

t1 t2 t3 t4 t5

v0
x1x2

The graph H6

D

T

S

+

v0

v1 v2
v3 v4 v5

t1 t2 t3 t4 t5

x1x2

The graph H7

D

T

S

+
v2

v1

v0

v3 v4 v5

t1 t2 t3 t4 t5

x1x2

The graph H8

D

T

S

+

v0

v2 v3

v1

v4
v5

t1 t2 t3 t4 t5

x1x2

The graph H9

D

T

S

+

t1 t2 t3 t4 t5

v1 v2 v3 v4 v5

v0
x1x2

The graph H10

D1 D2

T

S

+

v1

v2

v3 v4

v5

v6

t1 t2 t3 t4 t5

x1x2

The graph H11

Figure 3: The five exceptional graphs for Theorem 4(1)(b), where S = {x1, x2}, T =
{t1, t2, t3, t4, t5}, and “+” represents the join of Hi[S] and Hi[T ], i ∈ [6, 11].

(1) Theorem 2(1) when R ∈ {P4 ∪ P1, P3 ∪ 2P1, P2 ∪ 3P1} and t = 1. The graph showing

that the toughness 1 is best possible is the complete bipartite Kn−1,n for any integer

n ≥ 2. The graph Kn,n−1 is P4-free and so is R-free, with

limn→∞ τ(Kn,n−1) = limn→∞
n−1
n

= 1, but contains no 2-factor.

(2) Theorem 2(2), Theorem 3(1) and Theorem 4(1) and t > 1. The graph showing that

the toughness is best possible is the graph H12, which is constructed as below: let

p ≥ 3, Kp be a complete graph, and y1, y2, y3 ∈ V (Kp) be distinct, S = {x}, and

T = {t1, t2, t3}, then H12 is obtained from Kp, S and T by adding edges tix and tiyi

for each i ∈ [1, 3]. See Figure 4 for a depiction. By inspection, the graph is 5P1-free

and (P4 ∪ 2P1)-free. So the graph is R-free for any

R ∈ {5P1, P4 ∪ 2P1, P3 ∪ 3P1, P2 ∪ 4P1, 6P1, P4 ∪ 3P1, P3 ∪ 4P1, P2 ∪ 5P1}. For any

given p ≥ 3, the graph H12 does not contain a 2-factor, as any 2-factor has to contain

the edges t1x, t2x and t3x. We will show τ(H12) = 1 in the last section of Chapter III.

7



(3) For Theorem 2(3), Theorem 3(2) and Theorem 4(3) and t = 3
2
: note that all the

graphs R in these cases contain 2K2 as an induced subgraph. Chvátal [7] constructed

a sequence {Gk}∞k=1 of split graphs (graphs whose vertex set can be partitioned into a

clique and an independent set) having no 2-factors and τ(Gk) =
3k

2k+1
for each positive

integer k. As the class of 2K2-free graphs is a superclass of split graphs, 3
2
-tough is

the best possible toughness bound for a 2K2-free graph to have a 2-factor.

(4) Theorem 4(2) and t > 7
6
. The graph showing that the toughness is best possible is the

graph H5 with p ≥ 6, which is constructed as below: let p ≥ 5, Kp be a complete graph,

and y1, y2, y3, y4, y5 ∈ V (Kp) be distinct, S = {x1, x2}, and T = {t1, t2, t3, t4, t5}. Then

H5 is obtained from Kp, S and T by adding edges tixj and tiyi for each i ∈ [1, 5] and

each j ∈ [1, 2]. See Figure 2 for a depiction. By inspection, the graph is 7P1-free. For

any given p ≥ 5, the graph H5 does not contain a 2-factor, as any 2-factor has to

contain at least three edges from one of x1 and x2 to at least three vertices of T . We

will show τ(H5) =
7
6
when p ≥ 6 in the last section of Chapter III.

Kp

T

x

The graph H12

S

t1 t2 t3

y1 y2 y3

Figure 4: Sharpness example for Theorem 2(2), Theorem 3(1) and Theorem 4(1), where
S = {x} and T = {t1, t2, t3}.

To supplement Theorems 2 to 4, we show that the exceptional graphs in Figures 1

to 3 satisfy the corresponding conditions below.

Theorem 5. The following statements hold.

8



(1) The graph Hi is (P2 ∪ 3P1)-free, contains no 2-factor, and τ(Hi) = 1 for each

i ∈ [0, 4], the graph H1 is also (P3 ∪ 2P1)-free.

(2) The graph Hi is (P2 ∪ 5P1)-free and contains no 2-factor for each i ∈ [5, 11], H5 with

p = 5 is (P3 ∪ 4P1)-free and 6P1-free. Furthermore, τ(H5) =
6
5
when p = 5 and

τ(Hi) =
7
6
for each i ∈ [6, 11].

We have explained that H5 and H12 are R-free for the corresponding linear forests R

and contain no 2-factor in Remark 1(2) and (4). The Theorem below is to verify the

toughness of the graphs H5 with p ≥ 6 and H12.

Theorem 6. The following statements hold.

(1) τ(H5) =
7
6
when p ≥ 6;

(2) τ(H12) = 1.

9



CHAPTER II: PROOF OF THEOREM 1

II.1 Preliminaries

In this section, we give results necessary to complete the proof of Theorem 1.

Lemma 1 (Dirac [9], Ore [16]). Let G be a graph on n vertices such that δ(G) ≥ n+1
2
.

Then G is Hamiltonian-connected.

Lemma 2 (Bauer et al. [2]). Let G be a t-tough graph on n ≥ 3 vertices with

δ(G) > n/(t+ 1)− 1. Then G is Hamiltonian.

Lemma 3 (Li et al. [15]). Let R be an induced subgraph of P4, P1 ∪ P3 or P2 ∪ 2P1. Then

every R-free 1-tough graph on at least three vertices is Hamiltonian.

The following lemma is a consequence of Menger’s theorem, which can be found in

[5]. For a positive integer k, define [1, k] = {1, 2, · · · , k}.

Lemma 4. Let G be a k-connected graph and X1, X2 be distinct subsets of V (G). Then

there exist k internally disjoint paths P1, . . . , Pk such that

(a) |V (Pi) ∩X1| = |V (Pi) ∩X2| = 1, and Pi is internally disjoint from each X1 and X2.

(b) if |Xi| ≥ k for some i ∈ [1, 2], then V (Pj) ∩Xi ̸= V (Pℓ) ∩Xi for all distinct

j, ℓ ∈ [1, k].

(c) if |Xi| < k for some i ∈ [1, 2], then every vertex of Xi is an end-vertex of some path

Pj for j ∈ [1, k].

The following lemma provides some structural properties of (P2 ∪ 3P1)-free graphs.

Lemma 5. Let G be a connected (P2 ∪ 3P1)-free graph, and S ⊆ V (G) be a cut set such

that G− S has at least three components. Then we have the following statements:

(a) If G− S has a nontrivial component, then G− S has exactly three components.

10



(b) If G− S has a nontrivial component, then the component is (P2 ∪ P1)-free.

Proof. For part (a), let D denote a nontrivial component of G− S. Assume for

the sake of contradiction that G− S has more than three components. Taking an edge

from D and a single vertex from three other components, respectively, gives an induced

copy of P2 ∪ 3P1. This gives a contradiction to the (P2 ∪ 3P1)-freeness of G.

For part (b), G− S must have exactly three components by part (a). Assume for the

sake of contradiction that the nontrivial component is not (P2 ∪ P1)-free. Then taking an

induced copy of P2 ∪ P1 from this component and one vertex each from the other two

components gives an induced copy of P2 ∪ 3P1, which contradicts the (P2 ∪ 3P1)-freeness of

G.

Note that in any (P2 ∪ 3P1)-free graph G, the components yielded by any cut set S

such that c(G− S) ≥ 3 must be (P2 ∪ P1)-free. The following lemmas deal with the

structure of (P2 ∪ P1)-free graphs. Lemma 6 is used in the proof of Lemma 7.

Lemma 6. If G is a (P2 ∪ P1)-free graph and S is a cut set of G, then every component of

G− S is trivial.

Proof. Assume there exists some nontrivial component of G− S. Since S is a cut

set, it must disconnect G into at least two components. Taking an edge from a nontrivial

component and a vertex from another component gives an induced copy of P2 ∪ P1,

contradicting the (P2 ∪ P1)-freeness of G.

The independence number of a graph G, denoted α(G), is the size of a largest

independent set of G.

Lemma 7. Let t > 0 be real and G be a (P2 ∪ P1)-free graph on n vertices with

α(G) ≤ n
t+1

. Then δ(G) ≥ n− n
t+1

.

Proof. Assume δ(G) < n− n
t+1

. Let v ∈ V (G) with dG(v) = δ(G), and let

W = V (G) \NG(v). Then |W | = |V (G)| − δ(G) > n
t+1

. As G is (P2 ∪ P1)-free, and NG(v) is

11



a cut set of G, every component of G−NG(v) is trivial by Lemma 6. Since W = G−NG(v),

W is an independent set of G. However, |W | > n
t+1

≥ α(G), giving a contradiction.

II.2 Proof of Theorem 1

Let
⇀

C be a cycle with some fixed orientation. For any u, v ∈ V (C), we denote by

u
⇀

Cv the path from u to v following the orientation of C. Similarly, we denote by u
↼

Cv the

inverse path from u to v. The immediate successor of u on
⇀

C is denoted by u+.

Theorem 1. If G is a 3-tough (P2 ∪ 2P1)-free graph on at least 3 vertices, then G is

Hamiltonian.

Proof. Let G be a 3-tough (P2 ∪ 3P1)-free graph. We may assume that G is not complete,

otherwise there exists a Hamiltonian cycle. Therefore, G is 6-connected. By Theorem 2, we

may assume δ(G) ≤ n
4
− 1. Since δ(G) ≥ 6, we get n ≥ 28. Let C be a longest cycle of G.

Claim 1. |V (C)| ≥ 3n
4
.

Proof. We assume first that there exist u, v ∈ V (G) with u ̸∼ v such that

|N(u) ∪N(v)| ≤ n
4
. Let S = N(u) ∪N(v).

Note that the components of G− S cannot all be trivial, as this would imply

|S|
c(G−S)

≤
n
4
3n
4

< 3, but G is 3-tough. Thus, there must exist a nontrivial component D in

G− S. Since each of u, v are components of G− S and G− S has a nontrivial component,

it follows that c(G− S) ≥ 3. Thus G− S has exactly 3 components by Lemma 5. Since G

is 3-tough, it follows that α(G) ≤ n
4
.

Also, we know that δ(D) ≥ |V (D)| − n
4
≥ |V (D)|+1

2
, as n ≥ 12 and |V (D)| ≥ 3n

4
− 2

by Lemma 7. Thus D is Hamiltonian-connected by Lemma 1. Since G is 2-connected, by

Lemma 4 we can find in G two disjoint paths P1 from u to some x1 ∈ V (D), and P2 from u

to some x2 ∈ V (D) where x1 ̸= x2, and each Pi is internally disjoint from D. As D is

Hamiltonian-connected, we can find a Hamiltonian path Q in D from x1 to x2. Define

12



C ′ = uP1x1Qx2P2u. Then |V (C ′)| ≥ |V (D)|+ 3 ≥ 3n
4
− 2 + 3 = 3n

4
+ 1 > 3n

4
. As C is a

longest cycle of G, |V (C)| ≥ |V (C ′)| ≥ 3n
4
.

We then assume that for any u, v ∈ V (G) with u ̸∼ v, it holds that

|N(u) ∪N(v)| > n
4
. Note that δ(G) ≤ n

4
− 1 by our earlier assumption. Let u ∈ V (G) with

dG(u) = δ(G). Define G1 = G− (NG(u) ∪ {u}). We know that G1 is (P2 ∪ 2P1)-free, as

there are no edges between G1 and u and the original graph is (P2 ∪ 3P1)-free. If G1 is

1-tough, then it has a Hamiltonian cycle by Lemma 3 which has at least 3n
4
vertices, thus

|V (C)| ≥ 3n
4
. Thus we may assume G1 is not 1-tough. Let W be a tough set of G1, i.e. W

is a cut set of G1 such that |W |
c(G1−W )

= τ(G1).

We claim below that c(G1 −W ) = 2. We first note that G1 −W has at least one

nontrivial component. Otherwise, all components of G1 −W are trivial, i.e.

c(G1 −W ) = |V (G1)| − |W |. Since τ(G1) < 1, we have |W | < c(G1 −W ). Then

c(G1 −W ) > 1
2
|V (G1)| ≥ 1

2
(n− n

4
) = 3n

8
. Let S = N(u) ∪ {u} ∪W . Then

c(G− S) = c(G1 −W ) and |S|
c(G−S)

= |S|
c(G1−W )

≤ 5n/8
3n/8

< 3, which is a contradiction as G is

3-tough. Thus G1 −W has a nontrivial component.

Next, assume that G1 −W has more than 2 components. Then by the argument

above, at least one of the components is nontrivial. Taking an edge from a nontrivial

component and a vertex from each of the two others gives a copy of P2 ∪ 2P1, which

contradicts the (P2 ∪ 2P1)-freeness of G1. Thus, we must have c(G1 −W ) = 2.

Let D1, D2 be the two components of G1 −W . Then as G1 is not 1-tough, we get

|W | = 1. Note that |V (Di)| ≥ 2. Otherwise, say |V (D2)| = 1 and let V (D2) = {v}, then

|N(u) ∪N(v)| ≤ n
4
− 1 + 1 = n

4
which contradicts the assumption that |N(u) ∪N(v)| > n

4

for any nonadjacent u, v ∈ V (G). Since both D1 and D2 are nontrivial and G1 is

(P2 ∪ 2P1)-free, each Di is a complete graph.

Then by Lemma 4, we can find in G two disjoint paths P1 from some x1 ∈ V (D1) to

some x2 ∈ V (D2), and P2 from some y1 ∈ V (D1) to some y2 ∈ V (D2) where

x1 ̸= y1, x2 ̸= y2. As each Di is complete, we can find a Hamiltonian path Qi in Di from xi
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to yi. Then the cycle

C ′ = x1P1x2Q2y2P2y1Q1x1

satisfies |V (C ′)| ≥ |V (D1)|+ |V (D2)|+ 2 ≥ 3n
4
. As C is a longest cycle, we have

|V (C)| ≥ |V (C ′)| ≥ 3n
4
.

Assume that C is not Hamiltonian, as otherwise we are done. Thus G− V (C) has

components. Orient C in the clockwise direction and denote the orientation by
⇀

C.

Claim 2. Let H be any component of G− V (C). Then we have the following statements:

(a) |NC(H)| ≥ 2τ(G) ≥ 6.

(b) for any two x, y ∈ NC(H), xy ̸∈ E(C).

(c) for any two x, y ∈ NC(H), x+y+ ̸∈ E(G).

(d) H is a trivial component.

Proof. Let H be a component of G− V (C), and x, y ∈ NC(H). Note that since G

is 3-tough, 2τ(G) ≥ 6.

For part (a), assume |NC(H)| < 2τ(G). Then |NC(H)|
c(G−NC(H))

< 2τ(G)
2

= τ(G),

contradicting the toughness of G. Thus we have |NC(H)| ≥ 2τ(G) ≥ 6.

For part (b), |NC(H)| ≥ 6 by part (a). If there exist distinct x, y ∈ NC(H) such that

xy ∈ E(C), then let h1 ∈ NH(x), h2 ∈ NH(y). Assume without loss of generality that

y = x+. As H is connected, there exists some (h1, h2)-path P in H. Then the cycle

C ′ = xh1Ph2y
⇀

Cx is a cycle longer than C, contradicting the maximality of C.

For part (c), assume for the sake of contradiction that x+y+ ∈ E(G). Let

h1 ∈ NH(x), h2 ∈ NH(y). Assume without loss of generality that x appears before y on the

cycle. Again, as H is connected, there exists some (h1, h2)-path P in H. Then the cycle

C ′ = xh1Ph2y
↼

Cx+y+
⇀

Cx is a cycle longer than C, contradicting the maximality of C.

For part (d), note that {x+ | x ∈ NC(H)} is an independent set of G by Claim 2 (c).

We assume that H is nontrivial, then taking an edge from H and three vertices from the
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independent set {x+ | x ∈ NC(H)} gives an induced copy of (P2 ∪ 3P1).

Claim 3. c(G− V (C)) ≤ 3.

Proof. By Claim 2 (d), each component of G− V (C) is trivial. For the sake of

contradiction, assume G− V (C) has at least 4 components, and let x, y, z, w be 4 of them.

Then the set S = V (C) \NC({x, y, z, w}) is independent. Otherwise, taking an edge from

the set S and three of {x, y, z, w} gives an induced copy of P2 ∪ 3P1. Then there must exist

3 consecutive vertices u1, u2, u3 ∈ NC({x, y, z, w}) such that u1, u2, u3 appear in this order

along
⇀

C. Otherwise |S| ≥ n
4
, therefore the independent set S ∪ {x, y, z, w} has size at least

|S|+ 4 > n
4
, contradicting τ(G) ≥ 3. Note that none of {x, y, z, w} can be adjacent to two

consecutive ui, as otherwise we may easily extend the cycle C. Note also that each ui

(1 ≤ i ≤ 3) is adjacent to at least two of {x, y, z, w}, as otherwise the set {ui, x, y, z, w}

gives an induced copy of P2 ∪ 3P1. Then, we may assume that

N(u1) ∩ {x, y, z, w} = N(u3) ∩ {x, y, z, w} = {x, y} and N(u2) ∩ {x, y, z, w} = {z, w}. Then

by Claim 2 (c), we have u2 ̸∼ u+
3 . Then, taking the edge u2z and the vertices x, y, u+

3 gives

an induced copy of P2 ∪ 3P1, a contradiction. Therefore c(G− V (C)) ≤ 3.

Claim 4. Let H be any component of G− V (C), and w, z ∈ NC(H) be any two distinct

vertices. Let v ∈ V (C) be a vertex such that the edge vv+ is on w+
⇀

Cz+. Then v ̸∼ z+ or

v+ ̸∼ w+.

Proof. By Claim 2 (d), H is trivial. Let h ∈ NH(w) ∩NH(z). Assume for the sake

of contradiction that v ∼ z+ and v+ ∼ w+. Then

C ′ = whz
↼

Cv+w+
⇀

Cvz+
⇀

Cw

is a longer cycle than C, contradicting the maximality of C.

By Claim 2 (d), we let x ∈ V (G) \ V (C) be a component of G− V (C). By Claim 2

(a), |NC(x)| ≥ 2τ(G) ≥ 6. We let x1, x2, · · · , x6 ∈ NC(x) be all distinct vertices and assume
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they appear in the order x1, · · · , x6 along
⇀

C. Note that {x+
1 , · · · , x+

4 } is an independent set

in G by Claim 2 (c). Assume without loss of generality that |V (x4

⇀

Cx1)| ≥ (|V (C)| − 2)/2.

Label the vertices on this segment by x4, x
+
4 , y1, y2, · · · , yt, x1.

Let X = {x, x+
1 , x

+
2 , x

+
3 , x

+
4 }. We claim that for each edge vv+ in y1

⇀

Cyt−1, one of v

and v+ is adjacent to at least three vertices in X, and the other is adjacent to none of X.

Suppose not. Considering that G is (P2 ∪ 3P1)-free, we have to consider the case where

both v and v+ are adjacent to at least three vertices of X. Then, since C is a longest cycle,

we have NX(v) = {x+
2 , x

+
3 , x

+
4 } and NX(v

+) = {x, x+
1 , x

+
2 }. As v++ ̸= x1, the edge vx+

2 and

the vertices x, x+
1 , v

++ gives an induced copy of P2 ∪ 3P1, for otherwise we would have an

edge contradicting Claim 2 (c) or Claim 4. This proves the claim.

Let Y be the set of even-indexed vertices on the segment y1
⇀

Cyt−1. Then the above

claim together with the fact y1 ∼ x+
4 implies that every vertex of Y is not adjacent to any

of X.

Note that Y is an independent set of G, as otherwise taking an edge with

end-vertices in Y and 3 vertices from the set {x+
1 , · · · , x+

4 } gives an induced copy of

P2 ∪ 3P1. Thus, Y ∪ {x+
1 , · · · , x+

4 } is also an independent set in G.

By Claim 2 (d) and Claim 3, we have |V (C)| ≥ n− 3. Thus

|Y | ≥ ⌊1
2
( |V (C)|−2

2
)− 1⌋ ≥ ⌊n−9

4
⌋. Therefore |Y ∪{x+

1 , · · · , x+
4 }| > n

4
, contradicting τ(G) ≥ 3.

This completes the proof.
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CHAPTER III: PROOF OF THEOREMS 2, 3, 4, 5, AND 6

III.1 Preliminaries

One of the main proof ingredients of Theorems 2 to 4 is to apply Tutte’s 2-factor

Theorem. We start with some notation. Let S and T be disjoint subsets of vertices of a

graph G, and D be a component of G− (S ∪ T ). The component D is said to be an odd

component (resp. even component) of G− (S ∪ T ) if eG(D,T ) ≡ 1 (mod 2)

(resp. eG(D,T ) ≡ 0 (mod 2)). Let h(S, T ) be the number of all odd components of

G− (S ∪ T ). Define

δ(S, T ) = 2|S| − 2|T |+
∑
y∈T

dG−S(y)− h(S, T ).

It is easy to see that δ(S, T ) ≡ 0 (mod 2) for every S, T ⊆ V (G) with S ∩ T = ∅. We use

the following criterion for the existence of a 2-factor, which is a restricted form of Tutte’s

f -factor Theorem.

Lemma 8 (Tutte [21]). A graph G has a 2-factor if and only if δ(S, T ) ≥ 0 for every

S, T ⊆ V (G) with S ∩ T = ∅.

An ordered pair (S, T ), consisting of disjoint subsets of vertices S and T in a graph

G, is called a barrier if δ(S, T ) ≤ −2. By Lemma 8, if G does not have a 2-factor, then G

has a barrier. In [13], a biased barrier of G is defined as a barrier (S, T ) of G such that

among all the barriers of G,

(1) |S| is maximum; and

(2) subject to (1), |T | is minimum.

The following properties of a biased barrier were derived in [13].

Lemma 9. Let G be a graph without a 2-factor, and let (S, T ) be a biased barrier of G.

Then each of the following holds.
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(1) The set T is independent in G.

(2) If D is an even component with respect to (S, T ), then eG(T,D) = 0.

(3) If D is an odd component with respect to (S, T ), then for any y ∈ T , eG(y,D) ≤ 1.

(4) If D is an odd component with respect to (S, T ), then for any x ∈ V (D), eG(x, T ) ≤ 1.

Let G be a graph without a 2-factor and (S, T ) be a barrier of G. For an integer

k ≥ 0, let C2k+1 denote the set of odd components D of G− (S ∪ T ) such that

eG(D,T ) = 2k + 1. The following result was proved as a claim in [13] but we include a

short proof here for self-completeness.

Lemma 10. Let G be a graph without a 2-factor, and let (S, T ) be a biased barrier of G.

Then |T | ≥ |S|+
∑

k≥1 k|C2k+1|+ 1.

Proof. Let U = V (G) \ S. Since (S, T ) is a barrier,

δ(S, T ) = 2|S| − 2|T |+
∑
y∈T

dG−S(y)− h(S, T )

= 2|S| − 2|T |+
∑
y∈T

dG−S(y)−
∑
k≥0

|C2k+1| ≤ −2.

By Lemma 9 (1) and (2),

∑
y∈T

dG−S(y) =
∑
y∈T

eG(y, U) = eG(T, U) =
∑
k≥0

(2k + 1)|C2k+1|.

Therefore, we have

−2 ≥ 2|S| − 2|T |+
∑
k≥0

(2k + 1)|C2k+1| −
∑
k≥0

|C2k+1|,

which yields |T | ≥ |S|+
∑

k≥1 k|C2k+1|+ 1.

We use the following lemmas in our proof.
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Lemma 11. Let t ≥ 1, G be a t-tough graph on at least three vertices containing no

2-factor, and (S, T ) be a barrier of G. Then the following statements hold.

(1) If C1 ̸= ∅, then |S|+ 1 ≥ 2t. Consequently, S = ∅ implies C1 = ∅, and |S| = 1 implies

C1 = ∅ when t > 1.

(2)
⋃

k≥1 C2k+1 ̸= ∅.

Proof. Since G is 1-tough and thus is 2-connected, dG(y) ≥ 2 for every y ∈ T .

This together with Lemma 9 (1)-(3) implies that |S|+
∑

k≥0 |C2k+1| ≥ 2.

For the first part of (1), suppose to the contrary that |S|+ 1 < 2t. Let D ∈ C1 and

y ∈ V (T ) be adjacent in G to some vertex v ∈ V (D). As eG(D,T ) = eG(D, y) = 1,

|S|+
∑

k≥0 |C2k+1| ≥ 2 and |T | ≥ |S|+ 1 by Lemma 10, we have c(G− (S ∪ {y})) ≥ 2

regardless of whether or not S = ∅. But c(G− (S ∪ {y})) ≥ 2 implies τ(G) < 2t/2 = t,

contradicting G being t-tough. The second part of (1) is a consequence of the first part.

For (2), suppose to the contrary that
⋃

k≥1 C2k+1 = ∅. By Lemma 11 (1),

|S|+ |C1| ≥ 2 implies |S| ≥ 1. Consequently, |T | ≥ 2 by Lemma 10. As every component of

G− (S ∪ T ) in C1 is connected to exactly one vertex of T , S is a cutset of G with

c(G− S) ≥ |T |. However, |T | ≥ |S|+
∑

k≥1 k|C2k+1|+ 1 = |S|+ 1, implying τ(G) < 1, a

contradiction.

A path P connecting two vertices u and v is called a (u, v)-path, and we write uPv

or vPu in specifying the two endvertices of P . Let uPv and xQy be two disjoint paths. If

vx is an edge, we write uPvxQy as the concatenation of P and Q through the edge vx. Let

G be a graph without a 2-factor, and let (S, T ) be a barrier of G. For y ∈ T , define

h(y) = |{D : D is an odd component of G− (S ∪ T ), eG(D,T ) ≥ 3, eG(y,D) ≥ 1}|.

Lemma 12. Let G be a graph without a 2-factor, and let (S, T ) be a biased barrier of G.

Then the following statements hold.

(1) If |
⋃

k≥1 C2k+1| ≥ 1, then G contains an induced P4 ∪ aP1, where a = |T | − 2.
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(2) If there exists y0 ∈ T with h(y0) ≥ 2, then for some integer b ≥ 7, G contains an

induced Pb ∪ aP1, where a = |T | − 3. Furthermore, an induced Pb ∪ aP1 can be taken

such that the vertices in aP1 are from T and the path Pb has the form

y1x
∗
1P1x1y0x2P2x

∗
2y2, where y0, y1, y2 ∈ T and x∗

1P1x1 and x∗
2P2x2 are respectively

contained in two distinct components from
⋃

k≥1 C2k+1 such that eG(x, T ) = 0 for

every internal vertex x from P1 and P2.

Proof. Lemma 9 (1), (3) and (4) will be applied frequently in the arguments

sometimes without mentioning it.

Let D ∈
⋃

k≥1 C2k+1. The existence of D implies |T | ≥ 3 and |V (D)| ≥ 3 by

Lemma 9 (3) and (4). We claim that for a fixed vertex x1 ∈ V (D) such that eG(x1, T ) = 1,

there exists distinct x2 ∈ V (D) and an induced (x1, x2)-path P in D with the following two

properties: (a) eG(x2, T ) = 1, and (b) eG(x, T ) = 0 for every x ∈ V (P ) \ {x1, x2}. Note

that the vertex x1 exists by Lemma 9 (4). Let y1 ∈ T be the vertex such that

eG(x1, T ) = eG(x1, y1) = 1 and W = NG(T \ {y1}) ∩ V (D). By Lemma 9 (4), x1 ̸∈ W . Now

in D, we find a shortest path P connecting x1 and some vertex from W , say x2. Then x2

and P satisfy properties (a) and (b), respectively. Let y2 ∈ T such that

eG(x2, T ) = eG(x2, y2) = 1. The vertex y2 uniquely exists by the choice x2 and Lemma 9

(4). By Lemma 9 (1) and (4), and the choice of P , y1x1Px2y2 and T \ {y1, y2} together

contains an induced P4 ∪ aP1. This proves (1).

We now prove (2). By Lemma 9 (3), the existence of y0 implies |
⋃

k≥1 C2k+1| ≥ 2,

which in turn gives |T | ≥ 3 by Lemma 9 (3) again. We let D1, D2 ∈
⋃

k≥1 C2k+1 be distinct

such that eG(y0, D1) = 1 and eG(y0, D2) = 1. Let xi ∈ Di such that

eG(y0, Di) = eG(y0, xi) = 1. By the argument in the first paragraph above, we can find

x∗
i ∈ V (Di) \ {xi} and an (xi, x

∗
i )-path Pi in Di for each i ∈ {1, 2}. By the choice of Pi and

Lemma 9 (4), there are unique y1, y2 ∈ T \ {y0} such that x∗
i yi ∈ E(G). If y1 ̸= y2, by the

choice of P1 and P2 and Lemma 9 (1) and (4), we know that y1x
∗
1P1x1y0x2P2x

∗
2y2 and

T \ {y0, y1, y2} together contain an induced Pb ∪ aP1 for some integer b ≥ 7. Thus we
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assume y1 = y2. Then the vertex y1 can also play the role of y0. Let

W = NG(T \ {y0, y1}) ∩ V (D2). By Lemma 9 (4), x2, x
∗
2 ̸∈ W . Now in D2, we find a

shortest path P ∗
2 connecting some vertex of {x2, x

∗
2} and some vertex from W , say z. If P ∗

2

is an (x2, z)-path, then y1x
∗
1P1x1y0x2P

∗
2 z and T \ {y0, y1, y2} together contain an induced

Pb ∪ aP1. If P
∗
2 is an (x∗

2, z)-path, then y0x1P1x
∗
1y1x

∗
2P

∗
2 z and T \ {y0, y1, y2} together

contain an induced Pb ∪ aP1. The second part of (2) is clear by the construction above.

Let G be a non-complete graph. A cutset S of V (G) is a tough-set of G if

|S|
c(G− S)

= τ(G).

Lemma 13. If G is a connected graph and S is a tough-set of G, then for every x ∈ S, x

is adjacent in G to vertices from at least two components of G− S.

Proof. Assume to the contrary that there exists x ∈ S such that x is adjacent in

G to vertices from at most one component of G− S. Then

c(G− (S \ {x})) = c(G− S) ≥ 2 and

|S \ {x}|
c(G− (S \ {x}))

<
|S|

c(G− S)
= τ(G),

giving a contradiction.

III.2 Proof of Theorems 2, 3, and 4

Let R be any linear forest on at most 7 vertices. If G is R-free, then G is also

R∗-free for any supergraph R∗ of R. To prove Theorems 2 to 4, we will show that the

corresponding statements hold for a supergraph R∗ of R, which simplifies the cases of

possibilities of R. Let us first list the supergraphs that we will use.

(1) P4 ∪ 3P1 is a supergraph of the following graphs: P4 ∪ 2P1, P3 ∪ 3P1, and P2 ∪ 4P1;

(2) 6P1 is a supergraph of 5P1;
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(3) P3 ∪ 2P2 is a supergraph of 3P2;

(4) P7 ∪ 2P1 is a supergraph of the following graphs:

(a) P5, P3 ∪ P2, 2P2 ∪ P1;

(b) P6, P5 ∪ P1, P4 ∪ P2, 2P3, P3 ∪ P2 ∪ P1, 2P2 ∪ 2P1;

(c) P7, P6 ∪ P1, P5 ∪ 2P1, P4 ∪ P2 ∪ P1, 2P3 ∪ P1, P3 ∪ P2 ∪ 2P1, 2P2 ∪ 3P1.

Those supergraphs above together with the graphs R listed below cover all the 33 R graphs

described in Theorems 2 to 4. Theorems 2 to 4 are then consequences of the theorem below.

Theorem 7. Let t > 0 be a real number, R be a linear forest, and G be a t-tough R-free

graph on at least 3 vertices. Then G has a 2-factor provided that

(1) R ∈ {P4 ∪ P1, P3 ∪ 2P1, P2 ∪ 3P1} and t = 1 unless

(a) R = P2 ∪ 3P1, and G ∼= H0 or G contains H1, H2, H3 or H4 as a spanning

subgraph such that E(G) \ E(Hi) ⊆ EG(S, V (G) \ (T ∪ S)) for each i ∈ [1, 3],

where Hi, S and T are defined in Figure 1.

(b) R = P3 ∪ 2P1 and G contains H1 as a spanning subgraph such that

E(G) \ E(H1) ⊆ EG(S, V (G) \ (T ∪ S)).

(2) R ∈ {P4 ∪ 3P1, P3 ∪ 4P1, P2 ∪ 5P1, 6P1} and t > 1 unless

(a) when R ̸= P4 ∪ 3P1, G contains H5 with p = 5 as a spanning subgraph such that

E(G) \ E(H5) ⊆ EG(S, V (G) \ (T ∪ S)) ∪ E(G[S]), where H5, S and T are

defined in Figure 2.

(b) R = P2 ∪ 5P1 and G contains one of H6, . . . , H11 as a spanning subgraph such

that E(G) \ E(Hi) ⊆ EG(S, V (G) \ (T ∪ S)) ∪ E(G[S]) ∪ E(G[V (G) \ (T ∪ S)]),

where Hi, S and T are defined in Figure 3 for each i ∈ [6, 11].

(3) R = 7P1 and t > 7
6
unless G contains H5 with p = 5 as a spanning subgraph such that

E(G) \ E(H5) ⊆ EG(S, V (G) \ (T ∪ S)) ∪ E(G[S]).
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(4) R ∈ {P7 ∪ 2P1, P5 ∪ P2, P4 ∪ P3, P3 ∪ 2P2, 3P2 ∪ P1} and t = 3/2.

Proof. Assume by contradiction that G does not have a 2-factor. By Lemma 8, G has a

barrier. We choose (S, T ) to be a biased barrier. Thus (S, T ) and G satisfy all the

properties listed in Lemma 9. These properties will be used frequently even without further

mentioning sometimes. By Lemma 10,

|T | ≥ |S|+
∑
k≥1

k|C2k+1|+ 1. (III.1)

Since t ≥ 1, by Lemma 11(2), we know that

⋃
k≥1

C2k+1 ̸= ∅. (III.2)

This implies |T | ≥ 3 and so G contains an induced P4 ∪ P1 by Lemma 12 (1). Thus we

assume R ̸= P4 ∪ P1 in the rest of the proof.

Claim 5. R ̸∈ {P3 ∪ 2P1, P2 ∪ 3P1} unless G falls under one of the exceptional cases as in

(a) and (b) of Theorem 7(1).

Proof. Assume instead that R ∈ {P3 ∪ 2P1, P2 ∪ 3P1}. Thus t = 1. We may assume that

G does not fall under any of the exceptional cases as in (a) and (b) of Theorem 7 (1).

It must be the case that |T | = 3, as otherwise G contains an induced P4 ∪ 2P1 by

Lemma 12(1), and so contains an induced R. By Equation (III.1), we have

|
⋃

k≥1 C2k+1|+ |S| ≤ 2. By Lemma 11(1), we have that C0 = ∅ if S = ∅. Since G is 1-tough

and so δ(G) ≥ 2, Lemma 9(1)-(3) implies that |
⋃

k≥1 C2k+1|+ |S| = 2. By (III.2), we have

the two cases below.

Case 1: |
⋃

k≥1 C2k+1| = 2 and S = ∅.

Let D1, D2 ∈
⋃

k≥1 C2k+1 be the two odd components of G− (S ∪ T ). Since |T | = 3,

Lemma 9(3) implies that eG(Di, T ) = 3 for each i ∈ [1, 2]. Let y ∈ T and x ∈ V (D1) such

that xy ∈ E(G). We let x1 be a neighbor of x from D1. Then yxx1 is an induced P3 by
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Lemma 9(3). Let y1 ∈ T \ {y} such that y1x1 ̸∈ E(G), which is possible as |T | = 3 and

eG(x1, T ) ≤ 1 by Lemma 9(4). We now let x2 ∈ V (D2) such that eG(x2, {y, y1}) = 0, which

is again possible as |NG(T ) ∩ V (D2)| = 3 and each vertex of D2 is adjacent in G to at most

one vertex of T . However, yxx1, y1 and x2 together form an induced copy of P3 ∪ 2P1.

Therefore, we assume R = P2 ∪ 3P1.

We first claim that |V (Di)| = 3 for each i ∈ [1, 2]. Otherwise, say |V (D2)| ≥ 4. Let y ∈ T

and x ∈ V (D1) such that xy ∈ E(G). Take x1 ∈ V (D2) such that eG(x1, T ) = 0, which

exists as |NG(T ) ∩ V (D2)| = 3. Then xy, x1 and T \ {y} together form an induced copy of

P2 ∪ 3P1, giving a contradiction. We next claim that Di = K3 for each i ∈ [1, 2]. Otherwise,

say D1 ̸= K3. As D1 is connected, it follows that D1 = P3. If also D2 ̸= K3 and so

D2 = P3, then deleting the two vertices of degree 2 from both D1 and D2 gives three

components (note that each vertex of T is adjacent in G to one vertex of D1 and one vertex

of D2), showing that τ(G) ≤ 2/3 < 1. Thus D2 = K3. We let x1, x2 ∈ V (D1) be

nonadjacent, y1, y2 ∈ T such that eG(xi, yi) = 1 for each i ∈ [1, 2], and z1, z2 ∈ V (D2) such

that eG(yi, zi) = 1 for each i ∈ [1, 2]. Let y ∈ T \ {y1, y2}. Then z1z2, y, x1 and x2 together

form an induced copy of P2 ∪ 3P1, giving a contradiction.

Thus |V (Di)| = 3 and Di = K3 for each i ∈ [1, 2]. However, this implies that G ∼= H0.

Case 2: |
⋃

k≥1 C2k+1| = 1 and |S| = 1.

Let D ∈
⋃

k≥1 C2k+1 be the odd component of G− (S ∪ T ). Assume first that R = P3 ∪ 2P1.

Then we have |V (D)| = 3. Otherwise, |V (D)| ≥ 4. Let x ∈ V (D) such that eG(x, T ) = 0

and P be a shortest path of D from x to a vertex, say x1 ∈ V (D) ∩NG(T ). Let y ∈ T such

that eG(x1, y) = 1. Then xPx1y and T \ {y} form an induced copy of R, a contradiction.

Since G does not contain H1 as a spanning subgraph such that

E(G) \ E(H1) ⊆ EG(S, V (G) \ (T ∪ S)), it follows that D ̸= K3. As D is connected, it

follows that D = P3. Now deleting the vertex in S together with the degree 2 vertex of D

produces three components, showing that τ(G) ≤ 2/3 < 1.

Therefore, we assume now that R = P2 ∪ 3P1. Since G does not contain H1 as a spanning
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subgraph such that E(G) \ E(H1) ⊆ EG(S, V (G) \ (T ∪ S)), the argument for the case

R = P3 ∪ 2P1 above implies that |V (D)| ≥ 4. We claim that |V (D)| = 4. If |V (D)| ≥ 5, we

let x1, x2 ∈ V (D) \NG(T ) be any two distinct vertices. If x1x2 ∈ E(G), then x1x2 together

with T form an induced copy of R, a contradiction. Thus V (D) \NG(T ) is an independent

set in G. However, c(G− (S ∪ (NG(T ) ∩ V (D)))) = |T |+ |V (D) \NG(T )| ≥ 5, implying

that τ(G) ≤ 4/5 < 1.

Thus |V (D)| = 4. Let x ∈ V (D) such that eG(x, T ) = 0. Since G does not contain Hi as a

spanning subgraph such that E(G) \ E(Hi) ⊆ EG(S, V (G) \ (T ∪ S)) for each i ∈ [2, 4], it

follows that either dD(x) ≤ 2 or dD(x) = 3 and D = K1,3. If dD(x) = 3, then as D = K1,3,

we have c(G− (S ∪ {x})) = 3, implying τ(G) ≤ 2/3 < 1. Thus dD(x) ≤ 2. Let

V (D) = {x, x1, x2, x3} and assume xx1 ̸∈ E(D). Then c(G− (S ∪ {x2, x3})) = 4, implying

τ(G) ≤ 3/4 < 1. The proof of Case 2 is complete.

Thus by Claim 5 and the fact that R ̸= P4 ∪ P1, we can assume

R ̸∈ {P4 ∪ P1, P3 ∪ 2P1, P2 ∪ 3P1} from this point on. Therefore we have t > 1. This implies

that G is 3-connected and so δ(G) ≥ 3. Thus |S|+ |
⋃

k≥0 C2k+1| ≥ 3 by Lemma 9(1)-(4).

Claim 6. |T | ≥ 5.

Proof. Equation (III.2) implies |T | ≥ 3. Assume to the contrary that |T | ≤ 4. We

consider the following two cases.

Case 1: |T | = 3.

Since |S|+ |
⋃

k≥0 C2k+1| ≥ 3, we already have a contradiction to Equation (III.1) if C1 = ∅.

Thus C1 ̸= ∅, which gives |S| ≥ 2 by Lemma 11(1). However, we again get a contradiction

to Equation (III.1) as
⋃

k≥1 C2k+1 ̸= ∅ by Equation (III.2).

Case 2: |T | = 4.

By Lemma 9 (3), we know that C2k+1 = ∅ for any k ≥ 2. First assume |S| ≤ 1. Then

C1 = ∅ by Lemma 11 (1). By Lemma 9, there are at least 3|T | = 12 edges going from T to

vertices in S and components in
⋃

k≥1 C2k+1. As C2k+1 = ∅ for any k ≥ 2, it follows that
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|C3| ≥ 4 if |S| = 0 and |C3| ≥ 3 if |S| = 1, contradicting Equation (III.1).

Next, assume |S| ≥ 2. By Equations (III.1) and (III.2), we have |S| = 2. Let D be the

single component in C3. Define WD to be a set of 2 vertices in D which are all adjacent in

G to some vertex from T . Then S ∪WD is a cutset in G such that |S ∪WD| = 4 and

c(G− (S ∪WD)) ≥ |T | = 4, contradicting τ(G) ≥ t > 1.

By Claim 6 and Lemma 12 (1), we see that G contains an induced R = P4 ∪ 3P1. Thus we

may assume R ̸∈ {P4 ∪ P1, P3 ∪ 2P1, P2 ∪ 3P1, P4 ∪ 3P1} from this point on.

Claim 7. R ̸∈ {P3 ∪ 4P1, P2 ∪ 5P1, 6P1, 7P1} unless G falls under the exceptional cases as

in (a) and (b) of Theorem 7(2).

Proof. We may assume that G does not fall under the exceptional cases as in (a) and (b) of

Theorem 7(2). Thus we show that R ̸∈ {P3 ∪ 4P1, P2 ∪ 5P1, 6P1, 7P1}.

Assume to the contrary that R ∈ {P3 ∪ 4P1, P2 ∪ 5P1, 6P1, 7P1}. By Lemma 12(1), G

contains an induced P4 ∪ aP1, where a = |T | − 2. If a ≥ 5, then each of

P3 ∪ 4P1, P2 ∪ 5P1, 6P1, and 7P1 is an induced subgraph of P4 ∪ aP1, a contradiction. Thus

a ≤ 4 and so |T | ≤ 6. As |T | ≤ 6, we have that
⋃

k>2 C2k+1 = ∅ by Lemma 9 (3). Since G is

more than 1-tough and so is 3-connected, we have δ(G) ≥ 3. By Claim 6, |T | ≥ 5. Thus,

we have two cases.

Case 1: |T | = 5.

As |T | = 5, we have C2k+1 = ∅ for any k ≥ 3. We consider two cases regarding whether or

not |C3 ∪ C5| ≥ 2.

Case 1.1: |C3 ∪ C5| = 1.

Let D ∈ C2k+1 ⊆ C3 ∪ C5. By Equation (III.1), 5 ≥ |S|+ k + 1, so |S| ≤ 4− k. If k = 1, let

WD be a set of 2k vertices (which exist by Lemma 9 (4)) from D which are adjacent in G

to vertices from T . Then S ∪WD forms a cutset and we have

t ≤ |S|+ 2k

5
≤ 4 + k

5
=

5

5
= 1,
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contradicting t > 1. Thus we assume k = 2. We consider two subcases.

Case 1.1.1: |V (D)| ≥ 6.

For R = P3 ∪ 4P1, let x ∈ V (D) such that eG(x, T ) = 0. Let P be a shortest path in D

from x to a vertex, say x∗ from NG(T ) ∩ V (D). Let y∗ ∈ T such that eG(x
∗, y∗) = 1. Then

xPx∗y∗ and T \ {y∗} contain P3 ∪ 4P1 as an induced subgraph. We consider next that

R = 6P1. Then T and the vertex of D that is not adjacent in G to any vertex from T for

an induced 6P1, giving a contradiction. For R = 7P1, let WD be the set of 2k + 1 vertices

(which exist by Lemma 9(4)) from D which are adjacent in G to vertices from T . Then

S ∪WD forms a cutset and we have

t ≤ |S|+ 2k + 1

|T |+ 1
≤ 4 + k + 1

6
=

7

6
,

giving a contradiction to t > 7/6.

Lastly, we consider R = P2 ∪ 5P1. For any x ∈ V (D) such that eG(x, T ) = 0, it must be the

case that x is adjacent in G to every vertex from NG(T ) ∩ V (D). Otherwise, let

x∗ ∈ NG(T ) ∩ V (D) such that xx∗ ̸∈ E(G). Let y∗ ∈ T such that eG(x
∗, y∗) = 1. Then x∗y∗

and (T \ {y∗}) ∪ {x} contain P2 ∪ 5P1 as an induced subgraph. Furthermore, if

|V (D)| − |NG(T ) ∩ V (D)| ≥ 2, then V (D) \ (NG(T ) ∩ V (D)) is an independent set in G.

Otherwise, an edge with both endvertices from V (D) \ (NG(T ) ∩ V (D)) together with T

induces P2 ∪ 5P1. Thus if |V (D)| ≥ 7, let WD be the set of 2k + 1 vertices (which exist by

Lemma 9(4)) from D which are adjacent in G to vertices from T . Then S ∪WD forms a

cutset and we have

t ≤ |S|+ 5

|T |+ 2
≤ 7

7
,

giving a contradiction to t > 1. Thus |V (D)| = 6. Let x ∈ V (D) be the vertex such that

eG(x, T ) = 0. Then it must be the case that D − x has at most two components.

Otherwise, we have t ≤ |S∪{x}|
3

= 1.
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Assume first that c(D − x) = 2. Let D1 and D2 be the two components of D − x, and

assume further that |V (D1)| ≤ |V (D2)|. Then as |V (D − x)| = 5, we have two possibilities:

either |V (D1)| = 1 and |V (D2)| = 4 or |V (D1)| = 2 and |V (D2)| = 3. Since δ(G) ≥ 3, if

|V (D1)| = 1, then the vertex from D1 must be adjacent in G to at least one vertex from S.

When |V (D2)| = 4 and D2 ̸= K4, then D2 has a cutset W of size 2 such that

c(D2 −W ) = 2. Then S ∪W ∪ {x} is a cutset of G such that c(G− (S ∪W ∪ {x})) = 5,

showing that t ≤ 1. Thus D2 = K4. However, this shows that G contains H6 as a spanning

subgraph. When |V (D2)| = 3 and D2 ̸= K3, then D2 has a cutvertex x∗. Then S ∪ {x, x∗}

is a cutset of G such that c(G− (S ∪ {x, x∗})) = 4, showing that t ≤ 4
4
= 1. Thus D2 = K3;

however, this shows that G contains H7 as a spanning subgraph.

Assume then that c(D − x) = 1. Let D∗ = D − x. If δ(D∗) ≥ 3, then D∗ is Hamiltonian

and so G contains H10 as a spanning subgraph. Thus we assume δ(D∗) ≤ 2.

Assume first that D∗ has a cutvertex x∗. Then c(D∗ − x) = 2: as if c(D∗ − x) ≥ 3, then

c(G− (S ∪ {x, x∗})) ≥ 4, implying t ≤ 1. Let D∗
1 and D∗

2 be the two components of

D∗ − x∗, and assume further that |V (D∗
1)| ≤ |V (D∗

2)|. Then as |V (D∗ − x∗)| = 4, we have

two possibilities: either |V (D∗
1)| = 1 and |V (D∗

2)| = 3 or |V (D∗
1)| = 2 and |V (D∗

2)| = 2.

Since δ(G) ≥ 3, if |V (D∗
1)| = 1, then the vertex from D∗

1 must be adjacent in G to at least

one vertex from S. When |V (D∗
2)| = 3 and D∗

2 ̸= K3, then D∗
2 has a cutvertex x∗∗. Then

S ∪ {x, x∗, x∗∗} is a cutset of G such that c(G− (S ∪ {x, x∗, x∗∗})) = 5, showing that t ≤ 1.

Thus D∗
2 = K3. The vertex x∗ is a cutvertex of D∗ and so is adjacent in D∗ to a vertex of

D∗
1 and a vertex of D∗

2. However, this shows that G contains H8 as a spanning subgraph.

When |V (D∗
2)| = 2, as G does not contain H8 or H9 as a spanning subgraph, x∗ is adjacent

in G to exactly one vertex, say x∗
1, of D

∗
1 and to exactly one vertex, say x∗

2, of D
∗
2. Then

S ∪ {x, x∗
1, x

∗
2} is a cutset of G whose removal produces 5 components, showing that

τ(G) ≤ 1.

Assume then that D∗ is 2-connected. As δ(D∗) ≤ 2, D∗ has a minimum cutset W of size 2.

If c(D∗ −W ) = 3, then we have c(G− (S ∪W ∪ {x})) = 5, showing that t ≤ 1. Thus
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c(D∗ −W ) = 2. Then by analyzing the connection in D∗ between W and the two

components of D∗ −W , we see that D∗ contains C5 as a spanning subgraph, showing that

G contains H10 as a spanning subgraph.

Case 1.1.2: |V (D)| = 5.

Since G does not contain H5 as a spanning subgraph, we have D ̸= K5. As D ̸= K5, D has

a cutset WD of size at most 3 such that each component of D−WD is a single vertex. Then

t ≤ |S|+ |WD|
|T |

≤ 4− 2 + 3

5
= 1,

a contradiction.

Case 1.2: |C3 ∪ C5| ≥ 2.

By Equation (III.1), we have

4 ≥ |S|+
∑
k≥1

k|C2k+1|.

So one of the following holds:

1. S = ∅ and either |C5| ≤ 2, |C5| ≤ 1 and |C3| ≤ 2, or |C3| ≤ 4. In this case, C1 = ∅ by

Lemma 11(1). Thus by Lemma 9(3), we have eG(T, V (G) \ T ) ≤ 12 < 3|T | = 15.

2. |S| = 1 and either |C5| = 1 and |C3| = 1 or |C3| ≤ 3. In this case, again C1 = ∅ by

Lemma 11(1). This implies there are a maximum of 14 edges incident to vertices in

T , a contradiction.

3. |S| = 2 and |C3| = 2.

Let C3 = {D1, D2}. Note that |V (Di)| ≥ 3 by Lemma 9(4) for each i ∈ [1, 2]. Since

|T | = 5, there exists y0 ∈ T such that eG(y0, Di) = 1 for each i ∈ [1, 2]. If

R = P3 ∪ 4P1, then T together with the two neighbors of y0 from V (D1) ∪ V (D2)

induce R. If R = 6P1, then T \ {y0} together with the two neighbors of y0 from
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V (D1) ∪ V (D2) gives an induced 6P1. If R = 7P1, let WDi
⊆ V (Di) \NG(y0) be the

two vertices of Di that are adjacent in G to vertices from T . Then

c(G− (S ∪WD1 ∪WD2 ∪ {y0})) = |T | − 1 + 2 = 6. Thus t ≤ 2+2+2+1
6

= 7
6
,

contradicting t > 7
6
. Lastly, assume R = P2 ∪ 5P1. If one of Di has at least 4 vertices,

say |V (D2)| ≥ 4, then let x ∈ V (D2) such that eG(x, T ) = 0, x∗ ∈ V (D1) and y∗ ∈ T

such that eG(x
∗, y∗) = 1. Then x∗y∗ and (T \ {y∗}) ∪ {x} induce P2 ∪ 5P1. Thus

|V (D1)| = |V (D2)| = 3. If one of Di, say D2 ̸= K3, then D2 has a cutvertex x. Let W

be the set of any two vertices of D1. Then S ∪W ∪ {x} is a cutset of G such that

c(G− (S ∪W ∪ {x})) = 5, showing that t ≤ 5
5
= 1. Thus D1 = D2 = K3. However,

this shows that G contains H11 as a spanning subgraph.

Case 2: |T | = 6.

In this case, by Lemma 12(1), G has an induced P4 ∪ 4P1, which contains each of

P3 ∪ 4P1, P2 ∪ 5P1 and 6P1 as an induced subgraph. So we assume R = 7P1 in this case and

thus t > 7
6
.

Recall for y ∈ T , h(y) = |{D : D ∈
⋃

k≥1 C2k+1 and eG(y,D) ≥ 1}|. If there exists

y0 ∈ T such that h(y0) ≥ 2, we let x1, x2 be the two neighbors of y0 from the two

corresponding components in
⋃

k≥1 C2k+1, respectively. Then T \ {y0} together with

{x1, x2} induces 7P1. Thus h(y) ≤ 1 for each y ∈ T . This, together with |T | = 6, implies

that we have either |C3| ∈ {1, 2} and C2k+1 = ∅ for any k ≥ 2 or |C5| = 1 and C2k+1 = ∅ for

any 1 ≤ k ̸= 2.

If |C3| = 1 and C2k+1 = ∅ for any k ≥ 2, then |S| ≤ 4 by Equation (III.1). Let W be a set of

two vertices from the component in C3 that are adjacent in G to vertices from T . Then

c(G− (S ∪W )) ≥ 6, indicating that t ≤ 4+2
6

< 7
6
. For the other two cases, we have |S| ≤ 3.

If |C3| = 2 and C2k+1 = ∅ for any k ≥ 2, let W be a set of four vertices, with two from one

component in C3 and the other two from the other component in C3, which are adjacent in

G to vertices from T . If |C5| = 1 and C2k+1 = ∅ for any 1 ≤ k ≤ 2, let W be a set of four

vertices from the component in C5 that are adjacent in G to vertices from T . Then we have
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c(G− (S ∪W )) ≥ 6, indicating that t ≤ 3+4
6

= 7
6
.

By Claim 7, we now assume that R ∈ {P7 ∪ 2P1, P5 ∪ P2, P4 ∪ P3, P3 ∪ 2P2, 3P2 ∪ P1} and

t = 3/2.

Claim 8. There exists y ∈ T with h(y) > 2.

Proof. Assume to the contrary that for every y ∈ T , we have h(y) ≤ 1. Define the

following partition of T :

T0 = {y ∈ T : eG(y,D) = 0 for all D ∈
⋃
k≥1

C2k+1},

T1 = {y ∈ T : eG(y,D) = 1 for some D ∈
⋃
k≥1

C2k+1}.

Note that |T1| =
∑

k≥1(2k + 1)|C2k+1| by Lemma 9(3) and (4). For each D ∈ C2k+1 for some

k ≥ 1, we let WD be a set of 2k vertices that each has in G a neighbor from T . As each

D −WD is connected to exactly one vertex from T and each component from C1 is

connected to exactly one vertex from T , it follows that

W = S ∪
⋃

D∈
⋃

k≥1 C2k+1

WD

satisfies c(G−W ) ≥ |T | ≥ 5, where |T | ≥ 5 is by Claim 6.

By the toughness of G, we have

|S|+
∑
k≥1

2k|C2k+1| = |W | ≥ t|T | = t(|T0|+ |T1|)

= t

(
|T0|+

∑
k≥1

(2k + 1)|C2k+1|

)
. (III.3)
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Since t = 3/2, the inequality above implies that |S| ≥ 3|T0|/2+
∑

k≥1(k+3/2)|C2k+1|. Thus

|S|+
∑
k≥1

k|C2k+1| ≥ 3|T0|/2 +
∑
k≥1

(2k + 3/2)|C2k+1| > |T0|+
∑
k≥1

(2k + 1)|C2k+1| = |T |,

contradicting Equation (III.1).

By Claim 8, there exists y ∈ T such that h(y) ≥ 2. Then as |T | ≥ 5, by Lemma 12(2), G

contains an induced P7 ∪ 2P1. Thus we assume that R ̸= P7 ∪ 2P1. We assume first that

|
⋃

k≥1 C2k+1| ≥ 3 and let D1, D2, D3 be three distinct odd components from
⋃

k≥1 C2k+1. Let

y0 ∈ T such that h(y0) ≥ 2. We assume, without loss of generality, that

eG(y0, D1) = eG(y0, D2) = 1. By Lemma 12(2), G contains an induced Pb ∪ aP1, where

b ≥ 7 and a = |T | − 3, and the graph Pb ∪ aP1 can be chosen such that the vertices in aP1

are from T and the path Pb has the form y1x
∗
1P1x1y0x2P2x

∗
2y2, where y0, y1, y2 ∈ T and

x∗
1P1x1 and x∗

2P2x2 are respectively contained in D1 and D2 such that eG(x, T ) = 0 for

every internal vertex x from P1 and P2. If one of y1 and y2, say y1 has a neighbor z1 from

V (D3), then z1y1x
∗
1P1x1y0x2P2x

∗
2y2 and T \ {y0, y1, y2} induce P8 ∪ 2P1, which contains

each of P5 ∪ P2, P4 ∪ P3, and 3P2 ∪ P1 as an induced subgraph. Let z2 ∈ V (D3) be a

neighbor of z1. Then z2z1y1x
∗
1P1x1y0x2P2x

∗
2y2 contains an induced P3 ∪ 2P2 whether

eG(z2, {y0, y2}) = 0 or 1. Thus we assume eG(yi, D3) = 0 for each i ∈ [1, 2] and so we can

find y3 ∈ T \ {y0, y1, y2} and z ∈ V (D3) such that y3z ∈ E(G). Then y1x
∗
1P1x1y0x2P2x

∗
2y2

and zy3 contains an induced P7 ∪ P2, which contains each of P5 ∪ P2, P3 ∪ 2P2 and 3P2 ∪ P1

as an induced subgraph. We are only left to consider R = P4 ∪ P3. As eG(yi, D3) = 0 for

each i ∈ [1, 2], we can find distinct y3, y4 ∈ T \ {y0, y1, y2} and distinct z1, z2 ∈ V (D3) such

that y3z1, y4z2 ∈ E(G). We let P be a shortest path in D3 connecting z1 and z2. If

eG(y0, V (P )) = 0, then y3z1Pz2y4 and y1x
∗
1P1x1y0x2P2x

∗
2y2 contains an induced P4 ∪ P3.

Thus eG(y0, V (P )) = 1. This in particular, implies that |V (P )| ≥ 3. Then y3z1Pz2y4 and

y1x
∗
1P1x1 together contain an induced P4 ∪ P3.

Thus | ∪k≥1 C2k+1| = 2. Let D1, D2 ∈
⋃

k≥1 C2k+1 be the two components. Define the
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following partition of T :

T0 = {y ∈ T : eG(y,D1) = eG(y,D2) = 0},

T11 = {y ∈ T : eG(y,D1) = 1 and eG(y,D2) = 0},

T12 = {y ∈ T : eG(y,D1) = 0 and eG(y,D2) = 1},

T2 = {y ∈ T : eG(y,D1) = eG(y,D2) = 1}.

We have either T2 = ∅ or T2 ̸= ∅. First suppose T2 = ∅. Define the following vertex sets:

W1 = NG(T11) ∩ V (D1) and W2 = NG(T12) ∩ V (D2).

Then |W1| = |T11| = 2k1 + 1 and |W2| = |T12| = 2k2 + 1, where we assume

eG(T,D1) = 2k1 + 1 and eG(T,D2) = 2k2 + 1 for some integers k1 and k2. Then

W = S ∪W1 ∪W2 is a cutset of G with c(G−W ) ≥ |T |. By toughness,

|W | ≥ 3
2
|T | = |T |+ 1

2
|T |. Since |T | = |T0|+ |T11|+ |T12|, this gives us

|W | ≥ |T |+ 1

2
|T0|+

1

2
(|T11|+ |T12|)

= |T |+ 1

2
|T0|+

1

2
(2k1 + 1 + 2k2 + 1)

= |T |+ 1

2
|T0|+ k1 + k2 + 1.

Thus |W | = |S|+ |W1|+ |W2| = |S|+ 2k1 + 2k2 + 2 ≥ |T |+ 1
2
|T0|+ k1 + k2 + 1, which

implies |S|+ k1 + k2 + 1 ≥ |T |+ 1
2
|T0|. Hence, by Equation (III.1), we have

|T | ≥ |T |+ 1
2
|T0|, giving a contradiction.

So we may assume T2 ̸= ∅. Now define the following vertex sets:

W1 = NG(T11)∩ V (D1), W2 = NG(T12)∩ V (D2), and W3 = N(T2)∩ (V (D1)∪ V (D2)).

We have that |W1| = |T11|, |W2| = |T12|, and |W3| = 2|T2|. Now let W = S ∪W1 ∪W2 ∪W3.
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Then W is a cutset of G with c(G−W ) ≥ |T0|+ |T11|+ |T12|+ 1 since T2 ̸= ∅. By

toughness, |W | ≥ 3
2
(|T0|+ |T11|+ |T12|+ 1). Since

|W | = |S|+ |W1|+ |W2|+ |W3| = |S|+ |T11|+ |T12|+ 2|T2|, we have

|S|+ |T11|+ |T12|+ 2|T2| ≥ 3
2
|T0|+ 3

2
|T11|+ 3

2
|T12|+ 3

2
. This implies

|S| ≥ 3

2
|T0|+

1

2
|T11|+

1

2
|T12|+ 1.

Thus,

|S|+ k1 + k2 ≥
3

2
|T0|+

1

2
|T11|+

1

2
|T12|+ 1 + k1 + k2. (III.4)

We have that either T11 ∪ T12 ∪ T0 = ∅ or T11 ∪ T12 ∪ T0 ̸= ∅. First suppose

T11 ∪ T12 ∪ T0 = ∅. Then |T | = |T2| = 1
2
(2k1 + 1 + 2k2 + 1) = k1 + k2 + 1. Thus

|S|+ k1 + k2 ≥ |T |, showing a contradiction to Equation (III.1).

So we may assume T11 ∪ T12 ∪ T0 ̸= ∅. Then

|T | = |T0|+ (2k1 + 1 + 2k2 + 1− |T2|)

= |T0|+ (2k1 + 2k2 + 2)− 1

2
(2k1 + 1 + 2k2 + 1− |T11| − |T12|)

= |T0|+
1

2
(2k1 + 2k2 + 2) +

1

2
|T11|+

1

2
|T12|

= |T0|+ k1 + k2 + 1 +
1

2
|T11|+

1

2
|T12|.

Using the size of T and (III.4), we get |S|+ k1 + k2 ≥ |T |, showing a contradiction to

Equation (III.1).

The proof of Theorem 7 is now finished.

III.3 Proof of Theorems 5 and 6

Recall that for a graph G, α(G), the independence number of G, is the size of a largest

independent set in G. We now show the exceptional graphs in Figures 1 to 3 satisfy the

corresponding conditions below.
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Theorem 5. The following statements hold.

(1) The graph Hi is (P2 ∪ 3P1)-free, contains no 2-factor, and τ(Hi) = 1 for each

i ∈ [0, 4], the graph H1 is also (P3 ∪ 2P1)-free (see Figure 1).

(2) The graph Hi is (P2 ∪ 5P1)-free and contains no 2-factor for each i ∈ [5, 11], H5 with

p = 5 is (P3 ∪ 4P1)-free and 6P1-free. Furthermore, τ(H5) =
6
5
when p = 5 and

τ(Hi) =
7
6
for each i ∈ [6, 11] (see Figure 3).

Proof. For each i ∈ [0, 11], Hi does not contain a 2-factor by Theorem 8. Thus to finish

proving Theorem 7, we are only left to show the three claims below.

Claim 9. The graph Hi is (P2 ∪ 3P1)-free, H1 is (P3 ∪ 2P1)-free, and τ(Hi) = 1 for each

i ∈ [0, 4].

Proof. We first show that Hi is (P2 ∪ 3P1)-free for each i ∈ [0, 4]. We only show this for

H0, as the proofs for Hi for i ∈ [1, 4] are similar. In H0, there are two types of edges xy:

x, y ∈ V (Dj) or x ∈ V (Dj) and y ∈ V (T ), where j ∈ [1, 2]. Without loss of generality first

consider the edge v1v2 ∈ E(D1) and the subgraph F1 = H0 − (NH0 [v1] ∪NH0 [v2]). We see

α(F1) = 2. Now, without loss of generality, consider the edge v1t1 and the subgraph

F2 = H0 − (NH0 [v1] ∪NH0 [t1]). We see α(F2) = 2. In either case, P2 ∪ 3P1 cannot exist as

an induced subgraph in H0. Thus H0 is (P2 ∪ 3P1)-free.

Then we show that H1 is (P3 ∪ 2P1)-free. Two types of induced paths abc of length 3 exist:

a ∈ S, b ∈ T, c ∈ V (D) or a ∈ T, b, c ∈ V (D). Without loss of generality, consider the path

xt1v1 and the subgraph F1 = H1 − (NH1 [x] ∪NH1 [t1] ∪NH1 [v1]). We see that F1 is a null

graph. Now, without loss of generality, consider the path t1v1v2 and the subgraph

F2 = H1 − (NH1 [t1] ∪NH1 [v1] ∪NH1 [v2]). We see |V (F2)| = 1. In either case, P3 ∪ 2P1

cannot exist as an induced subgraph in H1. Thus H1 is (P3 ∪ 2P1)-free.

Let i ∈ [0, 4]. As δ(Hi) = 2, τ(Hi) ≤ 1. It suffices to show τ(Hi) ≥ 1. Since Hi is

2-connected, we show that c(Hi −W ) ≤ |W | for any W ⊆ V (Hi) such that |W | ≥ 2. If
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|W | = 2, by considering all the possible formations of W , we have c(Hi −W ) ≤ |W |. Thus

we assume |W | ≥ 3.

Assume by contradiction that there exists W ⊆ V (Hi) with |W | ≥ 3 and

c(Hi −W ) ≥ |W |+ 1 ≥ 4. The size of a largest independent set of each H0, H2, H3, and

H4 is 4, and of H1 is 3. Since c(Hi −W ) is bounded above by the size of a largest

independent set of Hi, we already obtain a contradiction if i = 1 or |W | ≥ 4. So we assume

i ∈ {0, 2, 3, 4} and |W | = 3.

As c(Hi −W ) ≥ 4, for the graph H0, we must have {v1, v2, v3} ∩W ̸= ∅ and

{v4, v5, v6} ∩W ̸= ∅. As |W | = 3, we have either W ∩ T = ∅ or |W ∩ T | = 1. In either case,

by checking all the possible formations of W , we get c(H0 −W ) ≤ 2, contradicting the

choice of W .

As c(Hi −W ) ≥ 4, for each i ∈ [2, 4], we must have x ∈ W . Thus tj ̸∈ W for j ∈ [1, 3], as

otherwise, c(Hi − (W \ {tj})) ≥ 4, contradicting the argument previously that

c(Hi −W ∗) ≤ 2 for any W ∗ ⊆ V (Hi) and |W ∗| ≤ 2. As |W | = 3, we then have

|W ∩ {v1, v2, v3, v4}| = 2. However, c(Hi −W ) ≤ 3 for W = {x, vk, vℓ} for all distinct

k, ℓ ∈ [1, 4]. We again get a contradiction to the choice of W .

Claim 10. The graph H5 with p = 5 is (P3 ∪ 4P1)-free, (P2 ∪ 5P1)-free, and 6P1-free with

τ(H5) =
6
5
.

Proof. Let p = 5 and D be the odd component of H5 − (S ∪ T ). Note that D = Kp = K5.

We first show that H5 is (P3 ∪ 4P1)-free. There are three types of induced paths xyz of

length 3 in H5 : x ∈ S, y ∈ T, z ∈ V (D) or x ∈ T, y, z ∈ V (D) or x, z ∈ T, y ∈ S. Without

loss of generality, consider the path x1t1y1 and the subgraph

F1 = H5 − (NH5 [x1] ∪NH5 [t1] ∪NH5 [y1]). We see that F1 is a null graph. Now consider the

path t1y1y2 and the subgraph F2 = H5 − (NH5 [t1] ∪NH5 [y1] ∪NH5 [y2]). We see α(F2) = 3.

Finally consider the path t1x1t2 and the subgraph F3 = H5 − (NH5 [t1] ∪NH5 [x1] ∪NH5 [t2]).

We see α(F3) = 3. In any case, an induced copy of P3 ∪ 4P1 cannot exist in H5. Thus H5 is

(P3 ∪ 4P1)-free.
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We then show that H5 is (P2 ∪ 5P1)-free. There are three types of edges xy in

H5 : x ∈ S, y ∈ T or x ∈ T, y ∈ V (D) or x, y ∈ V (D). Without loss of generality, consider

the edge x1t1 and the subgraph F1 = H5 − (NH5 [x1] ∪NH5 [t1]). We see |V (F1)| = 4. Now

consider the edge t1y1 and the subgraph F2 = H5 − (NH5 [t1] ∪NH5 [y1]). We see

|V (F2)| = 4. Finally, consider the edge y1y2 and the subgraph

F3 = H5 − (NGH5[y1] ∪NH5 [y2]). We see α(F3) = 3. In any case, no induced copy of

P2 ∪ 5P1 can exist in H5. Thus H5 is (P2 ∪ 5P1)-free.

We lastly show that H5 is 6P1-free. There are three types of vertices x in H5 : x ∈ S, x ∈ T ,

or x ∈ V (D). Without loss of generality, consider the vertex x1 and the subgraph

F1 = H5 −NH5 [x1]. We see α(F1) = 1. Now consider the vertex t1 and the subgraph

F2 = H5 −NH5 [t1]. We see α(F2) = 4. Finally, consider the vertex y1 and the subgraph

F3 = H5 −NH5 [y1]. We see α(F3) = 4. In any case, no induced copy of 6P1 can exist in H5.

Thus H5 is 6P1-free.

We now show that τ(H5) =
6
5
. Let W be a toughset of H5. Then S ⊆ W . Otherwise, by

the structure of H5, we have c(H5 −W ) ≤ 3 and |W | ≥ 5. As S ⊆ W and the only

neighbor of each vertex of T in H5 − S is contained in a clique of H5, we have T ∩W = ∅.

Since c(H5 −W ) ≥ 2, it follows that W ∩ V (D) ̸= ∅. Then c(H5 −W ) = |W ∩ V (D)| if

|W ∩ V (D)| ≤ 3 or |W ∩ V (D)| = 5, and c(H5 −W ) = |W ∩ V (D)|+ 1 if |W ∩ V (D)| = 4.

The smallest ratio of |W |
c(H5−W )

is 6
5
, which happens when |W ∩ V (D)| = 4.

Claim 11. The graph Hi is (P2 ∪ 5P1)-free with τ(Hi) =
7
6
for each i ∈ [6, 11].

Proof. We show first that each Hi is (P2 ∪ 5P1)-free. We do this only for the graph H6,

as the proofs for the rest graphs are similar. For any edge ab ∈ E(H6), we see

α(H6 − (NH6 [a] ∪NH6 [b])) ≤ 4. Thus no induced copy of (P2 ∪ 5P1) can exist in H6. Thus

H6 is (P2 ∪ 5P1)-free.

We next show that τ(Hi) =
7
6
for each i ∈ [6, 10]. We have c(Hi − (S ∪ {v1, . . . , v5})) = 6,

implying τ(Hi) ≤ 7
6
. Suppose τ(Hi) <

7
6
. Let W be a toughset of Hi. As each Hi is

3-connected, we have |W | ≥ 3. Thus c(Hi −W ) ≥ 3. We have that either S ⊆ W or
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S ̸⊆ W . Suppose the latter. Then we have S ∩ V (Hi −W ) ̸= ∅. Then all vertices in T \W

are contained in the same component as the one which contains S \W . Since

c(Hi −W ) ≥ 3, by the structure of Hi, it follows that we have either T ⊆ W or

{v1, . . . , v5} ⊆ W . In either case, we have c(Hi −W ) ≤ 3, implying |W |
c(Hi−W )

≥ 5
3
> 7

6
, a

contradiction. So S ⊆ W . By Lemma 13, tj ̸∈ W for all j ∈ [1, 5]. Thus each

tj ∈ V (Hi −W ). Now either v0 ∈ W or v0 ̸∈ W . Suppose v0 ∈ W , then we cannot have all

vj ∈ W without violating Lemma 13. In this case, the minimum ratio |W |
c(Hi−W )

occurs when

|W ∩ {v1, v2, v3, v4, v5}| = 3. This implies |W |
c(Hi−W )

≥ 6
5
> 7

6
, a contradiction. Thus v0 ̸∈ W

and we must have v0 ∈ V (Hi −W ). This implies {v1 . . . v5} ⊆ W and |W |
c(Hi−W )

= 7
6
, a

contradiction. Thus τ(Hi) =
7
6
for each i ∈ [6, 10].

Lastly we show τ(H11) =
7
6
. We have c(H11 − (S ∪ {v1, v2, t3, v4, v5})) = 6, implying

τ(H11) ≤ 7
6
. Suppose τ(H11) <

7
6
. Let W be a tough set of H11. As H11 is 3-connected, we

have |W | ≥ 3. Thus c(H11 −W ) ≥ 3. We have that either S ⊆ W or S ̸⊆ W . Suppose the

latter. Then we have S ∩ V (H11 −W ) ̸= ∅. Then all vertices in T \W are contained in the

same component as the one which contains S \W . Since c(H11 −W ) ≥ 3, by the structure

of H11, it follows that |W | ≥ 5 and c(H11 −W ) ≤ 4. This implies |W |
c(H11−W )

≥ 5
4
> 7

6
, a

contradiction. So S ⊆ W . By Lemma 13, ti ̸∈ W for i ∈ {1, 2, 4, 5}. Thus ti ∈ V (H11 −W )

for i ∈ {1, 2, 4, 5} and we must have W ∩ {v1, v2, v3, v4, v5, v6, t3} ≠ ∅. If t3 ̸∈ W , then

|W |
c(H11−W )

≥ 6
5
> 7

6
, a contradiction. Thus t3 ∈ W . Then v3 and v4 are respectively in two

distinct components of H11 −W by Lemma 13. Thus W ∩ {v1, v2, v5, v6} ≠ ∅ as

c(H11 −W ) ≥ 3. Furthermore, we have c(H11 −W ) = |W ∩ {v1, v2, v5, v6}|+ 2. The

smallest ratio of |W |
c(H11−W )

is 7
6
, which happens when {v1, v2, v5, v6} ⊆ W . Again we get a

contradiction to the assumption that τ(H11) <
7
6
. Thus τ(H11) =

7
6
.

We now verify the toughness of the graphs H5 with p ≥ 6 and H12 (see Figures 2 and 4).

Theorem 6. The following statements hold.

(1) τ(H5) =
7
6
when p ≥ 6;
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(2) τ(H12) = 1.

Proof. Let p ≥ 6 and D be the odd component of H5 − (S ∪ T ). Note that D = Kp. Since

c(H5 − (S ∪ {y1, . . . , y5})) = 6, we have τ(H5) ≤ 7
6
. We show τ(H5) ≥ 7

6
. Let W be a

toughset of H5. Then either S ⊆ W or S ̸⊆ W . Suppose the latter. Then we have

S ∩ V (H5 −W ) ̸= ∅. Then all vertices in T \W are contained in the same component as

the one containing S \W . Since c(H5 −W ) ≥ 2, by the structure of H5, it follows that we

have either T ⊆ W or {y1, . . . , y5} ⊆ W . In either case, we have c(H5 −W ) ≤ 3, implying

|W |
c(H5−W )

≥ 5
3
> 7

6
. Now suppose S ⊆ W . By Lemma 13, ti ̸∈ W for all i. Thus each

ti ∈ V (H5 −W ). Furthermore, c(H5 −W ) = |W ∩ V (D)|+ 1. Since W is a cutset of G, we

have |W ∩ V (D)| ≥ 2. The smallest ratio of |W |
c(H5−W )

is 7
6
, which happens when

|W ∩ V (D)| = 5.

For the graph H12, we have c(H12 − (S ∪ {y1, y2, y3})) = 4, implying τ(H12) ≤ 4
4
= 1. We

show τ(H12) ≥ 1. Let W be a toughset of H12. Then either S ⊆ W or S ̸⊆ W . Suppose the

latter. Then we have S ∩ V (H12 −W ) ̸= ∅. Then all vertices in T \W are contained in the

same component as the one containing S \W . Since c(H12 −W ) ≥ 2, by the structure of

H12, it follows that we have either T ⊆ W or {y1, y2, y3} ⊆ W . In either case, we have

c(H12 −W ) ≤ 2, implying |W |
c(H12−W )

≥ 3
2
> 1. Now suppose S ⊆ W . By Lemma 13, ti ̸∈ W

for all i. Thus each ti ∈ V (H12 −W ). This implies |{y1, y2, y3} ∩W | = 2 or 3. In either

case we see |W |
c(H12−W )

= 1.
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CHAPTER IV: FUTURE WORK

We are interested in the following questions:

Question 1: In this thesis, we have shown that every 3-tough (P2 ∪ 3P1)-free graph on

at least three vertices is Hamiltonian. Can we confirm Chvátal’s

Toughness Conjecture for the following classes of graphs:

• (P2 ∪ kP1)-free graphs for any integer k > 3

• (2P2 ∪ 2P1)-free graphs

• 3P2-free graphs

• P5-free graphs

Question 2: Is every 1-tough (P4 ∪ P1)-free graph with at least three vertices

Hamiltonian? Does the general conjecture of Chvátal hold for

(P4 ∪ P1)-free graphs? [1]

Question 3: In this thesis we found for linear forests R on 5, 6, or 7 vertices, the

sharpness bound t such that every t-tough R-free graph on at least three

vertices has a 2-factor. Can we find, for linear forests R on 8 or 9 vertices,

the sharpness bound t such that every t-tough R-free graph on at least

three vertices has a 2-factor?

Question 4: Can we generalize our result for k-factors where k ≥ 2?

Remark 2. It was found in [18] that for any ϵ > 0 there exists a (2− ϵ)-tough 2P5-free

graph without 2-factor. In general, it is well known that every 2-tough graph with at least

three vertices has a 2-factor. Since 2P5 is a linear forest on 10 vertices, the only interesting

cases left to consider are linear forests on 8 or 9 vertices.
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[12] R. Häggkvist and G.G. Nicoghossian. A remark on hamiltonian cycles. Journal of

Combinatorial Theory, Series B, 30(1):118–120, 1981.

[13] J. Kanno and S. Shan. Vizing’s 2-factor conjecture involving toughness and maximum

degree conditions. Electron. J. Comb., 26(2):P2.17, 2019.

41



[14] D. Kratsch, J. Lehel, and H. Müller. Toughness, hamiltonicity and split graphs.

Discrete Mathematics, 150(1–3):231–245, 1996.

[15] B. Li, H. J. Broersma, and S. Zhang. Forbidden subgraphs for Hamiltonicity of

1-tough graphs. Discuss. Math. Graph Theory, 36(4):915–929, 2016.

[16] O. Ore. Note on Hamiltonian circuits. The American Mathematical Monthly,

67(1):55–55, 1960.

[17] K. Ota and M. Sanka. Toughness, 2-factors and hamiltonian cycles in 2k2-free graphs.

arXiv:2103.06760, 2021.

[18] M. Sanka. Forbidden subgraphs and 2-factors in 3/2-tough graphs, 2021.

[19] S. Shan. Hamiltonian cycles in 3-tough 2K2-free graphs. J. Graph Theory,

94(3):349–363, 2020.

[20] S. Shan. Hamiltonian cycles in tough (P2 ∪ P3)-free graphs. Electronic Journal of

Combinatorics., 28(1), 2021.

[21] W.T. Tutte. A short proof of the factor theorem for finite graphs. Canadian J. Math.,

6:347–352, 1954.

42


	Hamiltonian Cycles and 2-Factors in Tough Graphs without Forbidden Subgraphs
	Recommended Citation

	tmp.1657022405.pdf.i8hD7

