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STATISTICAL MODELING OF DATA BREACH RISKS: TIME TO IDENTIFICATION

AND NOTIFICATION

QUYNH NHU NGUYEN

40 pages

It is very challenging to predict the cost of a cyber incident owing to the complex

nature of cyber risk. However, it is inevitable for insurance companies to offer cyber insurance

policies. The time to identifying an incident and the time to noticing the affected individuals

are two important components in determining the cost of a cyber incident. In this work, we

initialize the study on those two metrics via statistical modeling approaches. We propose

a novel approach to imputing the missing data, and further develop a dependence model

to capture the complex pattern exhibited by those two metrics. The empirical study shows

that the proposed approach has a satisfactory predictive performance and is superior to other

commonly used models.
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CHAPTER I: INTRODUCTION AND MOTIVATION

Data breach is one of the most devastating risks to computer systems, which has

become and will continue to be a big problem due to the enormous network activities. This

has been witnessed by many severe cybersecurity incidents. For example, the Privacy Rights

Clearinghouse (PRC) reports 9,015 data breaches between 2005 and 2019, accounting for

11,690,762,146 breached records. The Identity Theft Resource Center and Cyber Scout

reports 1,244 data breach incidents in 2018, exposing 446,515,334 records, which are much

higher (or a 126% jump) from the 197,612,748 records exposed in 2017. The cost of data

breach is also substantial. According to NetDiligence, for small-to-medium enterprises (i.e.,

less than $2 billion in annual revenue), the average breach cost from 2014 to 2018 is $178K,

not including a $112K average crisis service cost and a $181K legal cost; for large companies

(i.e., $2 billion or more in annual revenue), the average breach cost from 2014 to 2018 is

$5.6M.

Due to the unique nature of cyber risk, the breach is often discovered after several

days, months, or even years. The longer a breach goes unaddressed, the more data gets leaked

and the larger the overall impact – financial and otherwise. For example, according to the

2019 research report by Ponemon Institute, the mean time to identify a data breach is 206

days in 2019, an increase of 4.9 percent from last year’s study. The report also pointed out

that the faster a data breach can be identified and contained, the lower the cost. Further,

organizations in the healthcare and public sector took the most time in the data breach

lifecycle, 329 days and 324 days, respectively, and financial organizations took far less time

to identify and contain a data breach, 233 days. This discovery coincides with the simulation
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study in Hua et al. (2011) that the time to identification is the key to reduce the cost. The

other important factor for determining the cost of a data breach is the time to notification.

The notification allows the clients to protect themselves, e.g., by changing their passwords,

or by monitoring their credit scores, which can further avoid the potential lawsuits against

the organization for the loss caused by the data breach. However, in the literature, to the

best of our knowledge, there is no formal statistical model for modeling those two metrics:

time to identification (TTI), and time to notification (TTN). The only relavent work is in

Bisogni et al. (2016) which mainly focused on negative binomial regression analysis and

discussed the relationship between TTI and different sectors.

Since the data breach has become the most common and dangerous cyber risk nowa-

days, there exist several studies on the statistical modeling of data breaches in the literature

which are loosely related to our current study. For example, Romanosky et al. (2011) used a

fixed effect model to estimate the impact of data breach disclosure policy on the frequency of

identity thefts incurred by data breaches. Buckman et al. (2017) studied the time intervals

between data breaches for the enterprises that have at least two incidents between 2010 and

2016. They showed that the duration between two data breaches may increase or decrease,

depending on some factors. Edwards et al. (2016) analyzed the temporal trend of data

breach size and frequency and showed that the breach size follows a log-normal distribution

and the frequency follows a negative binomial distribution. They further showed that the

frequency of large breaches (over 500,000 breached records) follows a Poisson distribution,

rather than the negative binomial distribution, and that the size of large breaches still fol-

lows log-normal distribution. Eling and Loperfido (2017) studied data breaches from the

perspective of actuarial modeling and pricing. They used the multidimensional scaling and
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goodness-of-fit tests to analyze the distribution of data breaches. They showed that different

types of data breaches should be analyzed separately and that breach sizes can be modeled

by the skew-normal distribution. Sun et al. (2021) developed a frequency-severity actuarial

model of aggregated enterprise-level breach data to promote ratemaking and underwriting

in insurance. Ikegami and Kikuchi (2020) studied a breach dataset in Japan and developed

a probabilistic model for estimating the data breach risk. They showed that the inter-arrival

times of data breaches (for those enterprises with multiple breaches) follow a negative bi-

nomial distribution. Xu and Zhang (2021) showed that the nonstationary extreme value

model can capture the statistical pattern of the monthly maximum of data breach size very

well, and they also discovered a positive time trend based on the PRC dataset. Using the

same dataset, Jung (2021) compared the estimates of extreme value distributions after 2014

and before 2014, and concluded that there is a significant increase with a break in the loss

severity.

The current study is different from those in the literature as we aim to study the

statistical properties of TTI and TTN. We summarize our contributions in the following:

i) Since there exist missing data for both TTN and TTI, and particularly, the missing

percentage for TTI is very high, we introduce a novel copula approach to tackling this

issue. Compared to the commonly used missing data imputation approaches such as Kalman

Smoothing and MICE imputations, the proposed copula approach is simple but efficient, and

leads to a better predictive performance. ii) A dependence model is developed to capture the

positive dependence between TTN and TTI. The empirical study shows that the proposed

model is superior to other commonly used multivariate time series models. iii) The practical

implications from the model results are discussed.
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The rest of the paper is organized as follows. In Chapter II, we conduct exploratory

data analysis on the breach data to motivate the proposed model. Chapter III introduces

some preliminaries for the statistical modeling. In Chapter IV, the copula approach for

imputing the missing data is introduced. In Chapter V, we develop the dependence model

for TTN and TTI, and assess the model performance. In Chapter VI, we conclude the

current study and present some discussion.
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CHAPTER II: EXPLORATORY DATA ANALYSIS

Min Q1 Median Mean SD Q3 Max NAs% 0s%

TTN 0.00 47 102 189.8 268.29 223 3222 11.35 0.09

TTI 0.00 0.00 20 101.8 231.81 96 3140 36.65 18.23

ITN 0.00 25 44 62.01 60.92 76 539 30.33 0.71

Table 1: Statistics of TTI (time to identification), TTN (time to notification), and ITN
(identification to notification) where ‘SD’ stands for standard deviation, Q1, Q3 represent
the first and third quantiles and NAs for missing values

The summary statistics of TTN is reported in Table 1. It is seen that the minimum

of TTN is 0 which means that the breach is reported on the same day of its occurrence.

However, this percentage is small, only 0.09%. The mean value of TTN is 189.8 days, and

the median is 102 days, with standard deviation 268.29 days. The time series plot of TTN

is shown in Figure 1(a), and we observe that there are some very large values in TTN. This

indicates that TTN has a large variability. The boxplot in Figure 2(a) shows that TTN is

very skewed with a large variability. The largest value of TTN is 3222, and it corresponds to

the incident of Dominion National reported on 6/21/2019. The breach occurred as early as

2010∗, and was the second-largest breach reported to the Department of Health and Human

Services. This incident affected 2.9 million patients and caused Dominion National a 2

million settlement. Further, there exist 11.35% missing data (i.e., unknown breach dates)

for the whole time period.

For TTI, the time series plot in Figure 1(b) shows there are some very large values

and also small values. This indicates that there exists a large variability in TTI. It is seen

∗https://www.newsbreak.com/news/2301704159983/dominion-national-reaches-2m-settlement-over-
nine-year-data-breach
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Figure 1: Time series plots of TTI and TTN, Unit: days

from Table 1 that there are 18.23% 0s, which indicates that a small percentage of incidents

can be detected on the same day of their occurrences. The mean of TTI is 101.8 days, while

the median, 20 days, is much smaller. This suggests that TTI is very skewed as seen from

the boxplot in Figure 2(b). The percentage of missing data is very high, i.e., 36.65%. The

missing data represents that the breach report does not contain either the breach date or

the identification date. The largest value of 3140 days corresponds to the same incident as

that of TTN.

The other quantity of interest is the time length from the identification to the notifi-

cation (ITN) which is the difference of TTN and TTI. It is seen from Table 1 that the mean

of ITN is 62.01 days with standard deviation 60.92 days. The median is 44 days which is

smaller than the mean. California data breach laws require the most expedient time possible

and without unreasonable delay for the notification∗. It should be noted that the data breach

laws are enacted at the state level, and some states require that the notification must be

∗see Cal. Civ. Code §§ 1798.81.5, 1798.82
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made within a certain time period, ranging from 24 hours to 90 days∗. The boxplot in Figure

2(c) shows that there exist many large values, say, greater than 90 days. The maximum value

of ITN is 539 days which corresponds to the incident reported on 6/14/2019 from UC San

Diego Health. This incident was that participants’ sensitive materials in an HIV research

study were made accessible to everyone working at Christie’s Place, a San Diego nonprofit

supporting women with HIV and AIDS. The organization was criticized for being delayed

to notify women affected from the breach†.
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Figure 2: Boxplots of TTI and TTN, Unit: days

It is also of interest to see the yearly statistics of TTN and TTI. Table 2 shows the

summary statistics of TTN and TTI. For TTN, we observe that the means in the first two

years are smaller than those of other years, and the mean ranges from 122 days in 2012 to

223.19 days in 2017. The median of TTN shows an overall increasing trend. The standard

deviations of TTN are very large for all years. This is further confirmed by the boxplot of

TTN in Figure 3(a) where it shows that there exist large variabilities. The boxplot of TTN

also indicates that the distribution of TTN is heavily skewed.

∗https://www.itgovernanceusa.com/data-breach-notification-laws
†https://inewsource.org/2019/05/14/ucsd-data-breach-hiv-women-study/
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Year Min Q1 Median Mean SD Q3 Max

TTN

2012 6 26.00 54.50 122.00 231.21 130.50 1858

2013 6 27.25 69.50 122.42 162.45 145.25 890

2014 2 31.25 60.00 165.62 279.60 181.50 2316

2015 0 50.00 78.00 193.20 299.91 224.20 2747

2016 3 34.00 81.50 183.40 282.95 212.80 2228

2017 2 46.25 114.50 223.19 287.97 338.00 2510

2018 0 51.00 124.50 196.40 261.50 222.50 2064

2019 4 64.25 143.50 215.20 308.53 264.50 3222

2020 1 77.00 146.00 199.30 229.37 232.50 1806

TTI

2012 0 0 0 68.72 251.79 16.50 1858

2013 0 0 2 64.22 151.93 60.00 865

2014 0 0 5.5 84.93 166.42 85.75 918

2015 0 0.5 35.0 101.2 202.53 80.5 1360

2016 0 0 16 99.78 263.07 75.00 2196

2017 0 0 14 116.3 221.51 149.00 1422

2018 0 1 36 114.7 223.51 118.00 1570

2019 0 3 37.5 132.5 313.50 149.5 3140

2020 0 2 21 93.46 210.09 99.25 1689

Table 2: Yearly summary statistics of TTI (time to identification), TTN (time to notifica-
tion), and ITN (identification to notification) where ‘SD’ stands for standard deviation, Q1,
Q3 represent the first and third quantiles
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Figure 3: Boxplots of yearly TTN and TTI

For TTI, the means and medians do not show any clear patterns. There exist much

more 0s in each year compared to that of TTN. The large variabities are also observed for

TTI. The medians are much smaller than the means, and the boxplot of TTI in Figure 3(b)

also shows that the distribution of TTI is heavily skewed.

To summarize, both TTN and TTI have considerable amounts of missing data. Par-

ticularly, the percentage of missing data of TTI is over 36%. Both TTN and TTI are heavily

skewed and have large variabilities. This indicates that using the mean as the risk measure

of TTN/TTI is unreliable. Those properties are taken into account in our modeling process.
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CHAPTER III: PRELIMINARIES

In this section, we introduce some preliminaries to be used in our discussion.

1. Copula

Copula is an effective and popular tool for modeling high-dimensional dependence

and has been widely employed in many areas especially in finance and insurance industry

since it allows to model the margins individually (Joe and Harry, 2014). Let X1, . . . , Xd be

continuous random variables with univariate marginal distributions F1, . . . , Fd, respectively.

Denote their joint cumulative distribution function (CDF) by

F (x1, . . . , xd) = P (X1 ≤ x1, . . . , Xd ≤ xd).

A d-dimensional copula, denoted by C, is a CDF with uniform marginals in [0, 1], namely

the joint CDF of the random vector (F1(X1), . . . , Fd(Xd)). Sklar’s theorem (Joe and Harry,

2014) says that when the Fi’s are continuous, C is unique and satisfies

F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)).

Let c(u1, . . . , un) be the d-dimensional copula density function and fi be the marginal density

function of Xi for i = 1, . . . , d. The joint density function of (X1, . . . , Xd) is

f(x1, . . . , xd) = c(F1(x1), . . . , Fd(xd))
d∏

i=1

fi(xi).
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The inverse of the Sklar’s theorem also holds. We can express the copula which

corresponds to multivariate distribution functions F with the marginal distribution functions

Fi for i = 1, ..., d as:

C(u1, ..., ud) = F (F−1
1 (ui), ..., F

−1
d (ud))

and its copula density function is defined by:

c(u1, ..., ud) =
f(F−1

1 (ui), ..., F
−1
d (ud))

f1(F
−1
1 (ui), ..., F

−1
d (ud))

To model the dependence between TTN and TTI, a bivariate extreme-value copula is

used. De Haan and Resnick (1977) and Pickands (1979) laid the groundwork for probabilistic

modeling of multivariate extremes, including asymptotic theory (1981). Coles et al. (2001),

Beirlant et al. (2006), and McNeil et al. (2006) are three books that focus on statistical

inference for extremevalue distributions (2015). Gudendorf and Segers looked at the connec-

tion between multivariate extreme-value theory and copulas (2010). A survey of employing

copulas to model extremes is presented by Genest and Nelehová (2013). A bivariate copula

C is called extreme value Copula if there exists a bivariate copula CX such that for n→∞,

we have:

[CX(u
1/n
1 , u

1/n
2 )]n → C(u1, u2)∀(u1, u2) ∈ [0, 1]2.

The copula CX is said to be in copula C’s domain of attraction.

From the literature review, there are many parametric families of bivariate extreme-

value copulas. we recall the following two extreme-value copulas (Joe and Harry, 2014):
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• Tawn type II copula.

C(u1, u2; δ, θ) = (1− δ)u+
[
((1− u)δ)θ + uθ

]1/θ
,

where u = log(u2)/ log(u1u2), θ ≥ 1, and 0 ≤ δ ≤ 1 is the skewness parameter. It is

known in the literature that the Tawn type II can model the right skewness of copula

density.

• BB8 copula.

C(u1, u2; δ, θ) = 1/δ

[
1−

(
1−

(
1− δ̄θ

)−1 (
1− (1− δu1)

θ
) (

1− (1− δu2)
θ
))1/θ

]
,

where θ ≥ 1, and 0 ≤ δ̄ = 1− δ ≤ 1.

For a visual inspection, we use contours of the function g(z1, z2). Contour plot is an

easy way to assess departures from the Gaussian copula assumption. Normalized bivariate

copula contour plots of a bivariate density is obtained from a copula density which is trans-

formed to achieve standard normal margins. The Contour plot uses z-scale as inputs defined

as:

• x-scale: original scale (X1, X2) with density f(x1, x2)

• u-scale: copula scale (U1, U2) where Ui = Fi(Xi) and copula density c(u1, u2)

• z-scale: marginal normalized scale (Z1, Z2), where Zi = Φ−1(Ui) = Φ−1(Fi(Xi)) for

i = 1, 2 with density

g(z1, z2) = c(Φ(z1),Φ(z2))ϕ(z1)ϕ(z2)

12



where Φ(.) and ϕ(.) are the distribution and density function of a N(0, 1) variable.

Parameter estimation in bivariate Copula models can be estimated in both known

(i.e up to marginal parameters) and unknown margin. If the margin is known, the copula

scale can be obtained directly by using the probability integral transform:

(ui1, ui2) := (F1(xi1), F2(xi2))

for i = 1,...,n

When there are unknown margins, it is common to employ a two-step technique, first

estimating the margins and then transforming to the copula scale by defining the pseudo-

copula data using the estimated marginal distributions F̂j, j = 1, 2.

(ui1, ui2) := (F̂1(xi1), F̂2(xi2))

for i = 1,...,n and then formulate a copula model for the pseudo-copula data.

An inference for margins approach (IFM) is utilized when parametric marginal models

are used, while a semiparametric method is employed when the empirical distribution is

used. Joe (2005) explored the effectiveness of the IFM approach, while Genest et al. (1995)

proposed the semiparametric approach.

2. ARMA, GARCH, DCC, and VAR models

ARMA (Auto Regressive Moving Average) and GARCH (Generalized Auto Regres-

sive Conditional Heteroskedasticity) models are widely-used time series models (Jonathan

et al., 2008).
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An ARMA model is used to describe the weakly stationary stochastic time series in

terms of autoregression and moving average.

Consider the pth order difference equation:

yt = a0 +

p∑
i=1

aiyt−i + xt

Let xt be the MA(q) process given by:

xt =

q∑
i=0

βiϵt−i

Therefore, we can write:

yt = a0 +

p∑
i=1

aiyt−i +

q∑
i=0

βiϵt−i

The ARMA(p,q) model has the general form:

Yt = µ+

p∑
k=1

ϕkYt−k +

q∑
l=1

θlϵt−l + ϵt

where ϕk, θl are the parameters of AR and MA, and ϵt is the innovation of the time series.

ARMA models are applied to model a process’s conditional expectation given the

past data, however, the conditional variance in ARMA is constant. GARCH model allows

us to model non constant variance.
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Let ϵt be a white noise with unit variance. A GARCH process satisfies:

at = σtϵt

The conditional standard deviation of at with the past values at−1, at−2,... is defined

as:

σt =

√√√√ω +

p∑
i=1

αia2t−i +

q∑
i=1

βiσ2
t−i

A general form of GARCH(p,q) is defined as:

σ2
t = w +

q∑
j=1

αjϵ
2
t−j +

p∑
j=1

βjσ
2
t−j,

where σ2
t is the conditional variance and w is the intercept.

The DCC (Dynamic Conditional Correlation) model introduced in Engle (2002) pro-

vides a very good approximation to a variety of time-varying correlation processes. Let

yt = (y1,t, y2,t, ..., ym,t) be a vector for m-dimensional time series at time t. A multivariate

GARCH model can be defined as

yt = H
1/2
t ϵt

where Ht is an m×m conditional covariance matrix, and ϵt is an m× 1 vector of error with

mean and variance given by E(ϵt) = 0 and Var(ϵt) = Im where Im is an m × m identity

matrix. The covariance matrix Ht can be decomposed into

Ht = DtRtDt

15



where Dt = diag(
√

h11,t, ...,
√

hmm,t) is a diagonal of time varying standard deviations from

a univariate GARCH(p, q) model, and Rt is a time varying positive definite conditional

correlation matrix

Rt = diag(Qt)
−1/2Qtdiag(Qt)

−1/2

where

Qt = (1− a− b)Q̄+ azt−1z
′
t−1 + bQt−1

is a positive symmetric matrix, and Q̄ is the unconditional matrix of the standardized errors

zt = D−1
t ϵt. The condition of a + b < 1 is imposed to ensure the stationarity and positive

definiteness of Qt. The DCC model consists of two steps: i) The first step is to estimate the

univariate GARCH parameters; ii) The second step is to estimate the conditional correlation

Rt. For more details on the DCC model, please refer to Engle (2002).

In the literature of time series, the VAR (Vector Auto Regressive) models are com-

monly used to investigate the dynamic interactions among multivariate time series (Tsay,

2005). They are also essential forecasting tools employed by the most of macroeconomic or

policy-making institutions. A VAR(p) model can be represented as

yt = A1yt−1 + ...+ Apyt−p + γt

where Ai is m×m coefficient matrix for i = 1, 2, .., p and γt is a m-dimensional error process

with zero mean and time-invariant positive definite covariance matrix.
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3. Accuracy metrics

To evaluate the accuracy of the predictive distribution, we use the following two

metrics: i) The first one is the most commonly used MAE (mean absolute error), which can

be represented as

MAE =
1

m

m∑
i=1

|yi − ŷi|,

where yi represents the observed values and ŷi represents the predicted values, i = 1, . . . ,m.

ii) The second is the CRPS (continuous ranked probability score). The dissimilarity of

probability forecast and an outcome is measure by loss function (scoring rule). Scoring

rules are used to evaluate the validity of probabilistic forecasts by providing a numerical

score to the forecast and the event or value that occurs. When the forecaster gives the

probabilistic forecast F, rather than G ̸= F , it maximizes the anticipated score for an

observation selected from the distribution F. If the maximum is unique, it is strictly proper.

Proper scoring standards encourage the forecaster to make meticulous assessments and be

accurate in prediction issues. Strictly appropriate scoring systems give appealing loss and

utility functions in estimating issues that can be adjusted to the scientific subject at hand.

For continuous outcome, a popular scoring rule is the continuous ranked probability score

which is defined as

CRPS(F, s) =

∫
R
(F (y)− 1{s ≤ y})2dy,

where F (·) denotes the predictive cumulative distribution function (CDF) and 1{·} denotes

the indicator function. The CRPS is a quadratic measures of the difference between the

predicted CDF and the empirical CDF of observed values, and is a widely-used accuracy
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measure dealing with probability forecasts (Epstein, 1969). A smaller score indicates a

better prediction.
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CHAPTER IV: COPULA APPROACH TO MISSING DATA IMPUTATION

Let x1,ts and x2,ts be the observed time series values of TTN and TTI, respectively,

t = 1, . . . , T . Since both TTN and TTI have missing data, we use x∗
1,ts and x∗

2,ts to represent

the missing observations for TTN and TTI, respectively. For modeling purpose, we use

the time period from January 20, 2012 to December 31, 2018 as the in-sample data (i.e.,

1505 pairs of observations with 596 NAs), while use the data from 2019 to 2020 as the

out-of-sample data (i.e., 618 pairs of observations with 282 NAs). We propose a novel

copula approach to imputing the missing data in Algorithm 1 for the in-sample data. In the

following, we briefly describe the procedure to impute the missing data for TTN and TTI.

a) Model the dependence based on the complete pairs of TTNs and TTIs. In our study,

there are 910 completely observed pairs of TTNs and TTIs among the in-sample data.

To model the dependence between TTN and TTI, the empirical marginals are used. We

select the best copula structure from various bivariate copula families in the VineCopula

package by the AIC criterion (Schepsmeier et al, 2015). It is found that the Tawn type

2 copula is selected for modeling the joint dependence, and the estimated parameters

are θ = 3.93, δ = 0.67, and τ = 0.54. In Figure 8, we display the normal score plot and

the fitted contour plot. We observe that there exist the strong right tail dependence

among TTN and TTI which fits the fact that the longer TTI is, the longer TTN.

b) Impute missing data for both TTNs and TTIs. There are 203 completely missing pairs

of TTN and TTI because of unknown breach dates. Based on the estimated copula

structure, we simulate N = 5000 observations in Algorithm 1, where the symbol ∗

represents the missing value. The missing values are imputed by using the means of
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Figure 4: Normal score plot and fitted contour plot of TTI and TTN. Unit: days

simulated observations

c) Impute missing data for TTIs with observed TTNs. Since there are 392 records with

TTNs only because the identification dates are unreported, we impute the missing

TTIs by using the conditional copula approach, i.e., sampling from the conditional

Tawn type 2 copula with given TTNs (line 9 in Algorithm 1).

For comparison purpose, we also use the following two commonly used approaches

for missing data imputation.

• Kalman Smoothing (KS) imputation and State Space model. The KS imputation

and State Space model is the commonly used algorithm and often produces the best

performance in the literature (Grewal et al., 2014). The state space model is specified

as structural time series model fitted by maximum likelihood. The imputation process

are performed by the following steps: recognizing trend and seasonality in structural

state space model, specifying the state space form, estimating the unobserved state
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Algorithm 1 Copula approach for imputing the missing data.

INPUT: Complete pairs {(x1,t, x2,t)|t = i1, . . . , iT1}; Incomplete pairs
{(x1,t, x

∗
2,t)|t = iT1+1, . . . , iT2}; Missing pairs {(x∗

1,t, x
∗
2,t)|t = iT2+1, . . . , iT3}; N = 5000.

1: Estimate the empirical marginals (u1,t, u2,t) based on (x1,t, x2,t), t = i1, . . . , iT1 ;
2: Select the preferred copula structure C via AIC criterion based on the empirical

marginals;
3: for j = 1, . . . , N do
4: Simulate T3 − T2 pairs from copula C;
5: Covert the simulated observations into marginal values {(x∗

1,t,j, x
∗
2,t,j)} via the sample

quantile approach in (Hyndman et al., 1996);
6: end for
7: x1,t ←

∑N
j=1 x

∗
1,t,j/N , x2,t ←

∑N
j=1 x

∗
2,t,j/N , t = iT2+1, . . . , iT3 ;

8: for t = T1 + 1, . . . , T2 do
9: Simulate N samples of u2,t’s given each u1,t from copula C;
10: Convert to the original value x2,t based on the mean of u2,t’s using the sample

quantile approach in (Hyndman et al., 1996);
11: end for
12: return {(t, x1,t, x2,t)|t = 1, . . . , T3};
OUTPUT: Imputed data {(t, x1,t, x2,t)|t = 1, . . . , T3} .

equations parameters by Kalman Smoothing, and calculating the missing values (cite).

These steps are implemented by the imputeTS package in R which is developed by

Steffen Moritz.

For TTN and TTI, we impute the missing values on the training data by using the KS

imputation. Since TTI must be no larger than TTN, we replace TTI by TTN if the

imputed TTI is larger than TTN (a total of 130 imputed observations).

• Multivariate Imputation by Chained Equations (MICE) imputation. The second ap-

proach that we impose on the missing values is the MICE imputation. This method

is emerged as one of the principled method to address missing values in statistical

literature (Van et al., 2011). The chained equation process can be broken down into

four general steps:
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Step 1: Every missing value in the dataset receives a simple imputation, such as

imputing the mean. These imputations are sometimes referred to as ”place holders.”

Step 2: Imputations for one variable (”var”) are reset to missing.

Step 3: Involve regressing the observed values from the variable ”var” on the other

variables in the imputation model, which may or may not include all of the variables

in the dataset. In other words, in a regression model, ”var” is the dependent variable,

whereas all the other variables are independent variables. Outside of the context of

imputing missing data, these regression models function under the same assumptions

that one would make when doing linear, logistic, or Poison regression models.

Step 4: The regression model’s predictions are used to fill in the missing values for

”var.” Both the observed and imputed values will be used when ”var” is used as an

independent variable in regression models for other variables. Step 5: Steps 2–4 are

then repeated for each missing data variable. One iteration or ”cycle” is the process of

cycling through each of the variables. At the end of one cycle, all of the missing values

were replaced with regression predictions that reflected the data’s relations. Step 6:

Steps 2–4 are done a number of times, with the imputations updated each time.

We used the MICE package in R to perform the imputation. Similar to the KS method,

we impute the missing values by the MICE on the training data. We replace TTI by

TTN when the imputed value of TTI is greater than TTN (a total of 8 imputed

observations).

Table 3 shows the summary statistics of imputed TTNs and TTIs for the proposed

copula, KS, and MICE approaches. For TTN, the means are very close for different ap-

22



Min Q1 Median Mean SD Q3 Max

TTN-copula 0.00 44.00 113.0 182.7 251.32 190.0 2747

TTN-KS 0.00 44.00 106.0 180.4 252.08 208.0 2747

TTN-MICE 0.00 39.00 87.0 181.2 262.14 213.0 2747

TTI-copula 0.00 1.00 41.00 98.43 200.10 99.19 2196

TTI-KS 0.00 3.00 51.00 89.46 171.53 104.00 2196

TTI-MICE 0.00 0.00 32.00 123.5 236.39 143.0 2196

Table 3: Statistics of imputed TTI (time to identification) and TTN (time to notification)
based on different approaches where ‘SD’ stands for standard deviation, Q1, Q3 represent
the first and third quantiles

proaches while the medians are different. The MICE imputation has the smallest median 87

while the copula approach has the largest 113. In terms of standard deviation, the copula

approach has the smallest value (251.32) while the MICE approach has the largest value

(262.14). For TTI, the means are different, and the smallest mean is 89.46 by the KS impu-

tation while the largest one is 123.5 by the MICE imputation. The MICE approach has the

smallest median 32 while the KS approach has the largest 51. For the standard deviation,

the KS approach has the smallest value 171.53 while the MICE approach has the largest

value 236.39. It is interesting to note that the copula approach leads to the smallest Q3s for

both TTN and TTI. Compared with KS and MICE imputation approaches, the proposed

copula approach is simple but efficient. We further note that all the imputed TTNs are no

less than the corresponding TTIs by the copula approach. Therefore, there is no need to

replace any observations.

Since both TTNs and TTIs are skewed and have large variabilities, the transforma-

tions are performed. For TTNs, since there are only two 0s by the copula imputation, we

replace the 0s by two random values from a uniform (0, 1) distribution and perform the log
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transformation. For TTIs, since we have a large portion of 0s, we perform the square root

transform to reduce the variability.
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CHAPTER V: STATISTICAL MODELING

In this section, we develop a copula approach to jointly modeling the dynamics of

TTN and TTI. After imputing the missing values, both transformed TTN and TTI exhibit

the temporal correlations as shown by their ACFs and PACFs in Figure 5 and Figure 6.
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Figure 5: ACFs of transformed TTI and TTN. Unit: days
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Figure 6: PACFs of transformed TTI and TTN. Unit: days

In the following, we discuss how to capture the temporal and cross-sectional depen-
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dence of TTN and TTI.

1. Model fitting

From Section Data Exploratory, it is seen that there exist large variabilities for both

TTN and TTI. Therefore, we propose to use a GARCH model to model the volatilities for

both TTN and TTI. The analysis on the residuals suggests that GARCH(1, 1) is sufficient

to describe the volatilities in the residuals of both series. This in fact coincides with the

conclusion drawn in the literature that higher-order GARCH models are not necessarily

better than GARCH(1, 1) (Hansen et al., 2015). Therefore, we fix the GARCH part as

GARCH(1, 1). To model the evolution of the means of TTN and TTI, we propose using the

ARMA(p, q) process. This leads to the following ARMA+GARCH model

Yt = µ+

p∑
k=1

ϕkYt−k +

q∑
l=1

θlϵt−l + ϵt, (1)

where ϵt = σtZt with Zt being the i.i.d. innovations, and the ϕk’s and the θl’s are respectively

the coefficients of the AR and MA parts. For the standard GARCH(1, 1) model, we have

σ2
t = w + α1ϵ

2
t−1 + β1σ

2
t−1, (2)

where σ2
t is the conditional variance and w is the intercept. For model selection, we use the

AIC criterion to determine the orders of the ARMAmodels. Note that if ARMA(p, q)+GARCH

can successfully accommodate the serial correlations in the conditional mean and the con-

ditional variance, there would be no autocorrelations left in the standardized and squared
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standardized residuals. When the AIC criterion suggests to select multiple models with sim-

ilar AIC values, we select the simpler model. The autoregressive p and the moving average

order q are allowed to vary between 0 and 5. We find that ARMA(1, 1)+GARCH(1, 1) with

normal innovations is sufficient to remove the serial correlations for both TTN and TTI.

Based on the Ljung-Box test (Brockwell et al., 2016), for TTN, the p-values of standardized

and squared standardized residuals are 0.186 and 0.613 , respectively; for TTI, the p-values

are 0.524 and 0.184, respectively.

Let Zt = (Z1,t, Z2,t) be the vector of standardized residuals of fitted models for TTN

and TTI. Further, we assume that Zt = (Z1,t, Z2,t) has the following distribution

F (zt) = C (F (z1,t), G(z2,t)) , (3)

where F is the marginal distribution of the residual of TTN, and G is the marginal distri-

bution of the residual of TTI. The joint log-likelihood function of the model can be written

as

L =
n∑

t=1

[log c (F (z1,t) , G (z2,t))− log(σ1,t)− log(σ2,t) + log (f (z1,t)) + log (g (z2,t))] ,

where c(·) is the copula density of C(·); σ1,t and σ2,t are the conditional standard deviations

of TTN and TTI, respectively. f(·) is the density function of Z1,t, and g(·) is the density

function of Z2,t. A popular method for estimating the parameters of a joint model is the

Inference Function of Margins method (Joe, 1997), which is employed in our study. This

method has two steps: (i) estimate the parameters of the marginal models; and (ii) estimate
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the parameters of the copula by fixing the parameters obtained at step (i). Since we have

identified the time series models for TTNs and TTIs, we discuss how to model the bivariate

dependence in the following. Note that although we assume the normal innovations for the

marginal processes to remove serial correlations, Z1,ts and Z2,ts are not normally distributed

due to the high skewness and an excessive number of 0s. Since it is very challenging to

fit parametric distributions to the marginals, we propose using the empirical marginals in

Eq. (3), and then select the copula structure by using the AIC criterion. The BB8 copula is

preferred to model the dependence between the standardized residuals, and the corresponding

estimated parameters are θ = 4.54, δ = 0.98, and τ = 0.64.
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Figure 7: Normal score plot and contour plot of residuals of TTI and TTN

The normal score plot and fitted contour plot are displayed in Figure 7. It is seen

that the upper tail dependence is well captured by the BB8 copula.
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2. Prediction evaluation

We use Algorithm 2 to perform the rolling window prediction for the TTI and TTN.

The parsimonious ARMA(1,1)+GARCH(1,1) model is applied to the sample data with win-

dow size w = 500. The window size is selected based on the fact that too few observations

can lead to the large variability in the model and hence have a poor prediction performance,

while too many observations not only cost more computational effort but also not necessar-

ily improve the prediction performance because of the potential structure break and trends.

In the rolling process, the dependence structure is allowed to vary with time. That is, the

copula is re-selected during the fitting process via the criterion of AIC (see line 4 of Algo-

rithm 2). Since the size of out-of-sample data is 618, we have T = 1505 and S = 2123.

The predictive distributions of TTN and TTI are simulated based on N = 5000 samples.

If the observed value is missing, we use the predicted mean to replace the missing value in

the TTN/TTI to perform the rolling prediction. The evaluation metrics such as MAE and

CRPS are computed by excluding the missing data in the out-of-sample data.

Imputation comparison. We study the predictive performance of proposed copula im-

putation approach. For this purpose, Algorithm 2 is applied to the KS and MICE imputed

data. The predictive results are reported in Table 4. It is seen that for TTN, the pre-

dictive performances are similar for all three imputation approaches in terms of the mean

of CRPSs and MAE. For TTI, the copula imputation approach leads to a slightly smaller

mean of CRPSs, but the KS imputation approach has the smallest MAE. We also compute

the percentages that the CRPSs of the copula approach are less than that of MICE and

KS, respectively. We observe that the copula approach outperforms both of the MICE and
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Algorithm 2 Algorithm for predicting the distributions of TTN and TTI.

Input: Imputed in-sample data {(t, x1,t, x2,t)|t = 1, . . . , T}; out-of-sample data
{(t, x1,t, x2,t)|t = T + 1, . . . , S}; window size w = 500; N = 5000.

1: for i = T, · · · , S − 1 do
2: Estimate the ARMA-GARCH model based on the log-transformed TTNs with time

window [i− w + 1, i];
3: Estimate the ARMA-GARCH model based on the square root transformed TTIs

with time window [i− w + 1, i];
4: Convert the standardized residuals z1,ts and z2,ts to the empirical marginals;
5: Select a preferred copula based on the empirical marginals via the AIC criterion;
6: Based on the estimated copula, simulate N 2-dimensional copula samples(

u
(k)
1,i , u

(k)
2,i

)
, k = 1, . . . , N ;

7: For the TTN, convert the simulated dependent samples u
(k)
1,i s into standardized

residuals z
(k)
1,i s via the sample quantile approach in (Hyndman et al., 1996)

k = 1, . . . , N ;
8: For the TTI, convert the simulated dependent samples u

(k)
2,i s into standardized

residual z
(k)
2,i s via the sample quantile approach in (Hyndman et al., 1996),

k = 1, . . . , N ;
9: Compute the predicted N 2-dimensional x

(k)
1,i+1s and x

(k)
2,i+1s, respectively,

k = 1, . . . , N ;
10: if x1,i+1 (x2,i+1) is missing then

11: x1,i+1 (x2,i+1) is imputed as the mean of x
(k)
1,i+1s (x

(k)
2,i+1s);

12: end if
13: end for

Output: Predictive distributions of TTN and TTI.
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KS imputation approaches in terms of CRPSs. In particular, for TTI, the copula approach

improves the MICE approach by 22.71% and KS approach by 11.93%.

CRPS-Mean MAE CRPS-Mean MAE
TTN TTI

Copula 100.555 141.230 84.896 130.308
MICE 100.581 141.359 85.300 134.282
KS 100.478 141.493 85.998 129.997

Percentage
Copula vs MICE 52.24% 72.71%
Copula vs KS 55.86% 61.93%

Table 4: Means of CRPSs and MAEs of the proposed copula and other imputation ap-
proaches

Therefore, the proposed copula imputation approach is preferred and used in the

following discussion.

Model comparison. We compare the predictive performance of proposed model to those

commonly used models of DCC and VAR. For the fair comparison, modified Algorithms 2

are applied for the DCC and VAR models. Specifically, for the DCC model, the marginals

of TTN and TTI are still fitted by using ARMA(1,1)+GARCH(1,1) on the sliding window,

but the DCC is used for modeling the correlation. We also simulate N = 5000 values for

each prediction for the DCC model. For the VAR model, the order p is selected from 1 to

5 by using the AIC criterion for each sliding window, and N = 5000 predicted values are

simulated from the selected VAR model for each prediction.

The predictive results are reported in Table 5. It is seen that for TTN, the predictive

performances are comparable based on MAE and mean CRPS. However, in terms of individ-

ual CRPS, DCC is slighter better than the proposed copula approach as it improves 4.31%.
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CRPS-Mean MAE CRPS-Mean MAE
TTN TTI

Copula 100.555 141.230 84.896 130.308
DCC 101.022 144.146 86.422 129.550
VAR 101.233 143.234 108.532 100.465

Percentage
Copula vs DCC 45.69% 72.94%
Copula vs VAR 57.24% 71.10%

Table 5: Mean CRPSs and MAEs of the proposed copula and other model(s)

For TTI, it is seen that the VAR model has the smallest MAE. But the proposed copula

approach significantly outperforms other approaches in terms of individual CRPS, namely

improving 22.94% compared to DCC and 21.10% compared to VAR.

To further assess the prediction accuracy, we further use the Value-at-Risk (VaR)

(McNeil et. al, 2015) metric since it is directly related to the high quantiles of interest.

Recall that for a random variable Xt, the VaR at level α for some 0 < α < 1 is defined

as VaRα(t) = inf {l : P (Xt ≤ l) ≥ α}. For example, VaR.95(t) means that there is only a

5% probability that the observed value is greater than the predicted value VaR.95(t). An

observed value that is greater than the predicted VaRα(t) is called a violation. In order to

evaluate the prediction accuracy of the VaR values, we use the following three popular tests

(Christoffersen, 1998): (i) the unconditional coverage test, denoted by LRuc, which evaluates

whether or not the fraction of violations is significantly different from the model’s violations;

(ii) the conditional coverage test, denoted by LRcc, which is a joint likelihood ratio test for

the independence of violations and unconditional coverage; and (iii) the dynamic quantile

test (DQ), which is based on the sequence of ‘hit’ variables (Engle, 2014).

Table 6 shows the p-values of VaR tests at different levels of α = .9, .95, .99. It

32



Exp. Ob. LRuc LRcc DQ Exp. Ob. LRuc LRcc DQ
TTN TTI

VaR.9

Copula 58 54 .576 .484 .999 43.6 46 .704 .795 .999
VAR 58 39 .005 .019 .410 43.6 147 0 0 0
DCC 58 39 .005 .019 .394 43.6 31 .035 .107 .758

VaR.95

Copula 29 26 .561 .249 .995 21.8 22 .965 .993 .999
VAR 29 22 .164 .159 .952 21.8 139 0 0 0
DCC 29 21 .110 .126 .891 21.8 21 .860 .984 .999

VaR.99

Copula 5.8 7 .001 .003 .568 4.36 5 .003 .013 .743
VAR 5.8 7 .001 .003 .566 4.36 127 0 0 0
DCC 5.8 11 .001 .003 .570 4.36 13 0 0 0

Table 6: The p-values of the VaR tests of the predicted violations for α = .9, .95, .99

is seen that at α = .9 and α = .95 levels, the copula approach predicts very well. For

TTN, we observe that the numbers of expected violations are very close to the numbers of

observed violations. The p-values are all very large for those three tests. Compared to the

proposed copula approach, the discrepancies between the numbers of expected violations

and the number of observed violations are large for the VAR and the DCC models. At

level α = .9, the p-values of LRuc and LRcc are also small for the VAR and the DCC

models. Similarly, for TTI, the proposed copula approach significantly outperforms the other

approaches. Particularly, we observe that the VAR has the worst prediction performance.

At α = .99 level, we observe that the numbers of expected violation and the numbers of

observed violation are close based on the copula approach for both TTN and TTI. However,

the p-values seem to be small for both LRuc and LRcc because of the small sample size. But

the proposed copula approach still outperforms the other approaches. Figure 8 shows the

VaR plots of TTN and TTI, and we observe that the proposed copula approach predicts the
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VaRs well.
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Figure 8: VaR plots of TTN and TTI

To summarize, the proposed copula model outperforms the DCC and VAR models in

terms of CRPS and VaR overall.
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CHAPTER VI: CONCLUSION AND DISCUSSION

In this paper, we develop a statistical model for capturing the dependence between two

important metrics related to the data breach risk, i.e., TTN and TTI. To tackle the missing

data, we propose a novel copula approach. Our study shows that the developed model is

superior to other commonly used multivariate imputation approaches and multivariate time

series models such as DCC and VAR. From our study, it is discovered that both TTN and

TTI have large variabilities, and therefore, using the mean of TTN or TTI from the public

source (e.g. 2021 Cost of a Data Breach Report by IBM) as the measurement for determining

the relevant cost is unreliable. We recommend to use the VaR as the measurement to reflect

the risk. Taking the VaR.95 as a representative example, according to the proposed copula

model, 95% of TTNs are less than 619.5 days with a standard error 70.769 days in 2019, and

it reduces to 534.9 days with a standard error 57.06 days in 2020. For TTI, 95% of TTIs

are less than 456.9 days with a standard error 64.3222 days in 2019, and it reduces to 323.7

days with a standard error 55.307 days in 2020. Therefore, the mean VaR is more suitable

for measuring the risk. We also find that there exists a large variability in the differences

of TTNs and TTIs. We urge the authority in CA to require that the notification must be

made within a certain period (e.g., 60 days). This can efficiently reduce the unnecessary

delay from the identification to the notification.

Although the proposed model is based on the CA breach data, the developed ap-

proach can be equally applied to similar breach data. Further, the proposed model can help

insurers to estimate the TTIs and TTNs. In the following, we briefly mention how to use

the developed approach in the risk assessment from the insurer perspective:
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• Pricing factor. Assume that an insurance company offers a cyber insurance policy

covering the cost related to TTN/TTI (e.g., notification expense, regulatory fines and

penalties, and forensic expenses, etc). For the pricing formula, the TTN/TTI should

be taken into account since it is directly related to the loss. The proposed model can

be used to predict the quantities of interest such as high quantiles of TTN/TTI. Those

quantities can be used as a pricing factor to adjust the pricing formula.

• Individual incident. It is common in practice that when a cyber incident is identified,

the breach date is unknown or needs much time or effort to investigate. The proposed

model can be used to estimate/predict the missing/unknown TTN/TTI for the cost

estimation.

The current study also has some limitations like other studies. First, the proposed approach

is based on the CA breach reports, it is possible that the data from other states or countries

may exhibit different patterns. Therefore, the current model should be cautiously used

when the different pattern appears. Second, the covariates are not incorporated in our

modeling process. In the future study, the text mining approach can be used to extract the

key information as the covariates. Third, the severity related to the TTN/TTI is of interest.

However, due to the limited loss data, this study will be pursued when more data is available.
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