Mathieu-Zhao Subspaces of Burnside Algebras of Some Finite Groups

Andrew Burak Hatfield
Illinois State University, andrew.hatfield@me.com

Follow this and additional works at: https://ir.library.illinoisstate.edu/etd

Recommended Citation
https://ir.library.illinoisstate.edu/etd/1601

This Thesis is brought to you for free and open access by ISU ReD: Research and eData. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ISU ReD: Research and eData. For more information, please contact ISURED@ilstu.edu.
In 2010, W. Zhao introduced the notion of a Mathieu subspace as a common framework for study of the Jacobian conjecture and related topics. As a generalization of ideals, Mathieu subspaces provide a new viewpoint to investigate the structure of associative algebras and rings. In this paper, we classify Mathieu subspaces of the Burnside algebras \(B_k(G) \) and \(B_k(D_{2p}) \) where \(k \) is a field of characteristic \(p > 0 \), \(G = H \times K \) for a \(p \)-group \(H \) and a \(p' \)-group \(K \), and \(D_{2p} \) is the dihedral group of order \(2p \) (for \(p \) odd).

KEYWORDS: Mathieu subspaces (Mathieu-Zhao subspaces), Burnside rings (Burnside algebras), finite groups, \(p \)-groups, \(p' \)-groups, dihedral groups
MATHIEU-ZHAO SUBSPACES OF BURNSIDE ALGEBRAS
OF SOME FINITE GROUPS

ANDREW B. HATFIELD

A Thesis Submitted in Partial
Fulfillment of the Requirements
for the Degree of
MASTER OF SCIENCE

Department of Mathematics

ILLINOIS STATE UNIVERSITY

2022
MATHIEU-ZHAO SUBSPACES OF BURNSIDE ALGEBRAS
OF SOME FINITE GROUPS

ANDREW B. HATFIELD

COMMITTEE MEMBERS:
Wenhua Zhao, Chair
George F. Seelinger
CONTENTS

<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTENTS</td>
<td>i</td>
</tr>
<tr>
<td>CHAPTER I: INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>CHAPTER II: PRELIMINARIES</td>
<td>5</td>
</tr>
<tr>
<td>CHAPTER III: MATHIEU-ZHAO SUBSPACES OF $\mathcal{B}_k(G)$</td>
<td>8</td>
</tr>
<tr>
<td>CHAPTER IV: MATHIEU-ZHAO SUBSPACES OF $\mathcal{B}k(D{2p})$</td>
<td>12</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>15</td>
</tr>
</tbody>
</table>
CHAPTER I: INTRODUCTION

Let \(f_1, \ldots, f_n \) be a set of polynomials over \(\mathbb{C} \) in variables \(x_1, \ldots, x_n \). Define the polynomial map \(F : \mathbb{C}^n \to \mathbb{C}^n \) by

\[
F(x_1, \ldots, x_n) = (f_1(x_1, \ldots, x_n), \ldots, f_n(x_1, \ldots, x_n)).
\]

Denote by \(J_F \) the Jacobian of \(F \), which is the determinant of the \(n \times n \) matrix

\[
M = \begin{bmatrix}
\frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_n}{\partial x_1} & \cdots & \frac{\partial f_n}{\partial x_n}
\end{bmatrix}.
\]

First formulated by O.-H. Keller in 1939, the Jacobian conjecture can be stated as follows.

Conjecture 1.1. (Keller, [6]) Let \(F : \mathbb{C}^n \to \mathbb{C}^n \) be a polynomial map. If \(J_F \) is a nonzero constant, then \(F \) has an inverse polynomial map \(G \).

Although the statement of the conjecture is quite simple, the conjecture remains today wide open in general with very few special cases proven. For a survey of related results, we refer the reader to [1], [10], and [11].

Although direct proof attempts have been mostly unsuccessful, it has been shown that numerous conjectures imply the Jacobian conjecture. Motivated by Mathieu’s conjecture [8] and the Image conjecture [13], W. Zhao introduced in [12] the following notion with the goal of creating a common framework for the study of the Jacobian conjecture and related conjectures.

Definition 1.2. Let \(R \) be a commutative ring and \(\mathcal{A} \) be a commutative \(R \)-algebra. We say that a subspace \(\mathcal{M} \) of \(\mathcal{A} \) is a **Mathieu subspace** of \(\mathcal{A} \) if the following condition holds: for
a, b ∈ A with \(a^m \in M\) for all \(m \geq 1\), we have \(a^mb \in M\) when \(m \gg 0\), i.e. there exists \(N \geq 1\) (depending on \(a, b\)) such that \(a^m b \in M\) for all \(m \geq N\).

Note that Mathieu subspaces are now commonly called Mathieu-Zhao subspaces in the literature.

Several conjectures related to the Jacobian conjecture can be restated in terms of Mathieu-Zhao subspaces (for example, the Mathieu and Image conjecture as in [12]). Mathieu-Zhao subspaces are also a natural generalization of the concept of ideals, and as such, the study of Mathieu-Zhao subspaces of associative algebras and rings has grown into a field of its own. In this paper, we investigate the Mathieu-Zhao subspaces of Burnside algebras of certain classes of finite groups over fields of prime characteristic. We begin by fixing some definitions.

Let \(G\) denote a finite group and \(R\) a commutative, unital ring. Let \(S\) be a finite set and denote by \(A(S)\) the symmetric group of all permutations of \(S\). We say that \(S\) is a \(G\)-set if there exists a group homomorphism \(\tau : G \to A(S)\). We call \(\tau\) a group action of \(G\) on \(S\) and typically write \(gs\) to denote \((\tau(g))(s)\) for all \(s \in S\).

Let \(S, T\) be \(G\)-sets. We say that \(S\) and \(T\) are isomorphic as \(G\)-sets if there exists a bijection \(f : S \to T\) such that \(f\) preserves the group actions of \(G\) on \(S\) and \(T\), i.e. for any \(g \in G\) and \(s \in S\), we have \(f(gs) = gf(s)\). The Cartesian product of \(S\) and \(T\) is also a \(G\)-set under the diagonal action \(g(s, t) = (gs, gt)\) for all \(g \in G, (s, t) \in S \times T\). We define the orbit of \(s\) to be the set \(Gs = \{gs \mid g \in G\}\). We say that \(S\) is transitive if \(S = Gs\) for some \(s \in S\), or equivalently, the action of \(G\) on \(S\) has exactly one orbit. Let \(s \in S, t \in T\). For transitive \(G\)-sets \(S\) and \(T\), \(S\) and \(T\) are isomorphic as \(G\)-sets if and only if \(\text{stab}(s)\) is conjugate to \(\text{stab}(t)\), where \(\text{stab}(s) = \{g \in G \mid gs = s\}\) denotes the stabilizer (or isotropy group) of \(s\) [9].

For any \(G\)-set \(S\), we may uniquely decompose \(S\) into the disjoint union of transitive \(G\)-sets which are precisely the orbits of \(S\) under the action of \(G\). For any subgroup \(H \leq G\), the left coset space \(G/H\) defines a transitive \(G\)-set with action given by left multiplication. For any \(s \in S\), we have \(S \cong G/\text{stab}(s)\) if \(S\) is transitive.
Let P denote the set of conjugacy classes of subgroups of G. For each $a \in P$, let H_a denote a representative of the class a and $[G/H_a]$ denote the isomorphism class of G/H_a. Let $\mathcal{B}_R(G)$ denote the free R-module generated by the set $\{ [G/H_a] \mid a \in P \}$. For any two basis elements $[G/H_a], [G/H_b] \in \mathcal{B}_R(G)$, define

$$[G/H_a] \cdot [G/H_b] = \sum [G/K_i]$$

where the sum is taken over all G-orbits in $G/H_a \times G/H_b$ and K_i is the stabilizer of the ith G-orbit. Extending the product by linearity makes $\mathcal{B}_R(G)$ a commutative ring with identity $[G/G]$, and we call $\mathcal{B}_R(G)$ the Burnside ring of G over R. If R is a field, we call $\mathcal{B}_R(G)$ the Burnside algebra of G over R. The Burnside ring is named after W. Burnside, who introduced the notion in [2].

We say that a finite group G is a p-group for a prime p if $|G| = p^k$ for some k, and say that G is a p'-group if $p \nmid |G|$. Let A be an associative algebra and $\langle e \rangle$ denote the principal ideal of A generated by $e \in A$. In this thesis, we prove the following main theorems.

Theorem 1.3. Let k be a field of characteristic p and $G = H \times K$ where H is a p-group and K is a p'-group. Let V be a subspace of $\mathcal{B}_k(G)$. Then V is a Mathieu-Zhao subspace of $\mathcal{B}_k(G) \cong \mathcal{B}_k(H) \otimes_k \mathcal{B}_k(K)$ if and only if V contains no nonzero idempotents or $\mathcal{B}_k(H) \otimes \langle j \rangle \subseteq V$ for each nonzero idempotent j of $\mathcal{B}_k(K)$ such that $1 \otimes j \in V$, where $\langle j \rangle$ is the principal ideal of $\mathcal{B}_k(K)$ generated by j.

Theorem 1.4. Let p be an odd prime, k be a field of characteristic p, and $A = \mathcal{B}_k(D_{2p})$. Then $A \cong e_1 A \times e_2 A \times e_3 A$ for some nonzero idempotents e_i. A subspace V of A is a Mathieu-Zhao subspace of A if and only if V contains no nonzero idempotents or $\bigoplus_{j \in J} e_j A \subseteq V$ for each nonzero idempotent $\sum_{j \in J} e_j$ contained in V, where $J \subseteq \{1, 2, 3\}$.

The rest of the paper is organized as follows: in Chapter II, we discuss results necessary for the proof of Theorems 1.3 and 1.4. In Chapter III, we prove Theorem 1.3. In Chapter
IV, we prove Theorem 1.4.
CHAPTER II: PRELIMINARIES

The following theorem due to G. Karpilovsky allows the splitting of Burnside rings over the cross product of groups.

Theorem 2.1 (Karpilovsky, [5]). Let G and H be groups with representatives of all conjugacy classes given by G_1, \cdots, G_n and H_1, \cdots, H_m respectively. Then the map $\phi : \mathcal{B}_Z(G) \otimes \mathcal{B}_Z(H) \to \mathcal{B}_Z(G \times H)$ given by $\phi([G/G_i] \otimes [H/H_j]) = [(G \times H)/(G_i \times H_j)]$ is an injective ring homomorphism. Furthermore, if G and H are of relatively prime order, then ϕ is a ring isomorphism.

Let p be a prime and let \mathbb{Z}_p denote the field of integers modulo p. The following theorem due to E. Jacobson classifies local Burnside rings of the form $\mathcal{B}_{\mathbb{Z}_p}(G)$ where G is a finite group.

Theorem 2.2 (Jacobson, [4]). Let G be a finite group. G is a p-group if and only if $\mathcal{B}_{\mathbb{Z}_p}(G)$ is local.

The following theorem is an analogue of the well-known Maschke’s theorem for group algebras. For a unital ring R, we say that $e \in R$ is *idempotent* if $e^2 = e$ and we call e *central* if $eR(1-e) = (1-e)Re = 0$. We say that idempotents e and f are *orthogonal* if $ef = fe = 0$, and we say that a central idempotent e is *centrally primitive* if $e \neq 0$ and e cannot be written as the sum of two nonzero orthogonal central idempotents in R. Furthermore, we say a set E of orthogonal centrally primitive idempotents is *complete* if $\sum_{e \in E} e = 1$. We note for the Burnside algebras $\mathcal{B}_k(G)$ that all idempotents are central as $\mathcal{B}_k(G)$ is commutative.

Theorem 2.3 (Solomon, [9]). Let G be a finite group and let k be a field of characteristic 0 or coprime to $|G|$. Then the Burnside algebra $\mathcal{B}_k(G)$ is semisimple and isomorphic to $\bigoplus_{e \in E} ke$ for a complete set of orthogonal centrally primitive idempotents E.

The following theorem is a standard result for Burnside rings describing the product of G-sets $[G/H]$ and $[G/K]$ such that H, K are normal subgroups of G.
Lemma 2.4. Let G be a finite group and let k be a field of characteristic p. Let H, K be normal subgroups of G. Then the multiplication of transitive G-sets $[G/H], [G/K]$ in $B_k(G)$ is given by

$$[G/H] \cdot [G/K] = \frac{|H \cap K||G|}{|H||K|} [G/H \cap K].$$

Proof. Let $(aH, bK) \in G/H \times G/K$. As H, K are normal, the stabilizer $\text{stab}(aH, bK)$ is given by

$$\text{stab}(aH, bK) = aHa^{-1} \cap bKb^{-1} = H \cap K.$$

Counting the number of elements on both sides gives $[G/H] \cdot [G/K] = \frac{|H \cap K||G|}{|H||K|} [G/H \cap K]$. \square

The following theorem due to W. Zhao allows for simple classification of the Mathieu-Zhao subspaces of some algebras given their idempotents. Let k be a field and A an associative algebra over k. We say $V \subseteq A$ is algebraic over k if every element of V is the root of a monic polynomial with coefficients in k. Denote by \sqrt{V} the radical of V, i.e., the set of all $a \in A$ such that $a^m \in V$ for sufficiently large m.

Theorem 2.5 (Zhao, [14]). Let k be a field and A an associative algebra over k. Let V be a k-subspace such that \sqrt{V} is algebraic over k. Then V is a Mathieu-Zhao subspace of A if and only if for each idempotent $e \in V$, we have the principal ideal $(e) \subseteq V$.

Lemma 2.6. Let G be a finite group and k be a field. Then $B_k(G)$ is algebraic.

Proof. Let $b \in B_k(G)$. Then the set $\{1, b, b^2, \cdots\}$ must be linearly dependent, so there exists a nonconstant polynomial q such that $q(b) = 0$. Let $\alpha \in k$ be the leading coefficient of q. Then $\alpha^{-1}p(b) = 0$, hence b is algebraic. Therefore, $B_k(G)$ is algebraic. \square

Let p be an odd prime and D_{2p} denote the dihedral group of order $2p$. Write D_{2p} as $\langle r, s \rangle$, where r has order p and s has order 2. In D_{2p}, conjugacy classes of some subgroups
are nontrivial. The following theorem due to K. Conrad allows us to classify all subgroups of D_{2p} into one of 4 conjugacy classes.

Theorem 2.7 (Conrad, [3]). Let n be odd and $m \mid 2n$. If m is odd, then all m subgroups of D_{2n} with index m are conjugate. If m is even, then the only subgroup of D_{2n} with index m is $\langle r^m/2 \rangle$. In particular, all subgroups of D_{2n} with the same index are conjugate to each other.

The following theorem is a well-known result relating the idempotents of a ring and its decomposition (e.g., [7]).

Theorem 2.8. Let R be a (not necessarily commutative) ring. Then R can be expressed as a finite direct product of indecomposable rings if and only if $1 \in R$ can be written as a sum of orthogonal centrally primitive idempotents. If such a decomposition exists, each factor of the decomposition of R contains no nontrivial central idempotents.
CHAPTER III: MATHIEU-ZHAO SUBSPACES OF $\mathcal{B}_k(G)$

Let $G = H \times K$ where H is a p-group and K is a p'-group. Then by Theorem 2.1, we have $\mathcal{B}_k(G) \cong \mathcal{B}_k(H) \otimes_k \mathcal{B}_k(K)$. To find the Mathieu-Zhao subspaces of $\mathcal{B}_k(G)$, we first investigate the idempotents of each of $\mathcal{B}_k(H), \mathcal{B}_k(K)$.

Theorem 3.1. Let H be a p-group and k be a field of characteristic p. Then $\mathcal{B}_k(H)$ is local.

Proof. By Theorem 2.2, $\mathcal{B}_{Z_p}(H)$ is local. As $\mathcal{B}_k(H) = k \otimes_{Z_p} \mathcal{B}_{Z_p}(H)$, we see that $\mathcal{B}_k(H)$ must also be local. \qed

Recall that K is a p'-group. Let $l = \dim_k \mathcal{B}_k(K)$. By Theorem 2.3, $\mathcal{B}_k(K) \cong \bigoplus_{i=1}^l k$, and $\mathcal{B}_k(K)$ has a complete set of primitive idempotents $\{e_1, \ldots, e_l\}$.

In some cases, it is simple to list the primitive idempotents of $\mathcal{B}_k(K)$. Let C_n denote the cyclic group with n elements.

Example 3.2. Let $K = C_{q^s}$ with q prime and let $f_i = q^{i-s}[K/C_{q^s}]$. Then a complete set of primitive idempotents of $\mathcal{B}_k(K)$ is given by $F = \{f_0, f_1 - f_0, \ldots, f_s - f_{s-1}\}$.

Proof. For $i \leq j$, we have

$$f_i \cdot f_j = q^{i-s}[K/C_{q^i}] \cdot q^{j-s}[K/C_{q^j}] = q^{i+j-2s}q^{s-j}[K/C_{q^s}] = f_i$$

by Lemma 2.4. Then $f_i^2 = f_i$, and for $i \geq 1$,

$$(f_i - f_{i-1})^2 = f_i^2 - 2f_{i-1} + f_{i-1}^2 = f_i - f_{i-1}.$$

For $1 \leq i \leq s$, we have

$$f_0(f_i - f_{i-1}) = f_0 - f_0 = 0$$
and for $1 \leq i < j \leq s$,

$$(f_i - f_{i-1})(f_j - f_{j-1}) = f_i - f_{i-1} - f_i + f_{i-1} = 0,$$

thus F is a set of orthogonal idempotents. As $\dim \mathcal{B}_k(K) = s + 1 = |F|$, each $f \in F$ must be primitive. As $\sum_{f \in F} f = f_s = 1$, F is a complete set of primitive idempotents as desired. \[\square\]

We now investigate the idempotents of $\mathcal{B}_k(H) \otimes_k \mathcal{B}_k(K)$.

Lemma 3.3. Let $\{e_1, \cdots, e_l\}$ be a complete set of orthogonal primitive idempotents of $\mathcal{B}_k(K)$. Then the set $E = \{1 \otimes e_1, \cdots, 1 \otimes e_l\}$ is a complete set of orthogonal primitive idempotents in $\mathcal{B}_k(G) \cong \mathcal{B}_k(H) \otimes_k \mathcal{B}_k(K)$.

Proof. We have

$$\mathcal{B}_k(G) \cong \mathcal{B}_k(H) \otimes_k \mathcal{B}_k(K)$$

$$\cong \mathcal{B}_k(H) \otimes_k \left(\bigoplus_{i=1}^l k \right)$$

$$\cong \bigoplus_{i=1}^l (\mathcal{B}_k(H) \otimes_k k)$$

$$\cong \bigoplus_{i=1}^l \mathcal{B}_k(H)$$

as $\mathcal{B}_k(H) \otimes_k k \cong \mathcal{B}_k(H)$. Note that every $1 \otimes e_i \in E$ satisfies $(1 \otimes e_i)^2 = 1 \otimes e_i^2 = 1 \otimes e_i$, so each $1 \otimes e_i$ is idempotent. For $i \neq j$, $(1 \otimes e_i)(1 \otimes e_j) = 1 \otimes e_i e_j = 0$, so the elements of E are pairwise orthogonal. Let $f = (f_i)_{i=1}^l$ be an idempotent of $\mathcal{B}_k(G) \cong \bigoplus_{i=1}^l \mathcal{B}_k(H)$. Then

$$f = f \cdot \left(\sum_{i=1}^l 1 \otimes e_i \right) = \sum_{i=1}^l f(1 \otimes e_i).$$

As $\mathcal{B}_k(H)$ is local by Theorem 3.1, any nonzero idempotent f that is not the identity must be in the unique maximal ideal. Similarly, $1 - f$ must also be in the same maximal ideal,
which implies 1 is in this maximal ideal. This is a contradiction, thus each \(f_i \) is either 0 or 1. Then either \(f = 0 \) or

\[
f = \sum_{j \in J} (1 \otimes e_j) = 1 \otimes \sum_{j \in J} e_j
\]

for some \(J \subseteq \{1, \ldots, l\} \). As each nonzero idempotent \(f \) has such a decomposition, we see that \(E \) is a primitive set of idempotents. We have \(\sum_{i=1}^{l} 1 \otimes e_i = 1 \), so \(E \) is a complete set. \(\square \)

With the idempotents of \(\mathcal{B}_k(G) \) clear, Theorem 1.3 becomes a consequence of Theorem 2.5.

Proof of Theorem 1.3. \((\Rightarrow)\) Let \(V \) be a Mathieu-Zhao subspace of \(\mathcal{B}_k(H) \otimes \mathcal{B}_k(K) \). If \(V \) contains no nonzero idempotents, then the proof is complete. If \(V \) contains a nonzero idempotent, it must be of the form \(1 \otimes j \) by Lemma 3.3. As \(V \) is a Mathieu-Zhao subspace, \(\langle 1 \otimes j \rangle = \mathcal{B}_k(H) \otimes \langle j \rangle \) must be contained in \(V \) by Theorem 2.5.

\((\Leftarrow)\). Let \(V \) be a subspace of \(\mathcal{B}_k(H) \otimes \mathcal{B}_k(K) \). Then by Lemma 2.6, \(\sqrt{V} \) is algebraic. If \(V \) contains no nonzero idempotents, then \(V \) is a Mathieu-Zhao subspace by Theorem 2.5. If \(V \) contains a nonzero idempotent \(f \), then by Lemma 3.3, \(f = 1 \otimes j \) for some idempotent \(j \) of \(\mathcal{B}_k(K) \). By assumption, \(\langle 1 \otimes j \rangle \subseteq V \), so \(V \) satisfies Theorem 2.5 and is therefore a Mathieu-Zhao subspace. \(\square \)

Corollary 3.4. Let \(V \) be a subspace of \(\mathcal{B}_k(H) \) not containing 1. Then for any subspace \(W \) of \(\mathcal{B}_k(K) \), \(V \otimes W \) does not contain any nonzero idempotents, hence is a Mathieu-Zhao subspace of \(\mathcal{B}_k(G) \).

Proof. Note that \(\sqrt{V \otimes W} \) is algebraic by Lemma 2.6. Let \(\{v_1, \ldots, v_m\} \) be a basis of \(V \) and let \(\{w_1, \ldots, w_n\} \) be a basis of \(W \). If \(V \otimes W \) contains a nonzero idempotent \(f \), then by Lemma 3.3, \(f = 1 \otimes j \) for some idempotent \(j \) in \(\mathcal{B}_k(K) \). Then

\[
1 \otimes j = \sum_{s,t} \alpha_{s,t} v_s \otimes w_t,
\]
for some $\alpha_{s,t} \in k$, so $1 \in \text{span}\{v_1, \cdots, v_m\}$, contradicting the assumption that $1 \not\in V$. So $V \otimes W$ contains no nonzero idempotents, and by Theorem 1.3, $V \otimes W$ is a Mathieu-Zhao subspace of $\mathcal{B}_k(G)$.

Corollary 3.5. Let W be a subspace of $\mathcal{B}_k(K)$ containing no nonzero idempotents. Then for any subspace V of $\mathcal{B}_k(H)$, $V \otimes W$ contains no nonzero idempotents, hence is a Mathieu-Zhao subspace of $\mathcal{B}_k(G)$.

Proof. Again, note $\sqrt{V} \otimes W$ is algebraic over k by Lemma 2.6. By Corollary 3.4, we may assume V contains 1. Let $\{v_1, \cdots, v_m\}$ be a basis of V with $v_1 = 1$ and $\{w_1, \cdots, w_n\}$ be a basis of W. Let f be a nonzero idempotent contained in $V \otimes W$. Then by Lemma 3.3, $f = 1 \otimes j$ for some idempotent j in $\mathcal{B}_k(K)$. Then

\[
f = 1 \otimes j = \sum_{s,t} \alpha_{s,t} v_s \otimes w_t = \sum_t \alpha_{1,t} 1 \otimes w_t + \sum_{s,t \neq 1} \alpha_{s,t} v_s \otimes w_t,
\]

but as $\{v_s \otimes w_t \mid 1 \leq s \leq m, 1 \leq t \leq n\}$ are linearly independent, we see that the second summand must be 0. Then

\[
1 \otimes j = \sum_t 1 \otimes \alpha_{1,t} w_t = 1 \otimes \left(\sum_t \alpha_{1,t} w_t \right)
\]

and we see that j is a linear combination of basis vectors of W and therefore $j \in W$. But j is an idempotent and W contains no nonzero idempotents, so we must have $j = 0$. Then $1 \otimes j = 0$, and by Theorem 1.3, $V \otimes W$ is a Mathieu-Zhao subspace of $\mathcal{B}_k(G)$.

Remark 3.6. By the Classification Theorem of Finite Abelian Groups, every finite abelian group G is isomorphic to $H \times K$ for some p-group H and p'-group K. Therefore, Theorem 1.3 and Corollaries 3.4 and 3.5 hold for all finite abelian groups.
CHAPTER IV: MATHIEU-ZHAO SUBSPACES OF $\mathcal{B}_k(D_{2p})$

Throughout this chapter, let p be an odd prime, k be a field of characteristic p, and $G = D_{2p}$ denote the dihedral group of order $2p$. Write G as $\langle r, s \rangle$, where r has order p and s has order 2. Let \mathcal{A} denote the Burnside algebra $\mathcal{B}_k(G)$. As G is not abelian, conjugacy classes of subgroups are sometimes nontrivial, therefore the structure of \mathcal{A} is slightly more complex than the cyclic case.

Let C_n denote the cyclic subgroup of G with n elements and let S be the subgroup $\{1, s\}$. By Theorem 2.7, a complete set of representatives of conjugacy classes of subgroups of G is given by $\{G, C_p, S, C_1\}$. For each representative subgroup H, let T_H denote the class $[G/H]$. Note that C_1, C_p, and G are all normal subgroups of G.

Lemma 4.1. Let $G = D_{2p}$. The product of G-sets in \mathcal{A} is given by the table below.

<table>
<thead>
<tr>
<th></th>
<th>T_G</th>
<th>T_{C_p}</th>
<th>T_S</th>
<th>T_{C_1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_G</td>
<td>T_G</td>
<td>T_{C_p}</td>
<td>T_S</td>
<td>T_{C_1}</td>
</tr>
<tr>
<td>T_{C_p}</td>
<td>T_{C_p}</td>
<td>$2T_{C_p}$</td>
<td>T_{C_1}</td>
<td>$2T_{C_1}$</td>
</tr>
<tr>
<td>T_S</td>
<td>T_S</td>
<td>T_{C_1}</td>
<td>$T_S - \frac{1}{2}T_{C_1}$</td>
<td>0</td>
</tr>
<tr>
<td>T_{C_1}</td>
<td>T_{C_1}</td>
<td>$2T_{C_1}$</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Proof. For the product of G-sets corresponding to normal subgroups, use Lemma 2.4.

For the product of T_S and T_N where N is a normal subgroup of G, note that the stabilizer of a pair $(aS, bN) \in G/S \times G/N$ is given by

$$\text{stab}(aS, bN) = aS a^{-1} \cap bN b^{-1} = aS a^{-1} \cap N.$$

If $N = C_1$ or C_p, then $aS a^{-1} \cap N = C_1$ as all conjugates of S are of the form $\{1, r^i s\}$ for some i. Then every element of $G/S \times G/N$ has stabilizer C_1 and counting the number of elements on both sides gives

$$T_S \cdot [G/N] = \frac{|G||C_1|}{|S||N|}T_{C_1} = \frac{p}{|N|}T_{C_1},$$

12
which is 0 for $N = C_1$ and T_{C_1} for $N = C_p$. If $N = G$, the G-set T_G is the identity element of $\mathcal{B}_k(G)$ and the product is trivial.

Finally, consider the product $T_S \cdot T_S$. Again, let $(aS, bS) \in G/S \times G/S$. We may assume $a, b \in C_p$. Then

$$\text{stab}(aS, bS) = aSa^{-1} \cap bSb^{-1},$$

so we see that the stabilizer depends on the choice of (aS, bS). The intersection $aSa^{-1} \cap bSb^{-1}$ is trivial unless $aSa^{-1} = bSb^{-1}$, which is the case if and only if $a \equiv b \mod N(S)$ where $N(S)$ denotes the normalizer of S. But $N(S) = S$ in D_{2p}, and therefore (aS, bS) has stabilizer conjugate to S if and only if $a \equiv b \mod S$ if and only if $a = b$, since $ab^{-1} \in S$ if and only if $ab^{-1} = 1$. Then there are p^2 total elements in $G/S \times G/S$, of which p of them have stabilizer conjugate to S and $p^2 - p$ of them have stabilizer conjugate to C_1. Then

$$T_S \cdot T_S = \frac{|S|}{|G|} p T_S + \frac{|C_1|}{|G|} (p^2 - p) T_{C_1}$$

$$= \frac{2p}{2p} T_S + \frac{(p^2 - p)}{2p} T_{C_1}$$

$$= T_S + \frac{p - 1}{2} T_{C_1}$$

$$= T_S - \frac{1}{2} T_{C_1}$$

as k has characteristic p. □

Lemma 4.2. Let $e_1 = \frac{1}{2} T_{C_p}, e_2 = T_S - \frac{1}{2} T_{C_1}$ and $e_3 = 1 - e_1 - e_2$. Then $E = \{e_1, e_2, e_3\}$ is a complete set of orthogonal primitive idempotents in A.

Proof. Note that $e_1^2 = (\frac{1}{2} T_{C_p})^2 = \frac{1}{2} T_{C_p}$ and $e_2^2 = (T_S - \frac{1}{2} T_{C_1})^2 = T_S - \frac{1}{2} T_{C_1}$, so e_1 and e_2 are idempotent. Then

$$e_1 e_2 = \left(\frac{1}{2} T_{C_p}\right) \left(T_S - \frac{1}{2} T_{C_1}\right) = \frac{1}{2} T_{C_1} - \frac{2}{4} T_{C_1} = 0,$$

13
so \(e_1e_3 = e_1(1 - e_1 - e_2) = e_1 - e_1^2 - e_1e_2 = 0\) and \(e_2e_3 = e_2(1 - e_1 - e_2) = e_2 - e_2e_1 - e_2^2 = 0\) and we see the elements of \(E\) are pairwise orthogonal. Then \(e_3\) is also idempotent, as

\[
e_3^2 = (1 - e_1 - e_2)^2 = 1 - e_1 - e_2 - e_1 + e_1e_2 - e_2 - e_2e_1 + e_2 = 1 - e_1 - e_2 = e_3.
\]

By Lemma 4.1, \(e_1A = \text{span}\{T_{C_2}, T_{C_1}\}, e_2A = \text{span}\{e_2\}, e_3A = \text{span}\{e_3\}\). Note that \(e_2A, e_3A\) are simple and therefore \(e_2, e_3\) are primitive. Assume that \(e_1\) is not primitive. Then there exist some orthogonal idempotents \(f, f'\) such that \(e_1 = f + f'\) and \(e_1A = fA \oplus f'A\) with each of \(fA, f'A\) simple. Then

\[
A = fA \oplus f'A \oplus e_2A \oplus e_3A \cong k \oplus k \oplus k \oplus k,
\]

so \(A\) has no nonzero nilpotent element. But \(T_{C_1}^2 = 0\) is nilpotent in \(A\), which is a contradiction. As \(\sum_{e \in E} e = 1\), we see that \(E\) is a complete set of orthogonal primitive idempotents.

Proof of Theorem 1.4. By Lemma 4.2, \(E = \{e_1, e_2, e_3\}\) is a complete set of orthogonal primitive idempotents. Then by Theorem 2.8, we have \(A = \bigoplus_{i=1}^3 e_iA\) where the idempotents of each subalgebra \(e_iA\) are exactly 0 and \(e_i\).

(\(\Rightarrow\)) Let \(V\) be a Mathieu-Zhao subspace of \(A\). Assume \(V\) contains some nonzero idempotent \(f\). Then by Lemma 4.2, \(f = \sum_{j \in J} e_j\) where \(J\) is a nonempty subset of \(\{1, 2, 3\}\). As \(V\) is a Mathieu-Zhao subspace, \(\langle f \rangle = \bigoplus_{j \in J} e_jA\) is a subset of \(V\) by Theorem 2.5.

(\(\Leftarrow\)) Let \(V\) be a subspace of \(A\). By Lemma 2.6, \(\sqrt{V}\) is algebraic. If \(V\) contains no nonzero idempotents, then \(V\) is a Mathieu-Zhao subspace of \(A\) by Theorem 2.5. If \(V\) contains a nonzero idempotent \(f\), then by Lemma 4.2, \(f = \sum_{j \in J} e_j\) for some nonempty subset \(J\) of \(\{1, 2, 3\}\). By assumption, \(\bigoplus_{j \in J} e_jA\) is contained in \(V\), therefore \(V\) satisfies Theorem 2.5 and is a Mathieu-Zhao subspace. \(\square\)
REFERENCES

