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EXTENDING EDGE-COLORINGS OF COMPLETE UNIFORM HYPERGRAPHS

INSORAKI R. SWABRA

43 Pages

A hypergraph V pGq is an ordered pair G “ pV pGq, EpGqq where V pGq is a set of

vertices of G and EpGq is a collection of edge multisets of G. If the size of every edge in the

hypergraph is equal, then we call it a uniform hypergraph. A complete h-uniform

hypergraph, written Kh
n , is a uniform hypergraph with edge sizes equal to h and has n

vertices where the edges set is the collection of all h-elements subset of its vertex set (so

the total number of the edges is
`

n
h

˘

). A hypergraph is called regular if the degree of all

vertices is the same. An r-factorization of a hypergraph is a coloring of the edges of a

hypergraph such that the number of times each element appears in each color class is

exactly r. A partial r-factorization is a coloring in which the degree of each vertex in each

color class is at most r.

The main problem under consideration in this thesis is motivated by Baranyai’s

famous theorem and Cameron’s question from 1976. Given a partial r-factorization of Kh
m,

we are interested in finding the necessary and sufficient conditions under which we can

extend this partial r-factorization to an r-factorization of Kh
n . The case h “ 3 of this

problem was partially solved by Bahmanian and Rodger in 2012, and the cases h “ 4, 5

were partially solved by Bahmanian in 2018. Recently, Bahmanian and Johnsen showed

that as long as n ě ph´ 1qp2m´ 1q, the obvious necessary conditions are also sufficient. In

this thesis, we improve this bound for all h P t6, 7, . . . , 89u. Our proof is computer-assisted.

KEYWORDS: factorization, embedding, hypergraph, edge-coloring, baranyai’s theorem
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CHAPTER I: INTRODUCTION

A graph, denoted by G, is an ordered pair G “ pV pGq, EpGqq. An edge h P EpGq is

a subset of V pGq such that |h| “ 2. If |h| ą 2, then we call it a hypergraph. If h P EpGq

contains v P V pGq, then we say that v is incident to h. The number of edges incident with a

vertex v P V pGq is called the degree of the vertex v, denoted by degpvq. Whereas the number

of times an edge h appears in the edges set H is called the multiplicity of the edge h, denoted

by multphq. If two or more edges share a common vertex or vertices, then we say the edges

are adjacent to each other. A hypergraph is called h-uniform, if |e| “ h, @e P EpGq. A

d-regular hypergraph is a hypergraph such that degpvq “ d, @v P V pGq.

A complete h-uniform hypergraph, denoted as Kh
n , is a uniform hypergraph with the

edge size equal to h and has n number of vertices where the edges set are the set of all h-

elements subset of its vertex set with the total number of edges equal to
`

n
h

˘

. For simplicity

of notation, we will write abc to denote the set ta, b, cu throughout this thesis. Figure 1 is an

example of a complete 3-uniform regular hypergraph with five vertices denoted as K3
5 , with

edges set;

123, 124, 125, 134, 135,

145, 234, 235, 245, 345.

1 2

4

3

5

Figure 1: K3
5
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A k-edge coloring of G is a mapping f : EpGq Ñ rks, where rks :“ t1, ..., ku, k P N, is a

set of colors. In other words, a k-edge coloring of G is a function that assigns a color to every

edge of G. A proper k-edge-coloring is a coloring where no adjacent edges have the same

color. An r-factorization of G is a k-edge coloring of G such that the number of times each

element appears in each color class is exactly r. Figure 2 is an example of 3-factorization of

K3
5 . A partial r-factorization of G is a k-edge coloring of G so that the degree of each vertex

in each color class is at most r.

1 2

4

3

5

Figure 2: 3-factorization of K3
5

The edge set are listed below.

124, 125, 135, 234, 345,

123, 134, 145, 235, 245

.

I.1 Example

Given P :“ a partial 5-factorization of K3
4 (see Figure 3), we would like to extend it

to Q, 5-factorization of K3
6 (see Figure 8).

2



123,234,124,134

1
2

4
3

Figure 3: P

First, we need to add 2 more vertices to P . Let V pQq :“ V pPq Y tv5, v6u. However,

let us amalgamate these two vertices into one vertex u. The degree sum of the vertices will

be equal to rn “ 5p6q “ 30 and since each edge contain 3 vertices thus we should have

h|rn Ñ 3|30. Since, it is a 5-factorization degipvq “ 5, and k “
pn´1

h´1q
r

“
p5

2q
5 “ 2. So there

are 2 color classes, and since we have
`6

3

˘

“ 20 edges, thus each color class will contain 10

edges. We will use red and blue colors in these examples.

1
2

4
3

5

6

Figure 4: K3
4 Y t5, 6u

1
2

4
3

u “ 5, 6

Figure 5: K3
4 Y u
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1

2

4

3

u “ 5, 6

Figure 6: 5-factorization of K3
6

1

2

4

3

u “ 5, 6

Figure 7: 5-factorization of K3
6

4



x1

x2

x4

x3

x5

x6

Figure 8: Q

x1

x2

x4

x3

x5

x6

Figure 9: 1st color class of K3
6

x1

x2

x4

x3

x5

x6

Figure 10: 2nd color class of K3
6

123,234, 346, 456, 125, 136, 145, 156, 245, 236

124,134, 126, 135, 146, 235, 246, 256, 345, 356

In the above example, there are some conditions that we need to satisfy first before we

can do the extension. For example, if we add four more vertices instead of two vertices, the

degree sum of the vertices would be rn “ 5p8q “ 40. Since every edge will contribute three

vertices to the degree sum, we should have that h|rn; however, here, 3 - 40. Thus we will

not be able to do the extension. Baranyai proved this necessary condition for a hypergraph

5



to r-factorable in 1977.

Theorem I.1.1. Kh
n is r-factorizable if and only if

h|rn and rn

h

ˇ

ˇ

ˇ

ˆ

n

h

˙

In this thesis, we intend to generalize the above result for h P t6, 7u. In chapters 3

and 4, we will answer the following two questions:

1. What are the conditions such that a partial r-factorization of λK6
m can be extended

to an r-factorization of λK6
n?

2. What are the conditions such that a partial r-factorization of λK7
m can be extended

to an r-factorization of λK7
n?

We also found the bound on n for h P t6, 7, ..., 89u.

I.2 Notation and Tools

This thesis will use the amalgamation and detachment technique and greedy coloring.

The visual illustration of the technique can be seen in example I.1, and for the detailed

information regarding the Detachment theorem we refer the readers to [23]. Greedy coloring

is a technique of coloring where we assign the first available colors to the edges sequentially so

that no adjacent edges have the same colors. However, if the adjacent edges have the same

color, we assign the next available color. For more definitions and algorithms regarding

greedy coloring on hypergraphs, we refer the reader to [20] and [21].

The following corollary is an immediate consequence of the Detachment theorem from

[1] which is important for our result.

6



Corollary I.2.1. Let k :“
`

n´1
h´1

˘

{r P N. A partial r-factorization of Kh
m can be extended to

an r-factorization of Kh
n if and only if the new edges of F :“ĄKh

m can be colored so that

@i P rks degFpiqpvq “

$

’

&

’

%

r if v ‰ u

rpn´mq if v “ u

Where F :“ĄKh
m is an amalgamation of Kh

n .

For the proof of the corollary I.2.1 we refer the reader to [1]. We will also use the

following combinatorial identities:

Lemma I.2.2.
`

n´1
h´1

˘

“
řh´1
i“0

`

m´1
h´i´1

˘`

n´m
i

˘

Lemma I.2.3. m
“`

n´1
h´1

˘

´
`

m´1
h´1

˘‰

“
řh´1
i“1 i

`

m
i

˘`

n´m
h´i

˘

For the proof of these lemmas we refer the reader to [1] and [15].

7



CHAPTER II: LITERATURE REVIEW

The problem of hypergraph coloring is a generalization of graph coloring, which re-

searchers have studied for almost 150 years. In 1850, Sylvester [11] proved that K3
15 is

1-factorizable. In 1936, Peltesohn [12] proved a more general case that K3
3m is 1-factorizable.

More than 120 years after Sylvester’s theorem, Baranyai proved the generalization of the

factorization problem in 1976 by finding the condition in which Kh
n is 1-factorizable.

Theorem II.0.1 (Baranyai, 1976). If h|n then Kh
n is 1-factorizable.

Baranyai generalized this theorem to an arbitrary r factorization. He proved the nec-

essary and sufficient condition in which Kh
n is r-factorizable (see I.1.1). This generalization

led researchers to more general problems about hypergraphs, especially embedding. Cameron

in [22] asked when a partial 1-factorization of Kh
m can be extended to a 1-factorization of

Kh
m. In an attempt to answer this question, Baranyai and Brouwer in [13] conjectured that

it is possible if and only if h|n, h|m and n ě 2m. Häggkvist and Hellgren in [17] proved this

conjectured.

Theorem II.0.2 (Häggkvist and Hellgren, 1993). Let n “ qh and m “ ph where q ě 2p and

m,n, h, p, q P Z`. Suppose we are given a proper edge-coloring of Kh
m using

`

m´1
h´1

˘

colours.

Then this coloring can be extended to a proper edge-coloring of Kh
n using

`

n´1
h´1

˘

colors.

In 1995, Rodger and Wantland [9] extended this theorem to an arbitrary r-factorization

in the case of h “ 2. The same problem for different values of h has also been partially

solved. Bahmanian and Rodger in [2] proved the necessary and sufficient condition for

n ě 3.414214m when h “ 3 that any partial r-factorization of K3
m can be embedded to an

r-factorization of K3
n. Also, Bahmanian in [1] solved for n ě 4.847323m when h “ 4 and

n ě 6.285214m when h “ 5.

Theorem II.0.3 (Bahmanian, 2018). For n ě 4.847323m, any partial r-factorization of

K4
m can be embedded to an r-factorization of K4

n if and only if 4|rn and r|
`

n´1
3

˘

.
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Theorem II.0.4 (Bahmanian, 2018). For n ě 6.285214m, any partial r-factorization of

K5
m can be embedded to an r-factorization of K5

n if and only if 5|rn and r|
`

n´1
4

˘

.

These two results above motivate our result in this thesis. In addition, in the papers

[1],[2],[4], [5], [6], [9], [15] the authors used amalgamation and detachment method to prove

their results, which is a method that we adapt to prove our results in this thesis.

Bahmanian and Newman in [6] proved a more general result of the problem for h “ 3

where in addition of the conditions given by Häggkvist and Hellgren, if gcdpm,n, hq “

gcdpn, hq, then r-factorization of Kh
m can be extended to an r-factorization of Kh

n . Further-

more, they also showed that r-factorization of Kh
m can be extended to an s-factorization of

Kh
n .

Theorem II.0.5 (Bahmanian and Newman,[6] 2018). Let m,n, h, r, s, where m,n, h, r, s P

Z`, satisfy the following necessary conditions for some positive integers p, q, c, d.

h|rm, h|rn, r
ˇ

ˇ

ˇ

ˆ

m´ 1
h´ 1

˙

, s
ˇ

ˇ

ˇ

ˆ

n´ 1
h´ 1

˙

.

Assume furthermore the following condition, where k “ gcdpm,n, hq.

gcdpm,n, hq “ gcdpn, hq, n ě 2m, 1 ď s

r
ď
m

k

„

1´
ˆ

m´ k

h

˙

{

ˆ

m

h

˙

Then there exists an s-factorization of Kh
n containing an embedded r-factorization of Kh

m.

Bahmanian and Haghshenas in [5] proved this theorem for h “ 4, n ě 4m and h “

5, n ě 5m. Recently in 2021, Bahmanian and Johnsen found a general bound for when a

partial r-factorization of λKh
m can be extended to an r-factorization of λKh

m.

Theorem II.0.6 (Bahmanian and Johnsen, 2021). For n ě ph ´ 1qp2m ´ 1q, a partial r-

factorization of λKh
m can be extended to an r-factorization of λKh

m if and only if it satisfies:

h|rn and r|λ

ˆ

n´ 1
h´ 1

˙

.

9



We used this general bound in comparison to the bound that we found using Mathe-

matica and showed that the bound we found is smaller for h P t6, 7, . . . , 89u. The result can

be found in the Appendix, where our bound is on the third column, and Bahmanian and

Johnsen’s bound is on the fifth column for every h value.

The problem of extending hypergraphs is analogous to extending Latin Squares. In

1951, Ryser’s [8] found a necessary and sufficient condition for a partial rˆs Latin rectangle

to be completed to an n ˆ n Latin square. Evans [7] proved that any partial m ˆm Latin

square can always be extended to a n ˆ n Latin square when n ě 2m. Evan’s result is

similar to the problem of extending 1-factorization of Kh
m to 1-factorization of Kh

n , when

h “ 2, which was conjectured by Baranyai and Brouwer in [13] and proved by Häggkvist and

Hellgren in [17].

Theorem II.0.7 (Ryser, [8] Theorem 2, 1951). Let T be an r ˆ s Latin rectangle on the

integers 1,2,...,n. Let N piq denote the number of times that the integer i occurs in T. T may

be extended to an nˆ n Latin square if and only if;

N piq ě r ` s´ n, for each i “ 1, 2, ..., n.

Lindner and Rodger [16] used edge coloring to prove the sufficient condition of Ryser’s

theorem, where they constructed an analog of a bipartite hypergraph Kr,s for an rˆ s Latin

rectangle.

10



CHAPTER III: EXTENDING EDGE-COLORING OF A COMPLETE 6-UNIFORM

HYPERGRAPH

In this chapter, we find the necessary and sufficient conditions in which a partial r-

factorization of λK6
m could be extended to an r-factorization of λK6

n. This proof is adapted,

and a further case of [1].

Theorem III.0.1. For n ě 7.72503m, any partial r-factorization of λK6
m can be extended

to an r´factorization of λK6
n if and only if 6|rn and r|λ

`

n´1
5

˘

.

Proof of necessity. Suppose that any partial r-factorization of λK6
m can be extended to an

r-factorization of λK6
n. This implies that λK6

n is r-factorable. Hence, each vertex must

appear r times in each color class. Since h “ 6, each edge will contain 6 vertices. Thus we

should have that h|rn. Since each vertex appears r times in each color class, it is regular.

This mean degipvq “ r,@i P rks and since the total degree of each vertex is λ
`

n´1
h´1

˘

, hence

we should have r|λ
`

n´1
h´1

˘

so that each vertices are regular. Therefore, we have that 6|rn and

r|λ
`

n´1
5

˘

.

Proof of sufficiency. Suppose 6|rn and r|
`

n´1
5

˘

and a partial r-factorization of G :“ K6
m

is given. We want to show that a partial r-factorization of G can be extended to an r-

factorization of K6
n.

Let F be an amalgamated graph obtained by adding an amalgamated vertex u, with

|u| “ n ´ m, so that V pFq “ V pGq Y tuu and EpFq be the union of EpGq and the new

edges between N Ď V pGq and the vertex u, with, |N | “ h ´ j “ 6 ´ j and |u| “ j, with

j P t0, ..., 6u. Each edge type in F will be of the form pv6´j, ujq, where each edge will contain

6´ j vertices from V pFq and j copies of u, such that;

multFpN, u
j
q “ λ

ˆ

n´m

j

˙

Note that there are
`

m
6´j

˘`

n´m
j

˘

edges in each type of edge. By corollary I.2.1, we could

extend a partial r-factorization of G to r-factorization of K6
n if and only if we could color the

11



new edges of F such that the degree conditions in the corollary I.2.1 can be satisfied using

k “
λpn´1

h´1q
r

“
λpn´1

5 q
r

colors. In other words, we need to show that the degree of each vertex

in G is r, and the degree of u is equal to rpn´mq.

Since the original edges from G has been colored, we only need to color the new added

edges such that degipvq “ r and degpuq “ rpn´mq, for each v P V pGq with i P rks. We will

color these edges greedily and in order based on each edge’s type. Notice that when |N | “ 6,

the edges would only contain vertices from V pGq and when |N | “ 0, the edges would have

no vertices from V pGq and only contain 6 copies of u.

We claim that by greedily coloring these edges so that degipvq ď r for each v P V pGq

where i P rks, all edges will be colored. Suppose otherwise. Suppose that there exist an

edge that are incident with the vertex v P N that cannot be colored, meaning that there is a

vertex v P N that already has degree r in each color class i, degipvq “ r. Hence, the degree

sum of the vertices for each color class i P rks is
ř

vPN degipvq ě r. As a result,

k
ÿ

i“1

ÿ

vPN

degGpiqpvq ě rk “ λ

ˆ

n´ 1
h´ 1

˙

“ λ

ˆ

n´ 1
5

˙

(III.1)

However, we could also count the degree sum using the number of edges and its

multiplicity. Hence;

k
ÿ

i“1

ÿ

vPN

degGpiqpvq ď λph´ jq

«

j
ÿ

`“0

ˆ

n´m

h´ `´ 1

˙ˆ

m´ 1
`

˙

´ 1
ff

(III.2)

We need to subtract one at the end since we assume that there exists one edge of each type

that cannot be colored, and we also remove one from m since we are assuming that there is

v P N that already has a degree equal to r. We need to multiply λph ´ jq since there are

ph´ jq copies of this type of edge and each edge has multiplicity equal to λ.

Combining III.1 and III.2 we have,

λph´ jq

«

j
ÿ

l“0

ˆ

n´m

h´ `´ 1

˙ˆ

m´ 1
`

˙

´ 1
ff

ě λ

ˆ

n´ 1
5

˙

12



ðñ ph´ jq

«

j
ÿ

l“0

ˆ

n´m

h´ `´ 1

˙ˆ

m´ 1
`

˙

´ 1
ff

ě

ˆ

n´ 1
5

˙

(III.3)

To prove that our claim holds, we need to show that this inequality is not true for

every type of edges that contain v P N . Hence, we will prove this for each type of edge

successively.

Firstly, edges type 1: N Y tuu, |N | “ 5. Let’s denote this type of edges as x1

5
„ˆ

m´ 1
5

˙

` pn´mq

ˆ

m´ 1
4

˙

´ 1


ě

ˆ

n´ 1
5

˙

ðñ

ˆ

n´ 1
5

˙

´ 5
„ˆ

m´ 1
5

˙

` pn´mq

ˆ

m´ 1
4

˙

´ 1


ď 0

ðñ

5
ÿ

i“0

ˆ

m´ 1
5´ i

˙ˆ

n´m

i

˙

´ 5
„ˆ

m´ 1
5

˙

` pn´mq

ˆ

m´ 1
4

˙

´ 1


ď 0

ðñ

ˆ

m´ 1
5

˙

`

ˆ

m´ 1
4

˙

pn´mq `

ˆ

m´ 1
3

˙ˆ

n´m

2

˙

`

ˆ

m´ 1
2

˙ˆ

n´m

3

˙

` pm´ 1q
ˆ

n´m

4

˙

`

ˆ

n´m

5

˙

´ 5
„ˆ

m´ 1
5

˙

` pn´mq

ˆ

m´ 1
4

˙

´ 1


ď 0

ðñ

ˆ

m´ 1
2

˙ˆ

n´m

3

˙

`

ˆ

m´ 1
1

˙ˆ

n´m

4

˙

`

ˆ

n´m

5

˙

`

ˆ

m´ 1
3

˙ˆ

n´m

2

˙

´ 4
ˆ

m´ 1
5

˙

´ 4pn´mq
ˆ

m´ 1
4

˙

` 5 ď 0

ðñ

ˆ

m´ 1
2

˙ˆ

n´m

3

˙

`

ˆ

m´ 1
1

˙ˆ

n´m

4

˙

`

ˆ

n´m

5

˙

`

ˆ

m´ 1
3

˙ˆˆ

n´m

2

˙

´ 4
ˆ

m´ 4
4

˙ˆ

m´ 5
5

˙

´ 4pn´mq
ˆ

m´ 4
4

˙˙

` 5 ď 0

ðñ

ˆ

m´ 1
2

˙ˆ

n´m

3

˙

`

ˆ

m´ 1
1

˙ˆ

n´m

4

˙

`

ˆ

n´m

5

˙

`

ˆ

m´ 1
3

˙ˆ

1
2pm

2
´ 2mn`m` n2

´ nq ´
1
5pm

2
´ 9m` 20q

´ p´m2
`mn` 4m´ 4nq

˙

` 5 ď 0
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ðñ

ˆ

m´ 1
2

˙ˆ

n´m

3

˙

`

ˆ

m´ 1
1

˙ˆ

n´m

4

˙

`

ˆ

n´m

5

˙

`

ˆ

m´ 1
3

˙

ˆ

1
10

`

5m2
´ 10mn` 5m` 5n2

´ 5n´ 2m2
` 18m´ 40` 10m2

´ 10mn

´ 40m` 40n
˘

˙

` 5 ď 0

ðñ

ˆ

m´ 1
2

˙ˆ

n´m

3

˙

`

ˆ

m´ 1
1

˙ˆ

n´m

4

˙

`

ˆ

n´m

5

˙

`

ˆ

m´ 1
3

˙ˆ

1
10

`

5n2
´ 35n´ 20mn` 13m2

´ 17m´ 40
˘

˙

` 5 ď 0

Let;

a :“ 1
10p5n

2
´ 35n´ 20mn` 13m2

´ 17m´ 40q

10a “ 5n2
´ 35n´ 20mn` 13m2

´ 17m´ 40

Since
`

m´1
2

˘`

n´m
3

˘

`
`

m´1
1

˘`

n´m
4

˘

`
`

n´m
5

˘

ě 0 and
`

m´1
3

˘

ě 0, we only need to check

whether 10a ě 0 to ensure if the inequality hold. Since n ě 7 and m ě 7, then;

10a :“ 5n2
´ 35n´ 20mn` 13m2

´ 17m´ 40

ě 5p7mq2 ´ 35p7mq ´ 20mp7mq ` 13m2
´ 17m´ 40

“ 245m2
´ 245m´ 140m2

` 13m2
´ 17m´ 40

“ 118m2
´ 262m´ 40

ě 118p7q2 ´ 262p7q ´ 40

“ 3908 ą 0

Since 10a is positive, the inequality does not hold. We also used Mathematica to

verify that when n ě 7m and m ě 7, there is no real solution if 10a ď 0. This result implied

that a is positive; consequently, our initial inequality does not hold. Thus, all edges of this

14



type can be colored.

Secondly, edges type 2: N Y tu2u, |N | “ 4. Let’s denote this type of edges as x2

4
„ˆ

m´ 1
5

˙

` pn´mq

ˆ

m´ 1
4

˙

`

ˆ

m´ 1
3

˙ˆ

n´m

2

˙

´ 1


ě

ˆ

n´ 1
5

˙

ðñ

ˆ

n´ 1
5

˙

´ 4
„ˆ

m´ 1
5

˙

` pn´mq

ˆ

m´ 1
4

˙

`

ˆ

m´ 1
3

˙ˆ

n´m

2

˙

´ 1


ď 0

ðñ

5
ÿ

i“0

ˆ

m´ 1
4´ i

˙ˆ

n´m

i

˙

´ 4
«

ˆ

m´ 1
5

˙

` pn´mq

ˆ

m´ 1
4

˙

`

ˆ

m´ 1
3

˙ˆ

n´m

2

˙

´ 1
ff

ď 0

ðñ

ˆ

m´ 1
5

˙

`

ˆ

m´ 1
4

˙ˆ

n´m

1

˙

`

ˆ

m´ 1
3

˙ˆ

n´m

2

˙

`

ˆ

m´ 1
2

˙ˆ

n´m

3

˙

`

ˆ

m´ 1
1

˙ˆ

n´m

4

˙

`

ˆ

n´m

5

˙

´ 4
„ˆ

m´ 1
5

˙

` pn´mq

ˆ

m´ 1
4

˙

`

ˆ

m´ 1
3

˙ˆ

n´m

2

˙

´ 1


ď 0

ðñ

ˆ

m´ 1
2

˙ˆ

n´m

3

˙

` pm´ 1q
ˆ

n´m

4

˙

`

ˆ

n´m

5

˙

´ 3
ˆ

m´ 1
5

˙

´ 3pn´mq
ˆ

m´ 1
4

˙

´ 3
ˆ

m´ 1
3

˙ˆ

n´m

2

˙

` 4 ď 0

ðñ pm´ 1q
ˆ

n´m

4

˙

`

ˆ

n´m

5

˙

`

ˆ

m´ 1
2

˙ˆ

n´m

3

˙

´ 3
ˆ

m´ 1
2

˙ˆ

m´ 5
5

˙ˆ

m´ 4
4

˙ˆ

m´ 3
3

˙

´ 3pn´mq
ˆ

m´ 1
2

˙ˆ

m´ 4
4

˙ˆ

m´ 3
3

˙

´ 3
ˆ

m´ 3
3

˙ˆ

m´ 1
2

˙ˆ

n´m

2

˙

` 4 ď 0

ðñ pm´ 1q
ˆ

n´m

4

˙

`

ˆ

n´m

5

˙

`

ˆ

m´ 1
2

˙ˆˆ

n´m

3

˙

´ 3
ˆ

m´ 5
5

˙ˆ

m´ 4
4

˙ˆ

m´ 3
3

˙

´ 3pn´mq
ˆ

m´ 4
4

˙ˆ

m´ 3
3

˙

´ 3
ˆ

m´ 3
3

˙ˆ

n´m

2

˙˙

` 4 ď 0
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ðñ pm´ 1q
ˆ

n´m

4

˙

`

ˆ

n´m

5

˙

`

ˆ

m´ 1
2

˙

˜

ˆ

n´m

2

˙ˆ

n´m´ 2
3

˙

´ 3
ˆ

m´ 3
3

˙ˆ

n´m

2

˙

´ 3
ˆ

m´ 5
5

˙ˆ

m´ 4
4

˙ˆ

m´ 3
3

˙

´ 3pn´mq
ˆ

m´ 4
4

˙ˆ

m´ 3
3

˙

¸

` 4 ď 0

ðñ pm´ 1q
ˆ

n´m

4

˙

`

ˆ

n´m

5

˙

`

ˆ

m´ 1
2

˙

˜

ˆ

n´m

2

˙ˆˆ

n´m´ 2
3

˙

´ 3
ˆ

m´ 3
3

˙˙

´ 3
ˆ

m´ 4
4

˙ˆ

m´ 3
3

˙ˆˆ

m´ 5
5

˙

´ pn´mq

˙

¸

` 4 ď 0

ðñ pm´ 1q
ˆ

n´m

4

˙

`

ˆ

n´m

5

˙

`

ˆ

m´ 1
2

˙

˜

ˆ

n´m

2

˙ˆ

n´ 4m` 7
3

˙

´ 3
ˆ

m´ 4
4

˙ˆ

m´ 3
3

˙ˆ

5n´ 4m´ 5
5

˙

¸

` 4 ď 0

Let;

b :“
ˆ

n´m

2

˙ˆ

1
3pn´ 4m` 7q

˙

´ 3
ˆ

1
4pm´ 4q

˙ˆ

1
3pm´ 3q

˙ˆ

1
5p5n´ 4m´ 5q

˙

“

ˆ

1
2pn´mqpn´m´ 1q

˙ˆ

1
3pn´ 4m` 7q

˙

´

ˆ

1
4ppm´ 4qpm´ 3qq

˙ˆ

1
5p5n´ 4m´ 5q

˙

“
1
2
`

n2
´ 2nm´ n`m`m2˘

ˆ

1
3pn´ 4m` 7q

˙

´
1
20

`

5nm2
´ 4m3

` 23m2
´ 35nm´ 13m` 60n` 60

˘

“
1
6
`

´4m3
` 9m2n` 3m2

´ 6mn2
´ 9mn` 7m` n3

` 6n2
´ 7n

˘

´
1
20

`

5nm2
´ 4m3

` 23m2
´ 35nm´ 13m` 60n` 60

˘

“
1
60

`

´28m3
` 75nm2

´ 39m2
´ 60n2m` 15nm` 109m` 10n3

` 60n2
´ 250n` 420

˘

Since pm´ 1q
`

n´m
4

˘

`
`

n´m
5

˘

ě 0, and
`

m´1
2

˘

ě 0 we only need to check whether b ě 0

to ensure if the inequality hold. Since we have that n ě 7m and m ě 7, then

16



b :“ 1
60

`

´28m3
` 75nm2

´ 39m2
´ 60n2m` 15nm` 109m` 10n3

` 60n2
´ 250n` 420

˘

ě
1
60p´28m3

` 75p7mqm2
´ 39m2

´ 60p7mq2m` 15p7mqm` 109m` 10p7mq3 ` 60p7mq2

´ 250p7mq ` 420q

“
1
60pp´28m3

` 525m3
´ 39m2

´ 2940m3
` 105m2

` 109m` 3430m3
` 2940m2

´ 1750m` 420q

“
1
60p987m3

` 3006m2
´ 1641m` 420q ě 0

Since m ě 7, and 3006m2 ą 1641m, then b ě 0; consequently, our initial inequality

does not hold. Thus, all edges of this type can be colored.
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Thirdly, edges Type 3: N Y tu3u, |N | “ 3. Let’s denote this type of edges as x3

3
„ˆ

m´ 1
5

˙

` pn´mq

ˆ

m´ 1
4

˙

`

ˆ

m´ 1
3

˙ˆ

n´m

2

˙

`

ˆ

m´ 1
2

˙ˆ

n´m

3

˙

´ 1


ď

ˆ

n´ 1
5

˙

ðñ

ˆ

n´ 1
5

˙

´ 3
„ˆ

m´ 1
5

˙

` pn´mq

ˆ

m´ 1
4

˙

`

ˆ

m´ 1
3

˙ˆ

n´m

2

˙

`

ˆ

m´ 1
2

˙ˆ

n´m

3

˙

´ 1


ď 0

ðñ

5
ÿ

i“0

ˆ

m´ 1
5´ i

˙ˆ

n´m

i

˙

´ 3
„ˆ

m´ 1
5

˙

` pn´mq

ˆ

m´ 1
4

˙

`

ˆ

m´ 1
3

˙ˆ

n´m

2

˙

`

ˆ

m´ 1
2

˙ˆ

n´m

3

˙

´ 1


ď 0

ðñ

ˆ

m´ 1
5

˙ˆ

n´m

0

˙

`

ˆ

m´ 1
4

˙ˆ

n´m

1

˙

`

ˆ

m´ 1
3

˙ˆ

n´m

2

˙

`

ˆ

m´ 1
2

˙ˆ

n´m

3

˙

`

ˆ

m´ 1
1

˙ˆ

n´m

4

˙

`

ˆ

m´ 1
0

˙ˆ

n´m

5

˙

´ 3
„ˆ

m´ 1
5

˙

` pn´mq

ˆ

m´ 1
4

˙

`

ˆ

m´ 1
3

˙ˆ

n´m

2

˙

`

ˆ

m´ 1
2

˙ˆ

n´m

3

˙

´ 1


ď 0

ðñ pm´ 1q
ˆ

n´m

4

˙

`

ˆ

n´m

5

˙

´ 2
ˆ

m´ 1
5

˙

´ 2pn´mq
ˆ

m´ 1
4

˙

´ 2
ˆ

m´ 1
3

˙ˆ

n´m

2

˙

´ 2
ˆ

m´ 1
2

˙ˆ

n´m

3

˙

` 3 ď 0

ðñ pm´ 1q
ˆ

n´m

4

˙

´ 2
ˆ

m´ 1
5

˙

´ 2pn´mq
ˆ

m´ 1
4

˙

`

ˆ

n´m

5

˙

´ 2
ˆ

m´ 1
3

˙ˆ

n´m

2

˙

´ 2
ˆ

m´ 1
2

˙ˆ

n´m

3

˙

` 3 ď 0

ðñ pm´ 1q
˜

ˆ

n´m

4

˙

´ 2
ˆ

m´ 5
5

˙ˆ

m´ 4
4

˙ˆ

m´ 3
3

˙ˆ

m´ 2
2

˙

´ 2pn´mq
ˆ

m´ 4
4

˙ˆ

m´ 3
3

˙

´m´ 2
2

¯

¸

`

ˆ

n´m

2

˙

˜

´n´m´ 4
5

¯´n´m´ 3
4

¯´n´m´ 2
3

¯

´ 2
ˆ

m´ 1
3

˙

´ 2
ˆ

m´ 1
2

˙

´n´m´ 2
3

¯

¸

` 3 ď 0
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ðñ pm´ 1q
ˆˆ

n´m

4

˙

´ 2
ˆ

m´ 4
4

˙ˆ

m´ 3
3

˙ˆ

m´ 2
2

˙ˆˆ

m´ 5
5

˙

` pn´mq

˙˙

`

ˆ

n´m

2

˙ˆˆ

n´m´ 4
5

˙ˆ

n´m´ 3
4

˙ˆ

n´m´ 2
3

˙

´ 2
ˆ

m´ 1
2

˙ˆ

m´ 3
3 `

n´m´ 2
3

˙˙

` 3 ď 0

ðñ pm´ 1q
ˆˆ

n´m

4

˙

´ 2
´m´ 4

4

¯´m´ 3
3

¯´m´ 2
2

¯

ˆ

5n´ 4m´ 5
5

˙˙

`

ˆ

n´m

2

˙

˜

´n´m´ 4
5

¯´n´m´ 3
4

¯´n´m´ 2
3

¯

´ 2
ˆ

m´ 1
2

˙ˆ

n´ 5
3

˙

¸

` 3 ď 0

Let;

c :“
ˆ

n´m

4

˙

´ 2
ˆ

m´ 4
4

˙ˆ

m´ 3
3

˙ˆ

m´ 2
2

˙ˆ

5n´ 4m´ 5
5

˙

d :“
ˆ

n´m´ 4
5

˙ˆ

n´m´ 3
4

˙ˆ

n´m´ 2
3

˙

´ 2
ˆ

m´ 1
2

˙ˆ

n´ 5
3

˙

Since m ´ 1 ě 0 and
`

n´m
2

˘

ě 0, we only need to check c and d, if both are positive

then this inequality does not hold.

c “
1
4!pn´mqpn´m´ 1qpn´m´ 2qpn´m´ 3q ´ 2

5!pm´ 4qpm´ 3qpm´ 2qp5n´ 4m´ 5q

“
1
4!pn

2 ´ nm´ n´ nm`m2 `mqpn2 ´ nm´ 3n´ nm`m2 ` 3m´ 2n` 2m` 6q

´
2
5!pm

2 ´ 7m` 12qp5nm´ 4m2 ´ 5m´ 10n` 8m` 10q

“
1
4!pn

4 ´ 4n3m´ 6n63` 6n2m2 ` 18n2m` 11m2 ` 6m`m4q

´
1
5!p´10nm3 ` 8m4 ´ 62m3 ` 90nm2 ` 118m2 ´ 260nm` 68m` 240n´ 240q

“
1
5!p5n

4 ´ 20n3m´ 30n3 ` 30n2m2 ` 90n2m` 55n2 ´ 30nm3 ´ 370nm` 210n´ 32m3

` 173m2 ` 98m` 13m4 ´ 240q
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And using Mathematica to expand d we have;

d “
1
60p176´ 326m` 91m2 ´m3 ´ 14n` 78mn´ 17m2n´ 9n2 ´ 3mn2 ` n3q

By using Mathematica, we have verified that the inverse of these two inequalities does not

have any real solution when m ě 7 and n ě 7.72503m, implying that these two equations will be

positive when m ě 7 and n ě 7.72502396m. Thus, the initial inequality does not hold, which is a

contradiction. Therefore, our claim holds, and all edges of this type can be colored using greedy

coloring.

Fourthly, edges type 4: N Y tu4u, |N | “ 2. Let’s denote this type of edges as x4

2
”

ˆ

m´ 1
5

˙

` pn´mq

ˆ

m´ 1
4

˙

`

ˆ

m´ 1
3

˙ˆ

n´m

2

˙

`

ˆ

m´ 1
2

˙ˆ

n´m

3

˙

`

ˆ

m´ 1
1

˙ˆ

n´m

4

˙

´ 1
ı

ě

ˆ

n´ 1
5

˙

ðñ

ˆ

n´ 1
5

˙

´ 2
”

ˆ

m´ 1
5

˙

` pn´mq

ˆ

m´ 1
4

˙

`

ˆ

m´ 1
3

˙ˆ

n´m

2

˙

`

ˆ

m´ 1
2

˙ˆ

n´m

3

˙

`

ˆ

m´ 1
1

˙ˆ

n´m

4

˙

´ 1
ı

ď 0

ðñ

ˆ

n´ 1
5

˙

´ 2
”

ˆ

m´ 1
5

˙

` pn´mq

ˆ

m´ 1
4

˙

`

ˆ

m´ 1
3

˙ˆ

n´m

2

˙

`

ˆ

m´ 1
2

˙ˆ

n´m

3

˙

`

ˆ

m´ 1
1

˙ˆ

n´m

4

˙

`

ˆ

n´m

5

˙

´

ˆ

n´m

5

˙

´ 1
ı

ď 0

ðñ

ˆ

n´ 1
5

˙

´ 2
”

5
ÿ

i“0

ˆ

m´ 1
5´ i

˙ˆ

n´m

i

˙

´

ˆ

n´m

5

˙

` 1
ı

ď 0

ðñ

ˆ

n´ 1
5

˙

´ 2
”

ˆ

n´ 1
5

˙

´

ˆ

n´m

5

˙

` 1
ı

ď 0

ðñ

ˆ

n´ 1
5

˙

´ 2
ˆ

n´ 1
5

˙

` 2
ˆ

n´m

5

˙

´ 2 ď 0

ðñ 2
ˆ

n´m

5

˙

´

ˆ

n´ 1
5

˙

´ 2 ď 0

By using Mathematica, we verified that this inequality does not have any real solution when

m ě 7 and n ě 7.72503m. It is a contradiction. Therefore, every edge of this type can be colored.

Fifthly, edges Type 5: N Y tu5u, |N | “ 1. Let’s denote this type of edges as x5. This is the

last type of edge that contains a vertex v P N . We would like to show that degipvq “ r, v P N and
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since this type of edges would be the last type of edges that contained a vertex v P N , each vertex

must be contained in r ´ degipvq number of edges of each color i P rks. Thus,

k
ÿ

i“1
pr ´ degipvqq “

k
ÿ

i“1
r ´

k
ÿ

i“1
degipvq

“ rk ´ degpvq

“ λ

ˆ

n´ 1
5

˙

´

5
ÿ

`“1
λ

ˆ

n´m

6´ `´ 1

˙ˆ

m´ 1
`

˙

“ λ
5
ÿ

`“0

ˆ

n´m

6´ `´ 1

˙ˆ

m´ 1
`

˙

´ λ
5
ÿ

`“1

ˆ

n´m

6´ `´ 1

˙ˆ

m´ 1
`

˙

“ λ

˜

5
ÿ

`“0

ˆ

n´m

6´ `´ 1

˙ˆ

m´ 1
`

˙

´

5
ÿ

`“1

ˆ

n´m

6´ `´ 1

˙ˆ

m´ 1
`

˙

¸

“ λ

˜

ˆ

n´m

5

˙

`

5
ÿ

`“1

ˆ

n´m

6´ `´ 1

˙ˆ

m´ 1
`

˙

´

5
ÿ

`“1

ˆ

n´m

6´ `´ 1

˙ˆ

m´ 1
`

˙

¸

“ λ

ˆ

n´m

5

˙

Hence, we can color all edges of this type using all available k colors, and the degree of every vertex

from G is equal to r.

Lastly, the last type of edges that we need to check is the type of edges that only contain

the newly added n´m vertices. Let’s denote this last type of edge as x6. We have colored all the

other type edges and verified that degipvq “ r, v P N . Next, the degree of every vertex of the newly

added vertices has to equal r as well. Up to this point, all these vertices have been contained in

every other type of edge.

Recall that:

rm “ 6x0i ` 5x1i ` 4x2i ` 3x3i ` 2x4i ` x5i

rn´ 6rm “ 6x0i ` 6x1i ` 6x2i ` 6x3i ` 6x4i ` 6x5i ` 6x6i ´ 36x0i ´ 30x1i

´ 24x2i ´ 18x3i ´ 12x4i ´ 6x5i

“ ´30x0i ´ 24x1i ´ 18x2i ´ 12x3i ´ 6x4i ` 6x6i

6x6i “ rn´ 6rm` 30x0i ` 24x1i ` 18x2i ` 12x3i ` 6x4i
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Thus for each color class i P rks, we have this many edges of this type;

x6i :“ rn

6 ´ rm` 5x5i ` 4x4i ` 3x3i ` 2x2i ` 1x1i

For the notation, in here x6i means the edge type 6 in color class i, where i P rks. Recall

that we are given the conditions that 6|rn, n ě 7m ě 6m. Hence, x6i will be a positive integer.

We will show that we could color all edges of this type by showing that the number of edges will

equal to
`

n´m
6

˘

.

Edges Type 6: tu6u.

k
ÿ

i“1
x6i “

k
ÿ

i“1

rn

6 ´

k
ÿ

i“1
rm´

k
ÿ

i“1
5x0i `

k
ÿ

i“1
4x1i `

k
ÿ

i“1
3x2i `

k
ÿ

i“1
2x3i `

k
ÿ

i“1
x4i

“
n

6 prkq ´mprkq ` 5λ
ˆ

m

6

˙

` 4λ
ˆ

m

5

˙ˆ

n´m

1

˙

` 3λ
ˆ

m

4

˙ˆ

n´m

2

˙

´ 2λ
ˆ

m

3

˙ˆ

n´m

3

˙

` λ

ˆ

m

2

˙ˆ

n´m

4

˙

“ λ
n

6

ˆ

n´ 1
5

˙

´ λm

ˆ

n´ 1
5

˙

`

˜

λ
5
ÿ

i“0
ph´ iq

ˆ

m

6´ i

˙ˆ

n´m

i

˙

´

5
ÿ

i“1
λ

ˆ

m

6´ i

˙ˆ

n´m

i

˙

¸

“ λ

ˆ

n´ 1
6

˙

´ λm

ˆ

n´ 1
5

˙

`

˜

λ
5
ÿ

i“0
ph´ iq

ˆ

m

6´ i

˙ˆ

n´m

i

˙

´

5
ÿ

i“1
λ

ˆ

m

6´ i

˙ˆ

n´m

i

˙

¸

“ λ
6
ÿ

i“1

ˆ

m

6´ i

˙ˆ

n´m

i

˙

´ λm

ˆ

n´ 1
5

˙

`

˜

6λ
ˆ

m

6

˙

` λ
5
ÿ

i“1
ph´ iq

ˆ

m

6´ i

˙ˆ

n´m

i

˙

´ λ
5
ÿ

i“1

ˆ

m

6´ i

˙ˆ

n´m

i

˙

¸

“ λ

ˆ

n´m

6

˙

` λ
5
ÿ

i“1

ˆ

m

6´ i

˙ˆ

n´m

i

˙

´ λm

ˆ

n´ 1
5

˙

` 6λ
ˆ

m

6

˙

` λm

„ˆ

n´ 1
6´ 1

˙

´

ˆ

m´ 1
6´ 1

˙

´ λ
5
ÿ

i“1

ˆ

m

6´ i

˙ˆ

n´m

i

˙

“ λ

ˆ

n´m

6

˙

` λ
5
ÿ

i“1

ˆ

m

6´ i

˙ˆ

n´m

i

˙

´ λm

ˆ

n´ 1
5

˙

` 6λ
´m

6

¯

ˆ

m´ 1
5

˙

` λm

ˆ

n´ 1
5

˙

´ λm

ˆ

m´ 1
5

˙

´ λ
5
ÿ

i“1

ˆ

m

6´ i

˙ˆ

n´m

i

˙

“ λ

ˆ

n´m

6

˙

` λm

ˆ

m´ 1
5

˙

´ λm

ˆ

m´ 1
5

˙

“ λ

ˆ

n´m

6

˙
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Last step would be to check the degree of every vertex. We have verified that degipvq “

r,@v P N . Next, we need to show that degipuq “ rpn´mq for i P rks.

Recall that
ř

vPV degpvq “ rm “ 6x0 ` 5x1 ` 4x2 ` 3x3 ` 2x4 ` 1x5

Hence,

degpuq “ x1 ` 2x2 ` 3x3 ` 4x4 ` 5x5 ` 6x6

“ p6x0 ` 6x1 ` 6x2 ` 6x3 ` 6x4 ` 6x5 ` 6x6q ´ p6x0 ` 5x1 ` 4x2 ` 3x3 ` 2x4 ` 1x5q

“ rn´ rm “ rpn´mq
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CHAPTER IV: EXTENDING EDGE-COLORING OF A COMPLETE 7-UNIFORM

HYPERGRAPH

In this chapter, we will show the necessary and sufficient conditions in which a partial

r-factorization of λK7
m could be extended to an r-factorization of λK7

n. This proof is adapted,

and a further case of [1].

Theorem IV.0.1. For n ě 9.16580m, any partial r-factorization of λK7
m can be extended

to an r´factorization of λK7
n if and only if 7|rn and r|λ

`

n´1
7

˘

.

Proof of necessity. Suppose that any partial r-factorization of λK7
m can be extended to an

r-factorization of λK7
n. This implies that λK7

n is r-factorable. Hence, each vertex needs to

appear r times in each color class. Since h “ 7, each edge will contain 7 vertices. Thus we

should have that h|rn. Since each vertex appear r times in each color class, it is regular.

This mean degipvq “ r,@i P rks and since the total degree of each vertex is λ
`

n´1
h´1

˘

, hence

we should have r|λ
`

n´1
h´1

˘

so that each vertices are regular. Therefore, we have that 7|rn and

r|λ
`

n´1
6

˘

Proof of sufficiency. Suppose 7|rn and r|
`

n´1
6

˘

and a partial r-factorization of G :“ K7
m is

given. We would like to show that a partial r-factorization of G can be extended to an

r-factorization of K7
n.

Let F be an amalgamated graph obtained by adding an amalgamated vertex u, with

|u| “ n ´ m, so that V pFq “ V pGq Y tuu and EpFq be the union of EpGq and the new

edges between N Ď V pGq and the vertex u, with, |N | “ h ´ j “ 7 ´ j and |u| “ j, with

j P t0, ..., 7u. Each edge type in F will be of the form pvj, u7´jq, where each edge will contain

j vertices from V pFq and 7´ j copies of u, such that;

multFpN, u
j
q “ λ

ˆ

n´m

j

˙

Note that there are
`

m
7´j

˘`

n´m
j

˘

edges in each type of edge. By corollary I.2.1, we could

extend a partial r-factorization of G to r-factorization of K7
n if and only if we could color the
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new edges of F such that the degree conditions in the corollary I.2.1 can be satisfied using

k “
λpn´1

h´1q
r

“
λpn´1

6 q
r

colors. In other words, we need to show that the degree of each vertex

in G is r, and the degree of u is equal to rpn´mq.

Since the original edges from G has been colored, we only need to color the new added

edges such that degipvq “ r and degipuq “ rpn ´ mq, for each v P V pGq with i P rks. We

are going to color these edges greedily and in order, based on the types of each edge. Notice

that when |N | “ 7, the edges would only contain vertices from V pGq and when |N | “ 0, the

edges would have no vertices from V pGq and only contain 7 copies of u

We claim that by greedily coloring these edges so that degipvq ď r for each v P V pGq

where i P rks, all edges will be colored. Suppose otherwise. Suppose there exist an edge that

are incident with the vertex v P N that cannot be colored, meaning that there is a vertex

v P N that already has degree r in each color class i, degipvq “ r. Hence, the degree sum of

the vertices for each color class i P rks is
ř

vPN degipvq ě r. As a result,

k
ÿ

i“1

ÿ

vPN

degFpiqpvq ě rk “ λ

ˆ

n´ 1
h´ 1

˙

“ λ

ˆ

n´ 1
6

˙

(IV.1)

However,

k
ÿ

i“1

ÿ

vPN

degFpiqpvq ď λph´ jq

«

j
ÿ

`“0

ˆ

n´m

`

˙ˆ

m´ 1
h´ `´ 1

˙

´ 1
ff

(IV.2)

We need to subtract one at the end since we assume that there exists one edge of each type

that cannot be colored, and we also take away one from m since we are assuming that there

is v P N that already has a degree equal to r. We need to multiply λph´ jq since there are

ph´ jq copies of this type of edge, and each edge has multiplicity equal to λ.

Combining IV.1 and IV.2 we have,

λph´ jq

«

j
ÿ

`“0

ˆ

n´m

`

˙ˆ

m´ 1
h´ `´ 1

˙

´ 1
ff

ě λ

ˆ

n´ 1
6

˙
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ðñ ph´ jq

«

j
ÿ

`“0

ˆ

n´m

`

˙ˆ

m´ 1
h´ `´ 1

˙

´ 1
ff

ě

ˆ

n´ 1
6

˙

(IV.3)

To prove that our claim holds, we need to show that this inequality is not true for

every type of edge that contains v P N . Hence, we are going to prove this for each type of

edge successively.

Firstly, edges Type 1: N Y u, |N | “ 6. Lets’ denote this type of edges as y1

6
„ˆ

m´ 1
6

˙

` pn´mq

ˆ

m´ 1
5

˙

´ 1


ě

ˆ

n´ 1
6

˙

ðñ

ˆ

n´ 1
6

˙

´ 6
„ˆ

m´ 1
6

˙

` pn´mq

ˆ

m´ 1
5

˙

´ 1


ď 0

ðñ

6
ÿ

i“0

ˆ

m´ 1
6´ i

˙ˆ

n´m

i

˙

´ 6
„ˆ

m´ 1
6

˙

` pn´mq

ˆ

m´ 1
5

˙

´ 1


ď 0

ðñ

ˆ

m´ 1
6

˙

`

ˆ

m´ 1
5

˙

pn´mq `

ˆ

m´ 1
4

˙ˆ

n´m

2

˙

`

ˆ

m´ 1
3

˙ˆ

n´m

3

˙

`

ˆ

m´ 1
2

˙ˆ

n´m

4

˙

` pm´ 1q
ˆ

n´m

5

˙

`

ˆ

n´m

6

˙

´ 6
ˆ

m´ 1
6

˙

´ 6pn´mq
ˆ

m´ 1
5

˙

` 6 ď 0

ðñ

ˆ

m´ 1
4

˙ˆ

n´m

2

˙

`

ˆ

m´ 1
3

˙ˆ

n´m

3

˙

`

ˆ

m´ 1
2

˙ˆ

n´m

4

˙

` pm´ 1q
ˆ

n´m

5

˙

`

ˆ

n´m

6

˙

´ 5
ˆ

m´ 1
6

˙

´ 5pn´mq
ˆ

m´ 1
5

˙

` 6 ď 0

ðñ

ˆ

m´ 1
4

˙ˆ

n´m

2

˙

`

ˆ

m´ 1
3

˙ˆ

n´m

3

˙

`

ˆ

m´ 1
2

˙ˆ

n´m

4

˙

` pm´ 1q
ˆ

n´m

5

˙

`

ˆ

n´m

6

˙

´ 5
ˆ

m´ 1
5

˙

´m´ 6
6

¯

´ 5pn´mq
ˆ

m´ 1
5

˙

` 6 ď 0

ðñ

ˆ

m´ 1
4

˙ˆ

n´m

2

˙

`

ˆ

m´ 1
3

˙ˆ

n´m

3

˙

`

ˆ

m´ 1
2

˙ˆ

n´m

4

˙

` pm´ 1q
ˆ

n´m

5

˙

`

ˆ

n´m

6

˙

´ 5
ˆ

m´ 1
5

˙ˆ

m´ 6
6 ` n´m

˙

` 6 ď 0

ðñ

ˆ

m´ 1
3

˙ˆ

n´m

3

˙

`

ˆ

m´ 1
2

˙ˆ

n´m

4

˙

` pm´ 1q
ˆ

n´m

5

˙

`

ˆ

n´m

6

˙

`

ˆ

m´ 1
4

˙ˆ

n´m

2

˙

´ 5
´m´ 5

5

¯

ˆ

m´ 1
4

˙

´6n´ 5m´ 6
6

¯

` 6 ď 0
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ðñ

ˆ

m´ 1
3

˙ˆ

n´m

3

˙

`

ˆ

m´ 1
2

˙ˆ

n´m

4

˙

` pm´ 1q
ˆ

n´m

5

˙

`

ˆ

n´m

6

˙

`

ˆ

m´ 1
4

˙

´

ˆ

n´m

2

˙

´ 5
´m´ 5

5

¯´6n´ 5m´ 6
6

¯¯

` 6 ď 0

ðñ

ˆ

m´ 1
3

˙ˆ

n´m

3

˙

`

ˆ

m´ 1
2

˙ˆ

n´m

4

˙

` pm´ 1q
ˆ

n´m

5

˙

`

ˆ

n´m

6

˙

`

ˆ

m´ 1
4

˙

´

pn´mqpn´m´ 1q
2 ´

pm´ 5qp6n´ 5m´ 6q
6

¯

` 6 ď 0

Let;

f : “ 1
2pn´mqpn´m´ 1q ´ 1

6pm´ 5qp6n´ 5m´ 6q

“
1
6 p3pn´mqpn´m´ 1q ´ pm´ 5qp6n´ 5m´ 6qq

“
1
6p8m

2
` 3n2

` 27n´ 12mn´ 16m´ 30q

ě
1
6p8m

2
` 3p9mq2 ` 27p9mq ´ 12mp9mq ´ 16m´ 30q

“
1
6pmn

2
` 3p9mq2 ` 27p9mq ´ 12mp9mq ´ 16m´ 30q

“
1
6p8m

2
` 243m3

` 243m´ 108m2
´ 16m´ 30q

“
1
6p243m3

´ 100m2
` 227m´ 30q

Since m ě 8, 243m3 ě 100m2 and 227 ě 30. Thus, f ě 0. This implies that the inequality

is positive, which is a contradiction. Therefore, all edges of this type can be colored.
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Edges Type 2: N Y u, |N | “ 5. Denote this type of edges as y2.

5
”

ˆ

m´ 1
6

˙

` pn´mq

ˆ

m´ 1
5

˙

`

ˆ

m´ 1
4

˙ˆ

n´m

2

˙

´ 1
ı

ě

ˆ

n´ 1
6

˙

ðñ

ˆ

n´ 1
6

˙

´ 5
”

ˆ

m´ 1
6

˙

` pn´mq

ˆ

m´ 1
5

˙

`

ˆ

m´ 1
4

˙ˆ

n´m

2

˙

´ 1
ı

ď 0

ðñ

6
ÿ

i“0

ˆ

m´ 1
6´ i

˙ˆ

n´m

i

˙

´ 5
”

ˆ

m´ 1
6

˙

` pn´mq

ˆ

m´ 1
5

˙

`

ˆ

m´ 1
4

˙ˆ

n´m

2

˙

´ 1
ı

ď 0

ðñ

ˆ

m´ 1
6

˙

`

ˆ

m´ 1
5

˙

pn´mq `

ˆ

m´ 1
4

˙ˆ

n´m

2

˙

`

ˆ

m´ 1
3

˙ˆ

n´m

3

˙

`

ˆ

m´ 1
2

˙ˆ

n´m

4

˙

` pm´ 1q
ˆ

n´m

5

˙

`

ˆ

n´m

6

˙

´ 5
ˆ

m´ 1
6

˙

´ 5pn´mq
ˆ

m´ 1
5

˙

´ 5
ˆ

m´ 1
4

˙ˆ

n´m

2

˙

` 5 ď 0

ðñ

ˆ

m´ 1
3

˙ˆ

n´m

3

˙

`

ˆ

m´ 1
2

˙ˆ

n´m

4

˙

` pm´ 1q
ˆ

n´m

5

˙

`

ˆ

n´m

6

˙

´ 4
ˆ

m´ 1
6

˙

´ 4pn´mq
ˆ

m´ 1
5

˙

´ 4
ˆ

m´ 1
4

˙ˆ

n´m

2

˙

` 6 ď 0

ðñ

ˆ

m´ 1
2

˙ˆ

n´m

4

˙

` pm´ 1q
ˆ

n´m

5

˙

`

ˆ

n´m

6

˙

`

ˆ

m´ 1
3

˙ˆ

n´m

3

˙

´ 4
ˆ

m´ 6
6

˙ˆ

m´ 5
5

˙ˆ

m´ 4
4

˙ˆ

m´ 1
3

˙

´ 4pn´mq
ˆ

m´ 5
5

˙ˆ

m´ 4
4

˙ˆ

m´ 1
3

˙

´ 4
ˆ

m´ 4
4

˙ˆ

m´ 1
3

˙ˆ

n´m

2

˙

` 6 ď 0

ðñ

ˆ

m´ 1
2

˙ˆ

n´m

4

˙

` pm´ 1q
ˆ

n´m

5

˙

`

ˆ

n´m

6

˙

`

ˆ

m´ 1
3

˙

˜

ˆ

n´m

3

˙

´ 4
ˆ

m´ 6
6

˙ˆ

m´ 5
5

˙ˆ

m´ 4
4

˙

´ 4pn´mq
ˆ

m´ 5
5

˙ˆ

m´ 4
4

˙

´ 4
ˆ

m´ 4
4

˙ˆ

n´m

2

˙

¸

` 6 ď 0
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Let;

s :“
ˆ

n´m

3

˙

´ 4
ˆ

m´ 6
6

˙ˆ

m´ 5
5

˙ˆ

m´ 4
4

˙

´ 4pn´mq
ˆ

m´ 5
5

˙ˆ

m´ 4
4

˙

´ 4
ˆ

m´ 4
4

˙ˆ

n´m

2

˙

“

ˆ

n´m

3

˙

´ 4
ˆ

m´ 4
4

˙ˆ

n´m

2

˙

´ 4
ˆ

m´ 6
6

˙ˆ

m´ 5
5

˙ˆ

m´ 4
4

˙

´ 4pn´mq
ˆ

m´ 5
5

˙ˆ

m´ 4
4

˙

“ pn´mqpn´m´ 1q
ˆ

n´m´ 2
6 ´

m´ 4
8

˙

´

ˆ

pm´ 5qpm´ 4q
5

˙ˆ

m´ 6
6 ` pn´mq

˙

“ pn2
´ n´ 2mn`m`m2

q

ˆ

4n´ 7m` 4
24

˙

´

ˆ

m2 ´ 9m` 20
5

˙ˆ

6n´ 5m´ 6
6

˙

“
1
24

`

4n3
´ 4n´ 15mn2

` 3mn` 18m2n` 4m´ 3m2
´ 7m3˘

´
1
30

`

´5m3
` 39m2

´ 46m` 6m2n´ 54mn` 120n´ 120
˘

“
1

120p20n3
´ 500n´ 75mn2

` 66m2n` 231mn´ 15m3
´ 171m2

` 204m` 480q

Since
`

m´1
2

˘`

n´m
4

˘

` pm´ 1q
`

n´m
5

˘

`
`

n´m
6

˘

ě 0 and
`

m´1
3

˘

ě 0, we only need to check

whether s ě 0 or not to ensure if the inequality hold. Using Mathematica, we verified that

s ď 0 does not have any real solution when n ě 9m and m ě 8. Thus imply that s is positive

when n ě 9m and m ě 8. This brings us to conclude that the original inequality does not

hold; thus, we can color all the edges of this type.
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Thirdly, edges Type 3: N Y u2, |N | “ 4. Let’s denote this type of edges as y3

4
„ˆ

m´ 1
6

˙

` pn´mq

ˆ

m´ 1
5

˙

`

ˆ

m´ 1
4

˙ˆ

n´m

2

˙

`

ˆ

m´ 1
3

˙ˆ

n´m

3

˙

´ 1


ě

ˆ

n´ 1
6

˙

ðñ

ˆ

n´ 1
6

˙

´ 4
„ˆ

m´ 1
6

˙

` pn´mq

ˆ

m´ 1
5

˙

`

ˆ

m´ 1
4

˙ˆ

n´m

2

˙

`

ˆ

m´ 1
3

˙ˆ

n´m

3

˙

´ 1


ď 0

ðñ

6
ÿ

i“0

ˆ

m´ 1
6´ i

˙ˆ

n´m

i

˙

´ 4
„ˆ

m´ 1
6

˙

` pn´mq

ˆ

m´ 1
5

˙

`

ˆ

m´ 1
4

˙ˆ

n´m

2

˙

`

ˆ

m´ 1
3

˙ˆ

n´m

3

˙

´ 1


ď 0

ðñ

ˆ

m´ 1
6

˙ˆ

n´m

0

˙

`

ˆ

m´ 1
5

˙ˆ

n´m

1

˙

`

ˆ

m´ 1
4

˙ˆ

n´m

2

˙

`

ˆ

m´ 1
3

˙ˆ

n´m

3

˙

`

ˆ

m´ 1
2

˙ˆ

n´m

4

˙

`

ˆ

m´ 1
1

˙ˆ

n´m

5

˙

`

ˆ

m´ 1
0

˙ˆ

n´m

6

˙

´ 4
ˆ

m´ 1
6

˙

´ 4pn´mq
ˆ

m´ 1
5

˙

´ 4
ˆ

m´ 1
4

˙ˆ

n´m

2

˙

´ 4
ˆ

m´ 1
3

˙ˆ

n´m

3

˙

` 4 ď 0

ðñ

ˆ

m´ 1
2

˙ˆ

n´m

4

˙

` pm´ 1q
ˆ

n´m

5

˙

`

ˆ

n´m

6

˙

´ 3
ˆ

m´ 1
6

˙

´ 3pn´mq
ˆ

m´ 1
5

˙

´ 3
ˆ

m´ 1
4

˙ˆ

n´m

2

˙

´ 3
ˆ

m´ 1
3

˙ˆ

n´m

3

˙

` 4 ď 0

ðñ pm´ 1q
ˆ

n´m

5

˙

`

ˆ

n´m

6

˙

`

ˆ

m´ 1
2

˙ˆ

n´m

4

˙

´ 3
ˆ

m´ 6
6

˙ˆ

m´ 5
5

˙ˆ

m´ 4
4

˙ˆ

m´ 3
3

˙ˆ

m´ 1
2

˙

´ 3pn´mq
ˆ

m´ 5
5

˙ˆ

m´ 4
4

˙ˆ

m´ 3
3

˙ˆ

m´ 1
2

˙

´ 3
ˆ

m´ 4
4

˙ˆ

m´ 3
3

˙ˆ

m´ 1
2

˙ˆ

n´m

2

˙

´ 3
ˆ

m´ 3
3

˙ˆ

m´ 1
2

˙ˆ

n´m

3

˙

` 4 ď 0
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ðñ pm´ 1q
ˆ

n´m

5

˙

`

ˆ

n´m

6

˙

`

ˆ

m´ 1
2

˙

˜

ˆ

n´m

4

˙

´ 3
ˆ

m´ 6
6

˙ˆ

m´ 5
5

˙ˆ

m´ 4
4

˙ˆ

m´ 3
3

˙

´ 3pn´mq
ˆ

m´ 5
5

˙ˆ

m´ 4
4

˙ˆ

m´ 3
3

˙

´ 3
ˆ

m´ 4
4

˙ˆ

m´ 3
3

˙ˆ

n´m

2

˙

´ 3
ˆ

m´ 3
3

˙ˆ

n´m

3

˙

¸

` 4 ď 0

Let;

t :“
ˆ

n´m

4

˙

´ 3
ˆ

m´ 6
6

˙ˆ

m´ 5
5

˙ˆ

m´ 4
4

˙ˆ

m´ 3
3

˙

´ 3pn´mq
ˆ

m´ 5
5

˙ˆ

m´ 4
4

˙ˆ

m´ 3
3

˙

´ 3
ˆ

m´ 4
4

˙ˆ

m´ 3
3

˙ˆ

n´m

2

˙

´ 3
ˆ

m´ 3
3

˙ˆ

n´m

3

˙

“

ˆ

n´m

4

˙

´ 3
´m´ 3

3

¯

˜

ˆ

m´ 6
6

˙ˆ

m´ 5
5

˙ˆ

m´ 4
4

˙

` pn´mq

ˆ

m´ 5
5

˙ˆ

m´ 4
4

˙

`

ˆ

m´ 4
4

˙ˆ

n´m

2

˙

`

ˆ

n´m

3

˙

“

ˆ

n´m

4

˙

´ pm´ 3q
˜

ˆ

m´ 5
5

˙ˆ

m´ 4
4

˙ˆˆ

m´ 6
6

˙

` pn´mq

˙

`

ˆ

n´m

2

˙ˆˆ

m´ 4
4

˙

`

ˆ

n´m´ 2
3

˙˙

“

ˆ

n´m

4

˙

´ pm´ 3q
˜

ˆ

1
20pm

2
´ 9m` 20q

˙ˆ

1
6p6n´ 5m´ 6q

˙

¸

`

ˆ

1
2pn´mqpn´m´ 1q

˙ˆ

1
12p4n´m´ 20q

˙

¸

Since pm´ 1q
`

n´m
5

˘

`
`

n´m
6

˘

ě 0 and
`

m´1
2

˘

ě 0, we only need to check whether t ě 0

or not to ensure if the inequality hold.

However, since the equation in t is getting bigger, it would be efficient to use Mathe-

matica to verify whether this equality is positive or not on the bound m ě 8 and n ě 9m.

Using Mathematica, we verified that t ď 0 does not have any real solution when n ě 9m
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and m ě 8. Thus implying that t is positive when n ě 9m and m ě 8. This brings us

to conclude that the original inequality does not hold; thus, all edges of this type can be

colored.

Fourthly, edges Type 4: N Y u3, |N | “ 3. Let’s denote this type of edges as y4.

3
«

ˆ

m´ 1
6

˙

` pn´mq

ˆ

m´ 1
5

˙

`

ˆ

m´ 1
4

˙ˆ

n´m

2

˙

`

ˆ

m´ 1
3

˙ˆ

n´m

3

˙

`

ˆ

m´ 1
2

˙ˆ

n´m

4

˙

´ 1
ff

ě

ˆ

n´ 1
6

˙

ðñ

ˆ

n´ 1
6

˙

´ 3
”

ˆ

m´ 1
6

˙

` pn´mq

ˆ

m´ 1
5

˙

`

ˆ

m´ 1
4

˙ˆ

n´m

2

˙

`

ˆ

m´ 1
3

˙ˆ

n´m

3

˙

`

ˆ

m´ 1
2

˙ˆ

n´m

4

˙

´ 1
ı

ď 0

ðñ

ˆ

n´ 1
6

˙

´ 3
”

6
ÿ

i“0

ˆ

m´ 1
6´ i

˙ˆ

n´m

i

˙

´ pm´ 1q
ˆ

n´m

5

˙

´

ˆ

n´m

6

˙

´ 1
ı

ď 0

ðñ

ˆ

n´ 1
6

˙

´ 3
”

ˆ

n´ 1
6

˙

´ pm´ 1q
ˆ

n´m

5

˙

´

ˆ

n´m

6

˙

´ 1
ı

ď 0

ðñ

ˆ

n´ 1
6

˙

´ 3
ˆ

n´ 1
6

˙

` 3pm´ 1q
ˆ

n´m

5

˙

` 3
ˆ

n´m

6

˙

` 3 ď 0

ðñ ´ 2
ˆ

n´ 1
6

˙

` 3
ˆ

n´m

5

˙ˆ

pm´ 1q `
ˆ

n´m´ 5
6

˙˙

` 3 ď 0

ðñ ´ 2
ˆ

n´ 1
6

˙

`

ˆ

n´m

5

˙ˆ

n` 5m´ 11
2

˙

` 3 ď 0

Using Mathematica, we verified that this inequality does not have any real solution

when n ě 9m,m ě 8. Thus implying that this inequality will be positive when n ě 9m,m ě

8. Therefore, a contradiction and every edge of this type can all be colored.
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Fifthly, edges Type 5: N Y u4, |N | “ 2. Let’s denote this type of edges as y5.

2
”

ˆ

m´ 1
6

˙

` pn´mq

ˆ

m´ 1
5

˙

`

ˆ

m´ 1
4

˙ˆ

n´m

2

˙

`

ˆ

m´ 1
3

˙ˆ

n´m

3

˙

`

ˆ

m´ 1
2

˙ˆ

n´m

4

˙

`

ˆ

m´ 1
1

˙ˆ

n´m

5

˙

´ 1
ı

ě

ˆ

n´ 1
6

˙

ðñ

ˆ

n´ 1
6

˙

´ 2
”

ˆ

m´ 1
6

˙

` pn´mq

ˆ

m´ 1
5

˙

`

ˆ

m´ 1
4

˙ˆ

n´m

2

˙

`

ˆ

m´ 1
3

˙ˆ

n´m

3

˙

`

ˆ

m´ 1
2

˙ˆ

n´m

4

˙

`

ˆ

m´ 1
1

˙ˆ

n´m

5

˙

´ 1
ı

ď 0

ðñ

ˆ

n´ 1
6

˙

´ 2
”

6
ÿ

i“0

ˆ

m´ 1
6´ i

˙ˆ

n´m

i

˙

´

ˆ

n´m

6

˙

´ 1
ı

ď 0

ðñ

ˆ

n´ 1
6

˙

´ 2
”

ˆ

n´ 1
6

˙

´

ˆ

n´m

6

˙

´ 1
ı

ď 0

ðñ 2
ˆ

n´m

6

˙

´

ˆ

n´ 1
6

˙

` 2 ď 0

Using Mathematica, we checked that this inequality does not have any solution when

n ě 9.16580m,m ě 8. Therefore, the inequality does not hold, which leads to a contradiction

between our assumption and our claim holds.

Lastly, edges Type 6: N Y u6, |N | “ 1. Let’s denote this set of edges as y6.

This is the last type of edge that contains a vertex v P N . We would like to show

that degipvq “ r, v P N and since this type of edges would be the last type of edges that

contained a vertex v P N , each vertex must be contained in r ´ degipvq number of edges of

each color i P rks. Thus,
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k
ÿ

i“1
pr ´ degipvqq “

k
ÿ

i“1
r ´

k
ÿ

i“1
degipvq

“ rk ´ degpvq

“ λ

ˆ

n´ 1
6

˙

´

6
ÿ

`“1
λ

ˆ

n´m

7´ `´ 1

˙ˆ

m´ 1
`

˙

“ λ
6
ÿ

`“0

ˆ

n´m

7´ `´ 1

˙ˆ

m´ 1
`

˙

´ λ
6
ÿ

`“1

ˆ

n´m

7´ `´ 1

˙ˆ

m´ 1
`

˙

“ λ

˜

6
ÿ

`“0

ˆ

n´m

7´ `´ 1

˙ˆ

m´ 1
`

˙

´

6
ÿ

`“1

ˆ

n´m

7´ `´ 1

˙ˆ

m´ 1
`

˙

¸

“ λ

˜

ˆ

n´m

6

˙

`

6
ÿ

`“1

ˆ

n´m

7´ `´ 1

˙ˆ

m´ 1
`

˙

´

6
ÿ

`“1

ˆ

n´m

7´ `´ 1

˙ˆ

m´ 1
`

˙

¸

“ λ

ˆ

n´m

6

˙

Hence, we can color all edges of this type using all available k colors, and the degree of every

vertex from G is equal to r.

The last type of edges we need to check is the edges that only contain the newly

added n ´ m vertices. Let’s denote this last type of edge as y7. We have colored all the

other type edges and verified that degipvq “ r, v P N . Next, the degree of every vertex of the

newly added vertices must equal r. Up to this point, all these vertices have been contained

in every other edge type.

Recall that:

rm “ 7y0i
` 6y1i

` 5y2i
` 4y3i

` 3y4i
` 2y5i

` y6i

rn´ 7rm “ 7y0i
` 7y1i

` 7y2i
` 7y3i

` 7y4i
` 7y5i

` 7y6i
` 7y7i

´ 49y0i
´ 42y1i

´ 35y2i
´ 28y3i

´ 21y4i
´ 14y5i

´ 7y6i

“ ´42y0i
´ 35y1i

´ 28y2i
´ 21y3i

´ 14y4i
´ 7y5i

` 7y7i

7y7i
“ rn´ 7rm` 42y0i

` 35y1i
` 28y2i

` 21y3i
` 14y4i

` 7y5i
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Thus for each color class i P rks, we have this many edges of this type;

y7i
:“ rn

7 ´ rm` 6y0i
` 5y1i

` 4y2i
` 3y3i

` 2y4i
` y5i

For the notation, in here y7i
means the edge type 7 in color class i, where i P rks.

Recall that we are given the conditions that 7|rn, n ě 9m ě 7m. Hence, y7i
will be a positive

integer. We will show that we could color all edges of this type by showing that the number

of edges will equal to
`

n´m
7

˘

Edges Type : tu7u.

k
ÿ

i“1
y7i
“

k
ÿ

i“1

rn

7 ´

k
ÿ

i“1
rm´

k
ÿ

i“1
6y0i

`

k
ÿ

i“1
5y1i

`

k
ÿ

i“1
4y2i

`

k
ÿ

i“1
3y3i

`

k
ÿ

i“1
2y4i

`

k
ÿ

i“1
y5i

“
n

7 prkq ´mprkq ` 6λ
ˆ

m

7

˙

` 5λ
ˆ

m

6

˙ˆ

n´m

1

˙

` 4λ
ˆ

m

5

˙ˆ

n´m

2

˙

` 3λ
ˆ

m

4

˙ˆ

n´m

3

˙

` 2λ
ˆ

m

3

˙ˆ

n´m

3

˙

` λ

ˆ

m

2

˙ˆ

n´m

4

˙

“ λ
n

7

ˆ

n´ 1
6

˙

´ λm

ˆ

n´ 1
6

˙

`

˜

λ
6
ÿ

i“0
ph´ iq

ˆ

m

7´ i

˙ˆ

n´m

i

˙

´

6
ÿ

i“1
λ

ˆ

m

7´ i

˙ˆ

n´m

i

˙

¸

“ λ

ˆ

n´ 1
7

˙

´ λm

ˆ

n´ 1
6

˙

`

˜

λ
6
ÿ

i“0
ph´ iq

ˆ

m

7´ i

˙ˆ

n´m

i

˙

´

6
ÿ

i“1
λ

ˆ

m

7´ i

˙ˆ

n´m

i

˙

¸

“ λ
7
ÿ

i“1

ˆ

m

7´ i

˙ˆ

n´m

i

˙

´ λm

ˆ

n´ 1
6

˙

`

˜

7λ
ˆ

m

7

˙

` λ
6
ÿ

i“1
ph´ iq

ˆ

m

7´ i

˙ˆ

n´m

i

˙

´ λ
6
ÿ

i“1

ˆ

m

7´ i

˙ˆ

n´m

i

˙

¸

“ λ

ˆ

n´m

7

˙

` λ
6
ÿ

i“1

ˆ

m

7´ i

˙ˆ

n´m

i

˙

´ λm

ˆ

n´ 1
6

˙

` 7λ
ˆ

m

7

˙

` λm

„ˆ

n´ 1
7´ 1

˙

´

ˆ

m´ 1
7´ 1

˙

´ λ
6
ÿ

i“1

ˆ

m

7´ i

˙ˆ

n´m

i

˙
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“ λ

ˆ

n´m

7

˙

` λ
6
ÿ

i“1

ˆ

m

7´ i

˙ˆ

n´m

i

˙

´ λm

ˆ

n´ 1
6

˙

` 7λ
´m

7

¯

ˆ

m´ 1
6

˙

` λm

ˆ

n´ 1
6

˙

´ λm

ˆ

m´ 1
6

˙

´ λ
6
ÿ

i“1

ˆ

m

7´ i

˙ˆ

n´m

i

˙

“ λ

ˆ

n´m

7

˙

` λm

ˆ

m´ 1
6

˙

´ λm

ˆ

m´ 1
6

˙

“ λ

ˆ

n´m

7

˙

Last step would be to check the degree of every vertex. We have verified that degipvq “

r, v P N . Next, we need to show that degipuq “ rpn´mq for i P rks.

Recall that,
ř

vPV degipvq “ rm “ 7y0i
` 6y1i

` 5y2i
` 4y3i

` 3y4i
` 2y5i

` 1y6i
.

Hence,

degpuq “ y1 ` 2y2 ` 3y3 ` 4y4 ` 5y5 ` 6y6 ` 7y7

“ p7y0 ` 7y1 ` 7y2 ` 7y3 ` 7y4 ` 7y5 ` 7y6 ` 7y7q

´ p7y0 ` 6y1 ` 5y2 ` 4y3 ` 3y4 ` 2y5 ` 1y6q

“ rn´ rm “ rpn´mq

By following the pattern that we did in our proof for h “ 6 and h “ 7, we can

conclude that by checking the bound on n for when j “ 2 in both III.3 and IV.3 we would

get n that is big enough for us to embed our original hypergraph. We used Mathematica to

find the rest of the bound on n for h P t8´ 89u. The table can be found in the Appendix.
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APPENDIX A: BOUND FOR h “ 3´ 89

h m ě h` 1 n ě n{hm n ě n ě ph´ 1qp2m´ 1q

3 4 3.41422m 1.13807 13.65688 14

4 5 4.84733m 1.21183 24.23665 27

5 6 6.28522m 1.25704 37.71132 44

6 7 7.72503m 1.28751 54.07521 65

7 8 9.16580m 1.30940 73.32640 90

8 9 10.60712m 1.32589 95.46408 119

9 10 12.04878m 1.33876 120.48840 152

10 11 13.49068m 1.34907 148.39748 189

11 12 14.93273m 1.35753 179.19396 230

12 13 16.37490m 1.36458 212.87370 275

13 14 17.81715m 1.37056 249.44192 324

14 15 19.25952m 1.37568 288.89280 377

15 16 20.70195m 1.38013 331.23120 434

16 17 22.14428m 1.38402 376.45276 495

17 18 23.58674m 1.38746 424.56276 560

18 19 25.02922m 1.39052 475.5567 629

19 20 26.47172m 1.39325 529.43500 702

20 21 27.91425m 1.39572 586.19925 779

21 22 29.35679m 1.39795 645.84938 860

22 23 30.79935m 1.39998 708.38505 945

23 24 32.24192m 1.40183 773.80608 1034

24 25 33.68450m 1.40353 842.11250 1127

25 26 35.12709m 1.40509 913.30434 1224

Continued on next page
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Table A-1 – continued from previous page

h m ě h` 1 n n{hm n ě n ě ph´ 1qp2m´ 1q

26 27 36.56969m 1.40653 987.38163 1325

27 28 38.01230m 1.40787 1064.3444 1430

28 29 39.45491m 1.40911 1144.19239 1539

29 30 40.89753m 1.41026 1226.92590 1652

30 31 42.34015m 1.41134 1312.54465 1769

31 32 43.78278m 1.41235 1401.04896 1890

32 33 45.22541m 1.413295 1492.43853 2015

33 34 46.66805m 1.41419 1586.7137 2144

34 35 47.11070m 1.41503 1683.87415 2277

35 36 49.55334m 1.41581 1783.92024 2414

36 37 50.99598m 1.41656 1886.85126 2555

37 38 52.43862m 1.41727 1992.66756 2700

38 39 53.88128m 1.41793 2101.36992 2849

39 40 55.32394m 1.41857 2212.95760 3002

40 41 56.76659m 1.41917 2327.43019 3159

41 42 58.20925m 1.41974 2444.7885 3320

42 43 59.65191m 1.42029 2565.03213 3485

43 44 61.09457m 1.42081 2688.16108 3654

44 45 62.53724m 1.42131 2814.17580 3827

45 46 63.97990m 1.42178 2943.07540 4004

46 47 65.42257m 1.42223 3074.86079 4185

47 48 66.86523m 1.42267 3209.53104 4370

48 49 68.30790m 1.42309 3347.08710 4559
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Table A-1 – continued from previous page

h m ě h` 1 n n{hm n ě n ě ph´ 1qp2m´ 1q

49 50 69.75057m 1.42349 3487.5285 4752

50 51 71.19324m 1.42387 3630.85524 4949

51 52 72.63591m 1.42424 3777.06732 5150

52 53 74.07858m 1.42459 3926.16474 5355

53 54 75.52126m 1.42493 4078.14804 5564

54 55 76.96393m 1.42526 4233.01615 5777

55 56 78.40661m 1.42558 4312.36355 5994

56 57 79.84928m 1.42589 4551.40896 6215

57 58 81.29196m 1.42618 4714.93368 6440

58 59 82.73464m 1.42646 4881.34376 6669

59 60 84.17731m 1.42674 5050.63860 6902

60 61 85.61999m 1.42700 5222.81939 7139

61 62 87.06267m 1.42726 5397.88554 7380

62 63 88.50536m 1.42751 5575.83768 7625

63 64 89.94803m 1.42775 5756.67392 7874

64 65 91.39071m 1.42798 5940.39615 8127

65 66 92.83340m 1.42821 6127.00440 8384

66 67 94.27606m 1.42843 6316.49602 8645

67 68 95.71875m 1.42864 6508.87500 8910

68 69 97.16143m 1.42885 6704.13867 9179

69 70 98.60412m 1.42905 6902.28840 9452

70 71 100.04680m 1.42924 7103.32280 9729

71 72 101.48949m 1.42943 7307.24328 10010
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Table A-1 – continued from previous page

h m ě h` 1 n n{hm n ě n ě ph´ 1qp2m´ 1q

72 73 102.93217m 1.42962 7514.04841 10295

73 74 104.37485m 1.42980 7723.73890 10584

74 75 105.81753m 1.42997 7936.31475 10877

75 76 107.26021m 1.43014 8151.77596 11174

76 77 108.70289m 1.43030 8370.12253 11475

77 78 110.14558m 1.43046 8591.135524 11780

78 79 111.58827m 1.43062 8815.47333 12089

79 80 113.03096m 1.43077 9042.4768 12402

80 81 114.47365m 1.43092 9272.36565 12719

81 82 115.91633m 1.43107 9505.13906 13040

82 83 117.35902m 1.43121 9740.79866 13365

83 84 118.80171m 1.43135 9979.34364 13694

84 85 120.24440m 1.43148 10220.774 14027

85 86 121.68709m 1.43161 10465.0897 14364

86 87 123.12978m 1.43174 10712.2909 14705

87 88 124.57245m 1.43187 10962.3774 15050

88 89 126.01514m 1.43199 11215.3492 15399

89 90 127.45782m 1.43211 11471.2065 15752
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