
Illinois State University Illinois State University

ISU ReD: Research and eData ISU ReD: Research and eData

Theses and Dissertations

2023

A Deep Learning Approach to Extractive Text Summarization A Deep Learning Approach to Extractive Text Summarization

Using Knowledge Graph and Language Model Using Knowledge Graph and Language Model

Yichen Gao
Illinois State University, ycgao98@gmail.com

Follow this and additional works at: https://ir.library.illinoisstate.edu/etd

Recommended Citation Recommended Citation
Gao, Yichen, "A Deep Learning Approach to Extractive Text Summarization Using Knowledge Graph and
Language Model" (2023). Theses and Dissertations. 1667.
https://ir.library.illinoisstate.edu/etd/1667

This Thesis-Open Access is brought to you for free and open access by ISU ReD: Research and eData. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of ISU ReD: Research and eData.
For more information, please contact ISUReD@ilstu.edu.

https://ir.library.illinoisstate.edu/
https://ir.library.illinoisstate.edu/etd
https://ir.library.illinoisstate.edu/etd?utm_source=ir.library.illinoisstate.edu%2Fetd%2F1667&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.library.illinoisstate.edu/etd/1667?utm_source=ir.library.illinoisstate.edu%2Fetd%2F1667&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ISUReD@ilstu.edu

A DEEP LEARNING APPROACH TO EXTRACTIVE TEXT SUMMARIZATION USING

KNOWLEDGE GRAPH AND LANGUAGE MODEL

YICHEN GAO

39 Pages

Extractive summarization has been widely studied, but the summaries generated by most

current extractive summarization works usually disregard the article structure of the source

document. Furthermore, the produced summaries are sometimes not representative sentences in

the article. In this thesis, we propose an extractive summarization algorithm with knowledge

graph enhancement that leverages both the source document and a knowledge graph to predict

the most representative sentences for the summary. The aid of knowledge graphs enables deep

learning models with pre-trained language models to focus on article structure information in the

process of generating extractive summaries. Our proposed method has an encoder and a

classifier: the encoder encodes the source document and the knowledge graph separately. The

classifier inter-encodes the encoded source document and knowledge graph information by the

cross-attention mechanism. Then the classifier determines whether the sentences belong to

summary sentences or not. The results show that our model produces higher ROUGE scores on

the CNN/Daily Mail dataset than the model without the knowledge graph for assistance,

compared to the extractive summarization work based on the pre-trained language model.

KEYWORDS: Extractive summarization; Knowledge graph; Deep learning models

A DEEP LEARNING APPROACH TO EXTRACTIVE TEXT SUMMARIZATION USING

KNOWLEDGE GRAPH AND LANGUAGE MODEL

YICHEN GAO

A Thesis Submitted in Partial

Fulfillment of the Requirements

for the Degree of

MASTER OF SCIENCE

School of Information Technology

ILLINOIS STATE UNIVERSITY

2023

Copyright 2023 Yichen Gao

A DEEP LEARNING APPROACH TO EXTRACTIVE TEXT SUMMARIZATION USING

KNOWLEDGE GRAPH AND LANGUAGE MODEL

YICHEN GAO

COMMITTEE MEMBERS:

Hyoil Han, Chair

Chung-Chih Li

Kyoungwon Suh

Yongning Tang

i

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my advisor, Dr. Hyoil Han, for her

unwavering support, guidance, and mentorship throughout my thesis journey. Her invaluable

insights and encouragement have been instrumental in shaping my research and academic view. I

am truly grateful for her tolerance, diligence, and the many informative conversations that

deepened my insight into our research topic. I am very fortunate to have learned and grown

under her direction, and I am eternally grateful for all she has taught me.

I would also like to extend my appreciation to my committee members for their time and

feedback. Their knowledge and insightful inquiries have been invaluable in helping me hone my

research and analysis techniques.

I am grateful to my parents for their love, support, and encouragement as I pursued my

education. Their unwavering confidence in my abilities and constant guidance has enabled me to

overcome the challenges I have met. They have also been a source of motivation and inspiration.

Their understanding and patience have played an important role in my study and growth.

Finally, I am grateful to the School of Information Technology for their support of the

course instruction, graduate research opportunities, and computing resources.

Y.G.

ii

CONTENTS

Page

ACKNOWLEDGMENTS i

TABLES iv

FIGURES v

CHAPTER I: INTRODUCTION 1

CHAPTER II: RELATED WORK 3

Extractive Summarization 3

Text Summarization with Graph Algorithms 5

CHAPTER III: DATA PREPROCESSING 8

Article and Highlight Split 10

Summarization Extraction 11

Data Processing for Pre-train Language Model 13

Data Processing for Knowledge Graph 14

Text Collation 15

Coreference Resolution 16

Information Extraction for Triples 17

Knowledge Graph Construction 18

CHAPTER IV: METHODOLOGY 22

Encoder 22

Source Document Encoder 23

Graph Encoder 25

Classifier 25

iii

Cross Attention 26

Output 27

CHAPTER V: EXPERIMENT 28

Experiment Environment 28

Evaluation Metric 29

CHAPTER VI: RESULTS 31

CHAPTER VII: CONCLUSION 34

REFERENCES 35

iv

TABLES

Table Page

1. An instance data file from the CNN/DM dataset 9

2. Average Token Count of Articles and Highlights 9

3. Data Split of CNN/DM Dataset 10

4. Triples before and after Filter 19

5. Results on CNN/DM Test Dataset 31

v

FIGURES

Figure Page

1. A JSON format for Triple Data 17

2. An Example of Knowledge Graph 21

3. The Proposed Model Architecture 23

4. The Proposed Model Details 24

5. Lambda Server at Illinois State University 28

1

CHAPTER I: INTRODUCTION

Automatic text summarization is an essential task in natural language processing, which

aims to generate a concise and meaningful representation of a longer source document or a

collection of documents. There are two approaches to summarizing text: extractive

summarization and abstractive summarization. Extractive summarization extracts existing

sentences containing the most critical content from the original text and makes these sentences a

summary highlighting the original text. The abstractive extraction works more like a human. The

abstractive summarization may not be part of the source document, but it still retells the critical

information. In our research, we focus on a single document extractive summarization task.

In the extractive summarization experiment, the CNN/DM dataset (Nallapati, Zhou, dos

Santos, Gu̇lçehre, & Xiang, 2016) is widely used for evaluating the summarization quality. The

sentence labels used for extractive summaries in CNN/DM are generated by a greedy algorithm

that maximizes the ROUGE score between the source document and the sentences in the golden

summary. The summaries generated by this approach do not take into consideration the

document’s structural information of the text, such as which sentences represent the main content

of the entire document content. Sometimes, sentences with high ROUGE scores do not belong to

the optimal summaries (Narayan, Cohen, & Lapata, 2018).

In our work, we apply a knowledge graph to provide document structure. We first extract

the important entity and relation data from the document, such as subject, predicate, and object.

Then we design an algorithm that filters the redundant parts of the extracted data from the

document and aggregates the remaining data. Furthermore, the processed data is reassembled

into a knowledge graph of the corresponding document.

2

We take both the source document and the knowledge graph for extractive summarization,

and we encode and process the source document through a pre-training language model. The

model can obtain the corresponding textual and contextual information by processing the source

document with a large-scale pre-trained language model. After that, we use graph neural

networks to analyze and infer the knowledge graphs. Then we use two cross-attention

transformer neural networks to cross-encode the features extracted from the knowledge graph

with the source document to bring the text structure information for the extractive summarization

task. With this approach, we can obtain higher-quality summaries. Our model performs better

than the current optimal model in the same experimental setting and setup.

3

CHAPTER II: RELATED WORK

Extractive Summarization

Text summarization has been studied for decades. One of the earliest approaches to

extractive summarization was TextRank (Mihalcea & Tarau, 20004). TextRank represents the

document as a graph, where nodes represent sentences and edges represent the similarity

between sentences. The algorithm scores each sentence based on the graph structure and selects

the top-scoring sentences as the summary. ClusterRank (Garg, Favre, Reidhammer, & Hakkani T

ür, 2009) also proposes a graph-based algorithm. ClusterRank focus on meeting summarization,

which uses cluster analysis to identify important topics and participants, then ranks them based

on their relevance to the meeting, and then selects the highest-scoring sentences from the most

critical clusters to form the summary. LexRank (Erkan & Radev, 2004) applies an unsupervised

approach to identify and rank the most important sentences in a document based on their

similarity among sentences. OTExtSum (Tang, et al., 2022) uses optimal transport for extractive

text summarization. The paper proposes using the Wasserstein distance, a measure of

dissimilarity between probability distributions, to identify the most informative sentences in a

text and generate a summary that preserves the vital information.

Many deep learning models have recently been proposed for text summarization tasks.

BERT (Devlin, Chang, Lee, & Toutanova, 2018) is a pre-trained neural network for natural

language tasks. BERT, a transformer-based architecture, has achieved state-of-the-art results on

various NLP benchmarks, which prove the ability of BERT to capture the semantic and

contextual information of the input text. RoBERTa (Liu, et al., 2019) is a variation of BERT and

improves the pre-training process with longer sequences of text, dynamic masking, and removal

of the next sentence prediction objective, which are not included in BERT. Compared to BERT,

4

RoBERTa was used for extracting text summarization tasks when it was proposed, proved its

effectiveness in generating high-quality summaries, and achieved state-of-the-art results in

several NLP benchmark tests. Since the excellent performance of BERT/Roberta on NLP tasks,

there is a lot of extension work based on the BERT/RoBERTa model.

BertSum (Liu, 2019) utilizes BERT pre-trained language models to boost the

performance of extractive summaries. The approach involves fine-tuning BERT on a large

corpus of text data to generate summaries and test the performance with various classifiers for

sentence summarization. They get a good performance with the sentence Transformer layer.

Narayan et al. (Narayan, Cohen, & Lapata, 2018) use a pre-trained RoBERTa model to generate

sentence embeddings and train a policy network using reinforcement learning to rank sentences

in the input text based on their importance for the summary. The author also designs a new

reward loss function that takes care of the content and diversity of the abstract. The MatchSum

(Zhong, et al., 2020) model applies a text-matching framework to consider the relationship

between the generated summary and the input document. MatchSum determines the most

informative summary as the final summary based on the relevance of multiple candidate

summaries to the input document. This method has shown promising results, indicating the

potential of text-matching techniques for improving the quality of extractive summarization.

When summarizing, extracting whole sentences can result in the summary including unneeded

and redundant information. Zhou et al. (Zhou, Wei, & Zhou, 2020) propose an extractive

summarization method that uses subsentences as the extractive unit. They investigate the impact

of different levels of granularity - word, sentence, and paragraph for sentence selection in

extractive document summarization and evaluate their effectiveness on several benchmark

datasets using a BERT-based model. Their result suggests that summarizing at the sentence level

5

is more effective for extractive summarization than summarizing at the word or paragraph levels.

Yuan et al. (Yuan, Wang, & Li, 2020) propose a hierarchical graph mask approach for fact-level

extractive summarization using BERT-based models. They proposed an algorithm that splits

sentences into multiple facts, capturing the relationships between entities and facts in the text.

They then use a neural network to generate a hierarchical mask that identifies the most essential

facts to be included in the summary. This method achieves state-of-the-art performance on

several benchmark datasets, demonstrating the effectiveness of fact-level summarization for this

task.

Text Summarization with Graph Algorithms

Graph algorithms have been used in the field of text summarization. Tan et al. (Tan, Wan,

& Xiao, 2017) propose a document graph representation in which nodes represent sentences and

weighted edges represent the semantic similarity between sentences. They then use an attention

mechanism to capture the relationships between sentences and generate abstract summaries.

Vhatkar et al. (Vhatkar, Bhattacharyya, & Arya, 2020) extract triples from sentences and encode

triples in a graph structure to improve the document's semantic representation of sentences, then

applies a neural network to determine the triples’ score. Summary sentences are selected based

on the highest score triples in the neural network. Wu et al. (Wu, Koncel-Kedziorski, Ostendorf,

& Hajishirzi, 2020) propose a method for extracting summary graphs from long documents to

produce a structured and condensed representation of the primary content. This study

demonstrates the potential of integrating extractive summarization techniques with knowledge

graph construction to generate a structured and interpretable summary of lengthy documents.

The methodology provides valuable insights for future research on extractive summarization and

knowledge graph techniques. Jin et al. (Jin, Wang, & Wan, 2020) apply a multi-granularity

6

interaction network (MGSum) for multi-document summarization that combines extractive and

abstractive approaches. MGSum is a hierarchical model with an extractive and abstractive

module that considers document, paragraph, and sentence levels of granularity. It captures the

interactions between these granularities so that the relationships within and between multiple

documents can be understood better to produce better summarizations. Belwal et al. (Belwal, Rai,

& Gupta, 2021) present a new graph-based extractive text summarization method using keyword

modeling or topic modeling. The research team develops an algorithm that recognizes keywords

or subjects within the input text and then uses this information to generate a weighted similarity

network. By recording semantic linkages among sentences and between the sentences and whole

documents, the graph is evaluated to calculate significance scores for each sentence. Afterward,

the most pertinent sentences are chosen for the summary. Gokhan et al. (Gokhan, Smith, & Lee,

2022) developed GUSUM, an unsupervised graph-based method for extractive text

summarization. Combining sentence feature scoring and Sentence-BERT embeddings, GUSUM

generates a similarity graph representing the input text. A clustering algorithm is then applied to

the graph to group similar sentences, and representative sentences are chosen for the summary.

Zhu et al. (Zhu, et al., 2020) address the problem of factual consistency in abstractive

summarization. They offer a strategy that extracts triples from the document and then represents

them as a knowledge graph by processing each triple as a node. Then the model merged

knowledge graph information into the model’s decoder to motivate the model to produce

summaries that maintain factual consistency with the source document. Their work highlights the

potential of leveraging knowledge graphs to improve the quality and factual accuracy of

generated summaries. Huang et al. (Huang, Wu, & Wang, 2020) present a novel approach for

abstractive summarization that incorporates knowledge graphs to enhance the semantic

7

understanding of the input text. They propose Abstractive Summarization with Graph

Augmentation and semantic-driven RewarD (ASGARD), which integrates external knowledge

from knowledge graphs into the summary generation process. Huang et al. (Huang, Wu, & Wang,

2020) introduce a semantic-driven cloze reward that evaluates the model's performance based on

the ability to answer cloze-style questions derived from the source text and the knowledge graph

to encourage the generation of semantically coherent and factually accurate summaries. Wang et

al. (Wang, Liu, Zheng, Qiu, & Huang, 2020) propose a heterogeneous graph-based neural

network for extractive summarization (HeterSumGraph). The authors construct a heterogeneous

graph representation of the input document, where nodes represent different types of textual

elements such as sentences, paragraphs, and entities, and edges capture various relationships

among these elements. The model captures local and global contextual information by

incorporating different types of nodes and relationships, improving sentence selection for

extractive summarization.

8

CHAPTER III: DATA PREPROCESSING

The CNN/Daily Mail (Hermann, et al., 2015) dataset is publicly available for the text

summarization task (Nallapati, Zhou, dos Santos, Gu̇lçehre, & Xiang, 2016). We use the

CNN/DM dataset for experimentation and evaluation in our extractive summarization

experiment. The dataset contains more than 300,000 English news releases written by

professional journalists from CNN and Daily Mail. Every document in the dataset corresponds to

a single data item which contains information in the form of data fields. The first field is "id," a

string containing the hexadecimal form for the SHA1 hash of the URL from which the story was

retrieved. The second field is "article," which is a string that contains the body of the news

article. Finally, the third field is "highlights," which is a string containing the highlight of the

article as written by the article author. Each file name in the CNN/DM dataset is a sixteen-bit

SHA1 hash code corresponding to the news article’s address. The content of each file contains

the news article along with its associated highlights. Each highlight is preceded by the “@

highlight “symbol to distinguish the highlights from the news article. Notably, each file contains

multiple highlights, indicating the presence of multiple key points within the news article. This

feature makes the dataset particularly useful for text summarization tasks.

Table 1 is an instance data file from the CNN/DM dataset, which includes the article's

unique id and content from its original file. Tables 2 and 3 provide information about the

CNN/DM dataset. Table 2 shows the average number of tokens in the articles and highlights of

the dataset. The average number of tokens for the articles is 781, while the average for the

highlights is 56. In the task of text summarization by machine learning, the dataset needs to be

partitioned into a training set, a validation set, and a test set. The CNN/DM dataset also contains

the source URLs of all the news in the dataset. These URLs form a one-to-one correspondence

9

with the ids of the data and are partitioned into a training set, a validation set, and a test set. The

preprocessing follows the segmentation of the dataset, as shown in Table 3. The dataset contains

312,085 instances, of which 287,113 are in the training set, 13,368 in the validation set, and

11,490 in the test set.

Table 1

An instance data file from the CNN/DM dataset

File Name (id) 0000bf554ca24b0c72178403b54c0cca62d9faf8

Content

News article

highlight

Nicholas Levene, 48, was jailed for 13 years last November after he

admitted orchestrating a lucrative Ponzi scheme that raked in

£316million.

……

He would take from Peter to pay Paul

and move the funds between accounts in the financial havens of Jersey,

Switzerland and Israel.

…….

@highlight

Nicholas Levene must pay the nominal sum because he is bankrupt

@highlight

……

Table 2

Average Token Count of Articles and Highlights

Data Field Average Token Count

Article 781

Highlights 56

10

Table 3

Data Split of CNN/DM Dataset

Dataset number Number of Instances

Dataset 312085

Train 287113

Validation 13368

Test 11490

Article and Highlight Split

Several preprocessing steps must be taken to prepare the raw CNN/Daily Mail dataset for

a large pre-trained NLP neural network. One crucial step is tokenization, which involves splitting

the text into individual words or subwords known as tokens. Tokenization helps the neural

network understand the structure of the text. The Stanford CoreNLP toolkit (Manning, et al.,

2014) is utilized to perform tokenization. This toolkit is an open-source natural language

processing toolkit developed by the Stanford NLP Group. In addition to tokenization, the

CoreNLP toolkit offers a variety of tools for processing natural language text, including lexical

annotation, named entity recognition, sentiment analysis, and coreference parsing. It is

commonly used in industry and academia for many natural language processing tasks, such as

sentiment analysis, information extraction, and machine translation.

After using Stanford CoreNLP to tokenize the raw text from the CNN/Daily Mail dataset,

we obtain a JSON file that contains the tokenized sentences. Each sentence is treated as a

separate line of text and is stored as a list of individual words. To extract the source text and the

corresponding summary from each file in the CNN/DM dataset (as shown in Table 1), we iterate

through each sentence in the JSON file, adding each word of the sentence to the source text until

11

it encounters a sentence that starts with "@highlight." If the first word of the sentence is

"@highlight," the subsequent content is considered a summary and is added to the corresponding

list of summaries. Finally, the source text and summaries are saved in a new JSON file.

Summarization Extraction

Two common types of summarization tasks are extractive and abstractive summarization.

In extractive summarization, the goal is to select a subset of sentences from the source document

that reflects the essential information. In abstractive summarization, the goal is to generate a

summary that contains the main points of the source document concisely and coherently.

In the CNN/DM dataset, the source documents are the news articles themselves, and the

highlights generated by the article authors are used as human-generated abstractive summaries.

(Nallapati, Zhou, dos Santos, Gu̇lçehre, & Xiang, 2016). For extractive summaries, select up to

three sentences from the source document that overlap the most with the words in the abstractive

summary (Liu, 2019). These sentences are then used as extractive summaries reflecting the

content of the source document.

The ROUGE metric (Lin & Och, 2004) is a commonly used metric for evaluating the

quality of text summarization in the extractive summarization task. In this approach, the goal is

to select a subset of sentences from the source document that best captures the main ideas of the

text. To achieve this, Liu et al. use the greedy algorithm to iterate through the unselected

sentences of the source document one at a time (Liu, 2019).

When building extractive summaries from the source text, the basic unit of the summary

is the sentence. Let 𝑆 be the set of all sentences in the news article and let 𝑆′ be the subset of

sentences that have been selected as summary sentences. The set of unselected sentences in the

12

original text is the difference set, 𝑆 − 𝑆′, which represents the sentences that have not yet been

added to the summary.

To select the next sentence to be added to the summary, we calculate the sum of Rouge-1

and Rouge-2 scores between each sentence 𝑐 in the set 𝑆 − 𝑆′ and the reference summary 𝑟,

where the reference summary 𝑟 is typically the human-generated abstract summary provided

with the article. The Rouge scores provide a measure of the similarity between the sentence and

the reference summary, with higher scores indicating greater similarity.

As shown in Equation (1), the sentence with the highest Rouge score is then selected to

be added to the set 𝑆′, and the process is repeated until the desired number of summary sentences

has been selected. By iteratively selecting the most similar sentences, the extractive

summarization algorithm can generate a summary that accurately reflects the main ideas of the

source document. Equation (1) shows that Rouge-1 and Rouge-2 metrics are used to select

sentences to create a summary.

𝑠′ = 𝑠′ ∪ argmax
𝑠𝑒𝑛∈𝑆−𝑆′

(𝑅𝑜𝑢𝑔𝑒 − 1(𝑠𝑒𝑛, 𝑟) + 𝑅𝑜𝑢𝑔𝑒 − 2(𝑠𝑒𝑛, 𝑟)) (1)

Based on the metric in (1), three sentences are selected from the source document as the

target summaries for the extractive summarization task (Nallapati, Zhai, & Zhou, 2017).

Afterward, we create an array whose length is equal to the number of sentences in the source

document, initialized to all zeros. Each number in the array corresponds to a sentence at the same

index position, and the corresponding array value for the sentence that is selected as part of the

extractive summary is marked as 1. This is about how to generate a target summary for the

extractive summarization task. The following subsection describes how to apply pre-train

language model encoders to encode the article and summary in the dataset.

13

Data Processing for Pre-train Language Model

After the text data has been tokenized and separated into the source document and

extractive summary, we need to convert text data into a format that computers and NLP language

models can recognize. In the CNN/DM dataset, there is a small portion of data where the source

document is empty and only highlights exist. This indicates that the news topic may be an image

or video and does not contain text. Additionally, some news articles in the dataset are too short.

These data are not suitable for summarization tasks, so they need to be removed first. If the token

count in the source text is less than 300, the text is deleted. Then, all sentences in the source text

are restored to reconstruct the original document. Afterward, we process the text to remove

sentences that are too long or too short. We iterate through each sentence in the text and remove

sentences with fewer than 4 or more than 150 tokens. If a sentence is removed, the corresponding

element in the summary sentence array is also deleted.

The next step is to encode the data. Encoding involves adding special tokens to the text

data and transforming the words or characters in the text into vector space values. Liu (Liu, 2019)

proposes an encoding strategy for input sequences in the pre-trained NLP neural network to

support extractive summarization tasks. For the source document, the improved encoding rules

insert special tokens [CLS] and [SEP] at the beginning and end of the sentence, respectively, to

mark the start and end of the sentence. Interval paragraph embedding is used to distinguish

sentences better, using different paragraph codes for odd or even numbered sentences. The

position encoding uses position embedding to indicate the position of each token in the input

sequence, allowing the model to capture the order of the tokens. The encoded text is then

converted to an id sequence using the BERT or RoBERTa model Tokenizers (Devlin, Chang,

Lee, & Toutanova, 2018; Liu, et al., 2019).

14

BERT and RoBERTa use different encoding methods. BERT uses character-level Byte-

Pair Encoding (BPE) with a word list size of 30K, while RoBERTa uses byte-level BPE

encoding (Wang, Cho, & Gu, 2019) with a word list size of 50K. The two encoding methods

have a different granularity of subword units. The character-level BPE decomposes words into

their constituent characters. For example, the word "word" may be broken down into subwords

"w," "o," "r," and "d." The sequence of IDs generated in the BERT model for this word would be

[1059, 1051, 1054, 1040]. On the other hand, bytes-level BPE breaks words into individual bytes

and then combines them into larger subword units based on their frequency. This allows the

model to handle a wider range of characters, including those not in the Latin alphabet, such as

Chinese or Arabic characters. In the RoBERTa model, the encoding value of "word" is 14742.

However, byte-level BPE may result in a larger vocabulary than character-level BPE because

there are more byte-level combinations than character-level combinations. In our experiments,

we observed the performance of the extractive summary created by our proposed neural network

model based on the BERT and the RoBERTa models.

Data Processing for Knowledge Graph

In this NLP task, we aim to extract essential information from news articles in the

CNN/DM dataset and build a knowledge graph. Knowledge graphs from news articles can

significantly enhance the performance of the summarization algorithm. The knowledge graph

serves as a reference that can be used to extract critical information from the text, thereby

making the summary more concise and accurate. This task involves various steps from obtaining

the raw news articles to constructing a knowledge graph. Firstly, we need to extract and organize

the original news articles from the dataset. We directly segment the articles using the Stanford

CoreNLP tool, which splits the character words and compound words in the article into different

15

words. This can cause information loss or confusion in the articles. So, we need to collate

original documents and extract the article parts directly from the dataset to maximize the content

of the original news.

Once we have the articles, we need to extract the entities mentioned in the text using

techniques such as Named Entity Recognition (NER) and coreference resolution. NER identifies

and classifies named entities, such as people, organizations, and locations. Coreference

resolution helps find all the expressions in the text that refer to the same entity, thus providing a

complete view of the entities mentioned in the article. Once the entities have been identified, we

can extract the relevant information and construct the triples (subject, predicate, and object) from

the sentences in the text.

The subject and object of each triple represent the nodes in the knowledge graph, while

the predicate represents the edges that connect these nodes. By constructing the knowledge

graph, we can visualize the relationships between different entities and gain insights into the

information contained within the text.

Text Collation

Text collation helps to generate higher-quality articles for the knowledge graph. We split

the article and highlights and tokenize the article as input data to the pre-trained language model.

However, it is a challenge to accurately tokenize the text, especially when dealing with hyphens,

abbreviations, and compound words. This situation can lead to errors in tokenization, which is

even more pronounced when reconstructing press releases from tokenized portions of the source

text. Words with punctuation can cause problems in text reconstruction, resulting in the loss of

valuable information. Therefore, news articles must be extracted directly from the original data,

allowing us to maintain the integrity of punctuated words. Another challenge is that many

16

sentences in the original text are divided into parts by the line break (i.e., '/n'). To accurately

reconstruct these sentences, we adopted the strategy of reading the text in the target document

line by line and removing all line breaks in the read text. By doing so, we can accurately

reconstruct the split sentences and significantly reduce the loss of information in building the

knowledge graph.

Coreference Resolution

When writing an article, pronouns, titles, and abbreviations are often used to refer to

previously mentioned entities by their full name. This avoids the problem of repetitive use of the

same word, which can make the sentence cumbersome. However, we need to convert the entire

article into a knowledge graph when constructing a knowledge graph. From a global perspective,

problems with ambiguous references are widespread. Different entities in the same document are

replaced by the same pronoun, such as he, she, or it. Therefore, we need to perform coreference

resolution to replace all pronouns with the named entities. We used spaCy3 (Neumann, King,

Beltagy, & Ammar, 2019) and coreference toolkits with Python to implement coreference

resolution. To perform coreference resolution, one first needs to load the en_core_web_trf

component in spaCy3 and add the Coreferee pipeline to the language model. Then, the NLP

model generated by spaCy3 is used to identify the pronouns or noun phrases and link them to the

entities in the text. The entire process is accelerated using GPUs, and the entire processing

workflow takes approximately 100 hours to complete. An example of coreference resolution is

shown in Table 4. In this example, the pronunciation ‘he’ represents ‘Nicholas Levene’ at the

beginning of the document. The conference resolution replaces ‘he’ with ‘Levene.’

17

Information Extraction for Triples

OpenIE (Angeli, Premkumar, & Manning, 2015) is a command in Stanford CoreNLP

used to process all the sentences in a document and extract multiple triplets. During the

processing, each triplet is assigned a probability value indicating whether the triplet is correct or

not. By default, OpenIE sets the affinity probability to one-third, which means that a triple is

output by OpenIE only when its probability of being correct is higher than one-third. To improve

the accuracy of the information extraction results, we set the affinity probability cap to two-

thirds. However, given that our dataset contains over 300,000 data, processing this dataset using

the Stanford OpenIE command is slow and may lead to system crashes due to memory issues.

Therefore, we set the thread number of OpenIE to 8 and allocated 32GB of memory using '-

mx32g' to prevent command crashes. This approach greatly enhances the processing efficiency

of the command and helps avoid unexpected errors. The extracted triplet is shown in Figure 1.

Figure 1. A JSON format for Triple Data

The OpenIE data, stored in JSON format, in Figure 1 contains a triple that was generated

from the original sentence. The triple consists of a subject, relation, and object, with the span of

their index in the original sentence. In this case, the subject is "Steven Gerrard," and its span is

from the first to the second word of the source sentence. The relation between the subject and the

object is "had given," with a span of the index from the third to the fifth word of the sentence.

18

The object is "one of his Liverpool performances," and its span is from the fifth to the eleventh

word of the original sentence. The data is a clear representation of how OpenIE can extract

meaningful triples from a given sentence, providing insight into the relationships between

different entities. With this information, we can analyze and interpret the text more

comprehensively and efficiently.

Knowledge Graph Construction

Once the triples are extracted from the text, they must be combined to form a knowledge

graph. The first step is to process the redundant triples. Table 4 presents four triples that come

from the set of triples extracted from the first sentence of the news article in Table 1 by Stanford

OpenIE. These triples consist of a subject, a relation, and an object, along with their

corresponding index spans in the original sentence. The information extraction tool allows us to

extract important information from sentences for the summarization task. However, we can

observe that the first and fourth triples in the left half of Table 4 share an identical relationship

and object parts and have a high degree of overlap in the subject part. This indicates the presence

of redundant triples generated by Stanford OpenIE, which needs to be filtered out. To eliminate

redundancy between the extracted triples, we select two triples at a time and calculate their

degree of overlap to determine whether there is redundancy. The formula for determining

whether redundancy exists is as follows:

𝑂𝑣𝑒𝑟𝑙𝑎𝑝(𝑡𝑟𝑖𝑝𝑙𝑒1, 𝑡𝑟𝑖𝑝𝑙𝑒2) =
𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑠𝑢𝑏𝑗𝑒𝑐𝑡 + 𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 + 𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑜𝑏𝑗𝑒𝑐𝑡

(𝑙𝑒𝑛𝑔𝑡ℎ𝑡𝑟𝑖𝑝𝑙𝑒1 + 𝑙𝑒𝑛𝑔𝑡ℎ𝑡𝑟𝑖𝑝𝑙𝑒2)/2
≥ 0.75 (2)

In Equation (2), 𝑡𝑟𝑖𝑝𝑙𝑒1 𝑎𝑛𝑑 𝑡𝑟𝑖𝑝𝑙𝑒2 are the selected triple, 𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑠𝑢𝑏𝑗𝑒𝑐𝑡,

𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 , and 𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑜𝑏𝑗𝑒𝑐𝑡 are the number of overlaps between the indexes of the

span of the subject, relation, and object of the two triples, respectively. 𝑙𝑒𝑛𝑔𝑡ℎ𝑡𝑟𝑖𝑝𝑙𝑒1 and

𝑙𝑒𝑛𝑔𝑡ℎ𝑡𝑟𝑖𝑝𝑙𝑒2 are the total length of the sum of the spans of the three parts of the two triples. To

19

calculate the overlap degree, 𝑂𝑣𝑒𝑟𝑙𝑎𝑝(𝑡𝑟𝑖𝑝𝑙𝑒1, 𝑡𝑟𝑖𝑝𝑙𝑒2), we divide the sum of the overlap parts

of the spans of the two triples by the average length of the spans of the two triples. If the value is

larger than 0.75, we assume that redundancy exists between the two triples and delete one of

them until there is no redundancy in the new triple set. The left part of Table 4 is the original set

of triples, and the right part is the filtered set of triples. We can observe that the filtered triples do

not have redundant relationships with each other. By filtering the triples, we can simplify the

extracted triples, reduce the waste of unnecessary computational consumption, and make the

generated knowledge graph more concise.

Table 4

Triples before and after Filter

Triples Filtered Triples

{'subject': 'Nicholas Levene 48',

 'subjectSpan': [0, 4],

 'relation': 'was',

 'relationSpan': [5, 6],

 'object': 'jailed for 13 years November',

 'objectSpan': [6, 12]},

{'subject': 'Levene',

 'subjectSpan': [13, 14],

 'relation': 'orchestrating',

 'relationSpan': [15, 16],

 'object': 'luative Ponzi scheme',

 'objectSpan': [17, 20]},

{'subject': 'Nicholas Levene',

 'subjectSpan': [0, 2],

 'relation': 'was jailed at_time',

{'subject': 'Nicholas Levene 48',

 'relation': 'was',

 'object': 'jailed for 13 years November'},

 {'subject': 'Levene',

 'relation': 'orchestrating',

 'object': 'luative Ponzi scheme'},

 {'subject': 'Nicholas Levene',

 'relation': 'was jailed at_time',

 'object': 'November'}

20

(Table Continues)

Table 4, Continued

Triples Filtered Triples

'relationSpan': [5, 7],

'object': 'November',

 'objectSpan': [11, 12]}]

………….

{'subject': 'Nicholas Levene',

 'subjectSpan': [0, 2],

 'relation': 'was',

 'relationSpan': [5, 6],

 'object': 'jailed for 13 years last November',

 'objectSpan': [6, 12]},

Table 4 shows that the filtered triples, while not redundant, may have slight differences in

expressing the same entity. In the filtered triples in Table 4, 'Nicholas Levene 48,' 'Levene,' and

'Nicholas Levene' all serve as the subject of a triple and refer to the same person in the original

text. When constructing the knowledge graph, three subjects with the same content are

considered as three different nodes because of the subtle differences, which is not conducive for

constructing the knowledge graph and reasoning about the knowledge structure of the articles.

Therefore, we need to unify similar triple components. In the process of unifying triples, we

compare each triple. If two triples have a 50% overlap in their subject, relation, or object part, we

unify the overlapping components, and the smaller span of the two components is replaced by

the larger one. For example, in Table 4, the subject part of the three triples has slight differences,

and after unification, the subject part of all three triples is 'Nicholas Levene.'

21

Figure 2. An Example of Knowledge Graph

After filtering and unifying the triples, we need to build the knowledge graph. The nodes

are the subject and object of the triple, and the edge is the triple’s relation. Figure 2 is a

visualized knowledge graph by the first sentence in Table 1. As shown in Figure 2, the

knowledge graph is a directed graph in which the relationships between any connected pair of

nodes are not bidirectional. The relationship exists only between the subject and the object and

always points from subject to object.

Before training the knowledge graph, the triples need to be encoded. We use BERT and

RoBERTa encoders to encode the subject, relationship, and object separately. Since some nodes

in the graph are phrases, they need to be tokenized and then encoded as id sequences. Then the

encoded triples are processed as a knowledge graph and saved into the dataset with the encoded

source document and summary data for training and testing.

22

CHAPTER IV: METHODOLOGY

In this chapter, we describe our extractive summarization framework. In the task of

extractive summarization, the system is required to extract the most representative sentences

from the document and create a summary. Our work uses a neural network model to predict

which sentences belong to the summary. To train and fit the model, we need to identify which

sentences in the source document belong to the summary and select these sentences as output.

The input of our model consists of the token of the input document 𝑋 = {𝑥𝑘} and knowledge

graph 𝐺 = {(𝑉, 𝐸)}, where the 𝑉 is the node and the 𝐸 is the edge set. The output of the model

𝑆 = {𝑠𝑛} is the score of each sentence. We choose the top three highest score sentences as the

summary. In deep learning, we process the extractive summary as a sentence classification

problem (Liu, 2019) to classify whether the sentence belongs to the summary. We extract data

from the source document and construct a knowledge graph to represent its structure and infer

further information. We employ the source document and the knowledge graph as inputs to the

neural network. Our model architecture is shown in Figure 3. In our approach, as shown in

Figure 3, the neural network consists of (1) an encoder for the source document and a knowledge

graph, (2) a classifier for sentence classification prediction, and (3) other components (such as a

transformer). In Figure 4, we present our model with more details about each component.

Encoder

To tackle extractive text summarization, we use a neural network involving two inputs:

the tokenization source document and the knowledge graph from the source document. Our

proposed architecture in Figure 3 consists of two parts: an encoder part and a classifier part. The

encoder part consists of a graph encoder for the knowledge graph and a source document

encoder like BERT (Devlin, Chang, Lee, & Toutanova, 2018) and Roberta (Liu, et al., 2019).

23

The knowledge graph encoder converts a knowledge graph into a feature vector that the

subsequent layers can use. The source document encoder processes the tokenized source

document and converts it into a sequence of feature vectors.

Figure 3. The Proposed Model Architecture

Source Document Encoder

We begin by tokenizing the document and feeding the input source document x to either

the BERT (Devlin, Chang, Lee, & Toutanova, 2018) or RoBERTa (Liu, et al., 2019) model. The

output of BERT/RoBERTa is the embedding document. We then employ a two-transformer

layer, x2 Transformer (Liu, 2019), shown in Figure 4, to process the document-level feature

representation to boost the performance of the extractive summarization algorithm:

𝑥̃𝑙 = (𝑥𝑙−1 + 𝑀𝐻𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑥𝑙−1)) (3)

24

𝑥𝑙 = 𝐿𝑁(𝑥̃𝑙 + 𝐹𝐹𝑁(𝑥̃𝑙)) (4)

Figure 4. The Proposed Model Details

Where the output x of the BERT/RoBERTa model is the input of the transformer.

𝑀𝐻𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 in (3) is a multi-head attention operation (Vaswani, et al., 2017). Multi-head

attention allows the model to capture more complex information from multiple perspectives from

the input data, leading to more accurate and robust results. 𝐹𝐹𝑁 in (4) is the feed-forward

operation, and 𝐿𝑁 in (4) is the layer normalization operation. The output of the transformer layer

is sent back into the cross-attention transformer layer in the classifier.

25

Graph Encoder

The first step of the graph encoder is to construct the knowledge graph by triples

extracted from the source document by Stanford OpenIE. The knowledge graph is created by

representing the subject and object entities as nodes and the relations between them are

represented as edges pointing from a subject to an object. The next step involves encoding each

node and edge in the knowledge graph using the corresponding encoder from the BERT or

RoBERTa models. Additionally, we need to ensure that the source document encoder and the

graph encoder are integrated to generate a unified representation. Therefore, we encode the

source document and the knowledge graph using the same encoder. After the graph encoding

step, a two-layer graph attention network (GAT) is used to process the encoded graph

(Veličković, et al., 2017). In our experiments, the two-layer GAT network shares their

parameters, and the GAT network is iterated three times in one training to fit the complex

parameters in GAT. The output of GAT is transformed into a sequence with the same

dimensionality as the output of the language model as the BERT/RoBERTa model in the source

document encoder.

Classifier

Our classifier utilizes two parallel cross-attention transformer architectures and a linear

output layer. The output from the transformer in the source document encoder and the GAT

component in the graph encoder is fed into separate cross-attention transformers. The

information from the source document encoder and the graph encoder is mutually encoded in

both cross-attention transformers. This allows the two cross-attention transformers to encode

information from the source document and the knowledge graph. Finally, a linear output layer is

used to classify which sentences should be included in the summary.

26

Cross Attention

In our model, we incorporate cross-attention to enable the interaction between the inputs

from the transformer in the source document encoder and GAT in the graph encoder.

Specifically, when processing the outputs from the transformer in the source document encoder,

we introduce the output sequence from GAT as weights to generate the next hidden state in the

left-side cross-attention transformer in Figure 4. The output from the transformer in the source

document encoder is also the weight of the right-side cross-attention transformer in Figure 4. The

output of GAT is the input to the right-side cross-attention transformer. By doing so, the model

can selectively attend to relevant information from both the transformer and GAT, thus enabling

better information exchange between the two types of data. The output of the cross-attention

layer in Figure 4 is calculated as follows:

𝛼1 =
exp(ℎ2ℎ1

𝑇)

∑ exp(ℎ2ℎ1
𝑇)

 (5)

ℎ̅1 = 𝛼1ℎ1 (6)

𝛼2 =
exp(ℎ1ℎ2

𝑇)

∑ exp(ℎ1ℎ2
𝑇)

 (7)

ℎ̅2 = 𝛼2ℎ2 (8)

When calculating the output of cross-attention, we use the input from the transformer and

GAT part to get the weight of each part. The ℎ1 and ℎ2 are the input from the transformers in the

source document encoder and the GAT of the graph encoder, respectively. The 𝛼1 and 𝛼2 are the

weights of ℎ1 and ℎ2, respectively. The ℎ̅1 and ℎ̅2 are the output of the cross-attention layer

whose output is added to input ℎ1 and ℎ2 and then fed into the normalization layer at the next

step of cross-attention layer. The cross-attention mechanism allows the neural network to learn

contextual relationships by analyzing the information from the transformer output in the source

27

document decoder with article structure information from the graph encoder. Meanwhile, the

transformer information from the source document encoder provides additional information to

the neural network when analyzing the text structure information from the graph attention

network.

Output

To classifier the sentences, the outputs of the two transformer layers are concatenated

into one output. The output is processed using a full connection layer and applying the sigmoid

function as activate function (Dubey, Singh, & Chaudhuri, 2022) to get the sentence score:

𝑌 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊[ℎ1, ℎ2] + 𝑏) (9)

In Equation (9), the [ℎ1, ℎ2] is the concatenated input from two outputs of the cross-

attention transformer modules. 𝑌 is the output of our model, which represents the probability that

each sentence belongs to the summary sentence. Cross-entropy loss is applied as the loss

function for training and validation. When we evaluate the performance of the trained model on

the test set, we select the top-three sentences based on the probability 𝑌 in the source document

as the generated summary.

28

CHAPTER V: EXPERIMENT

Experiment Environment

In this experiment, the Lambda server provided by Illinois State University was used for

processing and analyzing natural language data. The server is equipped with two RTX A6000

GPUs, each with a memory capacity of 48685MB, and is powered by the NVIDIA-SMI driver

version 460.39 and CUDA version 11.1. The GPUs were utilized for deep learning tasks such as

training and testing of neural networks.

Figure 5. Lambda Server at Illinois State University

Our experiment utilized the PyTorch framework (Paszke, et al., 2019) to build our

designed network. The Transformer Toolkit (Wolf, et al., 2019) was used in constructing the

BERT and RoBERTa models. The Transformers is an open-source software library developed by

Hugging Face (Wolf, et al., 2019) that provides a powerful set of tools for processing

Transformer models, such as BERT and RoBERTa. The Transformer model allows researchers

29

to fine-tune pre-trained Transformer models for specific NLP tasks such as text summarization.

PyTorch can work together with the Transformers, and the latter provides an easy-to-use API

and pre-trained models to support NLP tasks.

To build a graph attention network on the PyTorch framework to analyze our knowledge

graph, we use the PyG toolkit (Fey & Lenssen, 2019). PyG is an open-source Python library for

deep learning on graph data. It is built upon PyTorch and can easily design and train graph neural

networks by various blocks provided by PyG.

Models have been trained with Adam optimization with learning rate, β1, and β2, which

are set as 0.001, 0.9, and 0.999, respectively, in training on GPUs on the Lambda server. The

training step is set as 200,000, and the batch size is set as 3000. The golden summary generated

by the greedy algorithm is used to train our model. Model checkpoints were saved every 2000

epochs and evaluated on the validation set. The best three checkpoints were selected based on the

loss value on the validation set.

Based on the selected checkpoint neural network models, we use the selected models to

generate a summary per document and test the summary quality on the test set. The first step is

to use the model to score each sentence of the input document. The sentences were ranked

according to their highest to lowest scores. The top-ranked three sentences with the highest

scores are selected and used as machine-generated summaries. Rouge is used as the evaluation

metric when evaluating the extractive summarization model performance. The average rouge

value of three checkpoint models is reported on the test set.

Evaluation Metric

Rouge (Recall-Oriented Understudy for Gisting Evaluation) (Lin, 2004) is an evaluation

metric used in NLP text to evaluate the quality of a summary by measuring the overlap between

30

the model-generated summary and the reference summary. In our experiment, we applied three

different variants, Rouge-1, Rouge-2, and Rouge-L, to evaluate the performance of the

summaries. To get Rouge-1 and Rouge-2 values, we need the Rouge-N function. Rouge-N is

calculated as follows:

𝑅𝑜𝑢𝑔𝑒 − 𝑁 =
∑ ∑ 𝐶𝑜𝑢𝑛𝑡𝑚𝑎𝑡𝑐ℎ(𝑔𝑟𝑎𝑚𝑁)𝑔𝑟𝑎𝑚𝑁∈𝑆𝑆∈{𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑆𝑢𝑚𝑚𝑎𝑟𝑖𝑒𝑠}

∑ ∑ 𝐶𝑜𝑢𝑛𝑡(𝑔𝑟𝑎𝑚𝑁)𝑔𝑟𝑎𝑚𝑁∈𝑆𝑆∈{𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑆𝑢𝑚𝑚𝑎𝑟𝑖𝑒𝑠}
 (10)

In obtaining the Rouge-N value, the first step is to tokenize the model-generated

summary and the reference summary based on the size N in (10) Then calculate the number of

matching n-grams (contiguous sequences of n words) between the reference summary and the

model-generated summary and divide it by the total number of n-grams in the reference

summary.

The Rouge-L is calculated as follows:

𝑅𝑜𝑢𝑔𝑒 − 𝐿 =
𝐿𝐶𝑆(𝐶, 𝑆)

𝑙𝑒𝑛(𝑆)
 (11)

Rouge-L is used to calculate the longest common subsequence (LCS). To get Rouge-L,

we first compute the LCS of words in the machine-generated summary 𝐶 and the reference

summary 𝑆. Then we calculate the length, 𝑙𝑒𝑛(𝑆), of the reference summary 𝑆. We compute the

Rouge-L score by dividing the LCS length by the reference summary length.

Pyrouge is a Python library that provides convenient interfaces for Rouge evaluation in

text summarization. Pyrouge can be used with any plain text format summarizer to compute the

Rouge-1, Rouge-2, and Rouge-L metric scores between the generated summaries and the

reference summaries. In our experiment, we facilitate the Pyrouge library to get the Rouge-1,

Rouge-2, and Rouge-L metric scores for testing.

31

CHAPTER VI: RESULTS

To evaluate our approach, we compare our neural network with other existing extractive

summarization approaches and report unigram and bigram overlap metrics using Rouge-1 and

Rouge-2 and the longest common subsequence Rouge-L. The results are shown in Table 5. To

evaluate our approach, we compare our neural network model with other extractive

summarization approaches. The results are shown in Table 5. The first section contains LEAD

and ORACLE. LEAD is an extractive baseline that uses the first three sentences of the document

as a summary. ORACLE calculates the best possible summary that can be generated by selecting

sentences from the source document by a greedy algorithm. ORACLE provides an upper bound

on the performance that any extractive summarization techniques can work as a guide.

Table 5

Results on CNN/DM Test Dataset

Model Rouge-1 Rouge-2 Rouge-L

LEAD 40.43 17.32 36.67

ORACLE 52.59 31.23 48.47

NEUSUM 41.59 19.01 37.98

BERTSUM 43.23 20.22 39.60

BertSumExt 43.85 20.34 39.90

MATCHSUM (BERT-base) 44.22 20.62 40.38

MATCHSUM (RoBERTa-base) 44.41 20.86 40.55

BertSumExt (our

implementation)

43.44 20.38 39.77

MATCHSUM (RoBERTa-base)

(our implementation)

43.87 20.32 39.95

(Table Continues)

32

Table 5, Continued

Model Rouge-1 Rouge-2 Rouge-L

Our model (BERT-base) – with a

knowledge graph

43.95 20.45 39.97

Our model (RoBERTa-base) –

without a knowledge graph

43.75 20.29 39.87

Our model (RoBERTa-base) –

with a knowledge graph

44.11 20.61 40.29

The second part of Table 5 lists the performance of existing extractive deep-learning

models, which include NEUSUM (Zhou, et al., 2018), two SOTA models BERTSUM (Liu,

2019) and MATCHSUM (Zhong, 2020), with the BERTSUMEXT model which replaces the

BERT encoder with the RoBERTa encoder. The MATCHSUM model has two versions: BERT-

based and RoBERTa-base version. The performance of the MATCHSUM RoBERTa-base model

is better than the MATCHSUM BERT-base model. All the results in the second part of Table 5

come from the corresponding extractive summarization systems (Zhou, et al., 2018; Liu, 2019;

Zhong, et al., 2020).

The last part of Table 5 shows the performance of various models in our experiments. In

our experiments, we train and test our model in the Lambda server at Illinois State University. To

prevent interference from other factors, we re-train and implement the BERTSUMEXT and

MATCHSUM in the same experiment environment and setting as our model experiment

environment and setting. Our model has three variants: a model with a BERT-base encoder with

the knowledge graph, a model with a RoBERTa-base encoder with the knowledge graph, and a

model with a RoBERTa-base encoder without the knowledge graph. All three variants of our

model outperformed our implementation of the BERTSUMEXT model. Our model enhanced by

33

the knowledge graph performs better than our implementation of MATCHSUM. Compared to

MATCHSUM and BERTSUMEXT, using a knowledge graph to provide a structured

representation of entities and relationships from source documents could better understand the

context of the document to boost the performance of the extractive summarization task. We also

trained the model without the knowledge graph and the corresponding model structure and

compared this model with our original model. The performance of our model with the

knowledge graph is much better than our model without the knowledge graph. The RoBERTa-

based model with knowledge graph reached the best result, which is 44.11, 20.61, and 40.29 in

R-1, R-2, and R-L, respectively, which proved that our model using knowledge graphs

outperforms other existing models as shown in Table 5.

34

CHAPTER VII: CONCLUSION

In this thesis, we proposed a neural network model with BERT/RoBERTa for contextual

understanding and with a knowledge graph for document structure reasoning. The relevant

information extracted from the source text and knowledge graph was inter-encoded. We encoded

the source document and all elements in the knowledge graph and used pre-trained language

models and a graph neural network to extract the important sentences from the source document.

Then we applied a cross-attention mechanism for interceding information in both data from the

source document encoder and graph encoder. In terms of the performance on the CNN/DM

dataset, our model achieves the best result compared with other existing extractive

summarization work, which proves that we use a cross-attention mechanism to cross-encode

features extracted from the knowledge graph with features extracted from the source document,

bringing text structure information to the extractive summarization task and improving the

quality of extractive summarization.

In the future, we will continue to adjust the cross-attention network component and

design the corresponding network structures for the output data from the source document

encoder and the graph encoder, respectively, to exploit the potential of the text summarization

model we developed. We will also focus on abstractive summarization. The task of abstractive

summarization is to generate a new summary based on the source document, so we need to

develop a new decoder for our text summarization model.

35

REFERENCES

Angeli, G., Premkumar, M. J., & Manning, C. D. (2015). Leveraging linguistic structure for open

domain information extraction. Proceedings of the 53rd Annual Meeting of the

Association for Computational Linguistics and the 7th International Joint Conference on

Natural Language Processing (Volume 1: Long Papers), 344-354.

Belwal, R. C., Rai, S., & Gupta, A. (2021). A new graph-based extractive text summarization

using keywords or topic modeling. Journal of Ambient Intelligence and Humanized

Computing, 12(10), 8975-8990.

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). BERT: Pre-training of Deep

Bidirectional Transformers for Language Understanding. arXiv preprint

arXiv:1810.04805.

Dubey, S. R., Singh, S. K., & Chaudhuri, B. B. (2022). Activation functions in deep learning: A

comprehensive survey and benchmark. Neurocomputing.

Erkan, G., & Radev, D. R. (2004). Lexrank: Graph-based lexical centrality as salience in text

summarization. Journal of artificial intelligence research, 22, 457-479.

Fey, M., & Lenssen, J. E. (2019). Fast graph representation learning with PyTorch Geometric.

arXiv preprint arXiv:1903.02428.

Garg, N., Favre, B., Reidhammer, K., & Hakkani Tür, D. (2009). Clusterrank: a graph based

method for meeting summarization. No. REP_WORK: Idiap.

Gokhan, T., Smith, P., & Lee, M. (2022, October). GUSUM: Graph-Based Unsupervised

Summarization using Sentence Features Scoring and Sentence-BERT. Proceedings of

TextGraphs-16: Graph-based Methods for Natural Language Processing, (pp. 44-53).

36

Hermann, K. M., Kocisky, T., Grefenstette, E., Espeholt, L., Kay, W., Suleyman, M., &

Blunsom, P. (2015). Teaching machines to read and comprehend. Advances in neural

information processing systems, 28.

Huang, L., Wu, L., & Wang, L. (2020). Knowledge graph-augmented abstractive summarization

with semantic-driven cloze reward. arXiv preprint arXiv:2005.01159.

Jin, H., Wang, T., & Wan, X. (2020, July). Multi-granularity interaction network for extractive

and abstractive multi-document summarization. Proceedings of the 58th annual meeting

of the association for computational linguistics, (pp. 6244-6254).

Lin, C. Y. (2004, July). Rouge: A package for automatic evaluation of summaries. Text

summarization branches out, (pp. 74-81).

Lin, C. Y., & Och, F. (2004). Looking for a few good metrics: ROUGE and its evaluation. Ntcir

workshop.

Liu, Y. (2019). Fine-tune BERT for extractive summarization. arXiv preprint arXiv:1903.10318.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., & Stoyanov, V. (2019). Roberta: A

robustly optimized bert pretraining approach. Retrieved from arXiv:

https://arxiv.org/abs/1907.11692

Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J. R., Bethard, S., & McClosky, D. (2014,

June). The Stanford CoreNLP natural language processing toolkit. Proceedings of 52nd

annual meeting of the association for computational linguistics: system demonstrations,

(pp. 55-60).

Mihalcea, R., & Tarau, P. (20004). Textrank: Bringing order into text. Proceedings of the 2004

conference on empirical methods in natural language processing, (pp. 404-411).

37

Nallapati, R., Zhai, F., & Zhou, B. (2017). Summarunner: A recurrent neural network based

sequence model for extractive summarization of documents. Proceedings of the AAAI

conference on artificial intelligence, (pp. 3075-3081).

Nallapati, R., Zhou, B., dos Santos, C., Gu̇lçehre, ç., & Xiang, B. (2016). Abstractive Text

Summarization using Sequence-to-sequence RNNs and Beyond. Proceedings of the 20th

SIGNLL Conference on Computational Natural Language Learning, (pp. 280-290).

Narayan, S., Cohen, S. B., & Lapata, M. (2018). Ranking sentences for extractive summarization

with reinforcement learning. arXiv preprint arXiv:1802.08636.

Neumann, M., King, D., Beltagy, I., & Ammar, W. (2019). ScispaCy: fast and robust models for

biomedical natural language processing. arXiv preprint arXiv:1902.07669.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., . . . Chintala, S. (2019).

Pytorch: An imperative style, high-performance deep learning library. Advances in neural

information processing systems, 32.

Tan, J., Wan, X., & Xiao, J. (2017). Abstractive document summarization with a graph-based

attentional neural model. Proceedings of the 55th Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long Papers), (pp. 1171-1181).

Tang, P., Hu, K., Yan, R., Zhang, L., Gao, J., & Wang, Z. (2022). OTExtSum: Extractive Text

Summarisation with Optimal Transport. arXiv preprint arXiv:2204.10086.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., . . . Polosukhin, I.

(2017). Attention is all you need. Advances in neural information processing systems, 30.

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., & Bengio, Y. (2017). Graph

attention networks. arXiv preprint arXiv:1710.10903.

38

Vhatkar, A., Bhattacharyya, P., & Arya, K. (2020). Knowledge graph and deep neural network

for extractive text summarization by utilizing triples. Proceedings of the 1st Joint

Workshop on Financial Narrative Processing and MultiLing Financial Summarisation,

(pp. 130--136).

Wang, C., Cho, K., & Gu, J. (2019). Neural Machine Translation with Byte-Level Subwords.

arXiv preprint arXiv:1909.03341.

Wang, D., Liu, P., Zheng, Y., Qiu, X., & Huang, X. (2020). Heterogeneous graph neural

networks for extractive document summarization. arXiv preprint arXiv:2004.12393.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., . . . Rush, A. M. (2019).

HuggingFace's Transformers: State-of-the-art Natural Language Processing. arXiv

preprint arXiv:1910.03771.

Wu, Z., Koncel-Kedziorski, R., Ostendorf, M., & Hajishirzi, H. (2020). Extracting summary

knowledge graphs from long documents. arXiv preprint arXiv:2009.09162.

Yuan, R., Wang, Z., & Li, W. (2020). Fact-level extractive summarization with hierarchical

graph mask on BERT. arXiv preprint arXiv:2011.09739.

Zhong, M., Liu, P., Chen, Y., Wang, D., Qiu, X., & Huang, X. (2020). Extractive summarization

as text matching. arXiv preprint arXiv:2004.08795.

Zhou, Q., Wei, F., & Zhou, M. (2020). At which level should we extract? An empirical analysis

on extractive document summarization. arXiv preprint arXiv:2004.02664.

Zhou, Q., Yang, N., Wei, F., Huang, S., Zhou, M., & Zhao, T. (2018). Neural document

summarization by jointly learning to score and select sentences. arXiv preprint

arXiv:1807.02305.

39

Zhu, C., Hinthorn, W., Xu, R., Zeng, Q., Zeng, M., Huang, X., & Jiang, M. (2020). Enhancing

factual consistency of abstractive summarization. arXiv preprint arXiv:2003.08612.

	A Deep Learning Approach to Extractive Text Summarization Using Knowledge Graph and Language Model
	Recommended Citation

	graduate school thesis-dissertation template

