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Extractive summarization has been widely studied, but the summaries generated by most 

current extractive summarization works usually disregard the article structure of the source 

document. Furthermore, the produced summaries are sometimes not representative sentences in 

the article. In this thesis, we propose an extractive summarization algorithm with knowledge 

graph enhancement that leverages both the source document and a knowledge graph to predict 

the most representative sentences for the summary. The aid of knowledge graphs enables deep 

learning models with pre-trained language models to focus on article structure information in the 

process of generating extractive summaries. Our proposed method has an encoder and a 

classifier: the encoder encodes the source document and the knowledge graph separately. The 

classifier inter-encodes the encoded source document and knowledge graph information by the 

cross-attention mechanism. Then the classifier determines whether the sentences belong to 

summary sentences or not. The results show that our model produces higher ROUGE scores on 

the CNN/Daily Mail dataset than the model without the knowledge graph for assistance, 

compared to the extractive summarization work based on the pre-trained language model. 

KEYWORDS: Extractive summarization; Knowledge graph; Deep learning models 
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CHAPTER I: INTRODUCTION 

Automatic text summarization is an essential task in natural language processing, which 

aims to generate a concise and meaningful representation of a longer source document or a 

collection of documents. There are two approaches to summarizing text: extractive 

summarization and abstractive summarization. Extractive summarization extracts existing 

sentences containing the most critical content from the original text and makes these sentences a 

summary highlighting the original text. The abstractive extraction works more like a human. The 

abstractive summarization may not be part of the source document, but it still retells the critical 

information. In our research, we focus on a single document extractive summarization task. 

In the extractive summarization experiment, the CNN/DM dataset (Nallapati, Zhou, dos 

Santos, Gu̇lçehre, & Xiang, 2016) is widely used for evaluating the summarization quality. The 

sentence labels used for extractive summaries in CNN/DM are generated by a greedy algorithm 

that maximizes the ROUGE score between the source document and the sentences in the golden 

summary. The summaries generated by this approach do not take into consideration the 

document’s structural information of the text, such as which sentences represent the main content 

of the entire document content. Sometimes, sentences with high ROUGE scores do not belong to 

the optimal summaries (Narayan, Cohen, & Lapata, 2018). 

In our work, we apply a knowledge graph to provide document structure. We first extract 

the important entity and relation data from the document, such as subject, predicate, and object. 

Then we design an algorithm that filters the redundant parts of the extracted data from the 

document and aggregates the remaining data. Furthermore, the processed data is reassembled 

into a knowledge graph of the corresponding document. 
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We take both the source document and the knowledge graph for extractive summarization, 

and we encode and process the source document through a pre-training language model. The 

model can obtain the corresponding textual and contextual information by processing the source 

document with a large-scale pre-trained language model. After that, we use graph neural 

networks to analyze and infer the knowledge graphs. Then we use two cross-attention 

transformer neural networks to cross-encode the features extracted from the knowledge graph 

with the source document to bring the text structure information for the extractive summarization 

task. With this approach, we can obtain higher-quality summaries. Our model performs better 

than the current optimal model in the same experimental setting and setup. 

  



3 

CHAPTER II: RELATED WORK 

Extractive Summarization 

Text summarization has been studied for decades. One of the earliest approaches to 

extractive summarization was TextRank (Mihalcea & Tarau, 20004). TextRank represents the 

document as a graph, where nodes represent sentences and edges represent the similarity 

between sentences. The algorithm scores each sentence based on the graph structure and selects 

the top-scoring sentences as the summary. ClusterRank (Garg, Favre, Reidhammer, & Hakkani T

ür, 2009) also proposes a graph-based algorithm. ClusterRank focus on meeting summarization, 

which uses cluster analysis to identify important topics and participants, then ranks them based 

on their relevance to the meeting, and then selects the highest-scoring sentences from the most 

critical clusters to form the summary.  LexRank (Erkan & Radev, 2004) applies an unsupervised 

approach to identify and rank the most important sentences in a document based on their 

similarity among sentences. OTExtSum (Tang, et al., 2022) uses optimal transport for extractive 

text summarization. The paper proposes using the Wasserstein distance, a measure of 

dissimilarity between probability distributions, to identify the most informative sentences in a 

text and generate a summary that preserves the vital information. 

Many deep learning models have recently been proposed for text summarization tasks. 

BERT (Devlin, Chang, Lee, & Toutanova, 2018) is a pre-trained neural network for natural 

language tasks. BERT, a transformer-based architecture, has achieved state-of-the-art results on 

various NLP benchmarks, which prove the ability of BERT to capture the semantic and 

contextual information of the input text. RoBERTa (Liu, et al., 2019) is a variation of BERT and 

improves the pre-training process with longer sequences of text, dynamic masking, and removal 

of the next sentence prediction objective, which are not included in BERT. Compared to BERT, 
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RoBERTa was used for extracting text summarization tasks when it was proposed, proved its 

effectiveness in generating high-quality summaries, and achieved state-of-the-art results in 

several NLP benchmark tests. Since the excellent performance of BERT/Roberta on NLP tasks, 

there is a lot of extension work based on the BERT/RoBERTa model.   

BertSum (Liu, 2019) utilizes BERT pre-trained language models to boost the 

performance of extractive summaries. The approach involves fine-tuning BERT on a large 

corpus of text data to generate summaries and test the performance with various classifiers for 

sentence summarization. They get a good performance with the sentence Transformer layer. 

Narayan et al. (Narayan, Cohen, & Lapata, 2018) use a pre-trained RoBERTa model to generate 

sentence embeddings and train a policy network using reinforcement learning to rank sentences 

in the input text based on their importance for the summary.  The author also designs a new 

reward loss function that takes care of the content and diversity of the abstract. The MatchSum 

(Zhong, et al., 2020) model applies a text-matching framework to consider the relationship 

between the generated summary and the input document. MatchSum determines the most 

informative summary as the final summary based on the relevance of multiple candidate 

summaries to the input document. This method has shown promising results, indicating the 

potential of text-matching techniques for improving the quality of extractive summarization. 

When summarizing, extracting whole sentences can result in the summary including unneeded 

and redundant information. Zhou et al. (Zhou, Wei, & Zhou, 2020) propose an extractive 

summarization method that uses subsentences as the extractive unit. They investigate the impact 

of different levels of granularity - word, sentence, and paragraph for sentence selection in 

extractive document summarization and evaluate their effectiveness on several benchmark 

datasets using a BERT-based model. Their result suggests that summarizing at the sentence level 
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is more effective for extractive summarization than summarizing at the word or paragraph levels. 

Yuan et al. (Yuan, Wang, & Li, 2020) propose a hierarchical graph mask approach for fact-level 

extractive summarization using BERT-based models. They proposed an algorithm that splits 

sentences into multiple facts, capturing the relationships between entities and facts in the text. 

They then use a neural network to generate a hierarchical mask that identifies the most essential 

facts to be included in the summary. This method achieves state-of-the-art performance on 

several benchmark datasets, demonstrating the effectiveness of fact-level summarization for this 

task.  

Text Summarization with Graph Algorithms 

Graph algorithms have been used in the field of text summarization. Tan et al. (Tan, Wan, 

& Xiao, 2017) propose a document graph representation in which nodes represent sentences and 

weighted edges represent the semantic similarity between sentences. They then use an attention 

mechanism to capture the relationships between sentences and generate abstract summaries. 

Vhatkar et al. (Vhatkar, Bhattacharyya, & Arya, 2020) extract triples from sentences and encode 

triples in a graph structure to improve the document's semantic representation of sentences, then 

applies a neural network to determine the triples’ score. Summary sentences are selected based 

on the highest score triples in the neural network. Wu et al. (Wu, Koncel-Kedziorski, Ostendorf, 

& Hajishirzi, 2020) propose a method for extracting summary graphs from long documents to 

produce a structured and condensed representation of the primary content. This study 

demonstrates the potential of integrating extractive summarization techniques with knowledge 

graph construction to generate a structured and interpretable summary of lengthy documents. 

The methodology provides valuable insights for future research on extractive summarization and 

knowledge graph techniques. Jin et al. (Jin, Wang, & Wan, 2020) apply a multi-granularity 
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interaction network (MGSum) for multi-document summarization that combines extractive and 

abstractive approaches. MGSum is a hierarchical model with an extractive and abstractive 

module that considers document, paragraph, and sentence levels of granularity. It captures the 

interactions between these granularities so that the relationships within and between multiple 

documents can be understood better to produce better summarizations. Belwal et al. (Belwal, Rai, 

& Gupta, 2021) present a new graph-based extractive text summarization method using keyword 

modeling or topic modeling. The research team develops an algorithm that recognizes keywords 

or subjects within the input text and then uses this information to generate a weighted similarity 

network. By recording semantic linkages among sentences and between the sentences and whole 

documents, the graph is evaluated to calculate significance scores for each sentence. Afterward, 

the most pertinent sentences are chosen for the summary. Gokhan et al. (Gokhan, Smith, & Lee, 

2022) developed GUSUM, an unsupervised graph-based method for extractive text 

summarization. Combining sentence feature scoring and Sentence-BERT embeddings, GUSUM 

generates a similarity graph representing the input text. A clustering algorithm is then applied to 

the graph to group similar sentences, and representative sentences are chosen for the summary. 

Zhu et al. (Zhu, et al., 2020) address the problem of factual consistency in abstractive 

summarization. They offer a strategy that extracts triples from the document and then represents 

them as a knowledge graph by processing each triple as a node. Then the model merged 

knowledge graph information into the model’s decoder to motivate the model to produce 

summaries that maintain factual consistency with the source document. Their work highlights the 

potential of leveraging knowledge graphs to improve the quality and factual accuracy of 

generated summaries. Huang et al. (Huang, Wu, & Wang, 2020) present a novel approach for 

abstractive summarization that incorporates knowledge graphs to enhance the semantic 
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understanding of the input text. They propose Abstractive Summarization with Graph 

Augmentation and semantic-driven RewarD (ASGARD), which integrates external knowledge 

from knowledge graphs into the summary generation process. Huang et al. (Huang, Wu, & Wang, 

2020) introduce a semantic-driven cloze reward that evaluates the model's performance based on 

the ability to answer cloze-style questions derived from the source text and the knowledge graph 

to encourage the generation of semantically coherent and factually accurate summaries. Wang et 

al. (Wang, Liu, Zheng, Qiu, & Huang, 2020) propose a heterogeneous graph-based neural 

network for extractive summarization (HeterSumGraph). The authors construct a heterogeneous 

graph representation of the input document, where nodes represent different types of textual 

elements such as sentences, paragraphs, and entities, and edges capture various relationships 

among these elements. The model captures local and global contextual information by 

incorporating different types of nodes and relationships, improving sentence selection for 

extractive summarization.  
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CHAPTER III: DATA PREPROCESSING 

The CNN/Daily Mail (Hermann, et al., 2015) dataset is publicly available for the text 

summarization task (Nallapati, Zhou, dos Santos, Gu̇lçehre, & Xiang, 2016). We use the 

CNN/DM dataset for experimentation and evaluation in our extractive summarization 

experiment. The dataset contains more than 300,000 English news releases written by 

professional journalists from CNN and Daily Mail. Every document in the dataset corresponds to 

a single data item which contains information in the form of data fields. The first field is "id," a 

string containing the hexadecimal form for the SHA1 hash of the URL from which the story was 

retrieved. The second field is "article," which is a string that contains the body of the news 

article. Finally, the third field is "highlights," which is a string containing the highlight of the 

article as written by the article author. Each file name in the CNN/DM dataset is a sixteen-bit 

SHA1 hash code corresponding to the news article’s address. The content of each file contains 

the news article along with its associated highlights. Each highlight is preceded by the “@ 

highlight “symbol to distinguish the highlights from the news article. Notably, each file contains 

multiple highlights, indicating the presence of multiple key points within the news article. This 

feature makes the dataset particularly useful for text summarization tasks. 

Table 1 is an instance data file from the CNN/DM dataset, which includes the article's 

unique id and content from its original file. Tables 2 and 3 provide information about the 

CNN/DM dataset. Table 2 shows the average number of tokens in the articles and highlights of 

the dataset. The average number of tokens for the articles is 781, while the average for the 

highlights is 56. In the task of text summarization by machine learning, the dataset needs to be 

partitioned into a training set, a validation set, and a test set. The CNN/DM dataset also contains 

the source URLs of all the news in the dataset. These URLs form a one-to-one correspondence 
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with the ids of the data and are partitioned into a training set, a validation set, and a test set. The 

preprocessing follows the segmentation of the dataset, as shown in Table 3. The dataset contains 

312,085 instances, of which 287,113 are in the training set, 13,368 in the validation set, and 

11,490 in the test set. 

Table 1 

An instance data file from the CNN/DM dataset 

File Name (id) 0000bf554ca24b0c72178403b54c0cca62d9faf8 

Content 

 

News article 

 

 

highlight 

 

Nicholas Levene, 48, was jailed for 13 years last November after he 

admitted orchestrating a lucrative Ponzi scheme that raked in 

£316million.  

…… 

He would take from Peter to pay Paul  

and move the funds between accounts in the financial havens of Jersey,  

Switzerland and Israel. 

……. 

@highlight 

Nicholas Levene must pay the nominal sum because he is bankrupt 

@highlight 

…… 

 

Table 2 

Average Token Count of Articles and Highlights 

Data Field Average Token Count 

Article 781 

Highlights 56 
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Table 3 

Data Split of CNN/DM Dataset 

Dataset number Number of Instances 

Dataset 312085 

Train 287113 

Validation 13368 

Test 11490 

 

Article and Highlight Split 

Several preprocessing steps must be taken to prepare the raw CNN/Daily Mail dataset for 

a large pre-trained NLP neural network. One crucial step is tokenization, which involves splitting 

the text into individual words or subwords known as tokens. Tokenization helps the neural 

network understand the structure of the text. The Stanford CoreNLP toolkit (Manning, et al., 

2014) is utilized to perform tokenization. This toolkit is an open-source natural language 

processing toolkit developed by the Stanford NLP Group. In addition to tokenization, the 

CoreNLP toolkit offers a variety of tools for processing natural language text, including lexical 

annotation, named entity recognition, sentiment analysis, and coreference parsing. It is 

commonly used in industry and academia for many natural language processing tasks, such as 

sentiment analysis, information extraction, and machine translation. 

After using Stanford CoreNLP to tokenize the raw text from the CNN/Daily Mail dataset, 

we obtain a JSON file that contains the tokenized sentences. Each sentence is treated as a 

separate line of text and is stored as a list of individual words. To extract the source text and the 

corresponding summary from each file in the CNN/DM dataset (as shown in Table 1), we iterate 

through each sentence in the JSON file, adding each word of the sentence to the source text until 
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it encounters a sentence that starts with "@highlight." If the first word of the sentence is 

"@highlight," the subsequent content is considered a summary and is added to the corresponding 

list of summaries. Finally, the source text and summaries are saved in a new JSON file. 

Summarization Extraction 

Two common types of summarization tasks are extractive and abstractive summarization. 

In extractive summarization, the goal is to select a subset of sentences from the source document 

that reflects the essential information. In abstractive summarization, the goal is to generate a 

summary that contains the main points of the source document concisely and coherently. 

In the CNN/DM dataset, the source documents are the news articles themselves, and the 

highlights generated by the article authors are used as human-generated abstractive summaries. 

(Nallapati, Zhou, dos Santos, Gu̇lçehre, & Xiang, 2016). For extractive summaries, select up to 

three sentences from the source document that overlap the most with the words in the abstractive 

summary (Liu, 2019). These sentences are then used as extractive summaries reflecting the 

content of the source document. 

The ROUGE metric (Lin & Och, 2004) is a commonly used metric for evaluating the 

quality of text summarization in the extractive summarization task. In this approach, the goal is 

to select a subset of sentences from the source document that best captures the main ideas of the 

text. To achieve this, Liu et al. use the greedy algorithm to iterate through the unselected 

sentences of the source document one at a time (Liu, 2019). 

When building extractive summaries from the source text, the basic unit of the summary 

is the sentence. Let 𝑆 be the set of all sentences in the news article and let 𝑆′ be the subset of 

sentences that have been selected as summary sentences. The set of unselected sentences in the 
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original text is the difference set, 𝑆 − 𝑆′, which represents the sentences that have not yet been 

added to the summary. 

To select the next sentence to be added to the summary, we calculate the sum of Rouge-1 

and Rouge-2 scores between each sentence 𝑐 in the set 𝑆 − 𝑆′ and the reference summary 𝑟, 

where the reference summary 𝑟 is typically the human-generated abstract summary provided 

with the article. The Rouge scores provide a measure of the similarity between the sentence and 

the reference summary, with higher scores indicating greater similarity. 

As shown in Equation (1), the sentence with the highest Rouge score is then selected to 

be added to the set 𝑆′, and the process is repeated until the desired number of summary sentences 

has been selected. By iteratively selecting the most similar sentences, the extractive 

summarization algorithm can generate a summary that accurately reflects the main ideas of the 

source document. Equation (1) shows that Rouge-1 and Rouge-2 metrics are used to select 

sentences to create a summary. 

𝑠′ =  𝑠′ ∪ argmax
𝑠𝑒𝑛∈𝑆−𝑆′

( 𝑅𝑜𝑢𝑔𝑒 − 1(𝑠𝑒𝑛, 𝑟) + 𝑅𝑜𝑢𝑔𝑒 − 2(𝑠𝑒𝑛, 𝑟))                    (1) 

Based on the metric in (1), three sentences are selected from the source document as the 

target summaries for the extractive summarization task (Nallapati, Zhai, & Zhou, 2017).  

Afterward, we create an array whose length is equal to the number of sentences in the source 

document, initialized to all zeros. Each number in the array corresponds to a sentence at the same 

index position, and the corresponding array value for the sentence that is selected as part of the 

extractive summary is marked as 1. This is about how to generate a target summary for the 

extractive summarization task.  The following subsection describes how to apply pre-train 

language model encoders to encode the article and summary in the dataset. 
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Data Processing for Pre-train Language Model 

After the text data has been tokenized and separated into the source document and 

extractive summary, we need to convert text data into a format that computers and NLP language 

models can recognize. In the CNN/DM dataset, there is a small portion of data where the source 

document is empty and only highlights exist. This indicates that the news topic may be an image 

or video and does not contain text. Additionally, some news articles in the dataset are too short. 

These data are not suitable for summarization tasks, so they need to be removed first. If the token 

count in the source text is less than 300, the text is deleted. Then, all sentences in the source text 

are restored to reconstruct the original document. Afterward, we process the text to remove 

sentences that are too long or too short. We iterate through each sentence in the text and remove 

sentences with fewer than 4 or more than 150 tokens. If a sentence is removed, the corresponding 

element in the summary sentence array is also deleted. 

The next step is to encode the data. Encoding involves adding special tokens to the text 

data and transforming the words or characters in the text into vector space values. Liu (Liu, 2019) 

proposes an encoding strategy for input sequences in the pre-trained NLP neural network to 

support extractive summarization tasks. For the source document, the improved encoding rules 

insert special tokens [CLS] and [SEP] at the beginning and end of the sentence, respectively, to 

mark the start and end of the sentence. Interval paragraph embedding is used to distinguish 

sentences better, using different paragraph codes for odd or even numbered sentences. The 

position encoding uses position embedding to indicate the position of each token in the input 

sequence, allowing the model to capture the order of the tokens. The encoded text is then 

converted to an id sequence using the BERT or RoBERTa model Tokenizers (Devlin, Chang, 

Lee, & Toutanova, 2018; Liu, et al., 2019). 
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BERT and RoBERTa use different encoding methods. BERT uses character-level Byte-

Pair Encoding (BPE) with a word list size of 30K, while RoBERTa uses byte-level BPE 

encoding (Wang, Cho, & Gu, 2019) with a word list size of 50K. The two encoding methods 

have a different granularity of subword units. The character-level BPE decomposes words into 

their constituent characters. For example, the word "word" may be broken down into subwords 

"w," "o," "r," and "d." The sequence of IDs generated in the BERT model for this word would be 

[1059, 1051, 1054, 1040]. On the other hand, bytes-level BPE breaks words into individual bytes 

and then combines them into larger subword units based on their frequency. This allows the 

model to handle a wider range of characters, including those not in the Latin alphabet, such as 

Chinese or Arabic characters. In the RoBERTa model, the encoding value of "word" is 14742. 

However, byte-level BPE may result in a larger vocabulary than character-level BPE because 

there are more byte-level combinations than character-level combinations. In our experiments, 

we observed the performance of the extractive summary created by our proposed neural network 

model based on the BERT and the RoBERTa models. 

Data Processing for Knowledge Graph 

In this NLP task, we aim to extract essential information from news articles in the 

CNN/DM dataset and build a knowledge graph. Knowledge graphs from news articles can 

significantly enhance the performance of the summarization algorithm. The knowledge graph 

serves as a reference that can be used to extract critical information from the text, thereby 

making the summary more concise and accurate. This task involves various steps from obtaining 

the raw news articles to constructing a knowledge graph. Firstly, we need to extract and organize 

the original news articles from the dataset. We directly segment the articles using the Stanford 

CoreNLP tool, which splits the character words and compound words in the article into different 
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words. This can cause information loss or confusion in the articles. So, we need to collate 

original documents and extract the article parts directly from the dataset to maximize the content 

of the original news. 

Once we have the articles, we need to extract the entities mentioned in the text using 

techniques such as Named Entity Recognition (NER) and coreference resolution. NER identifies 

and classifies named entities, such as people, organizations, and locations. Coreference 

resolution helps find all the expressions in the text that refer to the same entity, thus providing a 

complete view of the entities mentioned in the article. Once the entities have been identified, we 

can extract the relevant information and construct the triples (subject, predicate, and object) from 

the sentences in the text. 

The subject and object of each triple represent the nodes in the knowledge graph, while 

the predicate represents the edges that connect these nodes. By constructing the knowledge 

graph, we can visualize the relationships between different entities and gain insights into the 

information contained within the text. 

Text Collation 

Text collation helps to generate higher-quality articles for the knowledge graph. We split 

the article and highlights and tokenize the article as input data to the pre-trained language model. 

However, it is a challenge to accurately tokenize the text, especially when dealing with hyphens, 

abbreviations, and compound words. This situation can lead to errors in tokenization, which is 

even more pronounced when reconstructing press releases from tokenized portions of the source 

text. Words with punctuation can cause problems in text reconstruction, resulting in the loss of 

valuable information. Therefore, news articles must be extracted directly from the original data, 

allowing us to maintain the integrity of punctuated words. Another challenge is that many 
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sentences in the original text are divided into parts by the line break (i.e., '/n'). To accurately 

reconstruct these sentences, we adopted the strategy of reading the text in the target document 

line by line and removing all line breaks in the read text. By doing so, we can accurately 

reconstruct the split sentences and significantly reduce the loss of information in building the 

knowledge graph. 

Coreference Resolution 

When writing an article, pronouns, titles, and abbreviations are often used to refer to 

previously mentioned entities by their full name. This avoids the problem of repetitive use of the 

same word, which can make the sentence cumbersome. However, we need to convert the entire 

article into a knowledge graph when constructing a knowledge graph. From a global perspective, 

problems with ambiguous references are widespread. Different entities in the same document are 

replaced by the same pronoun, such as he, she, or it. Therefore, we need to perform coreference 

resolution to replace all pronouns with the named entities. We used spaCy3 (Neumann, King, 

Beltagy, & Ammar, 2019) and coreference toolkits with Python to implement coreference 

resolution. To perform coreference resolution, one first needs to load the en_core_web_trf 

component in spaCy3 and add the Coreferee pipeline to the language model. Then, the NLP 

model generated by spaCy3 is used to identify the pronouns or noun phrases and link them to the 

entities in the text.  The entire process is accelerated using GPUs, and the entire processing 

workflow takes approximately 100 hours to complete. An example of coreference resolution is 

shown in Table 4. In this example, the pronunciation ‘he’ represents ‘Nicholas Levene’ at the 

beginning of the document. The conference resolution replaces ‘he’ with ‘Levene.’ 
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Information Extraction for Triples 

OpenIE (Angeli, Premkumar, & Manning, 2015) is a command in Stanford CoreNLP 

used to process all the sentences in a document and extract multiple triplets. During the 

processing, each triplet is assigned a probability value indicating whether the triplet is correct or 

not. By default, OpenIE sets the affinity probability to one-third, which means that a triple is 

output by OpenIE only when its probability of being correct is higher than one-third. To improve 

the accuracy of the information extraction results, we set the affinity probability cap to two-

thirds. However, given that our dataset contains over 300,000 data, processing this dataset using 

the Stanford OpenIE command is slow and may lead to system crashes due to memory issues. 

Therefore, we set the thread number of OpenIE to 8 and allocated 32GB of memory using '-

mx32g' to prevent command crashes. This approach greatly enhances the processing efficiency 

of the command and helps avoid unexpected errors. The extracted triplet is shown in Figure 1. 

 

Figure 1. A JSON format for Triple Data 

The OpenIE data, stored in JSON format, in Figure 1 contains a triple that was generated 

from the original sentence. The triple consists of a subject, relation, and object, with the span of 

their index in the original sentence. In this case, the subject is "Steven Gerrard," and its span is 

from the first to the second word of the source sentence. The relation between the subject and the 

object is "had given," with a span of the index from the third to the fifth word of the sentence. 
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The object is "one of his Liverpool performances," and its span is from the fifth to the eleventh 

word of the original sentence. The data is a clear representation of how OpenIE can extract 

meaningful triples from a given sentence, providing insight into the relationships between 

different entities. With this information, we can analyze and interpret the text more 

comprehensively and efficiently.  

Knowledge Graph Construction 

Once the triples are extracted from the text, they must be combined to form a knowledge 

graph. The first step is to process the redundant triples. Table 4 presents four triples that come 

from the set of triples extracted from the first sentence of the news article in Table 1 by Stanford 

OpenIE. These triples consist of a subject, a relation, and an object, along with their 

corresponding index spans in the original sentence. The information extraction tool allows us to 

extract important information from sentences for the summarization task. However, we can 

observe that the first and fourth triples in the left half of Table 4 share an identical relationship 

and object parts and have a high degree of overlap in the subject part. This indicates the presence 

of redundant triples generated by Stanford OpenIE, which needs to be filtered out. To eliminate 

redundancy between the extracted triples, we select two triples at a time and calculate their 

degree of overlap to determine whether there is redundancy. The formula for determining 

whether redundancy exists is as follows: 

𝑂𝑣𝑒𝑟𝑙𝑎𝑝(𝑡𝑟𝑖𝑝𝑙𝑒1, 𝑡𝑟𝑖𝑝𝑙𝑒2) =
𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑠𝑢𝑏𝑗𝑒𝑐𝑡 + 𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 + 𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑜𝑏𝑗𝑒𝑐𝑡

(𝑙𝑒𝑛𝑔𝑡ℎ𝑡𝑟𝑖𝑝𝑙𝑒1 + 𝑙𝑒𝑛𝑔𝑡ℎ𝑡𝑟𝑖𝑝𝑙𝑒2)/2
≥ 0.75   (2) 

In Equation (2), 𝑡𝑟𝑖𝑝𝑙𝑒1 𝑎𝑛𝑑 𝑡𝑟𝑖𝑝𝑙𝑒2 are the selected triple, 𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑠𝑢𝑏𝑗𝑒𝑐𝑡, 

𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 , and  𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑜𝑏𝑗𝑒𝑐𝑡 are the number of overlaps between the indexes of the 

span of the subject, relation, and object of the two triples, respectively. 𝑙𝑒𝑛𝑔𝑡ℎ𝑡𝑟𝑖𝑝𝑙𝑒1 and 

𝑙𝑒𝑛𝑔𝑡ℎ𝑡𝑟𝑖𝑝𝑙𝑒2 are the total length of the sum of the spans of the three parts of the two triples. To 
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calculate the overlap degree, 𝑂𝑣𝑒𝑟𝑙𝑎𝑝(𝑡𝑟𝑖𝑝𝑙𝑒1, 𝑡𝑟𝑖𝑝𝑙𝑒2), we divide the sum of the overlap parts 

of the spans of the two triples by the average length of the spans of the two triples. If the value is 

larger than 0.75, we assume that redundancy exists between the two triples and delete one of 

them until there is no redundancy in the new triple set. The left part of Table 4 is the original set 

of triples, and the right part is the filtered set of triples. We can observe that the filtered triples do 

not have redundant relationships with each other. By filtering the triples, we can simplify the 

extracted triples, reduce the waste of unnecessary computational consumption, and make the 

generated knowledge graph more concise. 

Table 4 

Triples before and after Filter 

Triples Filtered Triples 

{'subject': 'Nicholas Levene 48', 

  'subjectSpan': [0, 4], 

  'relation': 'was', 

  'relationSpan': [5, 6], 

  'object': 'jailed for 13 years November', 

  'objectSpan': [6, 12]}, 

 

{'subject': 'Levene', 

  'subjectSpan': [13, 14], 

  'relation': 'orchestrating', 

  'relationSpan': [15, 16], 

  'object': 'luative Ponzi scheme', 

  'objectSpan': [17, 20]}, 

 

{'subject': 'Nicholas Levene', 

  'subjectSpan': [0, 2], 

  'relation': 'was jailed at_time', 

{'subject': 'Nicholas Levene 48', 

  'relation': 'was', 

  'object': 'jailed for 13 years November'}, 

 

 {'subject': 'Levene', 

  'relation': 'orchestrating', 

  'object': 'luative Ponzi scheme'}, 

 

 {'subject': 'Nicholas Levene', 

  'relation': 'was jailed at_time', 

  'object': 'November'} 
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(Table Continues) 

Table 4, Continued 

Triples Filtered Triples 

'relationSpan': [5, 7], 

'object': 'November', 

  'objectSpan': [11, 12]}] 

…………. 

 

{'subject': 'Nicholas Levene', 

  'subjectSpan': [0, 2], 

  'relation': 'was', 

  'relationSpan': [5, 6], 

  'object': 'jailed for 13 years last November', 

  'objectSpan': [6, 12]}, 

 

 

Table 4 shows that the filtered triples, while not redundant, may have slight differences in 

expressing the same entity. In the filtered triples in Table 4, 'Nicholas Levene 48,' 'Levene,' and 

'Nicholas Levene' all serve as the subject of a triple and refer to the same person in the original 

text. When constructing the knowledge graph, three subjects with the same content are 

considered as three different nodes because of the subtle differences, which is not conducive for 

constructing the knowledge graph and reasoning about the knowledge structure of the articles. 

Therefore, we need to unify similar triple components. In the process of unifying triples, we 

compare each triple. If two triples have a 50% overlap in their subject, relation, or object part, we 

unify the overlapping components, and the smaller span of the two components is replaced by 

the larger one. For example, in Table 4, the subject part of the three triples has slight differences, 

and after unification, the subject part of all three triples is 'Nicholas Levene.' 
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Figure 2. An Example of Knowledge Graph 

After filtering and unifying the triples, we need to build the knowledge graph. The nodes 

are the subject and object of the triple, and the edge is the triple’s relation. Figure 2 is a 

visualized knowledge graph by the first sentence in Table 1. As shown in Figure 2, the 

knowledge graph is a directed graph in which the relationships between any connected pair of 

nodes are not bidirectional. The relationship exists only between the subject and the object and 

always points from subject to object. 

Before training the knowledge graph, the triples need to be encoded. We use BERT and 

RoBERTa encoders to encode the subject, relationship, and object separately. Since some nodes 

in the graph are phrases, they need to be tokenized and then encoded as id sequences. Then the 

encoded triples are processed as a knowledge graph and saved into the dataset with the encoded 

source document and summary data for training and testing. 
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CHAPTER IV: METHODOLOGY 

In this chapter, we describe our extractive summarization framework. In the task of 

extractive summarization, the system is required to extract the most representative sentences 

from the document and create a summary. Our work uses a neural network model to predict 

which sentences belong to the summary. To train and fit the model, we need to identify which 

sentences in the source document belong to the summary and select these sentences as output. 

The input of our model consists of the token of the input document 𝑋 = {𝑥𝑘} and knowledge 

graph 𝐺 = {(𝑉, 𝐸)}, where the 𝑉 is the node and the 𝐸 is the edge set. The output of the model 

𝑆 = {𝑠𝑛} is the score of each sentence. We choose the top three highest score sentences as the 

summary. In deep learning, we process the extractive summary as a sentence classification 

problem (Liu, 2019) to classify whether the sentence belongs to the summary. We extract data 

from the source document and construct a knowledge graph to represent its structure and infer 

further information. We employ the source document and the knowledge graph as inputs to the 

neural network. Our model architecture is shown in Figure 3. In our approach, as shown in 

Figure 3, the neural network consists of (1) an encoder for the source document and a knowledge 

graph, (2) a classifier for sentence classification prediction, and (3) other components (such as a 

transformer). In Figure 4, we present our model with more details about each component. 

Encoder 

To tackle extractive text summarization, we use a neural network involving two inputs: 

the tokenization source document and the knowledge graph from the source document. Our 

proposed architecture in Figure 3 consists of two parts: an encoder part and a classifier part. The 

encoder part consists of a graph encoder for the knowledge graph and a source document 

encoder like BERT (Devlin, Chang, Lee, & Toutanova, 2018) and Roberta (Liu, et al., 2019). 
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The knowledge graph encoder converts a knowledge graph into a feature vector that the 

subsequent layers can use. The source document encoder processes the tokenized source 

document and converts it into a sequence of feature vectors. 

 

Figure 3. The Proposed Model Architecture 

Source Document Encoder 

We begin by tokenizing the document and feeding the input source document x to either 

the BERT (Devlin, Chang, Lee, & Toutanova, 2018) or RoBERTa (Liu, et al., 2019) model. The 

output of BERT/RoBERTa is the embedding document. We then employ a two-transformer 

layer, x2 Transformer (Liu, 2019), shown in Figure 4, to process the document-level feature 

representation to boost the performance of the extractive summarization algorithm: 

𝑥̃𝑙 = (𝑥𝑙−1 + 𝑀𝐻𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑥𝑙−1))                                               (3) 
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𝑥𝑙 = 𝐿𝑁(𝑥̃𝑙 + 𝐹𝐹𝑁(𝑥̃𝑙))                                                         (4)                                            

 

Figure 4. The Proposed Model Details 

Where the output x of the BERT/RoBERTa model is the input of the transformer. 

𝑀𝐻𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 in (3) is a multi-head attention operation (Vaswani, et al., 2017). Multi-head 

attention allows the model to capture more complex information from multiple perspectives from 

the input data, leading to more accurate and robust results. 𝐹𝐹𝑁 in (4) is the feed-forward 

operation, and 𝐿𝑁 in (4) is the layer normalization operation. The output of the transformer layer 

is sent back into the cross-attention transformer layer in the classifier. 
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Graph Encoder 

The first step of the graph encoder is to construct the knowledge graph by triples 

extracted from the source document by Stanford OpenIE. The knowledge graph is created by 

representing the subject and object entities as nodes and the relations between them are 

represented as edges pointing from a subject to an object. The next step involves encoding each 

node and edge in the knowledge graph using the corresponding encoder from the BERT or 

RoBERTa models. Additionally, we need to ensure that the source document encoder and the 

graph encoder are integrated to generate a unified representation. Therefore, we encode the 

source document and the knowledge graph using the same encoder. After the graph encoding 

step, a two-layer graph attention network (GAT) is used to process the encoded graph 

(Veličković, et al., 2017). In our experiments, the two-layer GAT network shares their 

parameters, and the GAT network is iterated three times in one training to fit the complex 

parameters in GAT.  The output of GAT is transformed into a sequence with the same 

dimensionality as the output of the language model as the BERT/RoBERTa model in the source 

document encoder. 

Classifier 

Our classifier utilizes two parallel cross-attention transformer architectures and a linear 

output layer. The output from the transformer in the source document encoder and the GAT 

component in the graph encoder is fed into separate cross-attention transformers. The 

information from the source document encoder and the graph encoder is mutually encoded in 

both cross-attention transformers. This allows the two cross-attention transformers to encode 

information from the source document and the knowledge graph. Finally, a linear output layer is 

used to classify which sentences should be included in the summary. 
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Cross Attention 

In our model, we incorporate cross-attention to enable the interaction between the inputs 

from the transformer in the source document encoder and GAT in the graph encoder. 

Specifically, when processing the outputs from the transformer in the source document encoder, 

we introduce the output sequence from GAT as weights to generate the next hidden state in the 

left-side cross-attention transformer in Figure 4. The output from the transformer in the source 

document encoder is also the weight of the right-side cross-attention transformer in Figure 4. The 

output of GAT is the input to the right-side cross-attention transformer. By doing so, the model 

can selectively attend to relevant information from both the transformer and GAT, thus enabling 

better information exchange between the two types of data. The output of the cross-attention 

layer in Figure 4 is calculated as follows: 

𝛼1 =
exp(ℎ2ℎ1

𝑇)

∑ exp(ℎ2ℎ1
𝑇)

                                                            (5) 

ℎ̅1 = 𝛼1ℎ1                                                                    (6) 

𝛼2 =
exp(ℎ1ℎ2

𝑇)

∑ exp(ℎ1ℎ2
𝑇)

                                                           (7) 

ℎ̅2 = 𝛼2ℎ2                                                                  (8) 

When calculating the output of cross-attention, we use the input from the transformer and 

GAT part to get the weight of each part. The ℎ1 and ℎ2 are the input from the transformers in the 

source document encoder and the GAT of the graph encoder, respectively. The 𝛼1 and 𝛼2 are the 

weights of ℎ1 and ℎ2, respectively. The ℎ̅1 and ℎ̅2 are the output of the cross-attention layer 

whose output is added to input ℎ1 and ℎ2 and then fed into the normalization layer at the next 

step of cross-attention layer. The cross-attention mechanism allows the neural network to learn 

contextual relationships by analyzing the information from the transformer output in the source 
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document decoder with article structure information from the graph encoder. Meanwhile, the 

transformer information from the source document encoder provides additional information to 

the neural network when analyzing the text structure information from the graph attention 

network. 

Output  

To classifier the sentences, the outputs of the two transformer layers are concatenated 

into one output. The output is processed using a full connection layer and applying the sigmoid 

function as activate function (Dubey, Singh, & Chaudhuri, 2022) to get the sentence score: 

𝑌 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊[ℎ1, ℎ2] + 𝑏)                                                 (9) 

In Equation (9), the [ℎ1, ℎ2] is the concatenated input from two outputs of the cross-

attention transformer modules. 𝑌 is the output of our model, which represents the probability that 

each sentence belongs to the summary sentence. Cross-entropy loss is applied as the loss 

function for training and validation.  When we evaluate the performance of the trained model on 

the test set, we select the top-three sentences based on the probability 𝑌 in the source document 

as the generated summary. 
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CHAPTER V: EXPERIMENT 

Experiment Environment 

In this experiment, the Lambda server provided by Illinois State University was used for 

processing and analyzing natural language data. The server is equipped with two RTX A6000 

GPUs, each with a memory capacity of 48685MB, and is powered by the NVIDIA-SMI driver 

version 460.39 and CUDA version 11.1. The GPUs were utilized for deep learning tasks such as 

training and testing of neural networks.  

 

Figure 5. Lambda Server at Illinois State University 

Our experiment utilized the PyTorch framework (Paszke, et al., 2019) to build our 

designed network. The Transformer Toolkit (Wolf, et al., 2019) was used in constructing the 

BERT and RoBERTa models. The Transformers is an open-source software library developed by 

Hugging Face (Wolf, et al., 2019) that provides a powerful set of tools for processing 

Transformer models, such as BERT and RoBERTa. The Transformer model allows researchers 



29 

to fine-tune pre-trained Transformer models for specific NLP tasks such as text summarization. 

PyTorch can work together with the Transformers, and the latter provides an easy-to-use API 

and pre-trained models to support NLP tasks. 

To build a graph attention network on the PyTorch framework to analyze our knowledge 

graph, we use the PyG toolkit (Fey & Lenssen, 2019). PyG is an open-source Python library for 

deep learning on graph data. It is built upon PyTorch and can easily design and train graph neural 

networks by various blocks provided by PyG.  

Models have been trained with Adam optimization with learning rate, β1, and β2, which 

are set as 0.001, 0.9, and 0.999, respectively, in training on GPUs on the Lambda server. The 

training step is set as 200,000, and the batch size is set as 3000. The golden summary generated 

by the greedy algorithm is used to train our model.  Model checkpoints were saved every 2000 

epochs and evaluated on the validation set. The best three checkpoints were selected based on the 

loss value on the validation set.  

Based on the selected checkpoint neural network models, we use the selected models to 

generate a summary per document and test the summary quality on the test set. The first step is 

to use the model to score each sentence of the input document. The sentences were ranked 

according to their highest to lowest scores. The top-ranked three sentences with the highest 

scores are selected and used as machine-generated summaries. Rouge is used as the evaluation 

metric when evaluating the extractive summarization model performance. The average rouge 

value of three checkpoint models is reported on the test set.  

Evaluation Metric 

Rouge (Recall-Oriented Understudy for Gisting Evaluation) (Lin, 2004) is an evaluation 

metric used in NLP text to evaluate the quality of a summary by measuring the overlap between 
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the model-generated summary and the reference summary. In our experiment, we applied three 

different variants, Rouge-1, Rouge-2, and Rouge-L, to evaluate the performance of the 

summaries. To get Rouge-1 and Rouge-2 values, we need the Rouge-N function. Rouge-N is 

calculated as follows: 

𝑅𝑜𝑢𝑔𝑒 − 𝑁 =
∑ ∑ 𝐶𝑜𝑢𝑛𝑡𝑚𝑎𝑡𝑐ℎ(𝑔𝑟𝑎𝑚𝑁)𝑔𝑟𝑎𝑚𝑁∈𝑆𝑆∈{𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑆𝑢𝑚𝑚𝑎𝑟𝑖𝑒𝑠}

∑ ∑ 𝐶𝑜𝑢𝑛𝑡(𝑔𝑟𝑎𝑚𝑁)𝑔𝑟𝑎𝑚𝑁∈𝑆𝑆∈{𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑆𝑢𝑚𝑚𝑎𝑟𝑖𝑒𝑠}
                     (10)                          

In obtaining the Rouge-N value, the first step is to tokenize the model-generated 

summary and the reference summary based on the size N in (10) Then calculate the number of 

matching n-grams (contiguous sequences of n words) between the reference summary and the 

model-generated summary and divide it by the total number of n-grams in the reference 

summary.  

The Rouge-L is calculated as follows: 

𝑅𝑜𝑢𝑔𝑒 − 𝐿 =
𝐿𝐶𝑆(𝐶, 𝑆)

𝑙𝑒𝑛(𝑆)
                                                    (11) 

Rouge-L is used to calculate the longest common subsequence (LCS). To get Rouge-L, 

we first compute the LCS of words in the machine-generated summary 𝐶 and the reference 

summary 𝑆. Then we calculate the length, 𝑙𝑒𝑛(𝑆), of the reference summary 𝑆. We compute the 

Rouge-L score by dividing the LCS length by the reference summary length. 

Pyrouge is a Python library that provides convenient interfaces for Rouge evaluation in 

text summarization. Pyrouge can be used with any plain text format summarizer to compute the 

Rouge-1, Rouge-2, and Rouge-L metric scores between the generated summaries and the 

reference summaries. In our experiment, we facilitate the Pyrouge library to get the Rouge-1, 

Rouge-2, and Rouge-L metric scores for testing. 
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CHAPTER VI: RESULTS 

To evaluate our approach, we compare our neural network with other existing extractive 

summarization approaches and report unigram and bigram overlap metrics using Rouge-1 and 

Rouge-2 and the longest common subsequence Rouge-L. The results are shown in Table 5. To 

evaluate our approach, we compare our neural network model with other extractive 

summarization approaches. The results are shown in Table 5. The first section contains LEAD 

and ORACLE. LEAD is an extractive baseline that uses the first three sentences of the document 

as a summary. ORACLE calculates the best possible summary that can be generated by selecting 

sentences from the source document by a greedy algorithm. ORACLE provides an upper bound 

on the performance that any extractive summarization techniques can work as a guide. 

Table 5 

Results on CNN/DM Test Dataset 

Model Rouge-1 Rouge-2 Rouge-L 

LEAD 40.43 17.32 36.67 

ORACLE 52.59 31.23 48.47 

NEUSUM 41.59 19.01 37.98 

BERTSUM 43.23 20.22 39.60 

BertSumExt 43.85 20.34 39.90 

MATCHSUM (BERT-base) 44.22 20.62 40.38 

MATCHSUM (RoBERTa-base) 44.41 20.86 40.55 

BertSumExt (our 

implementation) 

43.44 20.38 39.77 

MATCHSUM (RoBERTa-base) 

(our implementation) 

43.87 20.32 39.95 

(Table Continues) 



32 

Table 5, Continued 

Model Rouge-1 Rouge-2 Rouge-L 

Our model (BERT-base) – with a 

knowledge graph 

43.95 20.45 39.97 

Our model (RoBERTa-base) –  

without a knowledge graph 

43.75 20.29 39.87 

Our model (RoBERTa-base) – 

with a knowledge graph 

44.11 20.61 40.29 

 

The second part of Table 5 lists the performance of existing extractive deep-learning 

models, which include NEUSUM (Zhou, et al., 2018), two SOTA models BERTSUM (Liu, 

2019) and MATCHSUM (Zhong, 2020), with the BERTSUMEXT model which replaces the 

BERT encoder with the RoBERTa encoder. The MATCHSUM model has two versions: BERT-

based and RoBERTa-base version. The performance of the MATCHSUM RoBERTa-base model 

is better than the MATCHSUM BERT-base model. All the results in the second part of Table 5 

come from the corresponding extractive summarization systems (Zhou, et al., 2018; Liu, 2019; 

Zhong, et al., 2020). 

The last part of Table 5 shows the performance of various models in our experiments. In 

our experiments, we train and test our model in the Lambda server at Illinois State University. To 

prevent interference from other factors, we re-train and implement the BERTSUMEXT and 

MATCHSUM in the same experiment environment and setting as our model experiment 

environment and setting. Our model has three variants: a model with a BERT-base encoder with 

the knowledge graph, a model with a RoBERTa-base encoder with the knowledge graph, and a 

model with a RoBERTa-base encoder without the knowledge graph. All three variants of our 

model outperformed our implementation of the BERTSUMEXT model. Our model enhanced by 
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the knowledge graph performs better than our implementation of MATCHSUM. Compared to 

MATCHSUM and BERTSUMEXT, using a knowledge graph to provide a structured 

representation of entities and relationships from source documents could better understand the 

context of the document to boost the performance of the extractive summarization task. We also 

trained the model without the knowledge graph and the corresponding model structure and 

compared this model with our original model. The performance of our model with the 

knowledge graph is much better than our model without the knowledge graph. The RoBERTa-

based model with knowledge graph reached the best result, which is 44.11, 20.61, and 40.29 in 

R-1, R-2, and R-L, respectively, which proved that our model using knowledge graphs 

outperforms other existing models as shown in Table 5. 
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CHAPTER VII: CONCLUSION 

In this thesis, we proposed a neural network model with BERT/RoBERTa for contextual 

understanding and with a knowledge graph for document structure reasoning.  The relevant 

information extracted from the source text and knowledge graph was inter-encoded. We encoded 

the source document and all elements in the knowledge graph and used pre-trained language 

models and a graph neural network to extract the important sentences from the source document. 

Then we applied a cross-attention mechanism for interceding information in both data from the 

source document encoder and graph encoder. In terms of the performance on the CNN/DM 

dataset, our model achieves the best result compared with other existing extractive 

summarization work, which proves that we use a cross-attention mechanism to cross-encode 

features extracted from the knowledge graph with features extracted from the source document, 

bringing text structure information to the extractive summarization task and improving the 

quality of extractive summarization. 

In the future, we will continue to adjust the cross-attention network component and 

design the corresponding network structures for the output data from the source document 

encoder and the graph encoder, respectively, to exploit the potential of the text summarization 

model we developed. We will also focus on abstractive summarization. The task of abstractive 

summarization is to generate a new summary based on the source document, so we need to 

develop a new decoder for our text summarization model. 

  



35 

REFERENCES 

Angeli, G., Premkumar, M. J., & Manning, C. D. (2015). Leveraging linguistic structure for open 

domain information extraction. Proceedings of the 53rd Annual Meeting of the 

Association for Computational Linguistics and the 7th International Joint Conference on 

Natural Language Processing (Volume 1: Long Papers), 344-354. 

Belwal, R. C., Rai, S., & Gupta, A. (2021). A new graph-based extractive text summarization 

using keywords or topic modeling. Journal of Ambient Intelligence and Humanized 

Computing, 12(10), 8975-8990. 

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). BERT: Pre-training of Deep 

Bidirectional Transformers for Language Understanding. arXiv preprint 

arXiv:1810.04805. 

Dubey, S. R., Singh, S. K., & Chaudhuri, B. B. (2022). Activation functions in deep learning: A 

comprehensive survey and benchmark. Neurocomputing. 

Erkan, G., & Radev, D. R. (2004). Lexrank: Graph-based lexical centrality as salience in text 

summarization. Journal of artificial intelligence research, 22, 457-479. 

Fey, M., & Lenssen, J. E. (2019). Fast graph representation learning with PyTorch Geometric. 

arXiv preprint arXiv:1903.02428. 

Garg, N., Favre, B., Reidhammer, K., & Hakkani Tür, D. (2009). Clusterrank: a graph based 

method for meeting summarization. No. REP_WORK: Idiap. 

Gokhan, T., Smith, P., & Lee, M. (2022, October). GUSUM: Graph-Based Unsupervised 

Summarization using Sentence Features Scoring and Sentence-BERT. Proceedings of 

TextGraphs-16: Graph-based Methods for Natural Language Processing, (pp. 44-53). 



36 

Hermann, K. M., Kocisky, T., Grefenstette, E., Espeholt, L., Kay, W., Suleyman, M., & 

Blunsom, P. (2015). Teaching machines to read and comprehend. Advances in neural 

information processing systems, 28. 

Huang, L., Wu, L., & Wang, L. (2020). Knowledge graph-augmented abstractive summarization 

with semantic-driven cloze reward. arXiv preprint arXiv:2005.01159. 

Jin, H., Wang, T., & Wan, X. (2020, July). Multi-granularity interaction network for extractive 

and abstractive multi-document summarization. Proceedings of the 58th annual meeting 

of the association for computational linguistics, (pp. 6244-6254). 

Lin, C. Y. (2004, July). Rouge: A package for automatic evaluation of summaries. Text 

summarization branches out, (pp. 74-81). 

Lin, C. Y., & Och, F. (2004). Looking for a few good metrics: ROUGE and its evaluation. Ntcir 

workshop.  

Liu, Y. (2019). Fine-tune BERT for extractive summarization. arXiv preprint arXiv:1903.10318. 

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., & Stoyanov, V. (2019). Roberta: A 

robustly optimized bert pretraining approach. Retrieved from arXiv: 

https://arxiv.org/abs/1907.11692 

Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J. R., Bethard, S., & McClosky, D. (2014, 

June). The Stanford CoreNLP natural language processing toolkit. Proceedings of 52nd 

annual meeting of the association for computational linguistics: system demonstrations, 

(pp. 55-60). 

Mihalcea, R., & Tarau, P. (20004). Textrank: Bringing order into text. Proceedings of the 2004 

conference on empirical methods in natural language processing, (pp. 404-411). 



37 

Nallapati, R., Zhai, F., & Zhou, B. (2017). Summarunner: A recurrent neural network based 

sequence model for extractive summarization of documents. Proceedings of the AAAI 

conference on artificial intelligence, (pp. 3075-3081). 

Nallapati, R., Zhou, B., dos Santos, C., Gu̇lçehre, ç., & Xiang, B. (2016). Abstractive Text 

Summarization using Sequence-to-sequence RNNs and Beyond. Proceedings of the 20th 

SIGNLL Conference on Computational Natural Language Learning, (pp. 280-290). 

Narayan, S., Cohen, S. B., & Lapata, M. (2018). Ranking sentences for extractive summarization 

with reinforcement learning. arXiv preprint arXiv:1802.08636. 

Neumann, M., King, D., Beltagy, I., & Ammar, W. (2019). ScispaCy: fast and robust models for 

biomedical natural language processing. arXiv preprint arXiv:1902.07669. 

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., . . . Chintala, S. (2019). 

Pytorch: An imperative style, high-performance deep learning library. Advances in neural 

information processing systems, 32. 

Tan, J., Wan, X., & Xiao, J. (2017). Abstractive document summarization with a graph-based 

attentional neural model. Proceedings of the 55th Annual Meeting of the Association for 

Computational Linguistics (Volume 1: Long Papers), (pp. 1171-1181). 

Tang, P., Hu, K., Yan, R., Zhang, L., Gao, J., & Wang, Z. (2022). OTExtSum: Extractive Text 

Summarisation with Optimal Transport. arXiv preprint arXiv:2204.10086. 

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., . . . Polosukhin, I. 

(2017). Attention is all you need. Advances in neural information processing systems, 30. 

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., & Bengio, Y. (2017). Graph 

attention networks. arXiv preprint arXiv:1710.10903. 



38 

Vhatkar, A., Bhattacharyya, P., & Arya, K. (2020). Knowledge graph and deep neural network 

for extractive text summarization by utilizing triples. Proceedings of the 1st Joint 

Workshop on Financial Narrative Processing and MultiLing Financial Summarisation, 

(pp. 130--136). 

Wang, C., Cho, K., & Gu, J. (2019). Neural Machine Translation with Byte-Level Subwords. 

arXiv preprint arXiv:1909.03341. 

Wang, D., Liu, P., Zheng, Y., Qiu, X., & Huang, X. (2020). Heterogeneous graph neural 

networks for extractive document summarization. arXiv preprint arXiv:2004.12393. 

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., . . . Rush, A. M. (2019). 

HuggingFace's Transformers: State-of-the-art Natural Language Processing. arXiv 

preprint arXiv:1910.03771. 

Wu, Z., Koncel-Kedziorski, R., Ostendorf, M., & Hajishirzi, H. (2020). Extracting summary 

knowledge graphs from long documents. arXiv preprint arXiv:2009.09162. 

Yuan, R., Wang, Z., & Li, W. (2020). Fact-level extractive summarization with hierarchical 

graph mask on BERT. arXiv preprint arXiv:2011.09739. 

Zhong, M., Liu, P., Chen, Y., Wang, D., Qiu, X., & Huang, X. (2020). Extractive summarization 

as text matching. arXiv preprint arXiv:2004.08795. 

Zhou, Q., Wei, F., & Zhou, M. (2020). At which level should we extract? An empirical analysis 

on extractive document summarization. arXiv preprint arXiv:2004.02664. 

Zhou, Q., Yang, N., Wei, F., Huang, S., Zhou, M., & Zhao, T. (2018). Neural document 

summarization by jointly learning to score and select sentences. arXiv preprint 

arXiv:1807.02305. 



39 

Zhu, C., Hinthorn, W., Xu, R., Zeng, Q., Zeng, M., Huang, X., & Jiang, M. (2020). Enhancing 

factual consistency of abstractive summarization. arXiv preprint arXiv:2003.08612. 

 


	A Deep Learning Approach to Extractive Text Summarization Using Knowledge Graph and Language Model
	Recommended Citation

	graduate school thesis-dissertation template

